Show simple item record

How Does Restored Habitat For Chinook Salmon ( Oncorhynchus Tshawytscha ) In The Merced River In California Compare With Other Chinook Streams?

dc.contributor.authorAlbertson, L. K.en_US
dc.contributor.authorKoenig, L. E.en_US
dc.contributor.authorLewis, B. L.en_US
dc.contributor.authorZeug, S. C.en_US
dc.contributor.authorHarrison, L. R.en_US
dc.contributor.authorCardinale, B. J.en_US
dc.date.accessioned2013-05-02T19:35:21Z
dc.date.available2014-07-01T15:53:33Zen_US
dc.date.issued2013-05en_US
dc.identifier.citationAlbertson, L. K.; Koenig, L. E.; Lewis, B. L.; Zeug, S. C.; Harrison, L. R.; Cardinale, B. J. (2013). "How Does Restored Habitat For Chinook Salmon ( Oncorhynchus Tshawytscha ) In The Merced River In California Compare With Other Chinook Streams?." River Research and Applications 29(4): 469-482. <http://hdl.handle.net/2027.42/97512>en_US
dc.identifier.issn1535-1459en_US
dc.identifier.issn1535-1467en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/97512
dc.description.abstractThe amount of time and money spent on restoring rivers for declining populations of salmon has grown substantially in recent decades. But despite the infusion of resources, many studies suggest that salmon populations are continuing to decline, leading some to question the effectiveness of restoration efforts. Here we examine whether a particular form of salmon restoration—channel reconfiguration with gravel augmentation—generates physical and biological habitat that is comparable with other streams that support salmon. We compared a suite of habitat features known to influence the various life stages of Chinook salmon in a restoration project in California's Merced River with 19 other streams that also support Chinook that we surveyed in the same geographic region. Our survey showed that riffle habitats in the restored site of the Merced River have flow discharge and depth, substrate and food web characteristics that cannot be distinguished from other streams that support Chinook, suggesting that these factors are unlikely to be bottlenecks to salmon recovery in the Merced. However, compared with other streams in the region, the Merced has minimal riparian cover, fewer undercut banks, less woody debris and higher water temperatures, suggesting that these factors might limit salmon recovery. After identifying aspects in the Merced that differ from other streams, we used principal components analysis to correlate salmon densities to independent axes of environmental variation measured during our survey. These analyses suggested that salmon densities tend to be greatest in streams that have more undercut banks and woody debris and lower water temperatures. These are the same environmental factors that appear to be missing from the Merced River restoration effort. Collectively, our results narrow the set of candidate factors that may limit salmon recovery in channel reconfiguration restoration efforts. Copyright © 2012 John Wiley & Sons, Ltd.en_US
dc.publisherUniversity of British Columbia Pressen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherRestorationen_US
dc.subject.otherChannel Reconstructionen_US
dc.subject.otherGravel Augmentationen_US
dc.subject.otherSurveyen_US
dc.subject.otherRegional Referenceen_US
dc.titleHow Does Restored Habitat For Chinook Salmon ( Oncorhynchus Tshawytscha ) In The Merced River In California Compare With Other Chinook Streams?en_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelTransportationen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/97512/1/rra1604.pdf
dc.identifier.doi10.1002/rra.1604en_US
dc.identifier.sourceRiver Research and Applicationsen_US
dc.identifier.citedreferencePoff N, Ward J. 1990. Physical habitat template of lotic systems: recovery in the context of historical pattern of spatiotemporal heterogeneity. Environmental Management 14: 629 – 645.en_US
dc.identifier.citedreferenceMoerke AH, Lamberti GA. 2004. Restoring stream ecosystems: lessons from a midwestern state. Restoration Ecology 12: 327 – 334.en_US
