Show simple item record

Bounding the role of black carbon in the climate system: A scientific assessment

dc.contributor.authorBond, T. C.en_US
dc.contributor.authorDoherty, S. J.en_US
dc.contributor.authorFahey, D. W.en_US
dc.contributor.authorForster, P. M.en_US
dc.contributor.authorBerntsen, T.en_US
dc.contributor.authorDeAngelo, B. J.en_US
dc.contributor.authorFlanner, M. G.en_US
dc.contributor.authorGhan, S.en_US
dc.contributor.authorKärcher, B.en_US
dc.contributor.authorKoch, D.en_US
dc.contributor.authorKinne, S.en_US
dc.contributor.authorKondo, Y.en_US
dc.contributor.authorQuinn, P. K.en_US
dc.contributor.authorSarofim, M. C.en_US
dc.contributor.authorSchultz, M. G.en_US
dc.contributor.authorSchulz, M.en_US
dc.contributor.authorVenkataraman, C.en_US
dc.contributor.authorZhang, H.en_US
dc.contributor.authorZhang, S.en_US
dc.contributor.authorBellouin, N.en_US
dc.contributor.authorGuttikunda, S. K.en_US
dc.contributor.authorHopke, P. K.en_US
dc.contributor.authorJacobson, M. Z.en_US
dc.contributor.authorKaiser, J. W.en_US
dc.contributor.authorKlimont, Z.en_US
dc.contributor.authorLohmann, U.en_US
dc.contributor.authorSchwarz, J. P.en_US
dc.contributor.authorShindell, D.en_US
dc.contributor.authorStorelvmo, T.en_US
dc.contributor.authorWarren, S. G.en_US
dc.contributor.authorZender, C. S.en_US
dc.date.accessioned2013-08-02T20:51:57Z
dc.date.available2014-08-01T19:11:43Zen_US
dc.date.issued2013-06-16en_US
dc.identifier.citationBond, T. C.; Doherty, S. J.; Fahey, D. W.; Forster, P. M.; Berntsen, T.; DeAngelo, B. J.; Flanner, M. G.; Ghan, S.; Kärcher, B. ; Koch, D.; Kinne, S.; Kondo, Y.; Quinn, P. K.; Sarofim, M. C.; Schultz, M. G.; Schulz, M.; Venkataraman, C.; Zhang, H.; Zhang, S.; Bellouin, N.; Guttikunda, S. K.; Hopke, P. K.; Jacobson, M. Z.; Kaiser, J. W.; Klimont, Z.; Lohmann, U.; Schwarz, J. P.; Shindell, D.; Storelvmo, T.; Warren, S. G.; Zender, C. S. (2013). "Bounding the role of black carbon in the climate system: A scientific assessment." Journal of Geophysical Research: Atmospheres 118(11): 5380-5552. <http://hdl.handle.net/2027.42/99106>en_US
dc.identifier.issn2169-897Xen_US
dc.identifier.issn2169-8996en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/99106
dc.description.abstractBlack carbon aerosol plays a unique and important role in Earth's climate system. Black carbon is a type of carbonaceous material with a unique combination of physical properties. This assessment provides an evaluation of black‐carbon climate forcing that is comprehensive in its inclusion of all known and relevant processes and that is quantitative in providing best estimates and uncertainties of the main forcing terms: direct solar absorption; influence on liquid, mixed phase, and ice clouds; and deposition on snow and ice. These effects are calculated with climate models, but when possible, they are evaluated with both microphysical measurements and field observations. Predominant sources are combustion related, namely, fossil fuels for transportation, solid fuels for industrial and residential uses, and open burning of biomass. Total global emissions of black carbon using bottom‐up inventory methods are 7500 Gg yr −1 in the year 2000 with an uncertainty range of 2000 to 29000. However, global atmospheric absorption attributable to black carbon is too low in many models and should be increased by a factor of almost 3. After this scaling, the best estimate for the industrial‐era (1750 to 2005) direct radiative forcing of atmospheric black carbon is +0.71 W m −2 with 90% uncertainty bounds of (+0.08, +1.27) W m −2 . Total direct forcing by all black carbon sources, without subtracting the preindustrial background, is estimated as +0.88 (+0.17, +1.48) W m −2 . Direct radiative forcing alone does not capture important rapid adjustment mechanisms. A framework is described and used for quantifying climate forcings, including rapid adjustments. The best estimate of industrial‐era climate forcing of black carbon through all forcing mechanisms, including clouds and cryosphere forcing, is +1.1 W m −2 with 90% uncertainty bounds of +0.17 to +2.1 W m −2 . Thus, there is a very high probability that black carbon emissions, independent of co‐emitted species, have a positive forcing and warm the climate. We estimate that black