Show simple item record

Diurnal rhythms in neural activation in the mesolimbic reward system: critical role of the medial prefrontal cortex

dc.contributor.authorBaltazar, Ricardo M.en_US
dc.contributor.authorCoolen, Lique M.en_US
dc.contributor.authorWebb, Ian C.en_US
dc.date.accessioned2013-08-02T20:51:25Z
dc.date.available2014-09-02T14:12:53Zen_US
dc.date.issued2013-07en_US
dc.identifier.citationBaltazar, Ricardo M.; Coolen, Lique M.; Webb, Ian C. (2013). "Diurnal rhythms in neural activation in the mesolimbic reward system: critical role of the medial prefrontal cortex." European Journal of Neuroscience 38(2): 2319-2327. <http://hdl.handle.net/2027.42/99016>en_US
dc.identifier.issn0953-816Xen_US
dc.identifier.issn1460-9568en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/99016
dc.description.abstractPrevious evidence suggests a circadian modulation of drug‐seeking behavior and responsiveness to drugs of abuse. To identify potential mechanisms for rhythmicity in reward, a marker of neural activation (c F os) was examined across the day in the mesolimbic reward system. Rats were perfused at six times during the day [zeitgeber times ( ZT s): 2, 6, 10, 14, 18, and 22], and brains were analysed for c F os and tyrosine hydroxylase ( TH )‐immunoreactive ( IR ) cells. Rhythmic expression of c F os was observed in the nucleus accumbens ( NA c) core and shell, in the medial prefrontal cortex (m PFC ), and in TH ‐ IR and non‐ TH ‐ IR cells in the ventral tegmental area ( VTA ), with peak expression during the late night and nadirs during the late day. No significant rhythmicity was observed in the basolateral amgydala or the dentate gyrus. As the m PFC provides excitatory input to both the NA c and VTA , this region was hypothesised to be a key mediator of rhythmic neural activation in the mesolimbic system. Hence, the effects of excitotoxic m PFC lesions on diurnal rhythms in c F os immunoreactivity at previously observed peak ( ZT 18) and nadir ( ZT 10) times were examined in the NA c and VTA . m PFC lesions encompassing the prelimbic and infralimbic subregions attenuated peak c F os immunoreactivity in the NA c, eliminating the diurnal rhythm, but had no effect on VTA rhythms. These results suggest that rhythmic neural activation in the mesolimbic system may contribute to diurnal rhythms in reward‐related behaviors, and indicate that the m PFC plays a critical role in mediating rhythmic neural activation in the NA c. Previous evidence suggests a circadian modulation of drug‐seeking behavior and responsiveness to drugs of abuse. To identify potential mechanisms for rhythmicity in reward, a maker of neural activation (c F os) was examined across the day in the mesolimbic reward system.en_US
dc.publisherCRC Pressen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherCircadianen_US
dc.subject.otherRaten_US
dc.subject.otherRewarden_US
dc.subject.otherExcitotoxic Lesionen_US
dc.subject.otherC‐ F Osen_US
dc.titleDiurnal rhythms in neural activation in the mesolimbic reward system: critical role of the medial prefrontal cortexen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelNeurosciencesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.identifier.pmid23617901en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/99016/1/ejn12224.pdf
dc.identifier.doi10.1111/ejn.12224en_US
dc.identifier.sourceEuropean Journal of Neuroscienceen_US
