Show simple item record

Aqueous Two‐Phase System Patterning of Microbubbles: Localized Induction of Apoptosis in Sonoporated Cells

dc.contributor.authorFrampton, John P.en_US
dc.contributor.authorFan, Zhenzhenen_US
dc.contributor.authorSimon, Arlyneen_US
dc.contributor.authorChen, Dien_US
dc.contributor.authorDeng, Cheri X.en_US
dc.contributor.authorTakayama, Shuichien_US
dc.date.accessioned2013-08-02T20:51:19Z
dc.date.available2014-09-02T14:12:53Zen_US
dc.date.issued2013-07-19en_US
dc.identifier.citationFrampton, John P.; Fan, Zhenzhen; Simon, Arlyne; Chen, Di; Deng, Cheri X.; Takayama, Shuichi (2013). "Aqueous Two‐Phase System Patterning of Microbubbles: Localized Induction of Apoptosis in Sonoporated Cells." Advanced Functional Materials 23(27): 3420-3431. <http://hdl.handle.net/2027.42/99004>en_US
dc.identifier.issn1616-301Xen_US
dc.identifier.issn1616-3028en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/99004
dc.description.abstractUltrasound‐driven microbubbles produce mechanical forces that can disrupt cell membranes (sonoporation). However, it is difficult to control microbubble location with respect to cells. This lack of control leads to low sonoporation efficiencies and variable outcomes. In this study, aqueous two‐phase system (ATPS) droplets are used to localize microbubbles in select micro‐regions at the surface of living cells. This is achieved by stably partitioning microbubbles in dextran (DEX) droplets, deposited on living adherent cells in medium containing polyethylene glycol (PEG). The interfacial energy at the PEG‐DEX interface overcomes microbubble buoyancy and prevents microbubbles from floating away from the cells. Spreading of the small DEX droplets retains microbubbles at the cell surface in defined lateral positions without the need for antibody or cell‐binding ligand conjugation. The patterned microbubbles are activated on a cell monolayer exposed to a broadly applied ultrasound field (center frequency 1.25 MHz, active element diameter 0.6 cm, pulse duration 8 μs or 30 s). This system enables efficient testing of different ultrasound conditions for their effects on sonoporation‐mediated membrane disruption and cell viability. Regions of cells without patterned microbubbles show no injury or membrane disruption. In microbubble patterned regions, 8 μs ultrasound pulses (0.2‐0.6 MPa) produce cell death that is primarily apoptotic. Ultrasound‐induced apoptosis increases with higher extracellular calcium concentrations, with cells displaying all of the hallmarks of apoptosis including annexinV labeling, loss of mitochondrial membrane potential, caspase activation and changes in nuclear morphology. A new method is described for patterning microbubbles on cell monolayers to target ultrasound treatment to cells. This novel platform provides a controlled system for high throughput testing of the effects of ultrasound‐mediated cell membrane disruption on cell physiology. Using this patterning method, it is possible to induce apoptosis in select populations of cells.en_US
dc.publisherWILEY‐VCH Verlagen_US
dc.subject.otherSonoporationen_US
dc.subject.otherAqueous Two‐Phase Systemen_US
dc.subject.otherMicrobubbleen_US
dc.subject.otherUltrasounden_US
dc.subject.otherApoptosisen_US
