Show simple item record

Role of STAT3 and vitamin D receptor in EZH2 ‐mediated invasion of human colorectal cancer

dc.contributor.authorLin, Yan‐weien_US
dc.contributor.authorRen, Lin‐linen_US
dc.contributor.authorXiong, Huaen_US
dc.contributor.authorDu, Wanen_US
dc.contributor.authorYu, Ya‐nanen_US
dc.contributor.authorSun, Tian‐tianen_US
dc.contributor.authorWeng, Yu‐rongen_US
dc.contributor.authorWang, Zhen‐huaen_US
dc.contributor.authorWang, Ji‐linen_US
dc.contributor.authorWang, Ying‐chaoen_US
dc.contributor.authorCui, Yunen_US
dc.contributor.authorSun, Dan‐fengen_US
dc.contributor.authorHan, Ze‐guangen_US
dc.contributor.authorShen, Nanen_US
dc.contributor.authorZou, Weipingen_US
dc.contributor.authorXu, Jieen_US
dc.contributor.authorChen, Hao‐yanen_US
dc.contributor.authorCao, Weibiaoen_US
dc.contributor.authorHong, Jieen_US
dc.contributor.authorFang, Jing‐yuanen_US
dc.date.accessioned2013-06-18T18:32:48Z
dc.date.available2014-09-02T14:12:52Zen_US
dc.date.issued2013-07en_US
dc.identifier.citationLin, Yan‐wei ; Ren, Lin‐lin ; Xiong, Hua; Du, Wan; Yu, Ya‐nan ; Sun, Tian‐tian ; Weng, Yu‐rong ; Wang, Zhen‐hua ; Wang, Ji‐lin ; Wang, Ying‐chao ; Cui, Yun; Sun, Dan‐feng ; Han, Ze‐guang ; Shen, Nan; Zou, Weiping; Xu, Jie; Chen, Hao‐yan ; Cao, Weibiao; Hong, Jie; Fang, Jing‐yuan (2013). "Role of STAT3 and vitamin D receptor in EZH2 â mediated invasion of human colorectal cancer." The Journal of Pathology 230(3): 277-290. <http://hdl.handle.net/2027.42/98269>en_US
dc.identifier.issn0022-3417en_US
dc.identifier.issn1096-9896en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/98269
dc.description.abstractThe polycomb group protein enhancer of zeste homologue 2 ( EZH2 ), which has histone methyltransferase ( HMT ) activity, is overexpressed in malignant tumours. However, the role of EZH2 in colorectal cancer ( CRC ) invasion is little known. Here we investigated the clinical significance, biological effects, and mechanisms of EZH2 signalling. Knockdown of EZH2 significantly reduced cell invasion and secretion of matrix metalloproteinases 2/9 ( MMP2 /9) in in vitro studies. Knockdown of EZH2 dramatically increased overall survival and decreased metastasis of lung in in vivo studies. Conversely, overexpression of EZH2 significantly increased lung metastasis and shortened overall survival when compared with control tumours. EZH2 ‐induced CRC cell invasion may depend on down‐regulation of vitamin D receptor ( VDR ), which is considered to be a marker of CRC invasion. EZH2 regulates the histone trimethylation of lysine 27 ( H3K27me3 ) in the VDR promoter. Moreover, we found that STAT3 directly binds to the EZH2 promoter and regulates VDR down‐regulation in CRC cells. Significant inverse correlations were observed between the expression of EZH2 and pSTAT3 and that of VDR in CRC tissues compared with normal tissue in patients. We show the role of EZH2 in CRC metastasis and identify VDR as a target gene of EZH2 . EZH2 expression may be directly regulated by STAT3 , and STAT3 may play an important role in EZH2 ‐mediated VDR down‐regulation in CRC . This pathway may provide potential targets in aggressive CRC . Copyright © 2013 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.en_US
dc.publisherJohn Wiley & Sons, Ltden_US
dc.subject.otherInvasionen_US
dc.subject.otherEZH2en_US
dc.subject.otherVitamin D Receptor, STAT3en_US
dc.subject.otherColorectal Canceren_US