carbon, with a total climate forcing of +1.1 W m −2 , is the second most important human emission in terms of its climate forcing in the present‐day atmosphere; only carbon dioxide is estimated to have a greater forcing. Sources that emit black carbon also emit other short‐lived species that may either cool or warm climate. Climate forcings from co‐emitted species are estimated and used in the framework described herein. When the principal effects of short‐lived co‐emissions, including cooling agents such as sulfur dioxide, are included in net forcing, energy‐related sources (fossil fuel and biofuel) have an industrial‐era climate forcing of +0.22 (−0.50 to +1.08) W m −2 during the first year after emission. For a few of these sources, such as diesel engines and possibly residential biofuels, warming is strong enough that eliminating all short‐lived emissions from these sources would reduce net climate forcing (i.e., produce cooling). When open burning emissions, which emit high levels of organic matter, are included in the total, the best estimate of net industrial‐era climate forcing by all short‐lived species from black‐carbon‐rich sources becomes slightly negative (−0.06 W m −2 with 90% uncertainty bounds of −1.45 to +1.29 W m −2 ). The uncertainties in net climate forcing from black‐carbon‐rich sources are substantial, largely due to lack of knowledge about cloud interactions with both black carbon and co‐emitted organic carbon. In prioritizing potential black‐carbon mitigation actions, non‐science factors, such as technical feasibility, costs, policy design, and implementation feasibility play important roles. The major sources of black carbon are presently in different stages with regard to the feasibility for near‐term mitigation. This assessment, by evaluating the large number and complexity of the associated physical and radiative processes in black‐carbon climate forcing, sets a baseline from which to improve future climate forcing estimates.en_US
dc.publisherWiley Periodicals, Inc.en_US
dc.publisherArctic Council Task Force on Short‐Lived Climate Forcersen_US
dc.subject.otherClimate Forcingen_US
dc.subject.otherAerosolen_US
dc.subject.otherBlack Carbonen_US
dc.titleBounding the role of black carbon in the climate system: A scientific assessmenten_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelAtmospheric and Oceanic Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/99106/1/jgrd50171.pdf
dc.identifier.doi10.1002/jgrd.50171en_US
dc.identifier.sourceJournal of Geophysical Research: Atmospheresen_US
dc.identifier.citedreferenceRemer, L. A., et al. ( 2008 ), Global aerosol climatology from the MODIS satellite sensors, J. Geophys. Res., 113, D14S07, doi: 10.1029/2007JD009661.en_US
dc.identifier.citedreferenceWatson, J. G., J. C. Chow, D. H. Lowenthal, N. F. Robinson, C. F. Cahill, and D. L. Blumenthal ( 2002 ), Simulating changes in source profiles from coal‐fired power stations: Use in chemical mass balance of PM 2.5 in the Mount Zirkel Wilderness, Energy & Fuels, 16 ( 2 ), 311 – 324, doi: 10.1021/Ef010202w.en_US
dc.identifier.citedreferenceWatson, J. G., J. A. Cooper, and J. J. Huntzicker ( 1984 ), The effective variance weighting for least‐squares calculations applied to the mass balance receptor model, Atmos. Environ., 18 ( 7 ), 1347 – 1355.en_US
dc.identifier.citedreferenceWeingartner, E., H. Burtscher, and U. Baltensperger ( 1997 ), Hygroscopic properties of carbon and diesel soot particles, Atmos. Environ., 31 ( 15 ), 2311 – 2327.en_US
dc.identifier.citedreferenceWeingartner, E., H. Saathof, M. Schnaiter, N. Streit, B. Bitnar, and U. Baltensperger ( 2003 ), Absorption of light by soot particles: Determination of the absorption coefficient by means of aethalometers, J. Aerosol. Sci., 34, 1445 – 1463.en_US
dc.identifier.citedreferencevan der Werf, G. R., J. T. Randerson, L. Giglio, G. J. Collatz, P. S. Kasibhatla, and A. F. Arellano Jr ( 2006 ), Interannual variability in global biomass burning emissions from 1997 to 2004, Atmos. Chem. Phys., 6 ( 11 ), 3423 – 3441, doi: 10.5194/acp‐6‐3423‐2006.en_US
dc.identifier.citedreferencevan der Werf, G. R., J. T. Randerson, L. Giglio, G. J. Collatz, M. Mu, P. S. Kasibhatla, D. C. Morton, R. S. DeFries, Y. Jin, and T. T. van Leeuwen ( 2010 ), Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009), Atmos. Chem. Phys., 10, 11707 – 11735.en_US