dc.titleAqueous Two‐Phase System Patterning of Microbubbles: Localized Induction of Apoptosis in Sonoporated Cellsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMaterials Science and Engineeringen_US
dc.subject.hlbsecondlevelEngineering (General)en_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Biomedical Engineering, University of Michigan, Ann Arbor, USAen_US
dc.contributor.affiliationumDepartment of Macromolecular Science and Engineering, University of Michigan, Ann Arbor, USAen_US
dc.contributor.affiliationumDepartment of Biomedical Engineering, University of Michigan, Ann Arbor, USA.en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/99004/1/3420_ftp.pdf
dc.identifier.doi10.1002/adfm.201203321en_US
dc.identifier.sourceAdvanced Functional Materialsen_US
dc.identifier.citedreferenceA. van Wamel, K. Kooiman, M. Harteveld, M. Emmer, F. J. ten Cate, M. Versluis, N. de Jong, J. Controlled Release 2006, 112, 149.en_US
dc.identifier.citedreferenceM. S. Al‐Dosari, X. Gao, AAPS J. 2009, 11, 671.en_US
dc.identifier.citedreferenceS. Mehier‐Humbert, R. H. Guy, Adv. Drug Delivery Rev. 2005, 57, 733.en_US
dc.identifier.citedreferenceJ. Villemejane, L. M. Mir, Brit. J. Pharmacol. 2009, 157, 207.en_US
dc.identifier.citedreferenceD. J. Wells, Gene Ther. 2004, 11, 1363.en_US
dc.identifier.citedreferenceJ. L. Lee, C. W. Lo, S. M. Ka, A. Chen, W. S. Chen, J. Controlled Release 2012, 160, 64.en_US
dc.identifier.citedreferenceR. Suzuki, Y. Oda, N. Utoguchi, K. Maruyama, J. Controlled Release 2011, 149, 36.en_US
dc.identifier.citedreferenceD. J. Wells, Cell Biology Toxicology 2010, 26, 21.en_US
dc.identifier.citedreferenceL. H. Treat, N. McDannold, N. Vykhodtseva, Y. Zhang, K. Tam, K. Hynynen, Int. J. Cancer 2007, 121, 901.en_US
dc.identifier.citedreferenceW. Zhong, W. H. Sit, J. M. Wan, A. C. Yu, Ultrasound Med. Biol. 2011, 37, 2149.en_US
dc.identifier.citedreferenceA. Lawrie, A. F. Brisken, S. E. Francis, D. C. Cumberland, D. C. Crossman, C. M. Newman, Gene Ther. 2000, 7, 2023.en_US
dc.identifier.citedreferenceS. Zhang, J. Cheng, Y. X. Qin, PLoS One 2012, 7, 38343.en_US
dc.identifier.citedreferenceR. Karshafian, P. D. Bevan, R. Williams, S. Samac, P. N. Burns, Ultrasound Med. Biol. 2009, 35, 847.en_US
dc.identifier.citedreferenceL. C. Phillips, A. L. Klibanov, B. R. Wamhoff, J. A. Hossack, Ultrasound Med. Biol. 2010, 36, 1470.en_US
dc.identifier.citedreferenceB. D. Meijering, L. J. Juffermans, A. van Wamel, R. H. Henning, I. S. Zuhorn, M. Emmer, A. M. Versteilen, W. J. Paulus, W. H. van Gilst, K. Kooiman, N. de Jong, R. J. Musters, L. E. Deelman, O. Kamp, Circ. Res. 2009, 104, 679.en_US
dc.identifier.citedreferenceJ. L. Tlaxca, C. R. Anderson, A. L. Klibanov, B. Lowrey, J. A. Hossack, J. S. Alexander, M. B. Lawrence, J. J. Rychak, Ultrasound Med. Biol. 2010, 36, 1907.en_US
dc.identifier.citedreferenceH. Honda, T. Kondo, Q. L. Zhao, L. B. Feril Jr., H. Kitagawa, Ultrasound Med. Biol. 2004, 30, 683.en_US
dc.identifier.citedreferenceM. A. Hassan, P. Campbell, T. Kondo, Drug Discovery Today 2010, 15, 892.en_US
dc.identifier.citedreferenceL. B. Feril Jr., T. Kondo, Q. L. Zhao, R. Ogawa, K. Tachibana, N. Kudo, S. Fujimoto, S. Nakamura, Ultrasound Med. Biol. 2003, 29, 331.en_US
dc.identifier.citedreferenceD. Huh, H. Fujioka, Y. C. Tung, N. Futai, R. Paine, 3rd, J. B. Grotberg, S. Takayama, Proc. Natl. Acad. Sci. USA 2007, 104, 18886.en_US
