Show simple item record

Cytosolic monoterpene biosynthesis is supported by plastid‐generated geranyl diphosphate substrate in transgenic tomato fruits

dc.contributor.authorGutensohn, Michaelen_US
dc.contributor.authorOrlova, Irinaen_US
dc.contributor.authorNguyen, Thuong T. H.en_US
dc.contributor.authorDavidovich‐rikanati, Rachelen_US
dc.contributor.authorFerruzzi, Mario G.en_US
dc.contributor.authorSitrit, Yaronen_US
dc.contributor.authorLewinsohn, Efraimen_US
dc.contributor.authorPichersky, Eranen_US
dc.contributor.authorDudareva, Nataliaen_US
dc.date.accessioned2013-08-02T20:51:20Z
dc.date.available2014-10-06T19:17:44Zen_US
dc.date.issued2013-08en_US
dc.identifier.citationGutensohn, Michael; Orlova, Irina; Nguyen, Thuong T. H.; Davidovich‐rikanati, Rachel ; Ferruzzi, Mario G.; Sitrit, Yaron; Lewinsohn, Efraim; Pichersky, Eran; Dudareva, Natalia (2013). "Cytosolic monoterpene biosynthesis is supported by plastidâ generated geranyl diphosphate substrate in transgenic tomato fruits." The Plant Journal 75(3): 351-363. <http://hdl.handle.net/2027.42/99006>en_US
dc.identifier.issn0960-7412en_US
dc.identifier.issn1365-313Xen_US
dc.identifier.urihttps://hdl.handle.net/2027.42/99006
dc.publisherWileyen_US
dc.subject.otherGeranyl Diphosphate Synthaseen_US
dc.subject.otherMonoterpenesen_US
dc.subject.otherCompartmentalizationen_US
dc.subject.otherMetabolic Engineeringen_US
dc.subject.otherS Olanum Lycopersicumen_US
dc.titleCytosolic monoterpene biosynthesis is supported by plastid‐generated geranyl diphosphate substrate in transgenic tomato fruitsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelNatural Resources and Environmenten_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.identifier.pmid23607888en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/99006/1/tpj12212-sup-0001-sup-FigS1.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/99006/2/tpj12212-sup-0003-sup-FigS3.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/99006/3/tpj12212.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/99006/4/tpj12212-sup-0002-sup-FigS2.pdf
dc.identifier.doi10.1111/tpj.12212en_US
dc.identifier.sourceThe Plant Journalen_US
dc.identifier.citedreferenceNagegowda, D.A. ( 2010 ) Plant volatile terpenoid metabolism: biosynthetic genes, transcriptional regulation and subcellular compartmentation. FEBS Lett. 584, 2965 – 2973.en_US
dc.identifier.citedreferenceMcCormick, S., Niedermeyer, J., Fry, J., Barnason, A., Horsch, R. and Fraley, R. ( 1986 ) Leaf disc transformation of cultivated tomato ( L. esculentum ) using Agrobacterium tumefaciens. Plant Cell Rep. 5, 81 – 84.en_US
dc.identifier.citedreferenceNagata, N., Suzuki, M., Yoshida, S. and Muranaka, T. ( 2002 ) Mevalonic acid partially restores chloroplast and etioplast development in Arabidopsis lacking the non‐mevalonate pathway. Planta, 216, 345 – 350.en_US
dc.identifier.citedreferenceNagel, R., Gershenzon, J. and Schmidt, A. ( 2012 ) Nonradioactive assay for detecting isoprenyl diphosphate synthase activity in crude plant extracts using liquid chromatography coupled with tandem mass spectrometry. Anal. Biochem. 422, 33 – 38.en_US