dc.identifier.citedreferenceWex, H., G. McFiggans, S. Henning, and F. Stratmann ( 2010 ), Influence of the external mixing state of atmospheric aerosol on derived CCN number concentrations, Geophys. Res. Lett., 37, L10805, doi: 10.1029/2010gl043337.en_US
dc.identifier.citedreferenceWhitby, E. R., and P. H. McMurry ( 1997 ), Modal aerosol dynamics modeling, Aerosol Sci. Technol., 27 ( 6 ), 673 – 688.en_US
dc.identifier.citedreferenceWiacek, A., and T. Peter ( 2009 ), On the availability of uncoated mineral dust ice nuclei in cold cloud regions, Geophys. Res. Lett., 36 ( L17 ), 801, doi: 10.1029/2009GL039429.en_US
dc.identifier.citedreferenceWilcox, E. M. ( 2012 ), Direct and semi‐direct radiative forcing of smoke aerosols over clouds, Atmos. Chem. Phys., 12, ( 1 ), 139 – 149, doi: 10.5194/acp‐12‐139‐2012.en_US
dc.identifier.citedreferenceWild, O., M. J. Prather, and H. Akimoto ( 2001 ), Indirect long‐term global radiative cooling from NO x emissions, Geophys. Res. Lett., 28 ( 9 ), 1719 – 1722, doi: 10.1029/2000GL012573.en_US
dc.identifier.citedreferenceWilliams, J., M. deReus, R. Krejci, H. Fischer, and J. Ström ( 2002 ), Application of the variability‐size relationship to atmospheric aerosol studies: Estimating aerosol lifetimes and ages, Atmos. Chem. Phys., 2, 133 – 145, doi: 10.5194/acp‐2‐133‐2002.en_US
dc.identifier.citedreferenceWinebrake, J. J., J. J. Corbett, E. H. Green, A. Lauer, and V. Eyring ( 2009 ), Mitigating the health impacts of pollution from oceangoing shipping: An assessment of low‐sulfur fuel mandates, Environ. Sci. Technol., 43 ( 13 ), 4776 – 4782, doi: 10.1021/es803224q.en_US
dc.identifier.citedreferenceWinker, D. M., et al. ( 2010 ), The CALIPSO Mission. A Global 3D view of aerosols and clouds, Bull. Amer. Meteorol. Soc., 91 ( 9 ), 1211 – 1229, doi: 10.1175/2010bams3009.1.en_US
dc.identifier.citedreferenceWiscombe, W. J., and S. G. Warren ( 1980 ), A model for the spectral albedo of snow. I: Pure snow, J. Atmos. Sci., 37, 2712 – 2733.en_US
dc.identifier.citedreferenceWofsy, S. C., et. al ( 2011 ), HIAPER Pole‐to‐Pole Observations (HIPPO): Fine‐grained, global‐scale measurements of climatically important atmospheric gases and aerosols, Philos. Trans. R. Soc. A‐Math. Phys. Eng. Sci., 369 ( 1943 ), 2073 – 2086, doi: 10.1098/rsta.2010.0313.en_US
dc.identifier.citedreferenceWonaschütz, A., R. Hitzenberger, H. Bauer, P. Pouresmaeil, B. Klatzer, A. Caseiro, and H. Puxbaum ( 2009 ), Application of the intergrating sphere method to separate the contributions of brown and black carbon in atmospheric aerosols, Environ. Sci. Technol., 43 ( 4 ), 1141 – 1146, doi: 10.1021/es8008503.en_US
dc.identifier.citedreferenceWooster, M. J., G. Roberts, G. L. W. Perry, and Y. J. Kaufman ( 2005 ), Retrieval of biomass combustion rates and totals from fire radiative power observations: FRP derivation and calibration relationships between biomass consumption and fire radiative energy release, J. Geophys. Res., 110 ( D24 ), 311, doi: 10.1029/2005JD006318.en_US
dc.identifier.citedreferenceWorld Bank ( 2011 ), Household Cookstoves, Environment, Health and Climate Change: A New look at an Old Problem, The International Bank for Reconstruction and Development/The World Bank, Washington, DC.en_US
dc.identifier.citedreferenceWRAP ( 2002 ), Non‐Burning Management Alternatives on Agricultural Lands in the Western United States, Volume II: Non‐Burning Management Alternatives and Implementation Plan Strategies, Western Air Regional Partnership, Prepared by Eastern Research Group, Inc. (ERG), Sacramento, CA.en_US
dc.identifier.citedreferenceXu, B., M. Wang, D. Joswiak, J. Cao, T. Yao, G. Wu, W. Yang, and H. Zhao ( 2009a ), Deposition of anthropogenic aerosols in a southeastern Tibetan glacier, J. Geophys. Res., 114, D17209, doi: 10.1029/2008JD011510.en_US
dc.identifier.citedreferenceXu, B., T. Yao, X. Liu, and N. Wang ( 2006 ), Elemental and organic carbon measurements with a two‐step heating gas chromatography system in snow samples from the Tibetan Plateau, Ann. Glaciol., 43, 257 – 262, doi: 10.3189/172756406781812122.en_US
dc.identifier.citedreferenceXu, B., et al. ( 2009b ), Black soot and the survival of Tibetan glaciers, P. Natl. Acad. Sci. USA, 106 ( 52 ), 22114 – 22118, doi: 10.1073/pnas.0910444106.en_US
