Show simple item record

Comparison of in vitro – in vivo extrapolation of biliary clearance using an empirical scaling factor versus transport‐based scaling factors in sandwich‐cultured rat hepatocytes

dc.contributor.authorZou, Pengen_US
dc.contributor.authorLiu, Xingrongen_US
dc.contributor.authorWong, Susanen_US
dc.contributor.authorFeng, Meihua Roseen_US
dc.contributor.authorLiederer, Bianca M.en_US
dc.date.accessioned2013-08-02T20:51:37Z
dc.date.available2014-10-06T19:17:44Zen_US
dc.date.issued2013-08en_US
dc.identifier.citationZou, Peng; Liu, Xingrong; Wong, Susan; Feng, Meihua Rose; Liederer, Bianca M. (2013). "Comparison of in vitro – in vivo extrapolation of biliary clearance using an empirical scaling factor versus transport‐based scaling factors in sandwich‐cultured rat hepatocytes." Journal of Pharmaceutical Sciences 102(8): 2837-2850. <http://hdl.handle.net/2027.42/99050>en_US
dc.identifier.issn0022-3549en_US
dc.identifier.issn1520-6017en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/99050
dc.description.abstractBiliary clearance (CL b ) is often underestimated by in vitro – in vivo extrapolation from sandwich‐cultured hepatocytes (SCHs). The objective of this study was to compare the performance of a universal correction factor with transporter‐based correction factors in correcting underestimation of CL b . The apparent in vitro CL b of a training set of 21 compounds was determined using the SCH model and extrapolated to apparent in vivo CL b (CL b, app ). A universal correction factor (10.2) was obtained by a linear regression of the predicted CL b, app and observed in vivo CL b of training set compounds and applied to an independent test set ( n = 20); the corrected CL b predictions of 13 compounds were within twofold error of observed values. Furthermore, two transporter‐based correction factors (Organic anion transporting polypeptides/multidrug‐resistance‐related protein 2 and diffusion/P‐glycoprotein) were estimated by linear regression analysis of training set compounds. The applications of the two correction factors to the test set resulted in improved prediction precision. In conclusion, both the universal correction factor and transporter‐based correction factors provided reasonable corrections of CL b values, which are often underestimated by the SCH model. The use of transporter‐based correction factors resulted in an even greater improvement of predictions for compounds with intermediate‐to‐high CL b values. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 102:2837–2850, 2013en_US
dc.publisherWiley Subscription Services, Inc., A Wiley Companyen_US
dc.subject.otherHepatocytesen_US
dc.subject.otherClearanceen_US
dc.subject.otherDrug Transporten_US
dc.subject.otherHepatobiliary Dispositionen_US
dc.subject.otherIn Vitro / in Vivo Correlations (IVIVC)en_US
dc.subject.otherOrganic Aniontransporting Polypeptide Transportersen_US
dc.subject.otherP‐Glycoproteinen_US
dc.subject.otherBiliary Excretionen_US
dc.titleComparison of in vitro – in vivo extrapolation of biliary clearance using an empirical scaling factor versus transport‐based scaling factors in sandwich‐cultured rat hepatocytesen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelPharmacy and Pharmacologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan 48109en_US
dc.contributor.affiliationotherGenentech, Inc., Drug Metabolism and Pharmacokinetics, South San Francisco, California 94080en_US
dc.contributor.affiliationotherGenentech, Inc., Drug Metabolism and Pharmacokinetics, South San Francisco, California 94080. Telephone +650‐467‐7343; Fax: 650‐225‐6452en_US
dc.identifier.pmid23712819en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/99050/1/23620_ftp.pdf