dc.identifier.citedreferenceMoyle PB. 1976. Inland Fishes of California. University of California Press: Berkeley, CA.en_US
dc.identifier.citedreferenceMoyle PB. 1994. The decline of anadromous fishes in California. Conservation Biology 8: 869 – 870.en_US
dc.identifier.citedreferenceNeilson JD, Geen GH. 1985. Effects of feeding regimes and diel temperature cycles on otolith increment formation in juvenile Chinook salmon, Oncorhynchus tshawytscha. Fisheries Bulletin 83: 91 – 101.en_US
dc.identifier.citedreferenceNeumann R, Wildman T. 2002. Relationships between trout habitat use and woody debris in two southern New England streams. Ecology of Freshwater Fish 11: 240 – 250.en_US
dc.identifier.citedreferenceNislow KH, Folt CL, Parrish DL. 1999. Favorable foraging locations for young Atlantic salmon: application to habitat and population restoration. Ecological Applications 9: 1085 – 1099.en_US
dc.identifier.citedreferencePalmer M 2009. Reforming watershed restoration: science in need of application and applications in need of science. Estuaries and Coasts 32: 1 – 17.en_US
dc.identifier.citedreferencePFMC (Pacific Fisheries Management Council). 2008. Record low salmon fisheries adopted. Available at www.pcouncil.org/newsreleases/PFMC_FINAL_PressRel.pdf [accessed on 1 January 2009].en_US
dc.identifier.citedreferenceRabeni CF, Jacobson RB. 1993. The importance of fluvial hydraulics to fish‐habitat restoration in low‐gradient alluvial streams. Freshwater Biology 29: 211 – 220.en_US
dc.identifier.citedreferenceRobertson AI, Crook DA. 1999. Relationships between riverine fish and woody debris: implications for lowland rivers. Marine and Freshwater Resources 50: 941 – 953.en_US
dc.identifier.citedreferenceRomanov AM, Hardy J, Zeug SC, Cardinale BJ. in revision. Response of Sacramento pikeminnow ( Ptychocheilus grandis ) to a large‐scale stream channel restoration in California. Fisheries Management and Ecology. Soutwestern Naturalist.en_US
dc.identifier.citedreferenceRoni, R 2005. Monitoring Stream and Waterhshed Restoration. American Fisheries Society, Bethesda, MD.en_US
dc.identifier.citedreferenceRoni P, Quinn TP. 2001. Density and size of juvenile salmonids in response to placement of large woody debris in western Oregon and Washington streams. Canadian Journal of Fisheries and Aquatic Science 58: 282 – 292.en_US
dc.identifier.citedreferenceSogard S 1997. Size‐selective mortality in the juvenile stage of teleost fishes: a review. Bulletin of Marine Science 60: 1129 – 1157.en_US
dc.identifier.citedreferenceSørensen TJ. 1948. A method of establishing groups of equal amplitude in plant sociology based on similarity of species content and its application to analysis of the vegetation of the Danish Commons. Biologiske Skrifter 5: 1 – 34.en_US
dc.identifier.citedreferenceSousa WP. 1979. Disturbance in marine intertidal boulder fields: the nonequilibrium maintenance of species diversity. Ecology 60: 1225 – 1239.en_US
dc.identifier.citedreferenceStewart‐Oaten A, Murdoch WW, Parker KR. 1986. Environmental impact assessment: “pseudoreplication” in time? Ecology 67: 929 – 940.en_US
dc.identifier.citedreferenceStromberg J 2001. Restoration of riparian vegetation in the south‐western United States: importance of flow regimes and fluvial dynamism. Journal of Arid Environments 49: 17 – 34.en_US
dc.identifier.citedreferenceTrush WJ, McBain SM, Leopold LB. 2000. Attributes of an alluvial river and their relation to water policy and management. Proceedings of the National Academy of Sciences of the United States of America 97: 11858 – 11863.en_US
dc.identifier.citedreferenceUtz RM, Zeug SC, Cardinale BJ, in review. Juvenile Chinook salmon ( Oncorhynchus tshawytscha ) growth and diet in riverine habitat engineered to improve conditions for adult spawning. Fisheries Management & Ecology.en_US
dc.identifier.citedreferenceWard B, Slaney P. 1988. Life‐history and smolt‐to‐adult survival of Keogh River steelhead trout ( Salmo gairdneri ) and the relationship to smolt size. Canadian Journal of Fisheries and Aquatic Sciences 45: 1110 – 1122.en_US