dc.identifier.citedreferenceYang, M., S. G. Howell, J. Zhuang, and B. J. Huebert ( 2009 ), Attribution of aerosol light absorption to black carbon, brown carbon, and dust in China—Interpretations of atmospheric measurements during EAST‐AIRE, Atmos. Chem. Phys., 9 ( 6 ), 2035 – 2050, doi: 10.5194/acp‐9‐2035‐2009.en_US
dc.identifier.citedreferenceYasunari, T. J., P. Bonasoni, P. Laj, K. Fujita, E. Vuillermoz, A. Marinoni, P. Cristofanelli, R. Duchi, G. Tartari, and K. M. Lau ( 2010 ), Estimated impact of black carbon deposition during pre‐monsoon season from Nepal Climate Observatory—Pyramid data and snow albedo changes over Himalayan glaciers, Atmos. Chem. Phys., 10 ( 14 ), 6603 – 6615, doi: 10.5194/acp‐10‐6603‐2010.en_US
dc.identifier.citedreferenceYokelson, R. J., R. Susott, D. E. Ward, J. Reardon, and D. W. T. Griffith ( 1997 ), Emissions from smoldering combustion of biomass measured by open‐path Fourier transform infrared spectroscopy, J. Geophys. Res., 102 ( D15 ), 18865 – 18877, doi: 10.1029/97JD00852.en_US
dc.identifier.citedreferenceYoshimori, M., and A. J. Broccoli ( 2008 ), Equilibrium response of an atmosphere‐mixed layer ocean model to different radiative forcing agents: Global and zonal mean response, J. Climate, 21 ( 17 ), 4399 – 4423, doi: 10.1175/2008jcli2172.1.en_US
dc.identifier.citedreferenceYoshioka, M., N. Mahowald, A. Conley, W. Collins, D. Fillmore, C. Zender, and D. Coleman ( 2007 ), Impact of desert dust radiative forcing on Sahel precipitation: Relative importance of dust compared to sea surface temperature variations, vegetation changes and greenhouse gas warming, J. Climate, 20, 1445 – 1467, doi: 10.1175/JCL14056.1.en_US
dc.identifier.citedreferenceYoung, K. C. ( 1974 ), A numerical simulation of wintertime, orographic precipitation. Part I: Description of model microphysics and numerical technique, J. Atmos. Sci., 31, 1735 – 1748.en_US
dc.identifier.citedreferenceYu, H., M. Chin, D. M. Winker, A. H. Omar, Z. Liu, C. Kittaka, and T. Diehl ( 2010 ), Global view of aerosol vertical distributions from CALIPSO lidar measurements and GOCART simulations: Regional and seasonal variations, J. Geophys. Res., doi: 10.1029/2009JD013364.en_US
dc.identifier.citedreferenceYumimoto, K., and I. Uno ( 2006 ), Adjoint inverse modeling of CO emissions over Eastern Asia using four‐dimensional variational data assimilation, Atmos. Environ., 40 ( 35 ), 6836 – 6845, doi: 10.1016/j.atmosenv.2006.05.042.en_US
dc.identifier.citedreferenceYun, Y., and J. E. Penner ( 2012 ), Global model comparison of heterogeneous ice nucleation parameterizations in mixed phase clouds, J. Geophys. Res., 117, D07203, doi: 10.1029/2011JD016506.en_US
dc.identifier.citedreferenceZarzycki, C. M., and T. C. Bond ( 2010 ), How much can the vertical distribution of black carbon affect its global direct radiative forcing?, Geophys. Res. Lett., 37, L20807, doi: 10.1029/2010GL044555.en_US
dc.identifier.citedreferenceZhang, J., and J. S. Reid ( 2009 ), An analysis of clear sky and contextual biases using an operational over ocean MODIS aerosol product, Geophys. Res. Lett., 36, L15824, doi: 10.1029/2009GL038723.en_US
dc.identifier.citedreferenceZhang, Y. H., M. Hu, L. J. Zhong, A. Wiedensohler, S. C. Liu, M. O. Andreae, W. Wang, and S. J. Fan ( 2008a ), Regional integrated experiments on air quality over Pearl River Delta 2004 (PRIDE‐PRD2004): Overview, Atmos. Environ., 42 ( 25 ), 6157 – 6173, doi: 10.1016/j.atmosenv.2008.03.025.en_US
dc.identifier.citedreferenceZhang, S., J. E. Penner, and O. Torres ( 2005 ), Inverse modeling of biomass burning emissions using Total Ozone Mapping Spectrometer aerosol index for 1997, J. Geophys. Res., 110, D21306, doi: 10.1029/2004JD005738.en_US
dc.identifier.citedreferenceZhang, Y. X., J. J. Schauer, Y. Zhang, L. Zeng, Y. Wei, Y. Liu, and M. Shao ( 2008b ), Characteristics of particulate carbon emissions from real‐world Chinese coal combustion, Environ. Sci. Technol., 42, 5068 – 5073.en_US
dc.identifier.citedreferenceZhang, J., K. R. Smith, Y. Ma, S. Ye, F. Jiang, W. Qi, P. Liu, M. A. K. Khalil, R. A. Rasmussen, and S. A. Thorneloe ( 2000 ), Greenhouse gases and other airborne pollutants from household stoves in China: A database for emission factors, Atmos. Environ., 34, 4537 – 4549.en_US