dc.identifier.citedreferenceNicholass, F.J., Smith, C.J., Schuch, W., Bird, C.R. and Grierson, D. ( 1995 ) High levels of ripening‐specific reporter gene expression directed by tomato fruit polygalacturonase gene‐flanking regions. Plant Mol. Biol. 28, 423 – 435.en_US
dc.identifier.citedreferenceOhara, K., Ujihara, T., Endo, T., Sato, F. and Yazaki, K. ( 2003 ) Limonene production in tobacco with Perilla limonene synthase cDNA. J. Exp. Bot. 54, 2635 – 2642.en_US
dc.identifier.citedreferenceOostende, C., Widhalm, J.R. and Basset, G.J. ( 2008 ) Detection and quantification of vitamin K(1) quinol in leaf tissues. Phytochemistry, 69, 2457 – 2462.en_US
dc.identifier.citedreferenceOrlova, I., Nagegowda, D.A., Kish, C.M. et al. ( 2009 ) The small subunit snapdragon geranyl diphosphate synthase modifies the chain length specificity of tobacco geranylgeranyl diphosphate synthase in planta. Plant Cell, 21, 4002 – 4017.en_US
dc.identifier.citedreferencePaetzold, H., Garms, S., Bartram, S., Wieczorek, J., Urós‐Gracia, E.M., Rodríguez‐Concepción, M., Boland, W., Strack, D., Hause, B. and Walter, M.H. ( 2010 ) The isogene 1–deoxy‐ d –xylulose 5–phosphate synthase 2 controls isoprenoid profiles, precursor pathway allocation, and density of tomato trichomes. Mol. Plant, 3, 904 – 916.en_US
dc.identifier.citedreferencePerez, L.M., Taucher, G. and Cori, O. ( 1980 ) Hydrolysis of allylic phosphates by enzymes from the flavedo of Citrus sinensis. Phytochemistry, 19, 183 – 187.en_US
dc.identifier.citedreferencePotty, V.H. and Bruemmer, J.H. ( 1970 ) Oxidation of geraniol by an enzyme system from orange. Phytochemistry, 9, 1003 – 1007.en_US
dc.identifier.citedreferenceQuinlivan, E.P., Roje, S., Basset, G., Shachar‐Hill, Y., Gregory, J.F. III and Hanson, A.D. ( 2003 ) The folate precursor p ‐aminobenzoate is reversibly converted to its glucose ester in the plant cytosol. J. Biol. Chem. 278, 20731 – 20737.en_US
dc.identifier.citedreferenceRodriguez‐Concepción, M. and Boronat, A. ( 2002 ) Elucidation of the methylerythritol phosphate pathway for isoprenoid biosynthesis in bacteria and plastids. A metabolic milestone achieved through genomics. Plant Physiol. 130, 1079 – 1089.en_US
dc.identifier.citedreferencevan Schie, C.C.N., Ament, K., Schmidt, A., Lange, T., Haring, M.A. and Schuurink, R.C. ( 2007a ) Geranyl diphosphate synthase is required for biosynthesis of gibberellins. Plant J. 52, 752 – 762.en_US
dc.identifier.citedreferencevan Schie, C.C., Haring, M.A. and Schuurink, R.C. ( 2007b ) Tomato linalool synthase is induced in trichomes by jasmonic acid. Plant Mol. Biol. 64, 251 – 263.en_US
dc.identifier.citedreferenceSchuhr, C.A., Radykewicz, T., Sagner, S., Latzel, C., Zenk, M.H., Arigoni, D., Bacher, A., Rohdich, F. and Eisenreich, W. ( 2003 ) Quantitative assessment of crosstalk between the two isoprenoid biosynthesis pathways in plants by NMR spectroscopy. Phytochem. Rev. 2, 3 – 16.en_US
