Show simple item record

Re‐analysis of an original CMTX3 family using exome sequencing identifies a known BSCL2 mutation

dc.contributor.authorChaudhry, Rabiaen_US
dc.contributor.authorKidambi, Aditien_US
dc.contributor.authorBrewer, Megan Hwaen_US
dc.contributor.authorAntonellis, Anthonyen_US
dc.contributor.authorMathews, Katherineen_US
dc.contributor.authorNicholson, Garthen_US
dc.contributor.authorKennerson, Marinaen_US
dc.date.accessioned2013-06-18T18:33:16Z
dc.date.available2014-08-01T19:11:34Zen_US
dc.date.issued2013-06en_US
dc.identifier.citationChaudhry, Rabia; Kidambi, Aditi; Brewer, Megan Hwa; Antonellis, Anthony; Mathews, Katherine; Nicholson, Garth; Kennerson, Marina (2013). "Re‐analysis of an original CMTX3 family using exome sequencing identifies a known BSCL2 mutation." Muscle & Nerve 47(6): 922-924. <http://hdl.handle.net/2027.42/98354>en_US
dc.identifier.issn0148-639Xen_US
dc.identifier.issn1097-4598en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/98354
dc.description.abstractIntroduction Charcot–Marie–Tooth ( CMT ) disease is a group of peripheral neuropathies affecting both motor and sensory nerves. CMTX3 is an X‐linked CMT locus, which maps to chromosome Xq26 .3–q27.3. Initially, CMTX3 was mapped to a 31.2‐Mb region in 2 American families. We have reexamined 1 of the original families ( US‐PED2 ) by next generation sequencing. Methods Three members of the family underwent exome sequencing. Candidate variants were validated by PCR and Sanger sequencing analysis. Conclusion No pathogenic coding variants localizing to the CMTX3 region were identified. However, exome sequencing identified a known BSCL2 mutation ( N88S ). This study demonstrates the power of exome sequencing as a tool to identify gene mutations for a small family in the absence of statistically significant linkage data. Muscle Nerve 47: 922–924, 2013en_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherCMTX3en_US
dc.subject.otherExome Sequencingen_US
dc.subject.otherPeripheral Neuropathyen_US
dc.subject.otherX‐Linked Charcoten_US
dc.subject.otherMarieen_US
dc.subject.otherTooth Diseaseen_US
dc.subject.otherBSCL2en_US
dc.titleRe‐analysis of an original CMTX3 family using exome sequencing identifies a known BSCL2 mutationen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelNeurosciencesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.identifier.pmid23553728en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/98354/1/mus23743.pdf
dc.identifier.doi10.1002/mus.23743en_US
dc.identifier.sourceMuscle & Nerveen_US
dc.identifier.citedreferenceBrewer M, Changi F, Antonellis A, Fischbeck K, Polly P, Nicholson G, et al. Evidence of a founder haplotype refines the X‐linked Charcot‐Marie‐Tooth (CMTX3) locus to a 2.5 Mb region. Neurogenetics 2008; 9: 191 – 195.en_US
dc.identifier.citedreferenceSkre H. Genetic and clinical aspects of Charcot‐Marie‐Tooth's disease. Clin Genet 1974; 6: 98 – 118.en_US
dc.identifier.citedreferenceIonasescu VV. Charcot‐Marie‐Tooth neuropathies: from clinical description to molecular genetics. Muscle Nerve 1995; 18: 267 – 275.en_US
dc.identifier.citedreferenceNelis E, van Broeckhoven C, de Jonghe P, Lofgren A, Vandenberghe A, Latour P, et al. Estimation of the mutation frequencies in Charcot‐Marie‐Tooth disease type 1 and hereditary neuropathy with liability to pressure palsies: a European collaborative study. Eur J Hum Genet 1996; 4: 25 – 33.en_US
dc.identifier.citedreferenceDubourg O, Tardieu S, Birouk N, Gouider R, Leger JM, Maisonobe T, et al. The frequency of 17p11.2 duplication and Connexin 32 mutations in 282 Charcot‐Marie‐Tooth families in relation to the mode of inheritance and motor nerve conduction velocity. Neuromuscul Disord 2001; 11: 458 – 463.en_US
dc.identifier.citedreferenceGal A, Mucke J, Theile H, Wieacker PF, Ropers HH, Wienker TF. X‐linked dominant Charcot‐Marie‐Tooth disease: suggestion of linkage with a cloned DNA sequence from the proximal Xq. Hum Genet 1985; 70: 38 – 42.en_US
