Show simple item record

Emerging common molecular pathways for primary dystonia

dc.contributor.authorLeDoux, Mark S.en_US
dc.contributor.authorDauer, William T.en_US
dc.contributor.authorWarner, Thomas T.en_US
dc.date.accessioned2013-08-02T20:51:45Z
dc.date.available2014-08-01T19:11:42Zen_US
dc.date.issued2013-06-15en_US
dc.identifier.citationLeDoux, Mark S.; Dauer, William T.; Warner, Thomas T. (2013). "Emerging common molecular pathways for primary dystonia." Movement Disorders 28(7): 968-981. <http://hdl.handle.net/2027.42/99074>en_US
dc.identifier.issn0885-3185en_US
dc.identifier.issn1531-8257en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/99074
dc.description.abstractThe dystonias are a group of hyperkinetic movement disorders whose principal cause is neuron dysfunction at 1 or more interconnected nodes of the motor system. The study of genes and proteins that cause familial dystonia provides critical information about the cellular pathways involved in this dysfunction, which disrupts the motor pathways at the systems level. In recent years study of the increasing number of DYT genes has implicated a number of cell functions that appear to be involved in the pathogenesis of dystonia. A review of the literature published in English‐language publications available on PubMed relating to the genetics and cellular pathology of dystonia was performed. Numerous potential pathogenetic mechanisms have been identified. We describe those that fall into 3 emerging thematic groups: cell‐cycle and transcriptional regulation in the nucleus, endoplasmic reticulum and nuclear envelope function, and control of synaptic function. © 2013 Movement Disorder Societyen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherNuclear Envelopeen_US
dc.subject.otherSynaptic Functionen_US
dc.subject.otherEndoplasmic Reticulumen_US
dc.subject.otherCell Cycleen_US
dc.subject.otherDYT Genesen_US
dc.titleEmerging common molecular pathways for primary dystoniaen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.identifier.pmid23893453en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/99074/1/mds25547.pdf
dc.identifier.doi10.1002/mds.25547en_US
dc.identifier.sourceMovement Disordersen_US
dc.identifier.citedreferenceTolosa E, Compta Y. Dystonia in Parkinson's disease. J Neurol. 2006;( Suppl 7 ): VII7 – VII13.en_US
dc.identifier.citedreferenceAugood SJ, Hollingsworth Z, Albers DS, et al. Dopamine transmission in DYT1 dystonia: a biochemical and autoradiographical study. Neurology. 2002; 59: 445 – 458.en_US
dc.identifier.citedreferenceGranata A, Watson R, Collinson L, Schiavo G, Warner TT. The dystonia‐associated protein torsinA modulates synaptic vesicle recycling. J Biol Chem. 2008; 283: 7568 – 7579.en_US
dc.identifier.citedreferenceGranata A, Koo SJ, Haucke V, et al. CSN complex controls the stability of selected synaptic proteins via a torsinA‐dependent process. EMBO J. 2011; 30: 181 – 193.en_US
dc.identifier.citedreferenceKakazu Y, Koh J‐Y, Ho D, Gonzalez‐Alegre P, Harata C. Synaptic vesicle recycling is enhanced by torsinA that harbours the DYT1 dystonia mutation. Synapse. 2012; 66; 453 – 464.en_US
dc.identifier.citedreferenceKakazu Y, Koh J‐Y, Iwabuchi S, Gonzalez‐Alegre P, Harata C. Miniature release events of glutamate from hippocampal neurons are influenced by the dystonia‐associated protein TorsinA. Synapse. 2012; 66: 807 – 822.en_US
dc.identifier.citedreferencePisani A, Martella G, Tscherter A, et al. Altered responses to dopaminergic D2 receptor activation and N‐type calcium currents in striatal cholinergic interneurons in a mouse model of DYT1 dystonia. Neurobiol Dis. 2006; 24: 318 – 325.en_US