dc.identifier.citedreferenceSekiwa‐Iijima, Y., Aizawa, Y. and Kubota, K. ( 2001 ) Geraniol dehydrogenase activity related to aroma formation in ginger ( Zingiber officinale Roscoe). J. Agric. Food Chem. 49, 5902 – 5906.en_US
dc.identifier.citedreferenceSiddique, M.A., Grossmann, J., Gruissem, W. and Baginsky, S. ( 2006 ) Proteome analysis of bell pepper ( Capsicum annuum L.) chromoplasts. Plant Cell Physiol. 47, 1663 – 1673.en_US
dc.identifier.citedreferenceSingh Sangwan, R., Singh‐Sangwan, N. and Luthra, R. ( 1993 ) Metabolism of acyclic monoterpenes: partial purification and properties of geraniol dehydrogenase from lemongrass ( Cymbopogon flexuosus Stapf.) leaves. J. Plant Physiol. 142, 129 – 134.en_US
dc.identifier.citedreferenceSmith, A.M. and ap Rees T. ( 1979 ) Pathways of carbohydrate fermentation in the roots of marsh plants. Planta, 146, 327 – 333.en_US
dc.identifier.citedreferenceSoler, E., Clastre, M., Bantignies, B., Marigo, G. and Ambid, C. ( 1993 ) Uptake of isopentenyl diphosphate by plastids isolated from Vitis cinifera L. cell suspensions. Planta, 191, 324 – 329.en_US
dc.identifier.citedreferenceSommer, S., Severin, K., Camara, B. and Heide, L. ( 1995 ) Intracellular localization of geranylpyrophosphate synthase from cell cultures of Lithospermum erythrorhizon. Phytochemistry, 38, 623 – 627.en_US
dc.identifier.citedreferenceSteliopoulos, P., Wüst, M., Adam, K.P. and Mosandl, A. ( 2002 ) Biosynthesis of the sesquiterpene germacrene D in Solidago canadensis: 13 C and 2 H labelling studies. Phytochemistry, 60, 13 – 20.en_US
dc.identifier.citedreferenceSzkopinska, A. and Plochocka, D. ( 2005 ) Farnesyl diphosphate synthase; regulation of product specificity. Acta Biochim. Pol. 52, 45 – 55.en_US
dc.identifier.citedreferenceTholl, D., Kish, C.M., Orlova, I., Sherman, D., Gershenzon, J., Pichersky, E. and Dudareva, N. ( 2004 ) Formation of monoterpenes in Antirrhinum majus and Clarkia breweri flowers involves heterodimeric geranyl diphosphate synthase. Plant Cell, 16, 977 – 992.en_US
dc.identifier.citedreferenceWang, G. and Dixon, R.A. ( 2009 ) Heterodimeric geranyl(geranyl)diphosphate synthase from hop ( Humulus lupulus ) and the evolution of monoterpene biosynthesis. Proc. Natl Acad. Sci. USA, 106, 9914 – 9919.en_US
dc.identifier.citedreferenceWu, S., Schalk, M., Clark, A., Miles, R.B., Coates, R. and Chappell, J. ( 2006 ) Redirection of cytosolic or plastidic isoprenoid precursors elevates terpene production in plants. Nat. Biotechnol. 24, 1441 – 1447.en_US
dc.identifier.citedreferenceAdam, K.P. and Zapp, J. ( 1998 ) Biosynthesis of the isoprene units of chamomile sesquiterpenes. Phytochemistry, 48, 953 – 959.en_US
dc.identifier.citedreferenceAdam, K.P., Thiel, R. and Zapp, J. ( 1999 ) Incorporation of 1–[1– 13 C]deoxy‐ d –xylulose in chamomile sesquiterpenes. Arch. Biochem. Biophys. 369, 127 – 132.en_US
dc.identifier.citedreferenceAharoni, A., Giri, A.P., Verstappen, F.W.A., Bertea, C.M., Sevenier, R., Sun, Z., Jongsma, M.A., Schwab, W. and Bouwmeester, H.J. ( 2004 ) Gain and loss of fruit flavor compounds produced by wild and cultivated strawberry species. Plant Cell, 16, 3110 – 3131.en_US