dc.identifier.doi10.1002/jps.23620en_US
dc.identifier.sourceJournal of Pharmaceutical Sciencesen_US
dc.identifier.citedreferenceAndo H, Nishio Y, Ito K, Nakao A, Wang L, Zhao YL, Kitaichi K, Takagi K, Hasegawa T. 2001. Effect of endotoxin on P‐glycoprotein‐mediated biliary and renal excretion of rhodamine‐123 in rats. Antimicrob Agents Chemother 45 ( 12 ): 3462 – 3467.en_US
dc.identifier.citedreferenceKivisto KT, Niemi M. 2007. Influence of drug transporter polymorphisms on pravastatin pharmacokinetics in humans. Pharm Res 24 ( 2 ): 239 – 247.en_US
dc.identifier.citedreferencevan de Steeg E, van der Kruijssen CM, Wagenaar E, Burggraaff JE, Mesman E, Kenworthy KE, Schinkel AH. 2009. Methotrexate pharmacokinetics in transgenic mice with liver‐specific expression of human organic anion‐transporting polypeptide 1B1 (SLCO1B1). Drug Metab Dispos 37 ( 2 ): 277 – 281.en_US
dc.identifier.citedreferenceMasuda M, I'Izuka Y, Yamazaki M, Nishigaki R, Kato Y, Ni'inuma K, Suzuki H, Sugiyama Y. 1997. Methotrexate is excreted into the bile by canalicular multispecific organic anion transporter in rats. Cancer Res 57 ( 16 ): 3506 – 3510.en_US
dc.identifier.citedreferenceHenderson ES, Adamson RH, Denham C, Oliverio VT. 1965. The metabolic fate of tritiated methotrexate. I. Absorption, excretion, and distribution in mice, rats, dogs and monkeys. Cancer Res 25 ( 7 ): 1008 – 1017.en_US
dc.identifier.citedreferenceHilmer SN, Cogger VC, Muller M, Le Couteur DG. 2004. The hepatic pharmacokinetics of doxorubicin and liposomal doxorubicin. Drug Metab Dispos 32 ( 8 ): 794 – 799.en_US
dc.identifier.citedreferenceAsakura E, Nakayama H, Sugie M, Zhao YL, Nadai M, Kitaichi K, Shimizu A, Miyoshi M, Takagi K, Hasegawa T. 2004. Azithromycin reverses anticancer drug resistance and modifies hepatobiliary excretion of doxorubicin in rats. Eur J Pharmacol 484 ( 2–3 ): 333 – 339.en_US
dc.identifier.citedreferenceTerasaki T, Iga T, Sugiyama Y, Hanano M. 1984. Pharmacokinetic study on the mechanism of tissue distribution of doxorubicin: Interorgan and interspecies variation of tissue‐to‐plasma partition coefficients in rats, rabbits, and guinea pigs. J Pharm Sci 73 ( 10 ): 1359 – 1363.en_US
dc.identifier.citedreferenceUmehara KI, Iwatsubo T, Noguchi K, Kamimura H. 2007. Functional involvement of organic cation transporter1 (OCT1/Oct1) in the hepatic uptake of organic cations in humans and rats. Xenobiotica 37 ( 8 ): 818 – 831.en_US
dc.identifier.citedreferenceIto S, Kusuhara H, Yokochi M, Toyoshima J, Inoue K, Yuasa H, Sugiyama Y. 2012. Competitive inhibition of the luminal efflux by multidrug and toxin extrusions, but not basolateral uptake by organic cation transporter 2, is the likely mechanism underlying the pharmacokinetic drug–drug interactions caused by cimetidine in the kidney. J Pharmacol Exp Ther 340 ( 2 ): 393 – 403.en_US
dc.identifier.citedreferenceKurata T, Muraki Y, Mizutani H, Iwamoto T, Okuda M. 2010. Elevated systemic elimination of cimetidine in rats with acute biliary obstruction: The role of renal organic cation transporter OCT2. Drug Metab Pharmacokinet 25 ( 4 ): 328 – 334.en_US
dc.identifier.citedreferenceMcPherson FJ, Lee RM. 1977. Biliary excretion and metabolism of 14C cimetidine following oral administration to male and female rats. Experientia 33 ( 9 ): 1139 – 1140.en_US
dc.identifier.citedreferenceTamai I, Maekawa T, Tsuji A. 1990. Membrane potential‐dependent and carrier‐mediated transport of cefpiramide, a cephalosporin antibiotic, in canalicular rat liver plasma membrane vesicles. J Pharmacol Exp Ther 253 ( 2 ): 537 – 544.en_US