dc.identifier.citedreferenceRoberts, D.C. & Andrews, M.M. ( 1997 ) Baclofen suppression of cocaine self‐administration: demonstration using a discrete trials procedure. Psychopharmacology, 131, 271 – 277.en_US
dc.identifier.citedreferenceRoberts, D.C., Brebner, K., Vincler, M. & Lynch, W.J. ( 2002 ) Patterns of cocaine self‐administration in rats produced by various access conditions under a discrete trials procedure. Drug Alcohol Depen., 67, 291 – 299.en_US
dc.identifier.citedreferenceRossetti, Z.L., Marcangione, C. & Wise, R.A. ( 1998 ) Increase of extracellular glutamate and expression of Fos‐like immunoreactivity in the ventral tegmental area in response to electrical stimulation of the prefrontal cortex. J. Neurochem., 70, 1503 – 1512.en_US
dc.identifier.citedreferenceSakurai, T. ( 2007 ) The neural circuit of orexin (hypocretin): maintaining sleep and wakefulness. Nat. Rev. Neurosci., 8, 171 – 181.en_US
dc.identifier.citedreferenceSchwartz, W.J., Carpino, A. Jr., de la Iglesia, H.O., Baler, R., Klein, D.C., Nakabeppu, Y. & Aronin, N. ( 2000 ) Differential regulation of Fos family genes in the ventrolateral and dorsomedial subdivisions of the rat suprachiasmatic nucleus. Neuroscience, 98, 535 – 547.en_US
dc.identifier.citedreferenceSesack, S.R. & Grace, A.A. ( 2010 ) Cortico‐basal ganglia reward network: microcircuitry. Neuropsychopharmacol., 35, 27 – 47.en_US
dc.identifier.citedreferenceSleipness, E.P., Sorg, B.A. & Jansen, H.T. ( 2007 ) Diurnal differences in dopamine transporter and tyrosine hydroxylase levels in rat brain: dependence on the suprachiasmatic nucleus. Brain Res., 1129, 34 – 42.en_US
dc.identifier.citedreferenceSleipness, E.P., Jansen, H.T., Schenk, J.O. & Sorg, B.A. ( 2008 ) Time‐of‐day differences in dopamine clearance in the rat medial prefrontal cortex and nucleus accumbens. Synapse, 62, 877 – 885.en_US
dc.identifier.citedreferenceSpanagel, R. & Weiss, F. ( 1999 ) The dopamine hypothesis of reward: past and current status. Trends Neurosci., 22, 521 – 527.en_US
dc.identifier.citedreferenceStuber, G.D., Britt, J.P. & Bonci, A. ( 2012 ) Optogenetic modulation of neural circuits that underlie reward seeking. Biol. Psychiat., 71, 1061 – 1067.en_US
dc.identifier.citedreferenceSwanson, L.W. (Ed.) ( 1998 ) Brain Maps: Structure of the Rat Brain. Elsevier, Amsterdam.en_US
dc.identifier.citedreferenceTecuapetla, F., Patel, J.C., Xenias, H., English, D., Tadros, I., Shah, F., Berlin, J., Deisseroth, K., Rice, M.E., Tepper, J.M. & Koos, T. ( 2010 ) Glutamatergic signaling by mesolimbic dopamine neurons in the nucleus accumbens. J. Neurosci., 30, 7105 – 7110.en_US
dc.identifier.citedreferenceThomas, M.J., Kalivas, P.W. & Shaham, Y. ( 2008 ) Neuroplasticity in the mesolimbic dopamine system and cocaine addiction. Brit. J. Pharmacol., 154, 327 – 342.en_US
dc.identifier.citedreferenceVanhoutte, P., Barnier, J.V., Guibert, B., Pages, C., Besson, M.J., Hipskind, R.A. & Caboche, J. ( 1999 ) Glutamate induces phosphorylation of Elk‐1 and CREB, along with c‐fos activation, via an extracellular signal‐regulated kinase‐dependent pathway in brain slices. Mol. Cell. Biol., 19, 136 – 146.en_US
dc.identifier.citedreferenceVerwey, M., Khoja, Z., Stewart, J. & Amir, S. ( 2007 ) Differential regulation of the expression of Period2 protein in the limbic forebrain and dorsomedial hypothalamus by daily limited access to highly palatable food in food‐deprived and free‐fed rats. Neuroscience, 147, 277 – 285.en_US
dc.identifier.citedreferenceWatson, R.E. Jr., Wiegand, S.J., Clough, R.W. & Hoffman, G.E. ( 1986 ) Use of cryoprotectant to maintain long‐term peptide immunoreactivity and tissue morphology. Peptides, 7, 155 – 159.en_US
