Show simple item record

Diet Influences Expression of Autoimmune‐Associated Genes and Disease Severity by Epigenetic Mechanisms in a Transgenic Mouse Model of Lupus

dc.contributor.authorStrickland, Faith M.en_US
dc.contributor.authorHewagama, Anuraen_US
dc.contributor.authorWu, Ailingen_US
dc.contributor.authorSawalha, Amr H.en_US
dc.contributor.authorDelaney, Colinen_US
dc.contributor.authorHoeltzel, Mark F.en_US
dc.contributor.authorYung, Raymonden_US
dc.contributor.authorJohnson, Kenten_US
dc.contributor.authorMickelson, Barbaraen_US
dc.contributor.authorRichardson, Bruce C.en_US
dc.date.accessioned2013-07-08T17:45:46Z
dc.date.available2014-09-02T14:12:53Zen_US
dc.date.issued2013-07en_US
dc.identifier.citationStrickland, Faith M.; Hewagama, Anura; Wu, Ailing; Sawalha, Amr H.; Delaney, Colin; Hoeltzel, Mark F.; Yung, Raymond; Johnson, Kent; Mickelson, Barbara; Richardson, Bruce C. (2013). "Diet Influences Expression of Autoimmune‐Associated Genes and Disease Severity by Epigenetic Mechanisms in a Transgenic Mouse Model of Lupus." Arthritis & Rheumatism 65(7): 1872-1881. <http://hdl.handle.net/2027.42/98819>en_US
dc.identifier.issn0004-3591en_US
dc.identifier.issn1529-0131en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/98819
dc.publisherWiley Periodicals, Inc.en_US
dc.publisherLippincott Williams & Wilkinsen_US
dc.titleDiet Influences Expression of Autoimmune‐Associated Genes and Disease Severity by Epigenetic Mechanisms in a Transgenic Mouse Model of Lupusen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelGeriatricsen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.identifier.pmid23576011en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/98819/1/art37967.pdf
dc.identifier.doi10.1002/art.37967en_US
dc.identifier.sourceArthritis & Rheumatismen_US
dc.identifier.citedreferenceOelke K, Richardson B. Decreased T cell ERK pathway signaling may contribute to the development of lupus through effects on DNA methylation and gene expression. Int Rev Immunol 2004; 23: 315 – 31.en_US
dc.identifier.citedreferenceSawalha AH, Jeffries M, Webb R, Lu Q, Gorelik G, Ray D, et al. Defective T‐cell ERK signaling induces interferon‐regulated gene expression and overexpression of methylation‐sensitive genes similar to lupus patients. Genes Immun 2008; 9: 368 – 78.en_US
dc.identifier.citedreferenceStrickland FM, Hewagama A, Lu Q, Wu A, Hinderer R, Webb R, et al. Environmental exposure, estrogen and two X chromosomes are required for disease development in an epigenetic model of lupus. J Autoimmun 2012; 38: J135 – 43.en_US
dc.identifier.citedreferenceHollingsworth JW, Maruoka S, Boon K, Garantziotis S, Li Z, Tomfohr J, et al. In utero supplementation with methyl donors enhances allergic airway disease in mice. J Clin Invest 2008; 118: 3462 – 9.en_US
dc.identifier.citedreferenceDelaney C, Hoeltzel M, Garg SK, Warner R, Johnson K, Yung R. Maternal micronutrient supplementation suppresses T cell chemokine receptor expression and function in F1 mice. J Nutr 2012; 142: 1329 – 35.en_US
dc.identifier.citedreferenceLiu Y, Kuick R, Hanash S, Richardson B. DNA methylation inhibition increases T cell KIR expression through effects on both promoter methylation and transcription factors. Clin Immunol 2009; 130: 213 – 24.en_US
dc.identifier.citedreferenceLiu K, Mohan C. What do mouse models teach us about human SLE? Clin Immunol 2006; 119: 123 – 30.en_US
dc.identifier.citedreferenceAustin HA III, Muenz LR, Joyce KM, Antonovych TT, Balow JE. Diffuse proliferative lupus nephritis: identification of specific pathologic features affecting renal outcome. Kidney Int 1984; 25: 689 – 95.en_US