dc.identifier.citedreferenceWilliams JG. 2006. Central valley salmon: a perspective on Chinook and steelhead in the Central Valley of California. San Francisco Estuary and Watershed Science 4: Article 2.en_US
dc.identifier.citedreferenceYoshiyama RM, Gerstung ER, Fisher FW, Moyle PB. 2001. Historical and present distribution of Chinook salmon in the central valley drainage of California. Fisheries Bulletin 179: 71 – 176.en_US
dc.identifier.citedreferenceZiemer RR. 1997. Temporal and spatial scales. In Williams JE, Wood CA, Dombeck MP (eds). Watershed Restoration: Principles and Practices. American Fisheries Society: Bethesda, MD; 80 – 95.en_US
dc.identifier.citedreferenceAlbertson LK, Cardinale BJ, Zeug SC, Harrison LR, Lenihan HS, Wydzga MA. 2010. Impacts of channel reconstruction on invertebrate assemblages in a restored river. Restoration Ecology 19: online early.en_US
dc.identifier.citedreferenceBarbour MT, Gerritsen J, Snyder BD, Stribling JB. 1999. Rapid bioassessment protocols for use in streams and wadeable rivers: periphyton, benthic macroinvertebrates and fish, Second Edition. EPA 841‐B‐99‐002. U.S. Environmental Protection Agency; Office of Water; Washington, D.C.en_US
dc.identifier.citedreferenceBeacham TD, Murray CB. 1990. Temperature, egg size, and development of embryos and alevins of five species of Pacific salmon: a comparative analysis. Transactions of the American Fisheries Society 119: 927 – 945.en_US
dc.identifier.citedreferenceBernhardt ES, Palmer MA, Allan JD, Alexander G, Barnas K, Brooks S, Carr J, Clayton S, Dahm C, Follstad‐Shah J, Galat D, Gloss S, Goodwin P, Hart D, Hassett B, Jenkinson R, Katz S, Kondolf GM, Lake PS, Lave R, Meyer JL, O'Donnell TK, Pagano L, Powell B, Sudduth E. 2005. Ecology: synthesizing U.S. river restoration efforts. Science 308: 636 – 637.en_US
dc.identifier.citedreferenceBilton H, Alderdice D, Schnute J. 1982. Influence of time and size at release of juvenile Coho salmon ( Oncorhynchus kisutch ) on returns at maturity. Canadian Journal of Fisheries and Aquatic Sciences 39: 426 – 447.en_US
dc.identifier.citedreferenceBrinson MM, Rheinhardt R. 1996. The role of reference wetlands in functional assessment and mitigation. Ecological Applications 6: 69 – 76.en_US
dc.identifier.citedreferenceBrown L, Kimmerer W, Brown R. 2009. Managing water to protect fish: a review of California's Environmental Water Account, 2001–2005. Environmental Management 43: 357 – 368.en_US
dc.identifier.citedreferenceCalifornia Department of Water Resources. 2001. The Merced River salmon habitat enhancement project: Robinson reach; Phase III. San Joaquin District, Fresno, CA. 159 p. Available at http://www.water.ca.gov/pubs/environment/restoration/merced_river_salmon_habitat_enhancement_project_phase_iii_‐_robinson_reach_engineering_report/mrshep3a.pdf Accessed on September 2007.en_US
dc.identifier.citedreferenceChapman DW. 1988. Critical review of variables used to define effects of fines in redds of large salmonids. Transactions of the American Fisheries Society 117: 1 – 21.en_US
dc.identifier.citedreferenceCottingham, KL, Lennon JT, Brown BL. 2005. Knowing when to draw the line: designing more informative ecological experiments. Frontiers in Ecology and the Environment 3: 145 – 152.en_US
dc.identifier.citedreferenceDownes BJ, Glaister A, Lake PS. 1997. Spatial variation in the force required to initiate rock movement in 4 upland streams: implications for estimating disturbance frequencies. Journal of the North American Benthological Society 16: 203 – 220.en_US
dc.identifier.citedreferenceEmlen JM. 1995. Population viability of the Snake River Chinook salmon ( Oncorhynchus tshawytscha ). Canadian Journal of Fisheries and Aquatic Sciences 52: 1442 – 1448.en_US
dc.identifier.citedreferenceFinstad A, Einum S, Forseth T, Ugedal O. 2007. Shelter availability affects behaviour, size‐dependent and mean growth of juvenile Atlantic salmon. Freshwater Biology 52: 1710 – 1718.en_US
dc.identifier.citedreferenceFloyd T, Macinnis C, Taylor B. 2009. Effects of artificial woody structures on Atlantic salmon habitat and populations in a Nova Scotia stream. River Research and Applications 25: 272 – 282.en_US