dc.identifier.citedreferenceWebb, I.C., Baltazar, R.M., Wang, X., Pitchers, K.K., Coolen, L.M. & Lehman, M.N. ( 2009 ) Diurnal variations in natural and drug reward, mesolimbic tyrosine hydroxylase, and clock gene expression in the male rat. J. Biol. Rhythm., 24, 465 – 476.en_US
dc.identifier.citedreferenceWise, R.A. ( 2004 ) Dopamine, learning and motivation. Nat. Rev. Neurosci., 5, 483 – 494.en_US
dc.identifier.citedreferenceWolf, M.E., Sun, X., Mangiavacchi, S. & Chao, S.Z. ( 2004 ) Psychomotor stimulants and neuronal plasticity. Neuropharmacology, 47 ( Suppl 1 ), 61 – 79.en_US
dc.identifier.citedreferenceXia, Z., Dudek, H., Miranti, C.K. & Greenberg, M.E. ( 1996 ) Calcium influx via the NMDA receptor induces immediate early gene transcription by a MAP kinase/ERK‐dependent mechanism. J. Neurosci., 16, 5425 – 5436.en_US
dc.identifier.citedreferenceYoshida, K., McCormack, S., Espana, R.A., Crocker, A. & Scammell, T.E. ( 2006 ) Afferents to the orexin neurons of the rat brain. J. Comp. Neurol., 494, 845 – 861.en_US
dc.identifier.citedreferenceZhang, S., Zeitzer, J.M., Yoshida, Y., Wisor, J.P., Nishino, S., Edgar, D.M. & Mignot, E. ( 2004 ) Lesions of the suprachiasmatic nucleus eliminate the daily rhythm of hypocretin‐1 release. Sleep, 27, 619 – 627.en_US
dc.identifier.citedreferenceZheng, H., Patterson, L.M. & Berthoud, H.R. ( 2007 ) Orexin signaling in the ventral tegmental area is required for high‐fat appetite induced by opioid stimulation of the nucleus accumbens. J. Neurosci., 27, 11075 – 11082.en_US
dc.identifier.citedreferenceAbarca, C., Albrecht, U. & Spanagel, R. ( 2002 ) Cocaine sensitization and reward are under the influence of circadian genes and rhythm. Proc. Natl. Acad. Sci. USA, 99, 9026 – 9030.en_US
dc.identifier.citedreferenceAkiyama, M., Yuasa, T., Hayasaka, N., Horikawa, K., Sakurai, T. & Shibata, S. ( 2004 ) Reduced food anticipatory activity in genetically orexin (hypocretin) neuron‐ablated mice. Eur. J. Neurosci., 20, 3054 – 3062.en_US
dc.identifier.citedreferenceAngeles‐Castellanos, M., Mendoza, J. & Escobar, C. ( 2007 ) Restricted feeding schedules phase shift daily rhythms of c‐Fos and protein Per1 immunoreactivity in corticolimbic regions in rats. Neuroscience, 144, 344 – 355.en_US
dc.identifier.citedreferenceAston‐Jones, G., Smith, R.J., Moorman, D.E. & Richardson, K.A. ( 2009 ) Role of lateral hypothalamic orexin neurons in reward processing and addiction. Neuropharmacology, 56 ( Suppl 1 ), 112 – 121.en_US
dc.identifier.citedreferenceBaird, T.J. & Gauvin, D. ( 2000 ) Characterization of cocaine self‐administration and pharmacokinetics as a function of time of day in the rat. Pharmacol. Biochem. Be., 65, 289 – 299.en_US
dc.identifier.citedreferenceBalfour, M.E., Yu, L. & Coolen, L.M. ( 2004 ) Sexual behavior and sex‐associated environmental cues activate the mesolimbic system in male rats. Neuropsychopharmacol., 29, 718 – 730.en_US
dc.identifier.citedreferenceBalfour, M.E., Brown, J.L., Yu, L. & Coolen, L.M. ( 2006 ) Potential contributions of efferents from medial prefrontal cortex to neural activation following sexual behavior in the male rat. Neuroscience, 137, 1259 – 1276.en_US
dc.identifier.citedreferenceBentivogolio, M. & Grass‐Zucconi, G. (Eds) ( 1999 ) Immediate Early Gene Expression in Sleep and Wakefulness. CRC Press, Danvers, MA.en_US