dc.identifier.citedreferenceSciamanna G, Bonsi P, Tassone A, et al. Impaired striatal D2 receptor function leads to enhanced GABA transmission in a mouse model of DYT1 dystonia. Neurobiol Dis. 2009; 34: 133 – 145.en_US
dc.identifier.citedreferenceNapolitano F, Pasqualetti M, Usiello A, et al. Dopamine D2 receptor dysfunction is rescued by adenosine A2A receptor antagonism in a model of DYT1 dystonia. Neurobiol Dis. 2010; 38: 434 – 445.en_US
dc.identifier.citedreferenceAsanuma K, Carbon‐Correll M, Eidelberg D. Neuroimaging in human dystonia. J Med Invest. 2005; 52: 272 – 279.en_US
dc.identifier.citedreferenceCarbon M, Niethammer M, Peng S, et al. Abnormal striatal and thalamic dopamine neurotransmission: genotype‐related features of dystonia. Neurology. 2009; 72: 2097 – 2103.en_US
dc.identifier.citedreferenceCarbon M, Argyelan M, Eidelberg D. Functional imaging in hereditary dystonia. Eur J Neurol. 2010;( Suppl 1 ): 58 – 64.en_US
dc.identifier.citedreferenceQuatarone A, Pisani A. Abnormal synaptic plasticity in dystonia: disruption of synaptic homeostasis. Neurobiol Dis. 2011; 42: 162 – 170.en_US
dc.identifier.citedreferenceHerve D, Le Moine C, Corvol JC, et al. Gα olf levels are regulated by receptor usage and control dopamine and adenosine action in the striatum. J Neurosci. 2001; 21: 4390 – 4399.en_US
dc.identifier.citedreferenceAshmore LJ, Hrizo SL, Paul SM, Van Voorhies WA, Beitel GJ, Palladino MJ. Novel mutations affecting the Na, K ATPase alpha model complex neurological diseases and implicate the sodium pump in increased longevity. Hum Genet. 2009; 126: 431 – 447.en_US
dc.identifier.citedreferenceCalderon DP, Fremont R, Kraenzlin F, Khodakhah K. The neural substrates of rapid‐onset dystonia‐parkinsonism. Nat Neurosci. 2011; 14: 357 – 365.en_US
dc.identifier.citedreferenceKurian MA, Zhen J, Cheng S Y, et al. Homozygous loss‐of‐function mutations in the gene encoding the dopamine transporter are associated with infantile parkinsonism‐dystonia. J Clin Invest. 2009; 119: 1595 – 1603.en_US
dc.identifier.citedreferenceKurian MA, Li Y, Zhen J, et al. Clinical and molecular characterisation of hereditary dopamine transporter deficiency syndrome: an observational cohort and experimental study. Lancet Neurol. 2011; 10: 54 – 62.en_US
dc.identifier.citedreferenceVasudevan A, Breakefield XO, Bhide PG. Developmental patterns of torsinA and torsinB expression. Brain Res. 2006; 1073–1074: 139 – 145.en_US
dc.identifier.citedreferenceSiegert S, Bahn C, Kramer ML, et al. TorsinA expression is detectable in human infants as young as 4 weeks old. Brain Res Dev Brain Res. 2005; 757: 19 – 26.en_US
dc.identifier.citedreferenceZhao Y, Xiao J, Gong S, Clara JA, Ledoux MD. Neural expression of transcription factor THAP1 during development in rat. Neuroscience. 2013; 231: 282 – 295.en_US
dc.identifier.citedreferencePhukan J Albanese A, Gasser T, Warner T. Primary dystonia and dystonia‐plus syndromes: clinical characteristics, diagnosis, and pathogenesis. Lancet Neurol. 2011; 10: 1074 – 1085.en_US
dc.identifier.citedreferenceOzelius L, Kramer P, Page CE et al. The early‐onset torsion dystonia gene (DYT1) encodes an ATP‐binding protein. Nat Genet. 1997; 17: 40 – 48.en_US
dc.identifier.citedreferenceHanson PI, Whiteheart SW. AAA + proteins: have engine will work. Nat Rev Mol Cell. Biol. 2005; 6: 519 – 529.en_US
dc.identifier.citedreferenceKock N, Naismith TV, Boston HE, et al. Effects of genetic variations in the dystonia protein torsinA: identification of polymorphism at residue 216 as protein modifier. Hum Mol Genet. 2006; 15: 1355 – 1364.en_US