dc.identifier.citedreferenceKato Y, Takahara S, Kato S, Kubo Y, Sai Y, Tamai I, Yabuuchi H, Tsuji A. 2008. Involvement of multidrug resistance‐associated protein 2 (Abcc2) in molecular weight‐dependent biliary excretion of beta‐lactam antibiotics. Drug Metab Dispos 36 ( 6 ): 1088 – 1096.en_US
dc.identifier.citedreferenceJonker JW, Smit JW, Brinkhuis RF, Maliepaard M, Beijnen JH, Schellens JH, Schinkel AH. 2000. Role of breast cancer resistance protein in the bioavailability and fetal penetration of topotecan. J Natl Cancer Inst 92 ( 20 ): 1651 – 1656.en_US
dc.identifier.citedreferenceTirona RG, Leake BF, Wolkoff AW, Kim RB. 2003. Human organic anion transporting polypeptide‐C (SLC21A6) is a major determinant of rifampin‐mediated pregnane X receptor activation. J Pharmacol Exp Ther 304 ( 1 ): 223 – 228.en_US
dc.identifier.citedreferenceShimada S, Fujino H, Morikawa T, Moriyasu M, Kojima J. 2003. Uptake mechanism of pitavastatin, a new inhibitor of HMG‐CoA reductase, in rat hepatocytes. Drug Metab Pharmacokinet 18 ( 4 ): 245 – 251.en_US
dc.identifier.citedreferenceHirano M, Maeda K, Matsushima S, Nozaki Y, Kusuhara H, Sugiyama Y. 2005. Involvement of BCRP (ABCG2) in the biliary excretion of pitavastatin. Mol Pharmacol 68 ( 3 ): 800 – 807.en_US
dc.identifier.citedreferenceNakakariya M, Shimada T, Irokawa M, Koibuchi H, Iwanaga T, Yabuuchi H, Maeda T, Tamai I. 2008. Predominant contribution of rat organic anion transporting polypeptide‐2 (Oatp2) to hepatic uptake of beta‐lactam antibiotics. Pharm Res 25 ( 3 ): 578 – 585.en_US
dc.identifier.citedreferenceKimura Y, Kioka N, Kato H, Matsuo M, Ueda K. 2007. Modulation of drug‐stimulated ATPase activity of human MDR1/P‐glycoprotein by cholesterol. Biochem J 401 ( 2 ): 597 – 605.en_US
dc.identifier.citedreferenceYamashiro W, Maeda K, Hirouchi M, Adachi Y, Hu Z, Sugiyama Y. 2006. Involvement of transporters in the hepatic uptake and biliary excretion of valsartan, a selective antagonist of the angiotensin II AT1‐receptor, in humans. Drug Metab Dispos 34 ( 7 ): 1247 – 1254.en_US
dc.identifier.citedreferenceSinghvi SM, Heald AF, Schreiber EC. 1978. Pharmacokinetics of cephalosporin antibiotics: Protein‐binding considerations. Chemotherapy 24 ( 3 ): 121 – 133.en_US
dc.identifier.citedreferenceWang XB, Wang SS, Zhang QF, Liu M, Li HL, Liu Y, Wang JN, Zheng F, Guo LY, Xiang JZ. 2010. Inhibition of tetramethylpyrazine on P‐gp, MRP2, MRP3 and MRP5 in multidrug resistant human hepatocellular carcinoma cells. Oncol Rep 23 ( 1 ): 211 – 215.en_US
dc.identifier.citedreferenceSasaki M, Suzuki H, Aoki J, Ito K, Meier PJ, Sugiyama Y. 2004. Prediction of in vivo biliary clearance from the in vitro transcellular transport of organic anions across a double‐transfected Madin‐Darby canine kidney II monolayer expressing both rat organic anion transporting polypeptide 4 and multidrug resistance associated protein 2. Mol Pharmacol 66 ( 3 ): 450 – 459.en_US
dc.identifier.citedreferenceCvetkovic M, Leake B, From MF, Wilkinson GR, Kim RB. 1999. OATP and P‐glycoprotein transporters mediate the cellular uptake and excretion of fexofenadine. Drug Metab Dispos 27 ( 8 ): 866 – 871.en_US
dc.identifier.citedreferenceLiu X, LeCluyse EL, Brouwer KR, Lightfoot RM, Lee JI, Brouwer KL. 1999. Use of Ca2+ modulation to evaluate biliary excretion in sandwich‐cultured rat hepatocytes. J Pharmacol Exp Ther 289 ( 3 ): 1592 – 1599.en_US
dc.identifier.citedreferenceAbe K, Bridges AS, Brouwer KL. 2009. Use of sandwich‐cultured human hepatocytes to predict biliary clearance of angiotensin II receptor blockers and HMG‐CoA reductase inhibitors. Drug Metab Dispos 37 ( 3 ): 447 – 452.en_US
dc.identifier.citedreferenceUmehara K, Camenisch G. 2012. Novel in vitro‐in vivo extrapolation (IVIVE) method to predict hepatic organ clearance in rat. Pharm Res 29 ( 2 ): 603 – 617.en_US