dc.identifier.citedreferenceBorgland, S.L., Taha, S.A., Sarti, F., Fields, H.L. & Bonci, A. ( 2006 ) Orexin A in the VTA is critical for the induction of synaptic plasticity and behavioral sensitization to cocaine. Neuron, 49, 589 – 601.en_US
dc.identifier.citedreferenceBrager, A.J., Prosser, R.A. & Glass, J.D. ( 2011 ) Circadian and acamprosate modulation of elevated ethanol drinking in mPer2 clock gene mutant mice. Chronobiol. Int., 28, 664 – 672.en_US
dc.identifier.citedreferenceCarr, D.B. & Sesack, S.R. ( 1999 ) Terminals from the rat prefrontal cortex synapse on mesoaccumbens VTA neurons. Ann. NY Acad. Sci., 877, 676 – 678.en_US
dc.identifier.citedreferenceCarr, D.B. & Sesack, S.R. ( 2000 ) Projections from the rat prefrontal cortex to the ventral tegmental area: target specificity in the synaptic associations with mesoaccumbens and mesocortical neurons. J. Neurosci., 20, 3864 – 3873.en_US
dc.identifier.citedreferenceCastaneda, T.R., de Prado, B.M., Prieto, D. & Mora, F. ( 2004 ) Circadian rhythms of dopamine, glutamate and GABA in the striatum and nucleus accumbens of the awake rat: modulation by light. J. Pineal Res., 36, 177 – 185.en_US
dc.identifier.citedreferenceChampagne, F.A., Chretien, P., Stevenson, C.W., Zhang, T.Y., Gratton, A. & Meaney, M.J. ( 2004 ) Variations in nucleus accumbens dopamine associated with individual differences in maternal behavior in the rat. J. Neurosci., 24, 4113 – 4123.en_US
dc.identifier.citedreferenceCutler, D.J., Morris, R., Sheridhar, V., Wattam, T.A., Holmes, S., Patel, S., Arch, J.R., Wilson, S., Buckingham, R.E., Evans, M.L., Leslie, R.A. & Williams, G. ( 1999 ) Differential distribution of orexin‐A and orexin‐B immunoreactivity in the rat brain and spinal cord. Peptides, 20, 1455 – 1470.en_US
dc.identifier.citedreferenceDeurveilher, S. & Semba, K. ( 2005 ) Indirect projections from the suprachiasmatic nucleus to major arousal‐promoting cell groups in rat: implications for the circadian control of behavioural state. Neuroscience, 130, 165 – 183.en_US
dc.identifier.citedreferenceDi Chiara, G. & Imperato, A. ( 1988 ) Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc. Natl. Acad. Sci. USA, 85, 5274 – 5278.en_US
dc.identifier.citedreferenceDominguez, J.M., Balfour, M.E., Lee, H.S., Brown, J.L., Davis, B.A. & Coolen, L.M. ( 2007 ) Mating activates NMDA receptors in the medial preoptic area of male rats. Behav. Neurosci., 121, 1023 – 1031.en_US
dc.identifier.citedreferenceEstabrooke, I.V., McCarthy, M.T., Ko, E., Chou, T.C., Chemelli, R.M., Yanagisawa, M., Saper, C.B. & Scammell, T.E. ( 2001 ) Fos expression in orexin neurons varies with behavioral state. J. Neurosci., 21, 1656 – 1662.en_US
dc.identifier.citedreferenceFadel, J. & Deutch, A.Y. ( 2002 ) Anatomical substrates of orexin–dopamine interactions: lateral hypothalamic projections to the ventral tegmental area. Neuroscience, 111, 379 – 387.en_US
dc.identifier.citedreferenceFrohmader, K.S., Pitchers, K.K., Balfour, M.E. & Coolen, L.M. ( 2010a ) Mixing pleasures: review of the effects of drugs on sex behavior in humans and animal models. Horm. Behav., 58, 149 – 162.en_US
dc.identifier.citedreferenceFrohmader, K.S., Wiskerke, J., Wise, R.A., Lehman, M.N. & Coolen, L.M. ( 2010b ) Methamphetamine acts on subpopulations of neurons regulating sexual behavior in male rats. Neuroscience, 166, 771 – 784.en_US
dc.identifier.citedreferenceGabbott, P.L., Warner, T.A., Jays, P.R., Salway, P. & Busby, S.J. ( 2005 ) Prefrontal cortex in the rat: projections to subcortical autonomic, motor, and limbic centers. J. Comp. Neurol., 492, 145 – 177.en_US