dc.identifier.citedreferenceAugood SJ, Penney JB, Friberg IK, et al. Expression of the early onset torsion dystonia gene (DYT1) in human brain. Ann Neurol. 1998; 43: 669 – 673.en_US
dc.identifier.citedreferenceRostasy K, Augood SJ, Hewett JW, et al. TorsinA protein and neuropathology in early onset generalized dystonia with GAG deletion. Neurobiol Dis. 2003; 12: 11 – 24.en_US
dc.identifier.citedreferenceXiao J, Gong S, Zhao Y, LeDoux MS. Developmental expression of rat torsinA transcript and protein. Brain Res Dev Brain Res. 2004; 152: 47 – 60.en_US
dc.identifier.citedreferenceZhao Y, Xiao J, Ueda M, et al. Glial elements contribute to stress‐induced torsinA expression in the central and peripheral nervous systems. Neuroscience. 2008; 155: 439 – 453.en_US
dc.identifier.citedreferenceJungwirth M, Dear ML, Brown P, Holbrook K, Goodchild R. Relative expression of homologous torsinB correlates with the neuronal specific importance of DYT1 dystonia‐associated torsinA. Hum Mol Genet. 2010; 19: 888 – 900.en_US
dc.identifier.citedreferenceHersheson J, Menacci NE, Davis M, et al. Mutations in the autoregulatory domain of β‐tubulin 4a cause hereditary dystonia. Ann Neurol. 2012 [Epub ahead of print].en_US
dc.identifier.citedreferenceBlanchard A, Ea V, Roubertie A, et al. DYT6 dystonia: review of the literature and creation of the UMD Locus‐Specific Database (LSDB) for mutations in the THAP1 gene. Hum Mutat. 2011; 32: 1213 – 1224.en_US
dc.identifier.citedreferenceLeDoux MS, Xiao J, Rudzińska M, et al. Genotype‐phenotype correlations in THAP1 dystonia: molecular foundations and description of new cases. Parkinsonism Relat Disord. 2012; 18: 414 – 425.en_US
dc.identifier.citedreferenceFuchs T, Gavarini S, Saunders‐Pullman R, et al. Mutations in the THAP1 gene are responsible for DYT6 primary torsion dystonia. Nat Genet. 2009; 41: 286 – 288.en_US
dc.identifier.citedreferenceDjarmati A, Schneider SA, Lohmann K, et al. Mutations in THAP1 (DYT6) and generalised dystonia with prominent spasmodic dysphonia: a genetic screening study. Lancet Neurol. 2009; 8: 447 – 452.en_US
dc.identifier.citedreferenceBressman SB, Raymond D, Fuchs T, Heiman GA, Ozelius LJ, Saunders‐Pullman R. Mutations in THAP1 (DYT6) in early‐onset dystonia: a genetic screening study. Lancet Neurol. 2009; 8: 441 – 446.en_US
dc.identifier.citedreferenceSchneider SA, Ramirez A, Shafiee K, et al. Homozygous THAP1 mutations as cause of early‐onset generalized dystonia. Mov Disord. 2011; 26: 858 – 861.en_US
dc.identifier.citedreferenceRoussigne M, Cayrol C, Clouaire T, Amalric F, Girard JP. THAP1 is a nuclear proapoptotic factor that links prostate‐apoptosis‐response‐4 (Par‐4) to PML nuclear bodies. Oncogene. 2003; 22: 2432 – 2442.en_US
dc.identifier.citedreferenceCayrol C, Lacroix C, Mathe C, et al. The THAP‐zinc finger protein THAP1 regulates endothelial cell proliferation through modulation of pRB/E2F cell‐cycle target genes. Blood. 2007; 109: 584 – 594.en_US
dc.identifier.citedreferenceZimprich A, Grabowski M, Asmus F, et al, T. Mutations in the gene encoding epsilon‐sarcoglycan cause myoclonus‐dystonia syndrome. Nat Genet. 2001; 29: 66 – 69.en_US
dc.identifier.citedreferenceSunada Y, Campbell KP. Dystrophin‐glycoprotein complex: molecular organization and critical roles in skeletal muscle. Curr Opin Neurol. 1995; 8: 379 – 384.en_US
dc.identifier.citedreferenceStraub V, Campbell KP. Muscular dystrophies and the dystrophin‐glycoprotein complex. Curr Opin Neurol. 1997; 10: 168 – 175.en_US
dc.identifier.citedreferenceChan P, Gonzalez‐Maeso J, Ruf F, et al. Epsilon‐sarcoglycan immunoreactivity and mRNA expression in mouse brain. J Comp Neurol. 2005; 482: 50 – 75.en_US