dc.identifier.citedreferenceBlanchard N, Richert L, Notter B, Delobel F, David P, Coassolo P, Lave T. 2004. Impact of serum on clearance predictions obtained from suspensions and primary cultures of rat hepatocytes. Eur J Pharm Sci 23 ( 2 ): 189 – 199.en_US
dc.identifier.citedreferenceZou P, Yu Y, Zheng N, Yang Y, Paholak HJ, Yu LX, Sun D. 2012. Applications of human pharmacokinetic prediction in first‐in‐human dose estimation. AAPS J 14 ( 2 ): 262 – 281.en_US
dc.identifier.citedreferenceChiba M, Ishii Y, Sugiyama Y. 2009. Prediction of hepatic clearance in human from in vitro data for successful drug development. AAPS J 11 ( 2 ): 262 – 276.en_US
dc.identifier.citedreferenceSwift B, Pfeifer ND, Brouwer KL. 2010. Sandwich‐cultured hepatocytes: An in vitro model to evaluate hepatobiliary transporter‐based drug interactions and hepatotoxicity. Drug Metab Rev 42 ( 3 ): 446 – 471.en_US
dc.identifier.citedreferenceLi N, Singh P, Mandrell KM, Lai Y. 2010. Improved extrapolation of hepatobiliary clearance from in vitro sandwich cultured rat hepatocytes through absolute quantification of hepatobiliary transporters. Mol Pharm 7 ( 3 ): 630 – 641.en_US
dc.identifier.citedreferenceBorlak J, Klutcka T. 2004. Expression of basolateral and canalicular transporters in rat liver and cultures of primary hepatocytes. Xenobiotica 34 ( 11–12 ): 935 – 947.en_US
dc.identifier.citedreferenceKotani N, Maeda K, Watanabe T, Hiramatsu M, Gong LK, Bi YA, Takezawa T, Kusuhara H, Sugiyama Y. 2011. Culture period‐dependent changes in the uptake of transporter substrates in sandwich‐cultured rat and human hepatocytes. Drug Metab Dispos 39 ( 9 ): 1503 – 1510.en_US
dc.identifier.citedreferenceTchaparian EH, Houghton JS, Uyeda C, Grillo MP, Jin L. 2011. Effect of culture time on the basal expression levels of drug transporters in sandwich‐cultured primary rat hepatocytes. Drug Metab Dispos 39 ( 12 ): 2387 – 2394.en_US
dc.identifier.citedreferenceLi N, Bi YA, Duignan DB, Lai Y. 2009. Quantitative expression profile of hepatobiliary transporters in sandwich cultured rat and human hepatocytes. Mol Pharm 6 ( 4 ): 1180 – 1189.en_US
dc.identifier.citedreferenceLiu X, Chism JP, LeCluyse EL, Brouwer KR, Brouwer KL. 1999. Correlation of biliary excretion in sandwich‐cultured rat hepatocytes and in vivo in rats. Drug Metab Dispos 27 ( 6 ): 637 – 644.en_US
dc.identifier.citedreferenceAbe K, Bridges AS, Yue W, Brouwer KL. 2008. In vitro biliary clearance of angiotensin II receptor blockers and 3‐hydroxy‐3‐methylglutaryl‐coenzyme A reductase inhibitors in sandwich‐cultured rat hepatocytes: Comparison with in vivo biliary clearance. J Pharmacol Exp Ther 326 ( 3 ): 983 – 990.en_US
dc.identifier.citedreferenceFukuda H, Ohashi R, Tsuda‐Tsukimoto M, Tamai I. 2008. Effect of plasma protein binding on in vitro‐in vivo correlation of biliary excretion of drugs evaluated by sandwich‐cultured rat hepatocytes. Drug Metab Dispos 36 ( 7 ): 1275 – 1282.en_US
dc.identifier.citedreferenceWatanabe T, Miyauchi S, Sawada Y, Iga T, Hanano M, Inaba M, Sugiyama Y. 1992. Kinetic analysis of hepatobiliary transport of vincristine in perfused rat liver. Possible roles of P‐glycoprotein in biliary excretion of vincristine. J Hepatol 16 ( 1–2 ): 77 – 88.en_US
dc.identifier.citedreferenceObach RS, Lombardo F, Waters NJ. 2008. Trend analysis of a database of intravenous pharmacokinetic parameters in humans for 670 drug compounds. Drug Metab Dispos 36 ( 7 ): 1385 – 1405.en_US
dc.identifier.citedreferenceSong S, Suzuki H, Kawai R, Sugiyama Y. 1999. Effect of PSC 833, a P‐glycoprotein modulator, on the disposition of vincristine and digoxin in rats. Drug Metab Dispos 27 ( 6 ): 689 – 694.en_US
