Show simple item record

Mercury's magnetopause and bow shock from MESSENGER Magnetometer observations

dc.contributor.authorWinslow, Reka M.en_US
dc.contributor.authorAnderson, Brian J.en_US
dc.contributor.authorJohnson, Catherine L.en_US
dc.contributor.authorSlavin, James A.en_US
dc.contributor.authorKorth, Hajeen_US
dc.contributor.authorPurucker, Michael E.en_US
dc.contributor.authorBaker, Daniel N.en_US
dc.contributor.authorSolomon, Sean C.en_US
dc.date.accessioned2013-07-08T17:45:47Z
dc.date.available2014-07-01T15:53:40Zen_US
dc.date.issued2013-05en_US
dc.identifier.citationWinslow, Reka M.; Anderson, Brian J.; Johnson, Catherine L.; Slavin, James A.; Korth, Haje; Purucker, Michael E.; Baker, Daniel N.; Solomon, Sean C. (2013). "Mercury's magnetopause and bow shock from MESSENGER Magnetometer observations." Journal of Geophysical Research: Space Physics 118(5): 2213-2227. <http://hdl.handle.net/2027.42/98823>en_US
dc.identifier.issn2169-9380en_US
dc.identifier.issn2169-9402en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/98823
dc.description.abstractWe have established the average shape and location of Mercury's magnetopause and bow shock from orbital observations by the MESSENGER Magnetometer. We fit empirical models to midpoints of boundary crossings and probability density maps of the magnetopause and bow shock positions. The magnetopause was fit by a surface for which the position R from the planetary dipole varies as [1 + cos( θ )] − α , where θ is the angle between R and the dipole‐Sun line, the subsolar standoff distance R ss is 1.45 R M (where R M is Mercury's radius), and the flaring parameter α  = 0.5. The average magnetopause shape and location were determined under a mean solar wind ram pressure P Ram of 14.3 nPa. The best fit bow shock shape established under an average Alfvén Mach number ( M A ) of 6.6 is described by a hyperboloid having R ss  = 1.96 R M and an eccentricity of 1.02. These boundaries move as P Ram and M A vary, but their shapes remain unchanged. The magnetopause R ss varies from 1.55 to 1.35 R M for P Ram in the range of 8.8–21.6 nPa. The bow shock R ss varies from 2.29 to 1.89 R M for M A in the range of 4.12–11.8. The boundaries are well approximated by figures of revolution. Additional quantifiable effects of the interplanetary magnetic field are masked by the large dynamic variability of these boundaries. The magnetotail surface is nearly cylindrical, with a radius of ~2.7 R M at a distance of 3 R M downstream of Mercury. By comparison, Earth's magnetotail flaring continues until a downstream distance of ~10 R ss . Key Points Observe Mercury's magnetopause and bow shock from 3 Mercury years in orbit. Establish the time‐averaged shape of the magnetopause and bow shock. Assess solar wind and IMF influence on the magnetopause and bow shock.en_US
dc.publisherWiley Periodicals, Inc.en_US
dc.publisherUniversity of Arizona Pressen_US
dc.subject.otherMagnetopauseen_US
dc.subject.otherBow Shocken_US
dc.subject.otherMercuryen_US
dc.subject.otherMESSENGER Magnetometeren_US
dc.subject.otherMercury's Magnetosphereen_US
dc.titleMercury's magnetopause and bow shock from MESSENGER Magnetometer observationsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelAstronomy and Astrophysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/98823/1/jgra50237.pdf
dc.identifier.doi10.1002/jgra.50237en_US
dc.identifier.sourceJournal of Geophysical Research: Space Physicsen_US
dc.identifier.citedreferenceShue, J.‐H., P. Song, C. T. Russell, J. K. Chao, and Y.‐H. Yang ( 2000 ), Toward predicting the position of the magnetopause within geosynchronous orbit, J. Geophys. Res., 105, 2641 – 2656, doi: 10.1029/1999JA900467.en_US