dc.identifier.citedreferenceIonasescu VV, Trofatter J, Haines JL, Summers AM, Ionasescu R, Searby C. Heterogeneity in X‐linked recessive Charcot‐Marie‐Tooth neuropathy. Am J Hum Genet 1991; 48: 1075 – 1083.en_US
dc.identifier.citedreferenceBergoffen J, Scherer SS, Wang S, Scott MO, Bone LJ, Paul DL, et al. Connexin mutations in X‐linked Charcot–Marie–Tooth disease. Science 1993; 262: 2039 – 2042.en_US
dc.identifier.citedreferenceLe Guern E, Ravise N, Gugenheim M, Vignal A, Penet C, Bouche P, et al. Linkage analyses between dominant X‐linked Charcot‐Marie‐Tooth disease, and 15 Xq11–Xq21 microsatellites in a new large family: three new markers are closely linked to the gene. Neuromuscul Disord 1994; 4: 463 – 469.en_US
dc.identifier.citedreferencePriest JM, Fischbeck KH, Nouri N, Keats BJ. A locus for axonal motor‐sensory neuropathy with deafness and mental retardation maps to Xq24‐q26. Genomics 1995; 29: 409 – 412.en_US
dc.identifier.citedreferenceKim HJ, Hong SH, Ki CS, Kim BJ, Shim JS, Cho SH, et al. A novel locus for X‐linked recessive CMT with deafness and optic neuropathy maps to Xq21.32‐q24. Neurology 2005; 64: 1964 – 1967.en_US
dc.identifier.citedreferenceKim HJ, Sohn KM, Shy ME, Krajewski KM, Hwang M, Park JH, et al. Mutations in PRPS1, which encodes the phosphoribosyl pyrophosphate synthetase enzyme critical for nucleotide biosynthesis, cause hereditary peripheral neuropathy with hearing loss and optic neuropathy (cmtx5). Am J Hum Genet 2007; 81: 552 – 558.en_US
dc.identifier.citedreferenceHuttner IG, Kennerson ML, Reddel SW, Radovanovic D, Nicholson GA. Proof of genetic heterogeneity in X‐linked Charcot‐Marie‐Tooth disease. Neurology 2006; 67: 2016 – 2021.en_US
dc.identifier.citedreferenceWindpassinger C, Auer‐Grumbach M, Irobi J, Patel H, Petek E, Horl G, et al. Heterozygous missense mutations in BSCL2 are associated with distal hereditary motor neuropathy and Silver syndrome. Nature Genet 2004; 36: 271 – 276.en_US
dc.identifier.citedreferenceAuer‐Grumbach M, Schlotter‐Weigel B, Lochmuller H, Strobl‐Wildemann G, Auer‐Grumbach P, Fischer R, et al. Phenotypes of the N88S Berardinelli–Seip congenital lipodystrophy 2 mutation. Ann Neurol 2005; 57: 415 – 424.en_US
dc.identifier.citedreferenceIto D, Suzuki N. Molecular pathogenesis of seipin/BSCL2‐related motor neuron diseases. Ann Neurol 2007; 61: 237 – 250.en_US
dc.identifier.citedreferenceIto D, Fujisawa T, Iida H, Suzuki N. Characterization of seipin/BSCL2, a protein associated with spastic paraplegia 17. Neurobiol Dis 2008; 31: 266 – 277.en_US
dc.identifier.citedreferenceYagi T, Ito D, Nihei Y, Ishihara T, Suzuki N. N88S seipin mutant transgenic mice develop features of seipinopathy/BSCL2‐related motor neuron disease via endoplasmic reticulum stress. Hum Mol Genet 2011; 20: 3831 – 3840.en_US
dc.identifier.citedreferenceIto D, Yagi T, Ikawa M, Suzuki N. Characterization of inclusion bodies with cytoprotective properties formed by seipinopathy‐linked mutant seipin. Hum Mol Genet 2012; 21: 635 – 646.en_US
dc.identifier.citedreferenceKleopa KA, Scherer SS. Molecular genetics of X‐linked Charcot‐Marie‐Tooth disease. Neuromol Med 2006; 8: 107 – 122.en_US
dc.identifier.citedreferencePatel H, Hart PE, Warner TT, Houlston RS, Patton MA, Jeffery S, et al. The Silver syndrome variant of hereditary spastic paraplegia maps to chromosome 11q12‐q14, with evidence for genetic heterogeneity within this subtype. Am J Hum Genet 2001; 69: 209 – 215.en_US
dc.identifier.citedreferenceIrobi J, van den Bergh P, Merlini L, Verellen C, van Maldergem L, Dierick I, et al. The phenotype of motor neuropathies associated with BSCL2 mutations is broader than Silver syndrome and distal HMN type V. Brain 2004; 127: 2124 – 2130.en_US
dc.identifier.citedreferenceRobinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, Getz G, et al. Integrative genomics viewer. Nat Biotechnol 2011; 29: 24 – 26.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.