dc.identifier.citedreferenceIshizuka H, Konno K, Naganuma H, Nishimura K, Kouzuki H, Suzuki H, Stieger B, Meier PJ, Sugiyama Y. 1998. Transport of temocaprilat into rat hepatocytes: Role of organic anion transporting polypeptide. J Pharmacol Exp Ther 287 ( 1 ): 37 – 42.en_US
dc.identifier.citedreferenceIshizuka H, Konno K, Naganuma H, Sasahara K, Kawahara Y, Niinuma K, Suzuki H, Sugiyama Y. 1997. Temocaprilat, a novel angiotensin‐converting enzyme inhibitor, is excreted in bile via an ATP‐dependent active transporter (cMOAT) that is deficient in Eisai hyperbilirubinemic mutant rats (EHBR). J Pharmacol Exp Ther 280 ( 3 ): 1304 – 1311.en_US
dc.identifier.citedreferenceWatanabe T, Maeda K, Kondo T, Nakayama H, Horita S, Kusuhara H, Sugiyama Y. 2009. Prediction of the hepatic and renal clearance of transporter substrates in rats using in vitro uptake experiments. Drug Metab Dispos 37 ( 7 ): 1471 – 1479.en_US
dc.identifier.citedreferenceGigon PL, Guarino AM. 1970. Uptake of probenecid by rat liver slices. Biochem Pharmacol 19 ( 9 ): 2653 – 2662.en_US
dc.identifier.citedreferenceChen C, Scott D, Hanson E, Franco J, Berryman E, Volberg M, Liu X. 2003. Impact of Mrp2 on the biliary excretion and intestinal absorption of furosemide, probenecid, and methotrexate using Eisai hyperbilirubinemic rats. Pharm Res 20 ( 1 ): 31 – 37.en_US
dc.identifier.citedreferenceEmanuelsson BM, Paalzow LK. 1988. Dose‐dependent pharmacokinetics of probenecid in the rat. Biopharm Drug Dispos 9 ( 1 ): 59 – 70.en_US
dc.identifier.citedreferenceNozawa T, Minami H, Sugiura S, Tsuji A, Tamai I. 2005. Role of organic anion transporter OATP1B1 (OATP‐C) in hepatic uptake of irinotecan and its active metabolite, 7‐ethyl‐10‐hydroxycamptothecin: In vitro evidence and effect of single nucleotide polymorphisms. Drug Metab Dispos 33 ( 3 ): 434 – 439.en_US
dc.identifier.citedreferenceSugiyama Y, Kato Y, Chu X. 1998. Multiplicity of biliary excretion mechanisms for the camptothecin derivative irinotecan (CPT‐11), its metabolite SN‐38, and its glucuronide: Role of canalicular multispecific organic anion transporter and P‐glycoprotein. Cancer Chemother Pharmacol 42 Suppl: S44 – S49.en_US
dc.identifier.citedreferenceChu XY, Kato Y, Sugiyama Y. 1997. Multiplicity of biliary excretion mechanisms for irinotecan, CPT‐11, and its metabolites in rats. Cancer Res 57 ( 10 ): 1934 – 1938.en_US
dc.identifier.citedreferenceYang XX, Hu ZP, Xu AL, Duan W, Zhu YZ, Huang M, Sheu FS, Zhang Q, Bian JS, Chan E, Li X, Wang JC, Zhou SF. 2006. A mechanistic study on reduced toxicity of irinotecan by coadministered thalidomide, a tumor necrosis factor‐alpha inhibitor. J Pharmacol Exp Ther 319 ( 1 ): 82 – 104.en_US
dc.identifier.citedreferenceGupta E, Safa AR, Wang X, Ratain MJ. 1996. Pharmacokinetic modulation of irinotecan and metabolites by cyclosporin A. Cancer Res 56 ( 6 ): 1309 – 1314.en_US
dc.identifier.citedreferenceKobayashi Y, Sakai R, Ohshiro N, Ohbayashi M, Kohyama N, Yamamoto T. 2005. Possible involvement of organic anion transporter 2 on the interaction of theophylline with erythromycin in the human liver. Drug Metab Dispos 33 ( 5 ): 619 – 622.en_US
dc.identifier.citedreferenceLam JL, Okochi H, Huang Y, Benet LZ. 2006. In vitro and in vivo correlation of hepatic transporter effects on erythromycin metabolism: Characterizing the importance of transporter‐enzyme interplay. Drug Metab Dispos 34 ( 8 ): 1336 – 1344.en_US
dc.identifier.citedreferenceFrassetto LA, Poon S, Tsourounis C, Valera C, Benet LZ. 2007. Effects of uptake and efflux transporter inhibition on erythromycin breath test results. Clin Pharmacol Ther 81 ( 6 ): 828 – 832.en_US