dc.identifier.citedreferenceLu, J. Y., Z.‐Q. Liu, K. Kabin, M. X. Zhao, D. D. Liu, Q. Zhou, and Y. Xiao ( 2011 ), Three dimensional shape of the magnetopause: Global MHD results, J. Geophys. Res., 116, A09237, doi: 10.1029/2010JA016418.en_US
dc.identifier.citedreferenceMüller, J., S. Simon, Y.‐C. Wang, U. Motschmann, D. Heyner, J. Schüle, W.‐H. Ip, G. Kleindienst, and G. J. Pringle ( 2012 ), Origin of Mercury's double magnetopause: 3D hybrid simulation study with A.I.K.E.F, Icarus, 218, 666 – 687, doi: 10.1016/j.icarus.2011.12.028.en_US
dc.identifier.citedreferenceOdstrcil, D. ( 2003 ), Modeling 3‐D solar wind structure, Adv. Space Res., 32, 497 – 506, doi: 10.1016/S0273‐1177(03)00332‐6.en_US
dc.identifier.citedreferencePeredo, M., J. A. Slavin, E. Mazur, and S. A. Curtis ( 1995 ), Three‐dimensional position and shape of the bow shock and their variation with Alfvénic, sonic and magnetosonic Mach numbers and interplanetary magnetic field orientation, J. Geophys. Res., 100, 7907 – 7916, doi: 10.1029/94JA02545.en_US
dc.identifier.citedreferenceRussell, C. T. ( 1977 ), On the relative locations of the bow shocks of the terrestrial planets, Geophys. Res. Lett., 4, 387 – 390, doi: 10.1029/GL004i010p00387.en_US
dc.identifier.citedreferenceRussell, C. T., D. N. Baker, and J. A. Slavin ( 1988 ), The magnetosphere of Mercury, in Mercury, edited by F. Vilas, C. R. Chapman, and M. S. Matthews, pp. 514 – 561, University of Arizona Press, Tucson, Ariz.en_US
dc.identifier.citedreferenceSeuss, S. T., and B. E. Goldstein ( 1979 ), Compression of the hermean magnetosphere by the solar wind, J. Geophys. Res., 84, 3306 – 3312, doi: 10.1029/JA084iA07p03306.en_US
dc.identifier.citedreferenceShue, J.‐H., J. K. Chao, H. C. Fu, C. T. Russell, P. Song, K. K. Khurana, and H. J. Singer ( 1997 ), A new functional form to study the solar wind control of the magnetopause size and shape, J. Geophys. Res., 102, 9497 – 9511, doi: 10.1029/97JA00196.en_US
dc.identifier.citedreferenceSibeck, D. G., R. E. Lopez, and E. C. Roelof ( 1991 ), Solar wind control of the magnetopause shape, location, and motion, J. Geophys. Res., 96, 5489 – 5495, doi: 10.1029/90JA02464.en_US
dc.identifier.citedreferenceSlavin, J. A., and R. E. Holzer ( 1979 ), The effect of erosion on the solar wind standoff distance at Mercury, J. Geophys. Res., 84, 2076 – 2082, doi: 10.1029/JA084iA05p02076.en_US
dc.identifier.citedreferenceSlavin, J. A., and R. E. Holzer ( 1981 ), Solar wind flow about the terrestrial planets 1. Modeling bow shock position and shape, J. Geophys. Res., 86, 11,401 – 11,418, doi: 10.1029/JA086iA13p11401.en_US
dc.identifier.citedreferenceSlavin, J. A., R. E. Holzer, J. R. Spreiter, S. S. Stahara, and D. S. Chaussee ( 1983a ), Solar wind flow about the terrestrial planets, 2. Comparison with gas dynamic theory and implications for solar‐planetary interactions, J. Geophys. Res., 88, 19 – 35, doi: 10.1029/JA088iA01p00019.en_US
dc.identifier.citedreferenceSlavin, J. A., B. T. Tsurutani, E. J. Smith, D. E. Jones, and D. G. Sibeck ( 1983b ), Average configuration of the distant (<220 R e ) magnetotail: Initial ISEE‐3 magnetic field results, Geophys. Res. Lett., 10, 973 – 976, doi: 10.1029/GL010i010p00973.en_US
dc.identifier.citedreferenceSlavin, J. A., R. E. Holzer, J. R. Spreiter, and S. S. Stahara ( 1984 ), Planetary Mach cones: Theory and observation, J. Geophys. Res., 89, 2708 – 2714, doi: 10.1029/JA089iA05p02708.en_US