dc.identifier.citedreferenceDesai‐Mehta A, Lu L, Ramsey‐Goldman R, Datta SK. Hyperexpression of CD40 ligand by B and T cells in human lupus and its role in pathogenic autoantibody production. J Clin Invest 1996; 97: 2063 – 73.en_US
dc.identifier.citedreferenceLu Q, Wu A, Tesmer L, Ray D, Yousif N, Richardson B. Demethylation of CD40LG on the inactive X in T cells from women with lupus. J Immunol 2007; 179: 6352 – 8.en_US
dc.identifier.citedreferenceFraga MF, Ballestar E, Paz MF, Ropero S, Setien F, Ballestar ML, et al. Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci U S A 2005; 102: 10604 – 9.en_US
dc.identifier.citedreferenceYung RL, Richardson BC. Drug‐induced lupus. Rheum Dis Clin North Am 1994; 20: 61 – 86.en_US
dc.identifier.citedreferencePogribny IP, Ross SA, Wise C, Pogribna M, Jones EA, Tryndyak VP, et al. Irreversible global DNA hypomethylation as a key step in hepatocarcinogenesis induced by dietary methyl deficiency. Mutat Res 2006; 593: 80 – 7.en_US
dc.identifier.citedreferenceKyttaris V, Tsokos G. Uncovering the genetics of systemic lupus erythematosus: implications for therapy. Am J Pharmacogenomics 2003; 3: 193 – 202.en_US
dc.identifier.citedreferenceRichardson B. DNA methylation and autoimmune disease. Clin Immunol 2003; 109: 72 – 9.en_US
dc.identifier.citedreferenceZhou Y, Yuan J, Pan Y, Fei Y, Qiu X, Hu N, et al. T cell CD40LG gene expression and the production of IgG by autologous B cells in systemic lupus erythematosus. Clin Immunol 2009; 132: 362 – 70.en_US
dc.identifier.citedreferenceBenevenga NJ. Consideration of betaine and one‐carbon sources of N5‐methyltetrahydrofolate for use in homocystinuria and neural tube defects. Am J Clin Nutr 2007; 85: 946 – 9.en_US
dc.identifier.citedreferenceStorch KJ, Wagner DA, Young VR. Methionine kinetics in adult men: effects of dietary betaine on L‐[2H3‐methyl‐1‐13C]methionine. Am J Clin Nutr 1991; 54: 386 – 94.en_US
dc.identifier.citedreferenceMiller RA, Buehner G, Chang Y, Harper JM, Sigler R, Smith‐Wheelock M. Methionine‐deficient diet extends mouse lifespan, slows immune and lens aging, alters glucose, T4, IGF‐I and insulin levels, and increases hepatocyte MIF levels and stress resistance. Aging Cell 2005; 4: 119 – 25.en_US
dc.identifier.citedreferenceCropley JE, Suter CM, Beckman KB, Martin DI. Germ‐line epigenetic modification of the murine A vy allele by nutritional supplementation. Proc Natl Acad Sci U S A 2006; 103: 17308 – 12.en_US
dc.identifier.citedreferenceStipanuk MH. Homocysteine, cysteine, and taurine. In: Shils ME, Shike M, Ross CA, Caballero B, Cousins RJ, editors. Modern nutrition in health and disease. 10th ed. Philadelphia: Lippincott Williams & Wilkins; 2005. p. 545 – 62.en_US
dc.identifier.citedreferenceInstitute of Medicine (US). Mean and percentiles for usual daily intake of methionine (g), United States, NHANES III (1988–1994). In: Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein, and amino acids (macronutrients). Washington (DC): The National Academies Press; 2005. p. 1012.en_US
dc.identifier.citedreferenceInstitute of Medicine (US). Protein and amino acids. In: Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein, and amino acids (macronutrients). Washington (DC): The National Academies Press; 2005. p. 589 – 768.en_US
dc.identifier.citedreferenceCho E, Zeisel SH, Jacques P, Selhub J, Dougherty L, Colditz GA, et al. Dietary choline and betaine assessed by food‐frequency questionnaire in relation to plasma total homocysteine concentration in the Framingham Offspring Study. Am J Clin Nutr 2006; 83: 905 – 11.en_US