dc.identifier.citedreferenceZhang, H., Z.‐L. Wang, P.‐W. Guo, and Z.‐Z. Wang ( 2009a ), A modeling study of the effects of direct radiative forcing due to carbonaceous aerosol on the climate in East Asia, Adv. Atmos. Sci., 26 ( 1 ), 57 – 66, doi: 10.1007/s00376‐009‐0057‐5.en_US
dc.identifier.citedreferenceZhang, H., Z.‐L. Wang, Z.‐Z. Wang, Q.‐X. Liu, S. Gong, X.‐Y. Zhang, Z.‐P. Shen, P. Lu, X.‐D. Wei, H.‐Z. Che, and L. Li ( 2012 ), Simulation of direct radiative forcing of aerosols and their effects on East Asian climate using an interactive AGCM‐aerosol coupled system, Clim. Dyn., 38, 1675 – 1693, doi: 10.1007/s00382‐011‐1131‐0.en_US
dc.identifier.citedreferenceZhang, Q., et al. ( 2007 ), Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically‐influenced Northern Hemisphere midlatitudes, Geophys. Res. Lett., 34, L13801, doi: 10.1029/2007gl029979.en_US
dc.identifier.citedreferenceZhang, Q., et al. ( 2009b ), Asian emissions in 2006 for the NASA INTEX‐B mission, Atmos. Chem. Phys., 9 ( 14 ), 5131 – 5153, doi: 10.5194/acp‐9‐5131‐2009.en_US
dc.identifier.citedreferenceZheng, M., G. R. Cass, J. J. Schauer, and E. S. Edgerton ( 2002 ), Source apportionment of PM 2.5 in the southeastern United States using solvent‐extractable organic compounds as tracers, Environ. Sci. Technol., 36 ( 11 ), 2361 – 2371, doi: 10.1021/es011275x.en_US
dc.identifier.citedreferenceZheng, M., L. G. Salmon, J. J. Schauer, L. M. Zeng, C. S. Kiang, Y. H. Zhang, and G. R. Cass ( 2005 ), Seasonal trends in PM 2.5 source contributions in Beijing, China, Atmos. Environ., 39 ( 22 ), 3967 – 3976, doi: 10.1016/j.atmosenv.2005.03.036.en_US
dc.identifier.citedreferenceZhi, G., Y. Chen, Y. Feng, S. Xiong, J. Li, G. Zhang, G. Sheng, and J. Fu ( 2008 ), Emission characteristics of carbonaceous particles from various residential coal‐stoves in China, Environ. Sci. Technol., 42 ( 9 ), 3310 – 3315, doi: 10.1021/es702247q.en_US
dc.identifier.citedreferenceZhi, G. R., C. H. Peng, Y. J. Chen, D. Y. Liu, G. Y. Sheng, and J. M. Fu ( 2009 ), Deployment of coal briquettes and improved stoves: Possibly an option for both environment and climate, Environ. Sci. Technol., 43, 5586 – 5591, doi: 10.1021/es802955d.en_US
dc.identifier.citedreferenceZhou, L., P. K. Hopke, and W. X. Zhao ( 2009 ), Source apportionment of airborne particulate matter for the speciation trends network site in Cleveland, OH, J. Air Waste Manage. Assoc., 59 ( 3 ), 321 – 331, doi: 10.3155/1047‐3289.s9.3.321.en_US
dc.identifier.citedreferenceZobrist, B., et al. ( 2006 ), Oxalic acid as a heterogeneous ice nucleus in the upper troposphere and its indirect aerosol effect, Atmos. Chem. Phys., 6 ( 10 ), 3115 – 3129, doi: 10.5194/acp‐6‐3115‐2006.en_US
dc.identifier.citedreferenceAaheim, H. A., J. S. Fuglestvedt, and O. Godal ( 2006 ), Costs savings of a flexible multi‐gas climate policy, Energ. J., S13, 485 – 502.en_US
dc.identifier.citedreferenceAbbatt, J. P. D., S. Benz, D. J. Cziczo, Z. Kanji, U. Lohmann, and O. Möhler ( 2006 ), Solid ammonium sulfate aerosols as ice nuclei: A pathway for cirrus cloud formation, Science, 313 ( 5794 ), 1770 – 1773, doi: 10.1126/science.1129726.en_US
dc.identifier.citedreferenceAbdul‐Razzak, H., and S. J. Ghan ( 2000 ), A parameterization of aerosol activation: 2. Multiple aerosol types, J. Geophys. Res., 105 ( D5 ), 6837 – 6844, doi: 10.1029/1999JD901161.en_US
dc.identifier.citedreferenceAbel, S. J., J. M. Haywood, E. J. Highwood, J. Li, and P. R. Buseck ( 2003 ), Evolution of biomass burning aerosol properties from an agricultural fire in southern Africa, Geophys. Res. Lett., 30 ( 15 ), doi: 10.1029/2003GL017342.en_US
dc.identifier.citedreferenceAbu‐Allaban, M., A. W. Gertler, and D. H. Lowenthal ( 2002 ), A preliminary apportionment of the sources of ambient PM 10, PM 2.5, and VOCs in Cairo, Atmos. Environ.., 36 ( 35 ), 5549 – 5557, doi: 10.1016/S1352‐2310(02)00662‐3.en_US
dc.identifier.citedreferenceAckerman, T. P., and O. B. Toon ( 1981 ), Absorption of visible radiation in atmosphere containing mixtures of absorbing and nonabsorbing particles, Appl. Opt., 20 ( 20 ), 3661 – 3667, doi: 10.1364/AO.20.003661.en_US