dc.identifier.citedreferenceSlavin, J. A., et al. ( 2009 ), MESSENGER observations of Mercury's magnetosphere during northward IMF, Geophys. Res. Lett., 36, L02101, doi: 10.1029/2008GL036158.en_US
dc.identifier.citedreferenceSlavin, J. A., et al. ( 2010 ), MESSENGER observations of extreme loading and unloading of Mercury's magnetic tail, Science, 329, 665 – 668, doi: 10.1126/science.1188067.en_US
dc.identifier.citedreferenceSlavin, J. A., et al. ( 2012a ), MESSENGER and Mariner 10 flyby observations of magnetotail structure and dynamics at Mercury, J. Geophys. Res., 117, A01215, doi: 10.1029/2011JA016900.en_US
dc.identifier.citedreferenceSlavin, J. A., et al. ( 2012b ), MESSENGER observations of a flux‐transfer‐event shower at Mercury, J. Geophys. Res., 117, A00M06, doi: 10.1029/2012JA017926.en_US
dc.identifier.citedreferenceSpreiter, J. R., and S. S. Stahara ( 1980 ), A new predictive model for determining solar wind–terrestrial planet interactions, J. Geophys. Res., 85, 6769 – 6777, doi: 10.1029/JA085iA12p06769.en_US
dc.identifier.citedreferenceSpreiter, J. R., and S. S. Stahara ( 1985 ), Magnetohydrodynamic and gasdynamic theories for planetary bow waves, in Collisionless Shocks in the Heliosphere: A Review of Current Research, edited by B. Tsurutani and T. R. G. Stone, pp. 85–107, Geophys. Monogr. Ser., vol. 35, AGU, Washington, D. C.en_US
dc.identifier.citedreferenceSpreiter, J. R., A. L. Summers, and A. Y. Alksne ( 1966 ), Hydromagnetic flow around the magnetosphere, Planet. Space Sci., 14, 223 – 250, doi: 10.1016/0032‐0633(66)90124‐3.en_US
dc.identifier.citedreferenceSundberg, T., S. A. Boardsen, J. A. Slavin, B. J. Anderson, H. Korth, T. H. Zurbuchen, J. M. Raines, and S. C. Solomon ( 2012 ), MESSENGER orbital observations of large‐amplitude Kelvin‐Helmholtz waves at Mercury's magnetopause, J. Geophys. Res., 117, A04216, doi: 10.1029/2011JA017268, 2012.en_US
dc.identifier.citedreferenceVerigin, M., J. Slavin, A. Szabo, T. Gombosi, G. Kotova, O. Plochova, K. Szegö, M. Tátrallyay, K. Kabin, and F. Shugaev ( 2003a ), Planetary bow shocks: Gasdynamic analytic approach, J. Geophys. Res., 108, 1323, doi: 10.1029/2002JA009711.en_US
dc.identifier.citedreferenceVerigin, M., J. Slavin, A. Szabo, G. Kotova, and T. Gombosi ( 2003b ), Planetary bow shocks: Asymptotic MHD Mach cones, Earth Planets Space, 55, 33 – 38.en_US
dc.identifier.citedreferenceWinslow, R. M., C. L. Johnson, B. J. Anderson, H. Korth, J. A. Slavin, M. E. Purucker, and S. C. Solomon ( 2012 ), Observations of Mercury's northern cusp region with MESSENGER's Magnetometer, Geophys. Res. Lett., 39, L08112, doi: 10.1029/2012GL051472.en_US
dc.identifier.citedreferenceZwickl, R. D., D. N. Baker, S. J. Bame, W. C. Feldman, J. T. Gosling, E. W. Jr. Hones, D. J. McComas, B. T. Tsurutani, and J. A. Slavin ( 1984 ), Evolution of the Earth's distant magnetotail: ISEE 3 electron plasma results, J. Geophys. Res., 89, 11,007 – 11,012, doi: 10.1029/JA089iA12p11007.en_US
dc.identifier.citedreferenceSlavin, J. A. ( 2004 ), Mercury's magnetosphere, Adv. Space Res., 33, 1859 – 1874, doi: 10.1016/j.asr.2003.02.019.en_US
dc.identifier.citedreferenceAlexeev, I. I., et al. ( 2010 ), Mercury's magnetospheric magnetic field after the first two MESSENGER flybys, Icarus, 209, 23 – 39, doi: 10.1016/j.icarus.2010.01.024.en_US
dc.identifier.citedreferenceAnderson, B. J., M. H. Acuña, D. A. Lohr, J. Scheifele, A. Raval, H. Korth, and J. A. Slavin ( 2007 ), The Magnetometer instrument on MESSENGER, Space Sci. Rev., 131, 417 – 450, doi: 10.1007/s11214‐007‐9246‐7.en_US