dc.identifier.citedreferenceAment, K., van Schie, C.C., Bouwmeester, H.J., Haring, M.A. and Schuurink, R.C. ( 2006 ) Induction of a leaf specific geranylgeranyl pyrophosphate synthase and emission of (E, E)–4,8,12–trimethyltrideca‐1,3,7,11–tetraene in tomato are dependent on both jasmonic acid and salicylic acid signaling pathways. Planta, 224, 1197 – 1208.en_US
dc.identifier.citedreferenceAshour, M., Wink, M. and Gershenzon, J. ( 2010 ) Biochemistry of terpenoids: monoterpenes, sesquiterpenes and diterpenes. Annu. Plant Rev. 40, 258 – 303.en_US
dc.identifier.citedreferenceAusubel, F.M., Brent, R., Kingston, R.E., Moore, D.D., Seidmann, J.G., Smith, J.A. and Struhl, K. ( 1994 ) Preparation of genomic DNA from plant tissue. In Current Protocols in Molecular Biology. New York: Wiley, unit 2.3.1–2.3.7.en_US
dc.identifier.citedreferenceBaldwin, E.A., Scott, J.W., Shewmaker, C.K. and Schuch, W. ( 2000 ) Flavor trivia and tomato aroma: biochemistry and possible mechanisms for control of important aroma components. HortScience, 35, 1013 – 1022.en_US
dc.identifier.citedreferenceBarg, R., Pilowsky, M., Shabtai, S., Carmi, N., Szechtman, A.D., Dedicova, B. and Salts, Y. ( 1997 ) The TYLCV‐tolerant tomato line MP–1 is characterized by superior transformation competence. J. Exp. Bot. 48, 1919 – 1923.en_US
dc.identifier.citedreferenceBarsan, C., Sanchez‐Bel, P., Rombaldi, C., Egea, I., Rossignol, M., Kuntz, M., Zouine, M., Latché, A., Bouzayen, M. and Pech, J.C. ( 2010 ) Characteristics of the tomato chromoplast revealed by proteomic analysis. J. Exp. Bot. 61, 2413 – 2431.en_US
dc.identifier.citedreferenceBick, J.A. and Lange, B.M. ( 2003 ) Metabolic cross talk between cytosolic and plastidial pathways of isoprenoid biosynthesis: unidirectional transport of intermediates across the chloroplast envelope membrane. Arch. Biochem. Biophys. 415, 146 – 154.en_US
dc.identifier.citedreferenceBicsak, T.A., Kann, L.R., Reiter, A. and Chase, T. ( 1982 ) Tomato alcohol dehydrogenase: purification and substrate specificity. Arch. Biochem. Biophys. 216, 605 – 615.en_US
dc.identifier.citedreferenceBleeker, P.M., Spyropoulous, E.A., Diergaarde, P.J. et al. ( 2011 ) RNA‐seq discovery, functional characterization, and comparison of sesquiterpene synthases from Solanum lycopersicum and Solanum habrochaites trichomes. Plant Mol. Biol. 77, 323 – 336.en_US
dc.identifier.citedreferenceBotella‐Pavia, P., Besumbes, O., Phillips, M.A., Carretero‐Paulet, L., Boronat, A. and Rodríguez‐Concepción, M. ( 2004 ) Regulation of carotenoid biosynthesis in plants: evidence for a key role of hydroxymethylbutenyl diphosphate reductase in controlling the supply of plastidial isoprenoid precursors. Plant J. 40, 188 – 199.en_US
dc.identifier.citedreferenceBurke, C.C. and Croteau, R. ( 2002 ) Interaction with the small subunit of geranyl diphosphate synthase modifies the chain length specificity of geranylgeranyl diphosphate synthase to produce geranyl diphosphate. J. Biol. Chem. 277, 3141 – 3149.en_US