dc.identifier.citedreferenceHampp, G., Ripperger, J.A., Houben, T., Schmutz, I., Blex, C., Perreau‐Lenz, S., Brunk, I., Spanagel, R., Ahnert‐Hilger, G., Meijer, J.H. & Albrecht, U. ( 2008 ) Regulation of monoamine oxidase A by circadian‐clock components implies clock influence on mood. Curr. Biol., 18, 678 – 683.en_US
dc.identifier.citedreferenceHarris, G.C., Wimmer, M. & Aston‐Jones, G. ( 2005 ) A role for lateral hypothalamic orexin neurons in reward seeking. Nature, 437, 556 – 559.en_US
dc.identifier.citedreferenceHoffman, G.E. & Lyo, D. ( 2002 ) Anatomical markers of activity in neuroendocrine systems: are we all ‘fos‐ed out’? J. Neuroendocrinol., 14, 259 – 268.en_US
dc.identifier.citedreferenceHyman, S.E., Malenka, R.C. & Nestler, E.J. ( 2006 ) Neural mechanisms of addiction: the role of reward‐related learning and memory. Annu. Rev. Neurosci., 29, 565 – 598.en_US
dc.identifier.citedreferenceIkemoto, S. ( 2007 ) Dopamine reward circuitry: two projection systems from the ventral midbrain to the nucleus accumbens–olfactory tubercle complex. Brain Res. Rev., 56, 27 – 78.en_US
dc.identifier.citedreferenceKelley, A.E. ( 2004 ) Memory and addiction: shared neural circuitry and molecular mechanisms. Neuron, 44, 161 – 179.en_US
dc.identifier.citedreferenceKelley, A.E. & Berridge, K.C. ( 2002 ) The neuroscience of natural rewards: relevance to addictive drugs. J. Neurosci., 22, 3306 – 3311.en_US
dc.identifier.citedreferenceKorotkova, T.M., Sergeeva, O.A., Eriksson, K.S., Haas, H.L. & Brown, R.E. ( 2003 ) Excitation of ventral tegmental area dopaminergic and nondopaminergic neurons by orexins/hypocretins. J. Neurosci., 23, 7 – 11.en_US
dc.identifier.citedreferenceKurtuncu, M., Arslan, A.D., Akhisaroglu, M., Manev, H. & Uz, T. ( 2004 ) Involvement of the pineal gland in diurnal cocaine reward in mice. Eur. J. Pharmacol., 489, 203 – 205.en_US
dc.identifier.citedreferenceLee, M.G., Hassani, O.K. & Jones, B.E. ( 2005 ) Discharge of identified orexin/hypocretin neurons across the sleep–waking cycle. J. Neurosci., 25, 6716 – 6720.en_US
dc.identifier.citedreferenceLiu, Y., Wang, Y., Wan, C., Zhou, W., Peng, T., Wang, Z., Li, G., Cornelisson, G. & Halberg, F. ( 2005 ) The role of mPer1 in morphine dependence in mice. Neuroscience, 130, 383 – 388.en_US
dc.identifier.citedreferenceLuo, A.H. & Aston‐Jones, G. ( 2009 ) Circuit projection from suprachiasmatic nucleus to ventral tegmental area: a novel circadian output pathway. Eur. J. Neurosci., 29, 748 – 760.en_US
dc.identifier.citedreferenceLuo, A.H., Georges, F.E. & Aston‐Jones, G.S. ( 2008 ) Novel neurons in ventral tegmental area fire selectively during the active phase of the diurnal cycle. Eur. J. Neurosci., 27, 408 – 422.en_US
dc.identifier.citedreferenceMarquez de Prado, B., Castaneda, T.R., Galindo, A., del Arco, A., Segovia, G., Reiter, R.J. & Mora, F. ( 2000 ) Melatonin disrupts circadian rhythms of glutamate and GABA in the neostriatum of the aware rat: a microdialysis study. J. Pineal Res., 29, 209 – 216.en_US
dc.identifier.citedreferenceMarston, O.J., Williams, R.H., Canal, M.M., Samuels, R.E., Upton, N. & Piggins, H.D. ( 2008 ) Circadian and dark‐pulse activation of orexin/hypocretin neurons. Mol. Brain, 1, 19.en_US
dc.identifier.citedreferenceMartel, P. & Fantino, M. ( 1996 ) Influence of the amount of food ingested on mesolimbic dopaminergic system activity: a microdialysis study. Pharmacol. Biochem. Be., 55, 297 – 302.en_US