dc.identifier.citedreferenceYamano K, Yamamoto K, Kotaki H, Takedomi S, Matsuo H, Sawada Y, Iga T. 2000. Quantitative prediction of metabolic inhibition of midazolam by erythromycin, diltiazem, and verapamil in rats: Implication of concentrative uptake of inhibitors into liver. J Pharmacol Exp Ther 292 ( 3 ): 1118 – 1126.en_US
dc.identifier.citedreferenceKitamura S, Maeda K, Wang Y, Sugiyama Y. 2008. Involvement of multiple transporters in the hepatobiliary transport of rosuvastatin. Drug Metab Dispos 36 ( 10 ): 2014 – 2023.en_US
dc.identifier.citedreferenceMatsushima S, Maeda K, Hayashi H, Debori Y, Schinkel AH, Schuetz JD, Kusuhara H, Sugiyama Y. 2008. Involvement of multiple efflux transporters in hepatic disposition of fexofenadine. Mol Pharmacol 73 ( 5 ): 1474 – 1483.en_US
dc.identifier.citedreferenceSanofi‐Aventis. 2006. Product monograph—Allegra (fexofenadine hydrochloride). p 19.en_US
dc.identifier.citedreferenceTahara H, Kusuhara H, Fuse E, Sugiyama Y. 2005. P‐glycoprotein plays a major role in the efflux of fexofenadine in the small intestine and blood‐brain barrier, but only a limited role in its biliary excretion. Drug Metab Dispos 33 ( 7 ): 963 – 968.en_US
dc.identifier.citedreferenceWolf KK, Brouwer KR, Pollack GM, Brouwer KL. 2008. Effect of albumin on the biliary clearance of compounds in sandwich‐cultured rat hepatocytes. Drug Metab Dispos 36 ( 10 ): 2086 – 2092.en_US
dc.identifier.citedreferenceSpeeg KV, Maldonado AL. 1994. Effect of the nonimmunosuppressive cyclosporin analog SDZ PSC‐833 on colchicine and doxorubicin biliary secretion by the rat in vivo. Cancer Chemother Pharmacol 34 ( 2 ): 133 – 136.en_US
dc.identifier.citedreferenceDahan A, Sabit H, Amidon GL. 2009. Multiple efflux pumps are involved in the transepithelial transport of colchicine: Combined effect of p‐glycoprotein and multidrug resistance‐associated protein 2 leads to decreased intestinal absorption throughout the entire small intestine. Drug Metab Dispos 37 ( 10 ): 2028 – 2036.en_US
dc.identifier.citedreferenceChen YJ, Huang SM, Liu CY, Yeh PH, Tsai TH. 2008. Hepatobiliary excretion and enterohepatic circulation of colchicine in rats. Int J Pharm 350 ( 1–2 ): 230 – 239.en_US
dc.identifier.citedreferenceTeng R, Girard D, Gootz TD, Foulds G, Liston TE. 1996. Pharmacokinetics of trovafloxacin (CP‐99,219), a new quinolone, in rats, dogs, and monkeys. Antimicrob Agents Chemother 40 ( 3 ): 561 – 566.en_US
dc.identifier.citedreferenceLiu L, Cui Y, Chung AY, Shitara Y, Sugiyama Y, Keppler D, Pang KS. 2006. Vectorial transport of enalapril by Oatp1a1/Mrp2 and OATP1B1 and OATP1B3/MRP2 in rat and human livers. J Pharmacol Exp Ther 318 ( 1 ): 395 – 402.en_US
dc.identifier.citedreferenceLau YY, Okochi H, Huang Y, Benet LZ. 2006. Multiple transporters affect the disposition of atorvastatin and its two active hydroxy metabolites: Application of in vitro and ex situ systems. J Pharmacol Exp Ther 316 ( 2 ): 762 – 771.en_US
dc.identifier.citedreferenceWatanabe T, Kusuhara H, Maeda K, Kanamaru H, Saito Y, Hu Z, Sugiyama Y. 2010. Investigation of the rate‐determining process in the hepatic elimination of HMG‐CoA reductase inhibitors in rats and humans. Drug Metab Dispos 38 ( 2 ): 215 – 222.en_US
dc.identifier.citedreferenceDong J, Yu X, Wang L, Sun YB, Chen XJ, Wang GJ. 2008. Effects of cyclosporin A and itraconazole on the pharmacokinetics of atorvastatin in rats. Acta Pharmacol Sin 29 ( 10 ): 1247 – 1252.en_US
dc.identifier.citedreferenceColoma F, Lacarelle B, Poitou P, Filleul A, Covo J, Catalin J. 1994. Hepatic transport of mitoxantrone in relation to multiple resistance. Bull Cancer 81 ( 5 ): 425 – 430.en_US