dc.identifier.citedreferenceN. J. Douville, P. Zamankhan, Y. C. Tung, R. Li, B. L. Vaughan, C. F. Tai, J. White, P. J. Christensen, J. B. Grotberg, S. Takayama, Lab Chip 2011, 11, 609.en_US
dc.identifier.citedreferenceG. Wickman, L. Julian, M. F. Olson, Cell Death Differ. 2012, 19, 735.en_US
dc.identifier.citedreferenceG. J. Czarnota, R. Karshafian, P. N. Burns, S. Wong, A. Al Mahrouki, J. W. Lee, A. Caissie, W. Tran, C. Kim, M. Furukawa, E. Wong, A. Giles, Proc. Natl. Acad. Sci. USA 2012, 109, 2033.en_US
dc.identifier.citedreferenceZ. Xu, Z. Fan, T. L. Hall, F. Winterroth, J. B. Fowlkes, C. A. Cain, Ultrasound Med. Biol. 2009, 35, 245.en_US
dc.identifier.citedreferenceZ. Xu, T. L. Hall, J. B. Fowlkes, C. A. Cain, J. Acoust. Soc. Am. 2007, 122, 229.en_US
dc.identifier.citedreferenceJ. E. Kennedy, Nat. Rev. Cancer 2005, 5, 321.en_US
dc.identifier.citedreferenceM. J. van den Hoff, A. F. Moorman, W. H. Lamers, Nucleic Acids Res. 1992, 20, 2902.en_US
dc.identifier.citedreferenceZ. Fan, R. E. Kumon, J. Park, C. X. Deng, J. Controlled Release 2010, 142, 31.en_US
dc.identifier.citedreferenceA. L. Hook, H. Thissen, N. H. Voelcker, Trends Biotechnol. 2006, 24, 471.en_US
dc.identifier.citedreferenceS. Takayama, E. Ostuni, P. LeDuc, K. Naruse, D. E. Ingber, G. M. Whitesides, Nature 2001, 411, 1016.en_US
dc.identifier.citedreferenceS. Takayama, E. Ostuni, P. LeDuc, K. Naruse, D. E. Ingber, G. M. Whitesides, Chem. Biol. 2003, 10, 123.en_US
dc.identifier.citedreferenceT. Jain, J. Muthuswamy, Biosens. Bioelectron. 2007, 22, 863.en_US
dc.identifier.citedreferenceJ. K. Valley, S. Neale, H. Y. Hsu, A. T. Ohta, A. Jamshidi, M. C. Wu, Lab Chip 2009, 9, 1714.en_US
dc.identifier.citedreferenceH. Tavana, A. Jovic, B. Mosadegh, Q. Y. Lee, X. Liu, K. E. Luker, G. D. Luker, S. J. Weiss, S. Takayama, Nat. Mater. 2009, 8, 736.en_US
dc.identifier.citedreferenceH. Tavana, B. Mosadegh, S. Takayama, Adv. Mater. 2010, 22, 2628.en_US
dc.identifier.citedreferenceP. A. K. Albertsson, Partition of cell particles and macromolecules: separation and purification of biomolecules, cell organelles, membranes, and cells in aqueous polymer two‐phase systems and their use in biochemical analysis and biotechnology, Wiley, New York 1986.en_US
dc.identifier.citedreferenceY. Fang, J. P. Frampton, S. Raghavan, R. Sabahi‐Kaviani, G. Luker, C. X. Deng, S. Takayama, Tissue Eng., C 2012, 18, 647.en_US
dc.identifier.citedreferenceT. Yaguchi, M. Dwidar, C. K. Byun, B. Leung, S. Lee, Y. K. Cho, R. J. Mitchell, S. Takayama, Biomacromolecules 2012, 13, 2655.en_US
dc.identifier.citedreferenceP. Marmottant, S. Hilgenfeldt, Nature 2003, 423, 153.en_US
dc.identifier.citedreferenceM. Postema, A. van Wamel, C. T. Lancee, N. de Jong, Ultrasound Med. Biol. 2004, 30, 827.en_US
dc.identifier.citedreferenceP. Prentice, A. Cuschieri, K. Dholakia, M. Prausnitz, P. Campbell, Nat. Phys. 2005, 1, 107.en_US
dc.identifier.citedreferenceC. D. Ohl, M. Arora, R. Ikink, N. de Jong, M. Versluis, M. Delius, D. Lohse, Biophysical J. 2006, 91, 4285.en_US
dc.identifier.citedreferenceD. L. Miller, S. V. Pislaru, J. E. Greenleaf, Somatic Cell Mol. Genet. 2002, 27, 115.en_US
dc.identifier.citedreferenceN. Kudo, K. Okada, K. Yamamoto, Biophys. J. 2009, 96, 4866.en_US