dc.titleRole of STAT3 and vitamin D receptor in EZH2 ‐mediated invasion of human colorectal canceren_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelPathologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.identifier.pmid23424038en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/98269/1/path4179-sup-0004-FigureS3.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/98269/2/path4179-sup-0002-FigureS1.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/98269/3/path4179.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/98269/4/path4179-sup-0003-FigureS2.pdf
dc.identifier.doi10.1002/path.4179en_US
dc.identifier.sourceThe Journal of Pathologyen_US
dc.identifier.citedreferenceSamuels Y, Diaz LA Jr, Schmidt‐Kittler O, et al. Mutant PIK3CA promotes cell growth and invasion of human cancer cells. Cancer Cell 2005; 7: 561 – 573.en_US
dc.identifier.citedreferenceKirmizis A, Bartley SM, Kuzmichev A, et al. Silencing of human polycomb target genes is associated with methylation of histone H3 Lys 27. Genes Dev 2004; 18: 1592 – 1605.en_US
dc.identifier.citedreferenceFang J, Zhang M, Li Q. Enhancer of zeste homolog 2 expression is associated with tumor cell proliferation and invasion in cervical cancer. Am J Med Sci 2011; 342: 198 – 204.en_US
dc.identifier.citedreferenceShin YJ, Kim JH. The role of EZH2 in the regulation of the activity of matrix metalloproteinases in prostate cancer cells. PLoS One 2012; 7: e30393.en_US
dc.identifier.citedreferenceDeeb KK, Trump DL, Johnson CS. Vitamin D signalling pathways in cancer: potential for anticancer therapeutics. Nature Rev Cancer 2007; 7: 684 – 700.en_US
dc.identifier.citedreferenceHaussler MR, Norman AW. Chromosomal receptor for a vitamin D metabolite. Proc Natl Acad Sci U S A 1969; 62: 155 – 162.en_US
dc.identifier.citedreferencePalmer HG, Gonzalez‐Sancho JM, Espada J, et al. Vitamin D(3) promotes the differentiation of colon carcinoma cells by the induction of E‐cadherin and the inhibition of beta‐catenin signaling. J Cell Biol 2001; 154: 369 – 387.en_US
dc.identifier.citedreferenceVleminckx K, Vakaet L Jr, Mareel M, et al. Genetic manipulation of E‐cadherin expression by epithelial tumor cells reveals an invasion suppressor role. Cell 1991; 66: 107 – 119.en_US
dc.identifier.citedreferenceShabahang M, Buras RR, Davoodi F, et al. 1,25‐Dihydroxyvitamin D3 receptor as a marker of human colon carcinoma cell line differentiation and growth inhibition. Cancer Res 1993; 53: 3712 – 3718.en_US
dc.identifier.citedreferenceLarriba MJ, Martin‐Villar E, Garcia JM, et al. Snail2 cooperates with Snail1 in the repression of vitamin D receptor in colon cancer. Carcinogenesis 2009; 30: 1459 – 1468.en_US
dc.identifier.citedreferenceEvans SR, Nolla J, Hanfelt J, et al. Vitamin D receptor expression as a predictive marker of biological behavior in human colorectal cancer. Clin Cancer Res 1998; 4: 1591 – 1595.en_US
dc.identifier.citedreferenceBachmann IM, Halvorsen OJ, Collett K, et al. EZH2 expression is associated with high proliferation rate and aggressive tumor subgroups in cutaneous melanoma and cancers of the endometrium, prostate, and breast. J Clin Oncol 2006; 24: 268 – 273.en_US
dc.identifier.citedreferenceFujii S, Tokita K, Wada N, et al. MEK–ERK pathway regulates EZH2 overexpression in association with aggressive breast cancer subtypes. Oncogene 2011; 30: 4118 – 4128.en_US