dc.identifier.citedreferenceOzvegy C, Litman T, Szakacs G, Nagy Z, Bates S, Varadi A, Sarkadi B. 2001. Functional characterization of the human multidrug transporter, ABCG2, expressed in insect cells. Biochem Biophys Res Commun 285 ( 1 ): 111 – 117.en_US
dc.identifier.citedreferenceShenkenberg TD, Von Hoff DD. 1986. Mitoxantrone: A new anticancer drug with significant clinical activity. Ann Intern Med 105 ( 1 ): 67 – 81.en_US
dc.identifier.citedreferenceYang X, Morris ME. 2010. Pharmacokinetics and biliary excretion of mitoxantrone in rats. J Pharm Sci 99 ( 5 ): 2502 – 2510.en_US
dc.identifier.citedreferenceSasabe H, Kato Y, Terasaki T, Tsuji A, Sugiyama Y. 1999. Differences in the hepatobiliary transport of two quinolone antibiotics, grepafloxacin and lomefloxacin, in the rat. Biopharm Drug Dispos 20 ( 3 ): 151 – 158.en_US
dc.identifier.citedreferenceNoe J, Portmann R, Brun ME, Funk C. 2007. Substrate‐dependent drug‐drug interactions between gemfibrozil, fluvastatin and other organic anion‐transporting peptide (OATP) substrates on OATP1B1, OATP2B1, and OATP1B3. Drug Metab Dispos 35 ( 8 ): 1308 – 1314.en_US
dc.identifier.citedreferenceLindahl A, Sjoberg A, Bredberg U, Toreson H, Ungell AL, Lennernas H. 2004. Regional intestinal absorption and biliary excretion of fluvastatin in the rat: Possible involvement of mrp2. Mol Pharm 1 ( 5 ): 347 – 356.en_US
dc.identifier.citedreferenceMorita N, Kusuhara H, Nozaki Y, Endou H, Sugiyama Y. 2005. Functional involvement of rat organic anion transporter 2 (Slc22a7) in the hepatic uptake of the nonsteroidal anti‐inflammatory drug ketoprofen. Drug Metab Dispos 33 ( 8 ): 1151 – 1157.en_US
dc.identifier.citedreferenceKouzuki H, Suzuki H, Sugiyama Y. 2000. Pharmacokinetic study of the hepatobiliary transport of indomethacin. Pharm Res 17 ( 4 ): 432 – 438.en_US
dc.identifier.citedreferencePaine SW, Parker AJ, Gardiner P, Webborn PJ, Riley RJ. 2008. Prediction of the pharmacokinetics of atorvastatin, cerivastatin, and indomethacin using kinetic models applied to isolated rat hepatocytes. Drug Metab Dispos 36 ( 7 ): 1365 – 1374.en_US
dc.identifier.citedreferenceDuggan DE, Hooke KF, White SD, Noll RM, Stevenson CR. 1977. The effects of probenecid upon the individual components of indomethacin elimination. J Pharmacol Exp Ther 201 ( 2 ): 463 – 470.en_US
dc.identifier.citedreferenceYamada T, Niinuma K, Lemaire M, Terasaki T, Sugiyama Y. 1996. Mechanism of the tissue distribution and biliary excretion of the cyclic peptide octreotide. J Pharmacol Exp Ther 279 ( 3 ): 1357 – 1364.en_US
dc.identifier.citedreferenceLemaire M, Azria M, Dannecker R, Marbach P, Schweitzer A, Maurer G. 1989. Disposition of sandostatin, a new synthetic somatostatin analogue, in rats. Drug Metab Dispos 17 ( 6 ): 699 – 703.en_US
dc.identifier.citedreferenceYamada T, Niinuma K, Lemaire M, Terasaki T, Sugiyama Y. 1997. Carrier‐mediated hepatic uptake of the cationic cyclopeptide, octreotide, in rats. Comparison between in vivo and in vitro. Drug Metab Dispos 25 ( 5 ): 536 – 543.en_US
dc.identifier.citedreferenceBruin GJ, Faller T, Wiegand H, Schweitzer A, Nick H, Schneider J, Boernsen KO, Waldmeier F. 2008. Pharmacokinetics, distribution, metabolism, and excretion of deferasirox and its iron complex in rats. Drug Metab Dispos 36 ( 12 ): 2523 – 2538.en_US
dc.identifier.citedreferenceWeiss HM, Fresneau M, Camenisch GP, Kretz O, Gross G. 2006. In vitro blood distribution and plasma protein binding of the iron chelator deferasirox (ICL670) and its iron complex Fe‐[ICL670]2 for rat, marmoset, rabbit, mouse, dog, and human. Drug Metab Dispos 34 ( 6 ): 971 – 975.en_US