dc.identifier.citedreferenceAnderson, B. J., C. L. Johnson, H. Korth, M. E. Purucker, R. M. Winslow, J. A. Slavin, S. C. Solomon, R. L. McNutt Jr., J. M. Raines, and T. H. Zurbuchen ( 2011 ), The global magnetic field of Mercury from MESSENGER orbital observations, Science, 333, 1859 – 1862, doi: 10.1126/science.1211001.en_US
dc.identifier.citedreferenceAnderson, B. J., C. L. Johnson, H. Korth, R. M. Winslow, J. E. Borovsky, M. E. Purucker, J. A. Slavin, S. C. Solomon, M. T. Zuber, and R. L. McNutt Jr. ( 2012 ), Low‐degree structure in Mercury's planetary magnetic field, J. Geophys. Res., 117, E00L12, doi: 10.1029/2012JE004159.en_US
dc.identifier.citedreferenceArridge, C. S., N. Achilleos, M. K. Dougherty, K. K. Khurana, and C. T. Russell ( 2006 ), Modeling the size and shape of Saturn's magnetopause with variable dynamic pressure, J. Geophys. Res., 111, A11227, doi: 10.1029/2005JA011574.en_US
dc.identifier.citedreferenceBaker, D. N., et al. ( 2013 ), Solar wind forcing at Mercury: WSA‐ENLIL model results, J. Geophys. Res. Space Physics, 118, 45 – 57, doi: 10.1029/2012JA018064.en_US
dc.identifier.citedreferenceBelenkaya, E. S., S. Y. Bobrovnikov, I. I. Alexeev, V. V. Kalegaev, and S. W. H. Cowley ( 2005 ), A model of Jupiter's magnetospheric magnetic field with variable magnetopause flaring, Planet. Space Sci., 53, 863 – 872, doi: 10.1016/j.pss.2005.03.004.en_US
dc.identifier.citedreferenceBenna, M., et al. ( 2010 ), Modeling of the magnetosphere of Mercury at the time of the first MESSENGER flyby, Icarus, 209, 3 – 10, doi: 10.1016/j.icarus.2009.11.036.en_US
dc.identifier.citedreferenceBoardsen, S. A., T. E. Eastman, T. Sotirelis, and J. L. Green ( 2000 ), An empirical model of the high‐latitude magnetopause, J. Geophys. Res., 105, 23,193 – 23,219, doi: 10.1029/1998JA000143.en_US
dc.identifier.citedreferenceBoardsen, S. A., T. Sundberg, J. A. Slavin, B. J. Anderson, H. Korth, S. C. Solomon, and L. G. Blomberg ( 2010 ), Observations of Kelvin‐Helmholtz waves along the dusk‐side boundary of Mercury's magnetosphere during MESSENGER's third flyby, Geophys. Res. Lett., 37, L12101, doi: 10.1029/2010GL043606.en_US
dc.identifier.citedreferenceCaan, M. N., R. L. McPherron, and C. T. Russell ( 1973 ), Solar wind and substorm‐related changes in the lobes of the geomagnetic tail, J. Geophys. Res., 78, 8087 – 8096, doi: 10.1029/JA078i034p08087.en_US
dc.identifier.citedreferenceChapman, J. F., and I. H. Cairns ( 2003 ), Three‐dimensional modeling of Earth's bow shock: Shock shape as a function of Alfvén Mach number, J. Geophys. Res., 108, 1174 – 1184, doi: 10.1029/2002JA009569.en_US
dc.identifier.citedreferenceCoroniti, F. V., and C. F. Kennel ( 1972 ), Changes in magnetospheric configuration during the substorm growth phase, J. Geophys. Res., 77, 3361 – 3370, doi: 10.1029/JA077i019p03361.en_US
dc.identifier.citedreferenceDiBraccio, G. A., J. A. Slavin, S. A. Boardsen, B. J. Anderson, H. Korth, T. H. Zurbuchen, J. M. Raines, D. N. Baker, R. L. McNutt Jr., and S. C. Solomon ( 2013 ), MESSENGER observations of magnetopause structure and dynamics at Mercury, J. Geophys. Res. Space Physics, doi: 10.1002/jgra50123, in press.en_US
dc.identifier.citedreferenceFairfield, D. H. ( 1971 ), Average and unusual locations of the Earth's magnetopause and bow shock, J. Geophys. Res., 76, 6700 – 6716, doi: 10.1029/JA076i028p06700.en_US
dc.identifier.citedreferenceFairfield, D. H. ( 1995 ) Observations of the shape and location of the magnetopause: A review, in Physics of the Magnetopause, edited by P. Song, U. Bengt, Ö. Sonnerup, and M. F. Thomsen, pp. 53–60, Geophys. Monogr. Ser., vol. 90, AGU, Washington, D. C.en_US