dc.identifier.citedreferenceButtery, R.G., Teranishi, R., Ling, L.C. and Turnbaugh, J.G. ( 1990 ) Quantitative and sensory studies on tomato paste volatiles. J. Agric. Food Chem. 38, 336 – 340.en_US
dc.identifier.citedreferenceDavidovich‐Rikanati, R., Sitrit, Y., Tadmor, Y. et al. ( 2007 ) Enrichment of tomato flavor by diversion of the early plastidial terpenoid pathway. Nat. Biotechnol. 25, 899 – 901.en_US
dc.identifier.citedreferenceDavidovich‐Rikanati, R., Lewinsohn, E., Bar, E., Iijima, Y., Pichersky, E. and Sitrit, Y. ( 2008 ) Overexpression of the lemon basil α–zingiberene synthase gene increases both mono‐ and sesquiterpene contents in tomato fruit. Plant J. 56, 228 – 238.en_US
dc.identifier.citedreferenceDogbo, O. and Camara, B. ( 1987 ) Purification of isopentenyl pyrophosphate isomerase and geranylgeranyl pyrophosphate synthase from Capsicum chromoplasts by affinity chromatography. Biochim. Biophys. Acta, 920, 140 – 148.en_US
dc.identifier.citedreferenceDogbo, O., Laferriere, A., D'Harlingue, A. and Camara, B. ( 1988 ) Carotenoid biosynthesis: isolation and characterization of a bifunctional enzyme catalyzing the synthesis of phytoene. Proc. Natl Acad. Sci. USA, 85, 7054 – 7058.en_US
dc.identifier.citedreferenceDonath, J. and Boland, W. ( 1995 ) Biosynthesis of acyclic homoterpenes: enzyme selectivity and absolute configuration of the nerolidol precursor. Phytochemistry, 39, 785 – 790.en_US
dc.identifier.citedreferenceDucluzeau, A.L., Wamboldt, Y., Elowsky, C.G., Mackenzie, S.A., Schuurink, R.C. and Basset, G.J.C. ( 2012 ) Gene network reconstruction identifies the authentic trans ‐prenyl diphosphate synthase that makes the solanesyl moiety of ubiquinone–9 in Arabidopsis. Plant J. 69, 366 – 375.en_US
dc.identifier.citedreferenceDudareva, N. and Pichersky, E. ( 2008 ) Metabolic engineering of plant volatiles. Curr. Opin. Biotechnol. 19, 181 – 189.en_US
dc.identifier.citedreferenceDudareva, N., Cseke, L., Blanc, V.M. and Pichersky, E. ( 1996 ) Evolution of floral scent in Clarkia: novel patterns of S– linalool synthase gene expression in the C. breweri flower. Plant Cell, 8, 1137 – 1148.en_US
dc.identifier.citedreferenceDudareva, N., Andersson, S., Orlova, I., Gatto, N., Reichelt, M., Rhodes, D., Boland, W. and Gershenzon, J. ( 2005 ) The nonmevalonate pathway supports both monoterpene and sesquiterpene formation in snapdragon flowers. Proc. Natl Acad. Sci. USA, 102, 933 – 938.en_US
dc.identifier.citedreferenceDudareva, N., Negre, F., Nagegowda, D.A. and Orlova, I. ( 2006 ) Plant volatiles: recent advances and future perspectives. Crit. Rev. Plant Sci. 25, 417 – 440.en_US
dc.identifier.citedreferenceDunphy, P.J. and Allcock, C. ( 1972 ) Isolation and properties of a monoterpene reductase from rose petals. Phytochemistry, 11, 1887 – 1891.en_US
dc.identifier.citedreferenceEggermont, K., Goderis, I.J. and Broekaert, W.F. ( 1996 ) High‐throughput RNA extraction from plant samples based on homogenisation by reciprocal shaking in the presence of a mixture of sand and glass beads. Plant Mol. Biol. Rep. 14, 273 – 279.en_US