dc.identifier.citedreferenceSawalha AH, Wang L, Nadig A, Somers EC, McCune WJ, Hughes T, et al. Sex‐specific differences in the relationship between genetic susceptibility, T cell DNA demethylation and lupus flare severity. J Autoimmun 2012; 38: J216 – 22.en_US
dc.identifier.citedreferenceHewagama A, Richardson B. The genetics and epigenetics of autoimmune diseases. J Autoimmun 2009; 33: 3 – 11.en_US
dc.identifier.citedreferenceKelly JA, Moser KL, Harley JB. The genetics of systemic lupus erythematosus: putting the pieces together. Genes Immun 2002; 3 Suppl 1: S71 – 85.en_US
dc.identifier.citedreferenceJavierre BM, Fernandez AF, Richter J, Al‐Shahrour F, Martin‐Subero JI, Rodriguez‐Ubreva J, et al. Changes in the pattern of DNA methylation associate with twin discordance in systemic lupus erythematosus. Genome Res 2010; 20: 170 – 9.en_US
dc.identifier.citedreferenceEsteller M. Epigenetics in cancer. N Engl J Med 2008; 358: 1148 – 59.en_US
dc.identifier.citedreferenceBasu D, Liu Y, Wu A, Yarlagadda S, Gorelik GJ, Kaplan MJ, et al. Stimulatory and inhibitory killer Ig‐like receptor molecules are expressed and functional on lupus T cells. J Immunol 2009; 183: 3481 – 7.en_US
dc.identifier.citedreferenceDeng C, Kaplan MJ, Yang J, Ray D, Zhang Z, McCune WJ, et al. Decreased Ras–mitogen‐activated protein kinase signaling may cause DNA hypomethylation in T lymphocytes from lupus patients. Arthritis Rheum 2001; 44: 397 – 407.en_US
dc.identifier.citedreferenceDeng C, Lu Q, Zhang Z, Rao T, Attwood J, Yung R, et al. Hydralazine may induce autoimmunity by inhibiting extracellular signal–regulated kinase pathway signaling. Arthritis Rheum 2003; 48: 746 – 56.en_US
dc.identifier.citedreferenceGorelik G, Fang JY, Wu A, Sawalha AH, Richardson B. Impaired T cell protein kinase Cδ activation decreases ERK pathway signaling in idiopathic and hydralazine‐induced lupus. J Immunol 2007; 179: 5553 – 63.en_US
dc.identifier.citedreferenceLi Y, Liu Y, Strickland FM, Richardson B. Age‐dependent decreases in DNA methyltransferase levels and low transmethylation micronutrient levels synergize to promote overexpression of genes implicated in autoimmunity and acute coronary syndromes. Exp Gerontol 2010; 45: 312 – 22.en_US
dc.identifier.citedreferenceTalens RP, Christensen K, Putter H, Willemsen G, Christiansen L, Kremer D, et al. Epigenetic variation during the adult lifespan: cross‐sectional and longitudinal data on monozygotic twin pairs. Aging Cell 2012; 11: 694 – 703.en_US
dc.identifier.citedreferenceTalens RP, Boomsma DI, Tobi EW, Kremer D, Jukema JW, Willemsen G, et al. Variation, patterns, and temporal stability of DNA methylation: considerations for epigenetic epidemiology. FASEB J 2010; 24: 3135 – 44.en_US
dc.identifier.citedreferencePufulete M, Al‐Ghnaniem R, Khushal A, Appleby P, Harris N, Gout S, et al. Effect of folic acid supplementation on genomic DNA methylation in patients with colorectal adenoma. Gut 2005; 54: 648 – 53.en_US
dc.identifier.citedreferenceJacob RA, Gretz DM, Taylor PC, James SJ, Pogribny IP, Miller BJ, et al. Moderate folate depletion increases plasma homocysteine and decreases lymphocyte DNA methylation in postmenopausal women. J Nutr 1998; 128: 1204 – 12.en_US
dc.identifier.citedreferenceRay D, Richardson B. Diet and DNA methylation in lupus [abstract]. J Immunol 2009; 182 Suppl 50: 29.en_US
dc.identifier.citedreferenceWu T, Xie C, Han J, Ye Y, Weiel J, Li Q, et al. Metabolic disturbances associated with systemic lupus erythematosus. PLoS One 2012; 7: e37210.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.