dc.identifier.citedreferenceFarris, M. H., and C. T. Russell ( 1994 ), Determining the standoff distance of the bow shock: Mach number dependence and use of models, J. Geophys. Res., 99, 17,681 – 17,689, doi: 10.1029/94JA01020.en_US
dc.identifier.citedreferenceFormisano, V., P. C. Hedgecock, G. Moreno, J. Sear, and D. Bollea ( 1971 ), Observations of Earth's bow shock for low Mach numbers, Planet. Space Sci., 19, 1519 – 1531, doi: 10.1016/0032‐0633(71)90011‐0.en_US
dc.identifier.citedreferenceFuselier, S. A., B. J. Anderson, and T. G. Onsager ( 1995 ), Particle signatures of magnetic topology at the magnetopause: AMPTE/CCE observations, J. Geophys. Res., 100, 11,805 – 11,821, doi: 10.1029/94JA02811.en_US
dc.identifier.citedreferenceFuselier, S. A., B. J. Anderson, and T. G. Onsager ( 1997 ), Electron and ion signatures of field line topology at the low shear magnetopause, J. Geophys. Res., 102, 4847 – 4863, doi: 10.1029/96JA03635.en_US
dc.identifier.citedreferenceGershman, D. J., T. H. Zurbuchen, L. A. Fisk, J. A. Gilbert, J. M. Raines, B. J. Anderson, C. W. Smith, H. Korth, and S. C. Solomon ( 2012 ), Solar wind alpha particles and heavy ions in the inner heliosphere, J. Geophys. Res., 117, A00102, doi: 10.1029/2012JA017829.en_US
dc.identifier.citedreferenceGlassmeier, K.‐H., J. Grosser, U. Auster, D. Constantinescu, Y. Narita, and S. Stellmach ( 2007 ), Electromagnetic induction effects and dynamo action in the Hermean system, Space Sci, Rev., 132, 511 – 527, doi: 10.1007/s11214‐007‐9244‐9.en_US
dc.identifier.citedreferenceGoldstein, B. E., S. T. Seuss, and R. J. Walker ( 1981 ), Mercury: Magnetospheric processes and the atmospheric supply and loss rates, J. Geophys. Res., 86, 5485 – 5499, doi: 10.1029/JA086iA07p05485.en_US
dc.identifier.citedreferenceGreenstadt, E. W. ( 1991 ), Quasi‐perpendicular/quasi‐parallel divisions of Earth's bow shock, J. Geophys. Res., 96, 1697 – 1703, doi: 10.1029/90JA01759.en_US
dc.identifier.citedreferenceGrosser, J., K.‐H. Glassmeier, and A. Stadelmann ( 2004 ), Induced magnetic field effects at planet Mercury, Planet. Space Sci., 52, 1251 – 1260, doi: 10.1016/j.pss.2004.08.005.en_US
dc.identifier.citedreferenceHolzer, R. E., and J. A. Slavin ( 1978 ), Magnetic flux transfer associated with expansions and contractions of the dayside magnetosphere, J. Geophys. Res., 83, 3831 – 3839, doi: 10.1029/JA083iA08p03831.en_US
dc.identifier.citedreferenceJohnson, C. L., et al. ( 2012 ), MESSENGER observations of Mercury's magnetic field structure, J. Geophys. Res., 117, E00L14, doi: 10.1029/2012JE004217.en_US
dc.identifier.citedreferenceJoy, S. P., M. G. Kivelson, R. J. Walker, K. K. Khurana, C. T. Russell, and T. Ogino ( 2002 ), Probabilistic models of the Jovian magnetopause and bow shock locations, J. Geophys. Res., 107, 1309, doi: 10.1029/2001JA009146.en_US
dc.identifier.citedreferenceKabin, K., T. I. Gombosi, D. L. DeZeeuw, and K. G. Powell ( 2000 ), Interaction of Mercury with the solar wind, Icarus, 143, 397 – 406, doi: 10.1006/icar.1999.6252.en_US
dc.identifier.citedreferenceKorth, H., B. J. Anderson, T. H. Zurbuchen, J. A. Slavin, S. Perri, S. A. Boardsen, D. N. Baker, S. C. Solomon, and R. L. McNutt Jr. ( 2010 ), The interplanetary magnetic field at Mercury's orbit, Planet. Space Sci., 59, 2075 – 2085, doi: 10.1016/j.pss.2010.10.014.en_US
dc.identifier.citedreferenceLin, R. L., X. X. Zhang, S. Q. Liu, Y. L. Wang, and J. C. Gong ( 2010 ), A three‐dimensional asymmetric magnetopause model, J. Geophys. Res. 115, A04207, doi: 10.1029/2009JA014235.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.