dc.identifier.citedreferenceFalara, V., Akhtar, T.A., Nguyen, T.T.H. et al. ( 2011 ) The tomato terpene synthase gene family. Plant Physiol. 157, 770 – 789.en_US
dc.identifier.citedreferenceFray, R.G., Wallace, A.D. and Grierson, D. ( 1994 ) Identification of unexplained DNA fragments within the T‐DNA borders of the Bin 19 plant transformation vector. Plant Mol. Biol. 25, 339 – 342.en_US
dc.identifier.citedreferenceFlügge, U.I. and Gao, W. ( 2005 ) Transport of isoprenoid intermediates across chloroplast envelope membranes. Plant Biol. 7, 91 – 97.en_US
dc.identifier.citedreferenceFurumoto, T., Yamaguchi, T., Ohshima‐Ichie, Y. et al. ( 2011 ) A plastidial sodium‐dependent pyruvate transporter. Nature, 476, 472 – 475.en_US
dc.identifier.citedreferenceGanjewala, D. and Luthra, R. ( 2009 ) Geranyl acetate esterase controls and regulates the level of geraniol in lemongrass ( Cymbopogon flexuosus Nees ex Steud.) mutant cv. GRL–1 leaves. Z. Naturforsch. C, 64, 251 – 259.en_US
dc.identifier.citedreferenceGershenzon, J. and Kreis, W. ( 1999 ) Biochemistry of terpenoids: monoterpenes, sesquiterpenes, diterpenes, sterols, cardiac glycosides and steroid saponins. In Biochemistry of Plant Secondary Metabolism ( Wink, M., ed.). Boca Raton, FL: CRC Press, pp. 222 – 299.en_US
dc.identifier.citedreferenceGoltz, S.R., Campbell, W.W., Chitchumroonchokchai, C., Failla, M.L. and Ferruzzi, M.G. ( 2012 ) Meal triacylglycerol profile modulates postprandial absorption of carotenoids in humans. Mol. Nutr. Food Res. 56, 866 – 877.en_US
dc.identifier.citedreferenceHampel, D., Mosandl, A. and Wüst, M. ( 2005a ) Biosynthesis of mono‐ and sesquiterpenes in carrot roots and leaves ( Daucus carota L.): metabolic cross talk of cytosolic mevalonate and plastidial methylerythritol phosphate pathways. Phytochemistry, 66, 305 – 311.en_US
dc.identifier.citedreferenceHampel, D., Mosandl, A. and Wüst, M. ( 2005b ) Induction of de novo volatile terpene biosynthesis via cytosolic and plastidial pathways by methyl jasmonate in foliage of Vitis vinifera L. J. Agric. Food Chem. 53, 2652 – 2657.en_US
dc.identifier.citedreferenceHemmerlin, A., Hoeffler, J.F., Meyer, O., Tritsch, D., Kagan, I.A., Grosdemange‐Billiard, C., Rohmer, M. and Bach, T.J. ( 2003a ) Cross‐talk between the cytosolic mevalonate and the plastidial methylerythritol phosphate pathways in tobacco Bright Yellow–2 cells. J. Biol. Chem. 278, 26666 – 26676.en_US
dc.identifier.citedreferenceHemmerlin, A., Rivera, S.B., Erickson, H.K. and Poulter, C.D. ( 2003b ) Enzymes encoded by the farnesyl diphosphate synthase gene family in the big sagebrush Artemisia tridentata ssp. spiciformis. J. Biol. Chem. 278, 32132 – 32140.en_US
dc.identifier.citedreferenceHemmerlin, A., Harwood, J.L. and Bach, T.J. ( 2012 ) A raison d'être for two distinct pathways in the early steps of plant isoprenoid biosynthesis? Prog. Lipid Res. 51, 95 – 148.en_US
dc.identifier.citedreferenceHsieh, F.L., Chang, T.H., Ko, T.P. and Wang, A.H.J. ( 2011 ) Structure and mechanism of an Arabidopsis medium/long‐ chain‐length prenyl pyrophosphate synthase. Plant Physiol. 155, 1079 – 1090.en_US