dc.identifier.citedreferenceAckerman, A. S., M. P. Kirkpatrick, D. E. Stevens, and O. B. Toon ( 2004 ), The impact of humidity above stratiform clouds on indirect aerosol climate forcing, Nature, 432 ( 7020 ), 1014 – 1017, doi: 10.1038/nature03174.en_US
dc.identifier.citedreferenceAckerman, A. S., O. B. Toon, D. E. Stevens, A. J. Heymsfield, V. Ramanathan, and E. J. Welton ( 2000 ), Reduction of tropical cloudiness by soot, Science, 288 ( 5468 ), 1042 – 1047, doi: 10.1126/science.288.5468.1042.en_US
dc.identifier.citedreferenceAdachi, K., S. H. Chung, and P. R. Buseck ( 2010 ), Shapes of soot aerosol particles and implications for their effects on climate, J. Geophys. Res., 115, D15206, doi: 10.1029/2009JD012868.en_US
dc.identifier.citedreferenceAdams, P. J., and J. H. Seinfeld ( 2003 ), Disproportionate impact of particulate emissions on global cloud condensation nuclei concentrations, Geophys. Res. Lett., 30 ( 5 ), 1239, doi: 10.1029/2002GL016303.en_US
dc.identifier.citedreferenceAkagi, S. K., R. J. Yokelson, C. Wiedinmyer, M. J. Alvarado, J. S. Reid, T. Karl, J. D. Crounse, and P. O. Wennberg ( 2011 ), Emission factors for open and domestic biomass burning for use in atmospheric models, Atmos. Chem. Phys., 11, 4039 – 4072, doi: 10.5194/acp‐11‐4039‐2011.en_US
dc.identifier.citedreferenceAlfaro, S. C., S. Lafon, J. L. Rajot, P. Formenti, A. Gaudichet, and M. Maille ( 2004 ), Iron oxides and light absorption by pure desert dust: An experimental study, J. Geophys. Res., 109, D08208, doi: 10.1029/2003JD004374.en_US
dc.identifier.citedreferenceAlfarra, M. R., A. S. H. Prevot, S. Szidat, J. Sandradewi, S. Weimer, V. A. Lanz, D. Schreiber, M. Mohr, and U. Baltensperger ( 2007 ), Identification of the mass spectral signature of organic aerosols from wood burning emissions, Environ. Sci. Technol., 41 ( 16 ), 5770 – 5777, doi: 10.1021/es062289b.en_US
dc.identifier.citedreferenceAllen, R. J., and S. C. Sherwood ( 2010 ), Aerosol‐cloud semi‐direct effect and land‐sea temperature contrast in a GCM, Geophys. Res. Lett., 37, L07702, doi: 10.1029/2010GL042759.en_US
dc.identifier.citedreferenceAlterskjær, K., J. E. Kristjánsson, and C. Hoose ( 2010 ), Do anthropogenic aerosols enhance or suppress the surface cloud forcing in the Arctic?, J. Geophys. Res., 115, D22204, doi: 10.1029/2010JD014015.en_US
dc.identifier.citedreferenceAmann, M., et al. ( 2011 ), Cost‐effective control of air quality and greenhouses gases in Europe: Modeling and policy applications, Environ. Modell. Softw., 26 ( 12 ), 1489 – 1501, doi: 10.1016/j.envsoft.2011.07.012.en_US
dc.identifier.citedreferenceAndreae, M. O., and A. Gelencsér ( 2006 ), Black carbon or brown carbon? The nature of light‐absorbing carbonaceous aerosols, Atmos. Chem. Phys., 6, 3131 – 3148, doi: 10.5194/acp‐6‐3131‐2006.en_US
dc.identifier.citedreferenceAndreae, M. O., and P. Merlet ( 2001 ), Emission of trace gases and aerosols from biomass burning, Global Biogeochem. Cycles, 15 ( 4 ), 955 – 966, doi: 10.1029/2000GB001382.en_US
dc.identifier.citedreferenceAndrews, T., and P. M. Forster ( 2008 ), CO 2 forcing induces semi‐direct effects with consequences for climate feedback interpretations, Geophys. Res. Lett., 35 ( L04 ), 802, doi: 10.1029/2007GL032273.en_US
dc.identifier.citedreferenceAndrews, T., P. M. Forster, O. Boucher, N. Bellouin, and A. Jones ( 2010 ), Precipitation, radiative forcing and global temperature change, Geophys. Res. Lett., 37, L14701, 701, doi: 10.1029/2010GL043991.en_US
dc.identifier.citedreferenceAndrews, E., P. J. Sheridan, and J. A. Ogren ( 2011 ), Seasonal differences in the vertical profiles of aerosol optical properties over rural Oklahoma, Atmos. Chem. Phys., 11, 10661 – 10676, doi: 10.5194/acp‐11‐10661‐2011.en_US
dc.identifier.citedreferenceAnenberg, S. C., et al. ( 2012 ), Global air quality and health co‐benefits of mitigating near‐term climate change through methane and black carbon emission controls, Environ. Health Perspect., 120 ( 6 ), 831 – 839.en_US
dc.identifier.citedreferenceAnsmann, A., et al. ( 2008 ), Influence of Saharan dust on cloud glaciation in southern Morocco during the Saharan Mineral Dust Experiment, J. Geophys. Res., 113, D04210, doi: 10.1029/2007JD008785.en_US
dc.identifier.citedreferenceAoki, T., H. Motoyoshi, Y. Kodama, T. J. Yasunari, S. Konosuke, and H. Kobayashi ( 2006 ), Atmospheric aerosol deposition on snow surfaces and its effect on albedo, Scientific Online Letters on the Atmosphere (SOLA), 2, 13 – 16, doi: 10.2151/sola.2006‐004.en_US