dc.identifier.citedreferenceBrunig I, Suter A, Knuesel I, Luscher B, Fritschy JM. GABAergic terminals are required for postsynaptic clustering of dystrophin but not of GABA(A) receptors and gephyrin. J Neurosci. 2002; 22: 4805 – 4813.en_US
dc.identifier.citedreferenceLevi S, Grady RM, Henry MD, Campbell KP, Sanes JR, Craig AM. Dystroglycan is selectively associated with inhibitory GABAergic synapses but is dispensable for their differentiation. J Neurosci. 2002; 22: 4274 – 4285.en_US
dc.identifier.citedreferenceCamargos S, Scholz S, Simon‐Sanchez J, et al. DYT16, a novel young‐onset dystonia‐parkinsonism disorder: identification of a segregating mutation in the stress response protein PRKRA. Lancet Neurol. 2008; 7: 207 – 215.en_US
dc.identifier.citedreferenceBragg DC, Armata IA, Nery FC, et al. Molecular pathways in dystonia. Neurobiol Dis. 2011; 42: 136 – 147.en_US
dc.identifier.citedreferenceXiao J, Uitti RJ, Zhao Y, et al. Mutations in CIZ1 cause adult‐onset primary cervical dystonia. Ann Neurol. 2012; 71: 458 – 469.en_US
dc.identifier.citedreferenceMitsui K, Matsumoto A, Ohtsuka S, et al. Cloning and characterization of a novel p21(Cip1/Waf1)‐interacting zinc finger protein, ciz1. Biochem Biophys Res Commun. 1999; 264: 457 – 464.en_US
dc.identifier.citedreferenceCharlesworth G, Plagnol V, Holmstrom KM, et al. Mutations in ANO3 cause dominant craniocervical dystonia: ion channel implicated in pathogenesis. Am J Hum Genet. 2012; 91: 1041 – 1050.en_US
dc.identifier.citedreferenceFuchs T, Saunders‐Pullman R, Masuho I, et al. Mutations in GNAL cause primary torsion dystonia. Nat Genet. 2013; 45: 88 – 92.en_US
dc.identifier.citedreferenceVemula SR, Puschmann A, Xiao J, et al. Role of Gα(Olf) in familial and sporadic adult onset primary dystonia. Hum Mol Genet. 2013 [Epub ahead of print].en_US
dc.identifier.citedreferenceCoverley D, Marr J, Ainscough J. Ciz1 promotes mammalian DNA replication. J Cell Sci. 2005; 118: 101 – 112.en_US
dc.identifier.citedreferenceWarder DE, Keherly MJ. Ciz1, Cip1 interacting zinc finger protein 1 binds the consensus DNA sequence ARYSR(0 2)YYAC. J Biomed Sci. 2003; 10: 406 – 417.en_US
dc.identifier.citedreferenceAinscough JF, Rahman FA, Sercombe H, et al. C‐terminal domains deliver the DNA replication factor Ciz1 to the nuclear matrix. J Cell Sci. 2007; 120: 115 – 124.en_US
dc.identifier.citedreferenceCopeland NA, Sercombe HE, Ainscough JF, Coverley D. Ciz1 cooperates with cyclin‐A‐CDK2 to activate mammalian DNA replication in vitro. J Cell Sci. 2010; 123: 1108 – 1115.en_US
dc.identifier.citedreferenceden Hollander P, Rayala SK, Coverley D, Kumar R. Ciz1, a novel DNA‐binding coactivator of the estrogen receptor alpha, confers hypersensitivity to estrogen action. Cancer Res. 2006; 66: 11021 – 11029.en_US
dc.identifier.citedreferenceBessiere D, Lacroix C, Campagne S, et al. Structure‐function analysis of the THAP zinc finger of THAP1, a large C2CH DNA‐binding module linked to Rb/E2F pathways. J Biol Chem. 2008; 283: 4352 – 4363.en_US
dc.identifier.citedreferenceCampagne S, Saurel O, Gervais V, Milon A Structural determinants of specific DNA‐recognition by the THAP zinc finger. Nucleic Acids Res. 2010; 38: 3466 – 3476.en_US
dc.identifier.citedreferenceClouaire T, Roussigne M, Ecochard V, Mathe C, Amalric F, Girard JP. The THAP domain of THAP1 is a large C2CH module with zinc‐dependent sequence‐specific DNA‐binding activity. Proc Natl Acad Sci U S A. 2005; 102: 6907 – 6912.en_US
dc.identifier.citedreferenceSabogal A, Lyubimov AY, Corn JE, Berger JM, Rio DC THAP proteins target specific DNA sites through bipartite recognition of adjacent major and minor grooves. Nat Struct Mol Biol. 2010; 17: 117 – 123.en_US