dc.identifier.citedreferenceGroot G, Margolis L (eds). 1991. Pacific Salmon: Life Histories. University of British Columbia Press: Vancouver, British Columbia.en_US
dc.identifier.citedreferenceHealey MC. 1991. “Life History of chinook salmon (Oncorhynchus tshawytscha )”. In Groot C, Margolis L. (ed). Pacific Salmon Life Histories. UBC Press: Vancouver, British Columbia.en_US
dc.identifier.citedreferenceHarrison LR, Legleiter CJ, Wydzga MA, Dunne T. 2011. Channel dynamics and habitat development in a meandering, gravel bed river. Water Resources Research 47: online early.en_US
dc.identifier.citedreferenceHicks BJ, Hall JD, Bisson PA, Sedell JR. 1991. Responses of salmonids to habitat changes. In Influences of Forest and Rangeland Management on Salmonid Habitat: American Fisheries Society Special Publication 19, Meehan WR (ed). American Fisheries Society: Bethesda, MD; 483 – 518.en_US
dc.identifier.citedreferenceHughes RM, Peck DV. 2008. Acquiring data for large aquatic resource surveys: the art of compromise among science, logistics, and reality. Journal of the North American Benthological Society 27: 837 – 859.en_US
dc.identifier.citedreferenceJensen A, Walker K, Paton D. 2008. The role of seedbanks in restoration of floodplain woodlands. River Research and Applications 24: 632 – 649.en_US
dc.identifier.citedreferenceJohnson DH, Shrier BM, O'Neal JS, Knutzen JA, Augerot X, O'Neil TA, Pearsons TN. 2007. Salmonid Field Protocols Handbook: Techniques for Assessing Status and Trends in Salmon and Trout Populations. American Fisheries Society: Bethesda, MD.en_US
dc.identifier.citedreferenceJungwirth M, Muhar S, Schmutz S. 2002. Re‐establishing and assessing ecological integrity in riverine landscapes. Freshwater Biology 47: 867 – 887.en_US
dc.identifier.citedreferenceKitchell J, Stewart D, Weininger D. 1977. Applications of a bioenergetics model to yellow perch ( Perca flavescens ) and walleye ( Stizostedion vitreum vitreum ). Journal of the Fisheries Research Board of Canada 34: 1922 – 1935.en_US
dc.identifier.citedreferenceKondolf GM, Mathews WVG. 1993. Management of coarse sediment in regulated rivers in California. Report Number 80. University of California Water Resources Center: Riverside.en_US
dc.identifier.citedreferenceKondolf GM, Anderson S, Lave R, Pagano L, Merenlender A, Bernhardt ES. 2007. Two decades of river restoration in California: what can we learn? Restoration Ecology 15: 516 – 523.en_US
dc.identifier.citedreferenceLegleiter CJ, Harrison LR, Dunne T. 2011. Effect of point bar development on the local force balance governing flow in a simple, meandering gravel‐bed river. Journal of Geophysical Research Earth Surface 116(F01005).en_US
dc.identifier.citedreferenceLiermann M, Roni P. 2008. More sites or more years? Optimal study design for monitoring fish response to watershed restoration. North American Journal of Fisheries Management 28: 935 – 943.en_US
dc.identifier.citedreferenceLow A. 2007. Existing Program Summary: Central Valley Salmon and Steelhead Monitoring Programs. The Department of Fish and Game: Sacramento, CA.en_US
dc.identifier.citedreferenceLundqvist H, McKinnell S, Fangstam H, Berglund I. 1994. The effect of time, size and sex on recapture rates and yield after river releases of Salmo salar smolts. Aquaculture 121: 245 – 257.en_US
dc.identifier.citedreferenceMcCune B, Mefford MJ. 2006. PC‐ORD v5. Multivariate analysis of ecological data.en_US
dc.identifier.citedreferenceMcMahon TE, Hartman GF. 1989. Influence of Cover complexity and current velocity on winter habitat use by juvenile Coho salmon ( Oncorhynchus kisutch ). Canadian Journal of Fisheries and Aquatic Science 46: 1551 – 1557.en_US
dc.identifier.citedreferenceMerritt KW, Cummins RW (eds). 1996. An Introduction to the Aquatic Insects of North America. Kendall/Hunt Publishing Company: Dubuque, IA.en_US
dc.identifier.citedreferenceMerz JE, Setka JD. 2004. Evaluation of a spawning habitat enhancement site for Chinook salmon in a regulated California river. North American Journal of Fisheries Management 24: 397 – 407.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.