dc.identifier.citedreferenceAquila, V., et al. ( 2011 ), MADE‐in: A new aerosol microphysics submodel for global simulation of insoluble particles and their mixing state, Geosci. Model Dev., 4, 325 – 355, doi: 10.5194/gmd‐4‐325‐2011.en_US
dc.identifier.citedreferenceArctic Council ( 2011 ), An Assessment of Emissions and Mitigation Options for Black Carbon for the Arctic Council, 173 pp., Arctic Council Task Force on Short‐Lived Climate Forcers, Arctic Council.en_US
dc.identifier.citedreferenceArellano, A. F., P. S. Kasibhatla, L. Giglio, G. R. van der Werf, and J. T. Randerson ( 2004 ), Top‐down estimates of global CO sources using MOPITT measurements, Geophys. Res. Lett., 31 ( 1 ), L01104, doi: 10.1029/2003GL018609.en_US
dc.identifier.citedreferenceArellano, A. F., P. S. Kasibhatla, L. Giglio, G. R. van der Werf, J. T. Randerson, and G. J. Collatz ( 2006 ), Time‐dependent inversion estimates of global biomass‐burning CO emissions using Measurement of Pollution in the Troposphere (MOPITT) measurements, J. Geophys. Res., 111 ( D9 ), 303, doi: 10.1029/2005JD006613.en_US
dc.identifier.citedreferenceArnott, W. P., H. Moosmüller, and C. F. Rogers ( 1997 ), Photoacoustic spectrometer for measuring light absorption by aerosol: Instrument description, Atmos. Environ., 33 ( 17 ), 2845 – 2852.en_US
dc.identifier.citedreferenceArola, A., G. Schuster, G. Myhre, S. Kazadzis, S. Dey, and S. N. Tripathi ( 2011 ), Inferring absorbing organic carbon content from AERONET data, Atmos. Chem. Phys., 11, 215 – 225, doi: 10.5194/acp‐11‐215‐2011.en_US
dc.identifier.citedreferenceAshbaugh, L. L., W. C. Malm, and W. Z. Sadeh ( 1985 ), A residence time probability analysis of sulfur concentrations at Grand‐Canyon‐National‐Park, Atmos. Environ., 19 ( 8 ), 1263 – 1270.en_US
dc.identifier.citedreferenceAssamoi, E. M., and C. Liousse ( 2010 ), A new inventory for two‐wheel vehicle emissions in West Africa for 2002, Atmos. Environ., 44 ( 32 ), 3985 – 3996, doi: 10.1016/j.atmosenv.2010.06.048.en_US
dc.identifier.citedreferenceBahadur, R., Y. Feng, L. M. Russell, and V. Ramanathan ( 2011 ), Impact of California's air pollution laws on black carbon and their implications for direct radiative forcing, Atmos. Environ., 45, 1162 – 1167, doi: 10.1016/j.atmosenv.2010.10.054.en_US
dc.identifier.citedreferenceBailis, R. ( 2009 ), Modeling climate change mitigation from alternative methods of charcoal production in Kenya, Biomass Bioenerg., 33 ( 11 ), 1491 – 1502, doi: 10.1016/j.biombioe.2009.07.001.en_US
dc.identifier.citedreferenceBailis, R., M. Ezzati, and D. M. Kammen ( 2005 ), Mortality and greenhouse gas impacts of biomass and petroleum energy futures in Africa, Science, 308 ( 5718 ), 98 – 103, doi: 10.1126/science.1106881.en_US
dc.identifier.citedreferenceBanta, J. R., J. R. McConnell, R. Edwards, and J. P. Engelbrecht ( 2008 ), Delineation of carbonate dust, aluminous dust, and sea salt deposition in a Greenland glaciochemical array using positive matrix factorization, Geochem. Geophys. Geosyst., 9 ( 7 ), Q07013, doi: 10.1029/2007GC001908.en_US
dc.identifier.citedreferenceBan‐Weiss, G. A., L. Cao, G. Bala, and K. Caldeira ( 2011 ), Dependence of climate forcing and response on the altitude of black carbon aerosols, Climate Dyn., 38, 897 – 911, doi: 10.1007/s00382‐011‐1052‐y.en_US
dc.identifier.citedreferenceBates, T. S., P. K. Quinn, D. J. Coffman, J. E. Johnson, and A. M. Middlebrook ( 2005 ), Dominance of organic aerosols in the marine boundary layer over the Gulf of Maine during NEAQS 2002 and their role in aerosol light scattering, J. Geophys. Res., 110 ( D18 ), 202, doi: 10.1029/2005JD005797.en_US
dc.identifier.citedreferenceBattye, W., K. Boyer, and T. G. Pace ( 2002 ), Methods for improving global inventories of black carbon and organic carbon particulates, Report No. 68‐D‐98‐046, prepared for U.S. Environmental Protection Agency, Research Triangle Park, NC, by EC/R Inc., Chapel Hill, NC.en_US
dc.identifier.citedreferencede Gouw, J. A., and J. L. Jimenez ( 2009 ), Organic aerosols in the Earth's atmosphere, Environ. Sci. Technol., 43, 7614 – 7618, doi: 10.1021/es9006004.en_US