dc.identifier.citedreferenceGavarini S, Cayrol C, Fuchs T, et al. Direct interaction between causative genes of DYT1 and DYT6 primary dystonia. Ann Neurol. 2010; 68: 549 – 553.en_US
dc.identifier.citedreferenceKaiser FJ, Osmanoric A, Rakovic et al. The dystonia gene DYT1 is repressed by the transcription factor THAP1 (DYT6). Ann Neurol. 2010; 68: 554 – 559.en_US
dc.identifier.citedreferencePalada V, Stiern S, Glockle et al, K. Lack of sequence variations in THAP1 gene and THAP1‐binding sites in TOR1A promoter of DYT1 patients. Mov Disord. 2012; 27: 917.en_US
dc.identifier.citedreferenceKamm C, Uflacker N, Asmus F, et al. No evidence for THAP1/DYT6 variants as disease modifiers in DYT1 dystonia. Mov Disord. 2011; 26: 2136 – 2137.en_US
dc.identifier.citedreferenceRual JF, Venkatesan K, Hao T, et al. Towards a proteome‐scale map of the human protein‐protein interaction network. Nature. 2005; 437: 1173 – 1178.en_US
dc.identifier.citedreferenceLütolf S, Radtke F, Aguet M, Suter U, Taylor V. Notch1 is required for neuronal and glial differentiation in the cerebellum. Development. 2002; 129: 373 – 385.en_US
dc.identifier.citedreferenceKoekkoek SK, Yamaguchi K, Milojkovic BA, et al. Deletion of FMR1 in Purkinje cells enhances parallel fiber LTD, enlarges spines, and attenuates cerebellar eyelid conditioning in Fragile X syndrome. Neuron. 2005; 47: 339 – 352.en_US
dc.identifier.citedreferenceAndersson T, Södersten E, Duckworth JK, et al. CXXC5 is a novel BMP4‐regulated modulator of Wnt signaling in neural stem cells. J Biol Chem. 2009; 284: 3672 – 3681.en_US
dc.identifier.citedreferenceSadnicka A, Hoffland BS, Bhatia KP, van de Warrenburg BP, Edwards MJ. The cerebellum in dystonia—help or hindrance. Clin Neurophysiol. 2012; 123: 65 – 70.en_US
dc.identifier.citedreferenceEvidente VG, Advincula J, Esteban R, et al. Phenomenology of “Lubag” or X‐linked dystonia‐parkinsonism. Mov Disord. 2002; 17: 1271 – 1277.en_US
dc.identifier.citedreferenceMakino S, Kaji R, Ando S, et al. Reduced neuron‐specific expression of the TAF1 gene is associated with X‐linked dystonia‐parkinsonism. Am J Hum Genet. 2007; 80: 393 – 406.en_US
dc.identifier.citedreferenceSako W, Moridaki R, Kaji R, et al. Identification and localization of a neuron‐specific isoform of TAF1 in rat brain; implications for neuropathology of DYT3 dystonia. Neuroscience. 2011; 189: 100 – 107.en_US
dc.identifier.citedreferenceLi HH, Li AG, Sheppard HM, Liu X. Phosphorylation on Thr‐55 by TAF1 mediates degradation of p53: a role for TAF1 in cell G1 progression. Mol Cell. 2004; 13: 867 – 878.en_US
dc.identifier.citedreferenceBuchmann AM, Skaar JR, DeCaprio JA. Activation of a DNA damage checkpoint response in a TAF1‐defective cell line. Mol Cell Biol. 2004; 24: 5332 – 5339.en_US
dc.identifier.citedreferenceKatzenberger RJ, Marengo MS, Wassarman DA. ATM and ATR pathways signal alternative splicing of Drosophila TAF1 pre‐mRNA in response to DNA damage. Mol Cell Biol. 2006; 26: 9256 – 9267.en_US
dc.identifier.citedreferenceBasham SE, Rose LS. The Caenorhabditis elegans polarity gene ooc‐5 encodes a Torsin‐related protein of the AAA ATPase superfamily. Development. 2001; 128: 4645 – 4656.en_US
dc.identifier.citedreferenceBaptista MJ, O'Farrell C, Hardy J, Cookson MR. Microarray analysis reveals induction of heat shock proteins mRNAs by the torsion dystonia protein, TorsinA. Neurosci Lett. 2003; 343: 5 – 8.en_US
dc.identifier.citedreferenceKoh YH, Rehfeld K, Ganetzky B. A Drosophila model of early onset torsion dystonia suggests impairment in TGF‐beta signaling. Hum Mol Genet. 2004; 13: 2019 – 2030.en_US