dc.identifier.citedreferenceK. W. Ferrara, M. A. Borden, H. Zhang, Acc. Chem. Res. 2009, 42, 881.en_US
dc.identifier.citedreferenceA. L. Klibanov, Med. Biol. Eng. Comput. 2009, 47, 875.en_US
dc.identifier.citedreferenceJ. R. Lindner, Nat. Rev. Drug Discovery 2004, 3, 527.en_US
dc.identifier.citedreferenceX. Wang, C. E. Hagemeyer, J. D. Hohmann, E. Leitner, P. C. Armstrong, F. Jia, M. Olschewski, A. Needles, K. Peter, I. Ahrens, Circulation 2012, 125, 3117.en_US
dc.identifier.citedreferenceK. Kooiman, M. Foppen‐Harteveld, A. F. van der Steen, N. de Jong, J. Controlled Release 2011, 154, 35.en_US
dc.identifier.citedreferenceG. Korpanty, S. Chen, R. V. Shohet, J. Ding, B. Yang, P. A. Frenkel, P. A. Grayburn, Gene Ther. 2005, 12, 1305.en_US
dc.identifier.citedreferenceJ. M. Warram, A. G. Sorace, R. Saini, A. V. Borovjagin, K. Hoyt, K. R. Zinn, Cancer Gene Ther. 2012, 19, 545.en_US
dc.identifier.citedreferenceZ. Fan, H. Liu, M. Mayer, C. X. Deng, Proc. Natl. Acad. Sci. USA 2012, 109, 16486.en_US
dc.identifier.citedreferenceP. A. Dayton, K. E. Morgan, A. L. Klibanov, G. Brandenburger, K. R. Nightingale, K. W. Ferrara, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1997, 44, 1264.en_US
dc.identifier.citedreferenceV. Bjerknes, Fields of force; supplementary lectures, applications to meteorology; a course of lectures in mathematical physics delivered December 1 to 23, 1905, The Columbia University Press, New York 1906.en_US
dc.identifier.citedreferenceJ. C. Yarrow, Z. E. Perlman, N. J. Westwood, T. J. Mitchison, BMC Biotechnol. 2004, 4, 21.en_US
dc.identifier.citedreferenceC. C. Liang, A. Y. Park, J. L. Guan, Nat. Protoc. 2007, 2, 329.en_US
dc.identifier.citedreferenceC. R. Keese, J. Wegener, S. R. Walker, I. Giaever, Proc. Natl. Acad. Sci. USA 2004, 101, 1554.en_US
dc.identifier.citedreferenceF. Q. Nie, M. Yamada, J. Kobayashi, M. Yamato, A. Kikuchi, T. Okano, Biomaterials 2007, 28, 4017.en_US
dc.identifier.citedreferenceS. L. Fink, B. T. Cookson, Infect. Immun. 2005, 73, 1907.en_US
dc.identifier.citedreferenceU. Ziegler, P. Groscurth, News Physiol. Sci. 2004, 19, 124.en_US
dc.identifier.citedreferenceY. Zhou, J. Shi, J. Cui, C. X. Deng, J. Controlled Release 2008, 126, 34.en_US
dc.identifier.citedreferenceC. X. Deng, F. Sieling, H. Pan, J. Cui, Ultrasound Med. Biol. 2004, 30, 519.en_US
dc.identifier.citedreferenceP. L. McNeil, M. Terasaki, Nat. Cell Biol. 2001, 3, E124.en_US
dc.identifier.citedreferenceS. Orrenius, B. Zhivotovsky, P. Nicotera, Nat. Rev. Mol. Cell Biol. 2003, 4, 552.en_US
dc.identifier.citedreferenceD. Falconnet, G. Csucs, H. M. Grandin, M. Textor, Biomaterials 2006, 27, 3044.en_US
dc.identifier.citedreferenceJ. Y. Lim, H. J. Donahue, Tissue Eng. 2007, 13, 1879.en_US
dc.identifier.citedreferenceB. R. Ringeisen, C. M. Othon, J. A. Barron, D. Young, B. J. Spargo, Biotechnol. J. 2006, 1, 930.en_US
dc.identifier.citedreferenceD. Wright, B. Rajalingam, S. Selvarasah, M. R. Dokmeci, A. Khademhosseini, Lab Chip 2007, 7, 1272.en_US
dc.identifier.citedreferenceH. Tavana, B. Mosadegh, P. Zamankhan, J. B. Grotberg, S. Takayama, Biotechnol. Bioeng. 2011, 108, 2509.en_US
dc.identifier.citedreferenceH. Tavana, S. Takayama, Biomicrofluidics 2011, 5, 13404.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.