dc.identifier.citedreferenceNakagomi‐Hagihara R, Nakai D, Kawai K, Yoshigae Y, Tokui T, Abe T, Ikeda T. 2006. OATP1B1, OATP1B3, and mrp2 are involved in hepatobiliary transport of olmesartan, a novel angiotensin II blocker. Drug Metab Dispos 34 ( 5 ): 862 – 869.en_US
dc.identifier.citedreferenceNakakariya M, Ono M, Amano N, Moriwaki T, Maeda K, Sugiyama Y. 2012. In vivo biliary clearance should be predicted by intrinsic biliary clearance in sandwich‐cultured hepatocytes. Drug Metab Dispos 40 ( 3 ): 602 – 609.en_US
dc.identifier.citedreferenceMatsushima S, Maeda K, Kondo C, Hirano M, Sasaki M, Suzuki H, Sugiyama Y. 2005. Identification of the hepatic efflux transporters of organic anions using double‐transfected Madin‐Darby canine kidney II cells expressing human organic anion‐transporting polypeptide 1B1 (OATP1B1)/multidrug resistance‐associated protein 2, OATP1B1/multidrug resistance 1, and OATP1B1/breast cancer resistance protein. J Pharmacol Exp Ther 314 ( 3 ): 1059 – 1067.en_US
dc.identifier.citedreferenceHeredi‐Szabo K, Glavinas H, Kis E, Mehn D, Bathori G, Veres Z, Kobori L, von Richter O, Jemnitz K, Krajcsi P. 2009. Multidrug resistance protein 2‐mediated estradiol‐17beta‐D‐glucuronide transport potentiation: In vitro‐in vivo correlation and species specificity. Drug Metab Dispos 37 ( 4 ): 794 – 801.en_US
dc.identifier.citedreferenceKimoto E, Chupka J, Xiao Y, Bi YA, Duignan DB. 2011. Characterization of digoxin uptake in sandwich‐cultured human hepatocytes. Drug Metab Dispos 39 ( 1 ): 47 – 53.en_US
dc.identifier.citedreferenceAnnaert PP, Turncliff RZ, Booth CL, Thakker DR, Brouwer KL. 2001. P‐glycoprotein‐mediated in vitro biliary excretion in sandwich‐cultured rat hepatocytes. Drug Metab Dispos 29 ( 10 ): 1277 – 1283.en_US
dc.identifier.citedreferenceEvans RL, Owens SM, Ruch S, Kennedy RH, Seifen E. 1990. The effect of age on digoxin pharmacokinetics in Fischer‐344 rats. Toxicol Appl Pharmacol 102 ( 1 ): 61 – 67.en_US
dc.identifier.citedreferenceFunakoshi S, Murakami T, Yumoto R, Kiribayashi Y, Takano M. 2003. Role of P‐glycoprotein in pharmacokinetics and drug interactions of digoxin and beta‐methyldigoxin in rats. J Pharm Sci 92 ( 7 ): 1455 – 1463.en_US
dc.identifier.citedreferenceNezasa K, Tian X, Zamek‐Gliszczynski MJ, Patel NJ, Raub TJ, Brouwer KL. 2006. Altered hepatobiliary disposition of 5 (and 6)‐carboxy‐2′,7′‐dichlorofluorescein in Abcg2 (Bcrp1) and Abcc2 (Mrp2) knockout mice. Drug Metab Dispos 34 ( 4 ): 718 – 723.en_US
dc.identifier.citedreferenceYin J, Meng Q. 2012. Use of primary rat hepatocytes in the gel entrapment culture to predict in vivo biliary excretion. Xenobiotica 42 ( 5 ): 417 – 428.en_US
dc.identifier.citedreferenceZamek‐Gliszczynski MJ, Bedwell DW, Bao JQ, Higgins JW. 2012. Characterization of SAGE Mdr1a (P‐gp), Bcrp, and Mrp2 knockout rats using loperamide, paclitaxel, sulfasalazine, and carboxydichlorofluorescein pharmacokinetics. Drug Metab Dispos 40 ( 9 ): 1825 – 1833.en_US
dc.identifier.citedreferenceStieger B, Heger M, de Graaf W, Paumgartner G, van Gulik T. 2012. The emerging role of transport systems in liver function tests. Eur J Pharmacol 675 ( 1–3 ): 1 – 5.en_US
dc.identifier.citedreferencePan G, Boiselle C, Wang J. 2012. Assessment of biliary clearance in early drug discovery using sandwich‐cultured hepatocyte model. J Pharm Sci 101 ( 5 ): 1898 – 1908.en_US
dc.identifier.citedreferenceOtt P, Weisiger RA. 1997. Nontraditional effects of protein binding and hematocrit on uptake of indocyanine green by perfused rat liver. Am J Physiol 273 ( 1 Pt 1 ): G227 – G238.en_US
dc.identifier.citedreferenceForster S, Thumser AE, Hood SR, Plant N. 2012. Characterization of rhodamine‐123 as a tracer dye for use in in vitro drug transport assays. PLoS One 7 ( 3 ): e33253.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.