dc.identifier.citedreferenceErol A. Genotoxic stress‐mediated cell cycle activities for the decision of cellular fate. Cell Cycle. 2011; 10: 3239 – 3248.en_US
dc.identifier.citedreferenceAberle H, Haghighi AP, Fetter RD, McCabe BD, Magalhães TR, Goodman CS. wishful thinking encodes a BMP type II receptor that regulates synaptic growth in Drosophila. Neuron. 2002; 33: 545 – 558.en_US
dc.identifier.citedreferenceMcCabe BD, Marqués G, Haghighi AP, et al. The BMP homolog Gbb provides a retrograde signal that regulates synaptic growth at the Drosophila neuromuscular junction. Neuron. 2003; 39: 241 – 254.en_US
dc.identifier.citedreferenceSaunders‐Pullman R, Raymond D, Stoessl AJ, et al. Variant ataxia‐telangiectasia presenting as primary‐appearing dystonia in Canadian Mennonites. Neurology. 2012; 78: 649 – 657.en_US
dc.identifier.citedreferencePommier Y, Weinstein JN, Aladjem MI, Kohn KW. Chk2 molecular interaction map and rationale for Chk2 inhibitors. Clin Cancer Res. 2006; 12: 2657 – 2661.en_US
dc.identifier.citedreferenceBertran‐Gonzalez J, Håkansson K, Borgkvist A, et al. Histone H3 phosphorylation is under the opposite tonic control of dopamine D2 and adenosine A2A receptors in striatopallidal neurons. Neuropsychopharmacology. 2009; 34: 1710 – 1720.en_US
dc.identifier.citedreferenceHerrup K, Sunter K. Numerical matching during cerebellar development: quantitative analysis of granule cell death in staggerer mouse chimeras. J Neurosci. 1987; 7: 829 – 836.en_US
dc.identifier.citedreferenceSubkhankulova T, Zhang X, Leung C, Marino S. Bmi1 directly represses p21Waf1/Cip1 in Shh‐induced proliferation of cerebellar granule cell progenitors. Mol Cell Neurosci. 2010; 45: 151 – 162.en_US
dc.identifier.citedreferenceWang L, Wang R, Herrup K. E2F1 works as a cell cycle suppressor in mature neurons. J Neurosci. 2007; 27: 12555 – 12564.en_US
dc.identifier.citedreferenceLi J, Chen J, Vinters HV, Gatti RA, Herrup K. Stable brain ATM message and residual kinase‐active ATM protein in ataxia‐telangiectasia. J Neurosci. 2011; 31: 7568 – 7577.en_US
dc.identifier.citedreferencePrudente CN, Pardo CA, Xiao J, et al. Neuropathology of cervical dystonia. Exp Neurol. 2013; 241: 95 – 104.en_US
dc.identifier.citedreferenceSong CH, Bernhard D, Bolarinwa C, Hess EJ, Smith Y, Jinnah HA. Subtle microstructural changes of the striatum in a DYT1 knock‐in mouse model of dystonia. Neurobiol Dis. 2013; 54: 362 – 371.en_US
dc.identifier.citedreferenceTorres GE, Sweeney AL, Beaulieu JM, Shashidharan P, Caron MG. Effect of torsinA on membrane proteins reveals a loss of function and a dominant‐negative phenotype of the dystonia‐associated DeltaE‐torsinA mutant. Proc Natl Acad Sci U S A. 2004; 101: 15650 – 15655.en_US
dc.identifier.citedreferenceHewett JW, Tannous B, Niland BP, et al. Mutant torsinA interferes with protein processing through the secretory pathway in DYT1 dystonia cells. Proc Natl Acad Sci U S A. 2007; 104: 7271 – 7276.en_US
dc.identifier.citedreferenceHewett JW, Nery FC, Niland B, et al. siRNA knock‐down of mutant torsinA restores processing through secretory pathway in DYT1 dystonia cells. Hum Mol Genet. 2008; 17: 1436 – 1445.en_US
dc.identifier.citedreferenceChen P, Burdette AJ, Porter JC, et al. The early‐onset torsion dystonia‐associated protein, torsinA, is a homeostatic regulator of endoplasmic reticulum stress response. Hum Mol Genet. 2010; 19: 3502 – 3515.en_US
dc.identifier.citedreferenceNery FC, Armata IA, Farley JE, et al. TorsinA participates in endoplasmic reticulum‐associated degradation. Nat Commun. 2011; 2: 393.en_US
dc.identifier.citedreferenceBernasconi R, Molinari M. ERAD and ERAD tuning: disposal of cargo and of ERAD regulators from the mammalian ER. Curr Opin Cell Biol. 2011; 23: 176 – 183.en_US