dc.identifier.citedreferenceIijima, Y., Wang, G., Fridman, E. and Pichersky, E. ( 2006 ) Analysis of the enzymatic formation of citral in the glands of sweet basil. Arch. Biochem. Biophys. 448, 141 – 149.en_US
dc.identifier.citedreferenceIzumi, S., Ashida, Y., Yamamitsu, T. and Hirata, T. ( 1996 ) Hydrolysis of isoprenyl diphosphates with the acid phosphatase from Cinnamomum camphora. Cell. Mol. Life Sci. 52, 81 – 84.en_US
dc.identifier.citedreferenceKasahara, H., Hanada, A., Kuzuyama, T., Takagi, M., Kamiya, Y. and Yamaguchi, S. ( 2002 ) Contribution of the mevalonate and methylerythritol phosphate pathways to the biosynthesis of gibberellins in Arabidopsis. J. Biol. Chem. 277, 45188 – 45194.en_US
dc.identifier.citedreferenceKean, E.G., Hamaker, B.R. and Ferruzzi, M.G. ( 2008 ) Carotenoid bioaccessibility from whole grain and degermed maize meal products. J. Agric. Food Chem. 56, 9918 – 9926.en_US
dc.identifier.citedreferenceKoncz, C. and Schell, J. ( 1986 ) The promotor of T L –DNA gene  5 controls the tissue‐specific expression of chimaeric genes carried by a novel type of Agrobacterium binary vector. Mol. Gen. Genet. 204, 383 – 396.en_US
dc.identifier.citedreferenceLaferrière, A. and Beyer, P. ( 1991 ) Purification of geranylgeranyl diphosphate synthase from Sinapis alba etioplasts. Biochim. Biophys. Acta, 1077, 167 – 172.en_US
dc.identifier.citedreferenceLaule, O., Fürholz, A., Chang, H.S., Zhu, T., Wang, X., Heifetz, P.B., Gruissem, W. and Lange, B.M. ( 2003 ) Crosstalk between cytosolic and plastidial pathways of isoprenoid biosynthesis in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA, 100, 6866 – 6871.en_US
dc.identifier.citedreferenceLawrence, S.D., Cline, K. and Moore, G.A. ( 1997 ) Chromoplast development in ripening tomato fruit: identification of cDNAs for chromoplast‐targeted proteins and characterization of a cDNA encoding a plastid‐localized low‐molecular‐weight heat shock protein. Plant Mol. Biol. 33, 483 – 492.en_US
dc.identifier.citedreferenceLewinsohn, E., Schalechet, F., Wilkinson, J. et al. ( 2001 ) Enhanced levels of the aroma and flavor compound S –linalool by metabolic engineering of the terpenoid pathway in tomato fruits. Plant Physiol. 127, 1256 – 1265.en_US
dc.identifier.citedreferenceLi, S.M., Henning, S. and Heide, L. ( 1998 ) Shikonin: a geranyl diphosphate‐derived plant hemiterpenoid formed via the mevalonate pathway. Tetrahedron Lett. 39, 2721 – 2724.en_US
dc.identifier.citedreferenceLois, L.M., Rodriguez‐Concepción, M., Gallego, F., Campos, N. and Boronat, A. ( 2000 ) Carotenoid biosynthesis during tomato fruit development: regulatory role of 1–deoxy‐ d –xylulose 5–phosphate synthase. Plant J. 22, 503 – 513.en_US
dc.identifier.citedreferenceLuan, F., Mosandl, A., Münch, A. and Wüst, M. ( 2005 ) Metabolism of geraniol in grape berry mesocarp of Vitis vinifera L. cv. Scheurebe: demonstration of stereoselective reduction, E/Z ‐isomerization, oxidation and glycosylation. Phytochemistry, 66, 295 – 303.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.