dc.identifier.citedreferenceMartinez, G.S., Smale, L. & Nunez, A.A. ( 2002 ) Diurnal and nocturnal rodents show rhythms in orexinergic neurons. Brain Res., 955, 1 – 7.en_US
dc.identifier.citedreferenceMcClung, C.A., Sidiropoulou, K., Vitaterna, M., Takahashi, J.S., White, F.J., Cooper, D.C. & Nestler, E.J. ( 2005 ) Regulation of dopaminergic transmission and cocaine reward by the Clock gene. Proc. Natl. Acad. Sci. USA, 102, 9377 – 9381.en_US
dc.identifier.citedreferenceMcGranaghan, P.A. & Piggins, H.D. ( 2001 ) Orexin A‐like immunoreactivity in the hypothalamus and thalamus of the Syrian hamster (Mesocricetus auratus) and Siberian hamster (Phodopus sungorus), with special reference to circadian structures. Brain Res., 904, 234 – 244.en_US
dc.identifier.citedreferenceMendoza, J., Angeles‐Castellanos, M. & Escobar, C. ( 2005 ) Entrainment by a palatable meal induces food‐anticipatory activity and c‐Fos expression in reward‐related areas of the brain. Neuroscience, 133, 293 – 303.en_US
dc.identifier.citedreferenceMoorman, D.E. & Aston‐Jones, G. ( 2010 ) Orexin/hypocretin modulates response of ventral tegmental dopamine neurons to prefrontal activation: diurnal influences. J. Neurosci., 30, 15585 – 15599.en_US
dc.identifier.citedreferenceMukherjee, S., Coque, L., Cao, J.L., Kumar, J., Chakravarty, S., Asaithamby, A., Graham, A., Gordon, E., Enwright, J.F. III, Dileone, R.J., Birnbaum, S.G., Cooper, D.C. & McClung, C.A. ( 2010 ) Knockdown of Clock in the ventral tegmental area through RNA interference results in a mixed state of mania and depression‐like behavior. Biol. Psychiat., 68, 503 – 511.en_US
dc.identifier.citedreferenceNoel, M.B. & Wise, R.A. ( 1995 ) Ventral tegmental injections of a selective mu or delta opioid enhance feeding in food‐deprived rats. Brain Res., 673, 304 – 312.en_US
dc.identifier.citedreferenceNuman, M., Bress, J.A., Ranker, L.R., Gary, A.J., Denicola, A.L., Bettis, J.K. & Knapp, S.E. ( 2010 ) The importance of the basolateral/basomedial amygdala for goal‐directed maternal responses in postpartum rats. Behav. Brain Res., 214, 368 – 376.en_US
dc.identifier.citedreferenceOmelchenko, N. & Sesack, S.R. ( 2007 ) Glutamate synaptic inputs to ventral tegmental area neurons in the rat derive primarily from subcortical sources. Neuroscience, 146, 1259 – 1274.en_US
dc.identifier.citedreferencePfaus, J.G., Damsma, G., Nomikos, G.G., Wenkstern, D.G., Blaha, C.D., Phillips, A.G. & Fibiger, H.C. ( 1990 ) Sexual behavior enhances central dopamine transmission in the male rat. Brain Res., 530, 345 – 348.en_US
dc.identifier.citedreferencePitchers, K.K., Balfour, M.E., Lehman, M.N., Richtand, N.M., Yu, L. & Coolen, L.M. ( 2010 ) Neuroplasticity in the mesolimbic system induced by natural reward and subsequent reward abstinence. Biol. Psychiat., 67, 872 – 879.en_US
dc.identifier.citedreferencePompeiano, M., Cirelli, C. & Tononi, G. ( 1994 ) Immediate‐early genes in spontaneous wakefulness and sleep: expression of c‐fos and NGFI‐A mRNA and protein. J. Sleep Res., 3, 80 – 96.en_US
dc.identifier.citedreferencePompeiano, M., Cirelli, C., Arrighi, P. & Tononi, G. ( 1995 ) c‐Fos expression during wakefulness and sleep. Neurophysiol. Clin., 25, 329 – 341.en_US
dc.identifier.citedreferenceRamanathan, C., Stowie, A., Smale, L. & Nunez, A. ( 2010 ) PER2 rhythms in the amygdala and bed nucleus of the stria terminalis of the diurnal grass rat (Arvicanthis niloticus). Neurosci. Lett., 473, 220 – 223.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.