dc.identifier.citedreferenceLee ES, Tang N, Thompson S, Miller S, Katze MG. The double‐stranded RNA‐activated protein kinase (PKR) plays a significant role in a sustained ER stress‐induced apoptosis. FEBS J. 2007; 581: 4325 – 4332.en_US
dc.identifier.citedreferenceGerace, L. TorsinA and torsion dystonia: unraveling the architecture of the nuclear envelope. Proc Natl Acad Sci U S A. 2004; 101: 8839 – 8840.en_US
dc.identifier.citedreferenceGoodchild RE, Dauer WT. Mislocalization to the nuclear envelope: an effect of the dystonia‐causing torsinA mutation. Proc Natl Acad Sci U S A. 2004; 101: 847 – 852.en_US
dc.identifier.citedreferenceGoodchild RE, Kim, CE, Dauer WT. Loss of the dystonia‐associated protein torsinA selectively disrupts the neuronal nuclear envelope. Neuron. 2005; 48: 923 – 932.en_US
dc.identifier.citedreferenceNaismith TV, Heuser JE, Breakefield XO, Hanson PI. TorsinA in the nuclear envelope. Proc Natl Acad Sci U S A. 2004; 101: 7612 – 7617.en_US
dc.identifier.citedreferenceGonzalez‐Alegre P, Paulson HL. Aberrant cellular behavior of mutant torsinA implicates nuclear envelope dysfunction in DYT1 dystonia. J Neurosci. 2004; 24: 2593 – 2601.en_US
dc.identifier.citedreferenceGiles LM, Chen J, Li L, Chin LS. Dystonia‐associated mutations cause premature degradation of torsinA protein and cell‐type‐specific mislocalization to the nuclear envelope. Hum Mol Genet. 2008; 17: 2712 – 2722.en_US
dc.identifier.citedreferenceGoodchild RE, Dauer WT. The AAA+ protein torsinA interacts with a conserved domain present in LAP1 and a novel ER protein. J Cell Biol. 2005; 168: 855 – 862.en_US
dc.identifier.citedreferenceWorman HJ, Gundersen GG. Here come the SUNs: a nucleocytoskeletal missing link. Trends Cell Biol. 2006; 16: 67 – 69.en_US
dc.identifier.citedreferenceNery FC, Zeng J, Niland et al. TorsinA binds the KASH domain of nesprins and participates in linkage between nuclear envelope and cytoskeleton. J Cell Sci. 2008; 121: 3476 – 3486.en_US
dc.identifier.citedreferenceEsapa CT, Waite A, Locke M, et al. SGCE missense mutations that cause myoclonus‐dystonia syndrome impair epsilon‐sarcoglycan trafficking to the plasma membrane: modulation by ubiquitination and torsinA. Hum Mol Genet. 2007; 16: 327 – 342.en_US
dc.identifier.citedreferenceFerrari‐Toninelli G, Paccioretti S, Francisconi S, Uberti D, Memo M. TorsinA negatively controls neurite outgrowth of SH‐SY5Y human neuronal cell line. Brain Res. 2004; 1012: 75 – 81.en_US
dc.identifier.citedreferenceHewett JW, Zeng J, Niland BP, Bragg DC, Breakefield XO. Dystonia‐causing mutant torsinA inhibits cell adhesion and neurite extension through interference with cytoskeletal dynamics. Neurobiol Dis. 2006; 22: 98 – 111.en_US
dc.identifier.citedreferenceSrsen V, Korfali N, Schirmer EC. Nuclear envelope influences on cell‐cycle progression. Biochem Soc Trans. 2011; 39: 1742 – 1746.en_US
dc.identifier.citedreferenceEgecioglu D, Brickner JH. Gene positioning and expression. Curr Opin Cell Biol. 2011; 23: 338 – 345.en_US
dc.identifier.citedreferenceIchinose H, Ohye T, Takahashi E, et al. Hereditary progressive dystonia with marked diurnal fluctuation caused by mutations in the GTP cyclohydrolase I gene. Nat Genet. 1994; 8: 236 – 242.en_US
dc.identifier.citedreferenceKnappskog PM, Flatmark T, Mallet J, Ludecke B, Bartholome K. Recessively inherited L‐DOPA‐responsive dystonia caused by a point mutation (Q381K) in the tyrosine hydroxylase gene. Hum Mol Genet. 1995; 4: 1209 – 1212.en_US