dc.identifier.citedreferenceVarambally S, Cao Q, Mani RS, et al. Genomic loss of microRNA‐101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science 2008; 322: 1695 – 1699.en_US
dc.identifier.citedreferenceGupta RA, Shah N, Wang KC, et al. Long non‐coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 2010; 464: 1071 – 1076.en_US
dc.identifier.citedreferenceSpano JP, Milano G, Rixe C, et al. JAK/STAT signalling pathway in colorectal cancer: a new biological target with therapeutic implications. Eur J Cancer 2006; 42: 2668 – 2670.en_US
dc.identifier.citedreferenceLassmann S, Schuster I, Walch A, et al. STAT3 mRNA and protein expression in colorectal cancer: effects on STAT3‐inducible targets linked to cell survival and proliferation. J Clin Pathol 2007; 60: 173 – 179.en_US
dc.identifier.citedreferenceXiong H, Zhang ZG, Tian XQ, et al. Inhibition of JAK1, 2/STAT3 signaling induces apoptosis, cell cycle arrest, and reduces tumor cell invasion in colorectal cancer cells. Neoplasia 2008; 10: 287 – 297.en_US
dc.identifier.citedreferenceYeh HY, Cheng SW, Lin YC, et al. Identifying significant genetic regulatory networks in the prostate cancer from microarray data based on transcription factor analysis and conditional independency. BMC Med Genomics 2009; 2: 70.en_US
dc.identifier.citedreferenceVelichutina I, Shaknovich R, Geng H, et al. EZH2‐mediated epigenetic silencing in germinal center B cells contributes to proliferation and lymphomagenesis. Blood 2010; 116: 5247 – 5255.en_US
dc.identifier.citedreferenceLanglois MJ, Bergeron S, Bernatchez G, et al. The PTEN phosphatase controls intestinal epithelial cell polarity and barrier function: role in colorectal cancer progression. PLoS One 2010; 5: e15742.en_US
dc.identifier.citedreferenceChang CJ, Yang JY, Xia W, et al. EZH2 promotes expansion of breast tumor initiating cells through activation of RAF1–β‐catenin signaling. Cancer Cell 2011; 19: 86 – 100.en_US
dc.identifier.citedreferenceRao ZY, Cai MY, Yang GF, et al. EZH2 supports ovarian carcinoma cell invasion and/or metastasis via regulation of TGF‐beta1 and is a predictor of outcome in ovarian carcinoma patients. Carcinogenesis 2010; 31: 1576 – 1583.en_US
dc.identifier.citedreferenceTong ZT, Cai MY, Wang XG, et al. EZH2 supports nasopharyngeal carcinoma cell aggressiveness by forming a co‐repressor complex with HDAC1/HDAC2 and Snail to inhibit E‐cadherin. Oncogene 2012; 31: 583 – 594.en_US
dc.identifier.citedreferenceCao Q, Yu J, Dhanasekaran SM, et al. Repression of E‐cadherin by the polycomb group protein EZH2 in cancer. Oncogene 2008; 27: 7274 – 7284.en_US
dc.identifier.citedreferenceHuang C, Yang G, Jiang T, et al. The effects and mechanisms of blockage of STAT3 signaling pathway on IL‐6 inducing EMT in human pancreatic cancer cells in vitro. Neoplasma 2011; 58: 396 – 405.en_US
dc.identifier.citedreferenceYadav A, Kumar B, Datta J, et al. IL‐6 promotes head and neck tumor metastasis by inducing epithelial–mesenchymal transition via the JAK–STAT3–SNAIL signaling pathway. Mol Cancer Res 2011; 9: 1658 – 1667.en_US
dc.identifier.citedreferenceRaman JD, Mongan NP, Tickoo SK, et al. Increased expression of the polycomb group gene, EZH2, in transitional cell carcinoma of the bladder. Clin Cancer Res 2005; 11: 8570 – 8576.en_US
dc.identifier.citedreferenceChen Y, Lin MC, Yao H, et al. Lentivirus‐mediated RNA interference targeting enhancer of zeste homolog 2 inhibits hepatocellular carcinoma growth through down‐regulation of stathmin. Hepatology 2007; 46: 200 – 208.en_US