dc.identifier.citedreferenceTrender‐Gerhard I, Sweeney MG, Schwingenschuh P, et al. Autosomal‐dominant GTPCH1‐deficient DRD: clinical characteristics and long‐term outcome of 34 patients. J Neurol Neurosurg Psychiatry. 2009; 80: 839 – 845.en_US
dc.identifier.citedreferenceCasey DE. Pathophysiology of antipsychotic drug‐induced movement disorders. J Clin Psychiatry. 2004; 65: 25 – 28.en_US
dc.identifier.citedreferenceEgami K, Yitta S, Lewers JC, et al. Basal ganglia dopamine loss due to defect in purine cycling. Neurobiol Dis. 2007; 26: 391 – 407.en_US
dc.identifier.citedreferencePerlmutter JS, Stambuk MK, Markham J, et al. Decreased [18F]spiperone binding in putamen in idiopathic focal dystonia. J Neurosci. 1997; 17: 843 – 850.en_US
dc.identifier.citedreferenceMisbahuddin A, Placzek MR, Chaudhuri KR, Wood NW, Bhatia KP, Warner TT. A polymorphism in the dopamine receptor DRD5 is associated with blepharospasm. Neurology. 2002; 58: 124 – 126.en_US
dc.identifier.citedreferenceAugood SJ, Martin DM, Ozelius LJ, Breakefield XO, Penney JB Jr, Standaert DG. Distribution of the mRNAs encoding torsinA and torsinB in the normal adult human brain. Ann Neurol. 1999; 46: 761 – 769.en_US
dc.identifier.citedreferenceAugood SJ, Hollingsworth Z, Albers DS, et al. Dopamine transmission in DYT1 dystonia: a biochemical and autoradiographical study. Neurology. 2002; 59: 445 – 458.en_US
dc.identifier.citedreferenceFurukawa Y, Hornykiewicz O, Fahn S, Kish SJ. Striatal dopamine in early‐onset primary torsion dystonia with the DYT1 mutation. Neurology. 2000; 54: 1193 – 1195.en_US
dc.identifier.citedreferenceShashidharan P, Sandu D, Potla U, et al. Transgenic mouse model of early‐onset DYT1 dystonia. Hum Mol Genet. 2005; 14: 125 – 133.en_US
dc.identifier.citedreferenceDang MT, Yokoi F, McNaught KS, et al. Generation and characterization of Dyt1 DeltaGAG knock‐in mouse as a model for early‐onset dystonia. Exp Neurol. 2005; 196: 452 – 463.en_US
dc.identifier.citedreferenceGrundmann K, Hubener J, Habig K, et al. Gene expression changes in a transgenic mouse model overexpressing human wild‐type and mutant torsinA. Proteomics Clin Appl. 2008; 2: 720 – 736.en_US
dc.identifier.citedreferenceZhao Y, Decuypere M, Ledoux MS. Abnormal motor function and dopamine neurotransmission in DYT1 DeltaGAG transgenic mice. Exp Neurol. 2008; 210: 719 – 730.en_US
dc.identifier.citedreferencePage ME, Bao L, Andre P, et al. Cell‐autonomous alteration of dopaminergic transmission by wild type and mutant (DeltaE) TorsinA in transgenic mice. Neurobiol Dis. 2010; 39: 318 – 326.en_US
dc.identifier.citedreferenceBalcioglu A, Kim M‐O, Sharma N, Cha J‐H, Breakefield XO, Standaert DG. Dopamine release is impaired in a mouse model of DYT1 dystonia. J Neurochem. 2007; 102: 783 – 788.en_US
dc.identifier.citedreferenceHewett J, Johanson P, Sharma N, Standaert DG, Balcioglu A. Function of dopamine transporter is compromised in DYT1 transgenic animal model in vivo. J Neurochem. 2010; 113: 228 – 235.en_US
dc.identifier.citedreferenceSong CH, Fan X, Exeter CJ, Hess EJ, Jinnah HA. Functional analysis of Dopaminergic system in a DYT1 knock‐in mouse model of dystonia. Neurobiol Dis. 2012; 48: 66 – 78.en_US
dc.identifier.citedreferenceMisbahuddin A, Placzek MR, Taanman JW, et al. Mutant torsinA, which causes early‐onset primary torsion dystonia, is redistributed to membranous structures enriched in vesicular monoamine transporter in cultured human SH‐SY5Y cells. Mov Disord. 2005; 20: 432 – 440.en_US
dc.identifier.citedreferenceBao L, Patel JC, Walker RH, Shashidharan P, Rice ME. Dysregulation of striatal dopamine release in a mouse model of dystonia. J Neurochem. 2010; 114: 1781 – 1791.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.