dc.identifier.citedreferenceFujii S, Ito K, Ito Y, et al. Enhancer of zeste homologue 2 (EZH2) down‐regulates RUNX3 by increasing histone H3 methylation. J Biol Chem 2008; 283: 17324 – 17332.en_US
dc.identifier.citedreferenceShabahang M, Buras RR, Davoodi F, et al. Growth inhibition of HT‐29 human colon cancer cells by analogues of 1,25‐dihydroxyvitamin D3. Cancer Res 1994; 54: 4057 – 4064.en_US
dc.identifier.citedreferenceEisman JA, Barkla DH, Tutton PJ. Suppression of in vivo growth of human cancer solid tumor xenografts by 1,25‐dihydroxyvitamin D3. Cancer Res 1987; 47: 21 – 25.en_US
dc.identifier.citedreferenceSpina CS, Ton L, Yao M, et al. Selective vitamin D receptor modulators and their effects on colorectal tumor growth. J Steroid Biochem Mol Biol 2007; 103: 757 – 762.en_US
dc.identifier.citedreferenceMatusiak D, Murillo G, Carroll RE, et al. Expression of vitamin D receptor and 25‐hydroxyvitamin D3‐1α‐hydroxylase in normal and malignant human colon. Cancer Epidemiol Biomarkers Prev 2005; 14: 2370 – 2376.en_US
dc.identifier.citedreferenceNg K, Meyerhardt JA, Wu K, et al. Circulating 25‐hydroxyvitamin D levels and survival in patients with colorectal cancer. J Clin Oncol 2008; 26: 2984 – 2991.en_US
dc.identifier.citedreferenceXiong H, Hong J, Du W, et al. Roles of STAT3 and ZEB1 proteins in E‐cadherin down‐regulation and human colorectal cancer epithelial–mesenchymal transition. J Biol Chem 2012; 287: 5819 – 5832.en_US
dc.identifier.citedreferenceGire V, Roux P, Wynford‐Thomas D, et al. DNA damage checkpoint kinase Chk2 triggers replicative senescence. EMBO J 2004; 23: 2554 – 2563.en_US
dc.identifier.citedreferenceBates RC, Mercurio AM. The epithelial–mesenchymal transition (EMT) and colorectal cancer progression. Cancer Biol Ther 2005; 4: 365 – 370.en_US
dc.identifier.citedreferenceMarkowitz SD, Dawson DM, Willis J, et al. Focus on colon cancer. Cancer Cell 2002; 1: 233 ‐ 236.en_US
dc.identifier.citedreferenceFearon ER. Molecular genetics of colorectal cancer. Annu Rev Pathol 2011; 6: 479 – 507.en_US
dc.identifier.citedreferencevan Engeland M, Derks S, Smits KM, et al. Colorectal cancer epigenetics: complex simplicity. J Clin Oncol 2011; 29: 1382 – 1391.en_US
dc.identifier.citedreferencede Krijger I, Mekenkamp LJ, Punt CJ, et al. MicroRNAs in colorectal cancer metastasis. J Pathol 2011; 224: 438 – 447.en_US
dc.identifier.citedreferenceKirmizis A, Bartley SM, Farnham PJ. Identification of the polycomb group protein SU(Z)12 as a potential molecular target for human cancer therapy. Mol Cancer Ther 2003; 2: 113 – 121.en_US
dc.identifier.citedreferenceSasaki M, Ikeda H, Itatsu K, et al. The overexpression of polycomb group proteins Bmi1 and EZH2 is associated with the progression and aggressive biological behavior of hepatocellular carcinoma. Lab Invest 2008; 88: 873 – 882.en_US
dc.identifier.citedreferenceVarambally S, Dhanasekaran SM, Zhou M, et al. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 2002; 419: 624 – 629.en_US
dc.identifier.citedreferenceSimon JA, Lange CA. Roles of the EZH2 histone methyltransferase in cancer epigenetics. Mutat Res 2008; 647: 21 – 29.en_US
dc.identifier.citedreferenceCao R, Wang L, Wang H, et al. Role of histone H3 lysine 27 methylation in Polycomb‐group silencing. Science 2002; 298: 1039 – 1043.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.