dc.identifier.citedreferenceBauer, S. E., S. Menon, D. Koch, T. C. Bond, and K. Tsigaridis ( 2010 ), A global modeling study on carbonaceous aerosol microphysical characteristics and radiative forcing, Atmos. Chem. Phys., 10, 4543 – 4592, doi: 10.5194/acpd‐10‐4543‐2010.en_US
dc.identifier.citedreferenceBauer, S. E., D. L. Wright, D. Koch, E. R. Lewis, R. McGraw, L. S. Chang, S. E. Schwartz, and R. Ruedy ( 2008 ), MATRIX (Multiconfiguration Aerosol TRacker of mIXing state): An aerosol microphysical module for global atmospheric models, Atmos. Chem. Phys., 8 ( 20 ), 6003 – 6035, doi: 10.5194/acp‐8‐6003‐2008.en_US
dc.identifier.citedreferenceBaumgardner, D., R. Subramanian, C. Twohy, J. Stith, and G. Kok ( 2008 ), Scavenging of black carbon by ice crystals over the northern Pacific, Geophys. Res. Lett., 35, L22815, doi: 10.1029/2008GL035764.en_US
dc.identifier.citedreferenceBell, M. L., K. Ebisu, R. D. Peng, J. M. Samet, and F. Dominici ( 2009 ), Hospital admissions and chemical composition of fine particle air pollution, Am. J. Resp. Crit. Care, 179 ( 12 ), 1115 – 1120, doi: 10.1164/rccm.200808‐1240OC.en_US
dc.identifier.citedreferenceBellouin, N., and O. Boucher ( 2010 ), Climate response and efficacy of snow forcing in the HadGEM2‐AML climate model, Hadley Centre Technical Note, No. 82, 8 pp., Met Office, United Kingdom.en_US
dc.identifier.citedreferenceBergstrom, R. W. ( 1973 ), Extinction and absorption coefficients of the atmospheric aerosol as a function of particle size, Contrib. Atmos. Phys., 46, 223 – 234.en_US
dc.identifier.citedreferenceBergstrom, R. W., P. Pilewskie, P. B. Russell, J. Redemann, T. C. Bond, P. K. Quinn, and B. Sierau ( 2007 ), Spectral absorption properties of atmospheric aerosols, Atmos. Chem. Phys., 7 ( 23 ), 5937 – 5943, doi: 10.5194/acp‐7‐5937‐2007.en_US
dc.identifier.citedreferenceBergstrom, R. W., P. B. Russell, and P. Hignett ( 2002 ), Wavelength dependence of the absorption of black carbon particles: Predictions and results from the TARFOX experiment and implications for the aerosol single scattering albedo, J. Atmos. Sci., 59 ( 3 ), 567 – 577.en_US
dc.identifier.citedreferenceBerntsen, T., and J. S. Fuglestvedt ( 2008 ), Global temperature responses to current emissions from the transport sectors, P. Natl. Acad. Sci. USA, 105 ( 49 ), 19254 – 19159.en_US
dc.identifier.citedreferenceBerntsen, T. K., J. S. Fuglestvedt, M. M. Joshi, K. P. Shine, N. Stuber, M. Ponater, R. Sausen, D. A. Hauglustaine, and L. Li ( 2005 ), Response of climate to regional emissions of ozone precursors: Sensitivities and warming potentials, Tellus B, 57 ( 4 ), 283 – 304, doi: 10.1111/j.1600‐0889.2005.00152.x.en_US
dc.identifier.citedreferenceBerntsen, T., J. Fuglestvedt, G. Myhre, F. Stordal, and T. F. Berglen ( 2006 ), Abatement of greenhouse gases: Does location matter?, J. Climate, 74, 377 – 411.en_US
dc.identifier.citedreferenceBerntsen, T. K., K. Tanaka, and J. S. Fuglestvedt ( 2010 ), Does black carbon abatement hamper CO 2 abatement?, Climatic Change Lett., 103, 627 – 633, doi: 10.1007/s10584‐010‐9941‐3.en_US
dc.identifier.citedreferenceBhave, P. V., G. A. Pouliot, and M. Zheng ( 2007 ), Diagnostic model evaluation for carbonaceous PM 2.5 using organic markers measured in the southeastern US, Environ. Sci. Technol., 41 ( 5 ), 1577 – 1583, doi: 10.1021/es061785x.en_US
dc.identifier.citedreferenceBirch, M. E., and R. A. Cary ( 1996 ), Elemental carbon‐based method for monitoring occupational exposures to particulate diesel exhaust, Aerosol Sci. Technol., 25, 221 – 241.en_US
dc.identifier.citedreferenceBisiaux, M. M., R. Edwards, J. R. McConnell, M. A. J. Curran, T. D. Van Ommen, A. M. Smith, T. A. Neumann, D. R. Pasteris, J. E. Penner, and K. Taylor ( 2012 ), Large scale changes in 20th century black carbon deposition to Antarctica, Atmos. Chem. Phys., 12, 4107 – 4115, doi: 10.5194/acp‐12‐4107‐2012.en_US
dc.identifier.citedreferenceBlumberg, K., M. P. Walsh, and C. Pera ( 2003 ), Low‐sulfur gasoline and diesel: The key to lower vehicle emissions, Prepared for the International Council on Clean Transportation. ( http://www.walshcarlines.com/mpwdocs.html ), edited.en_US
dc.identifier.citedreferenceBoer, G. J., and B. Yu ( 2003 ), Climate sensitivity and response, Climate Dyn., 20 ( 4 ), 415 – 429, doi: 10.1007/s00382‐002‐0283‐3.en_US
dc.identifier.citedreferenceBøggild, C. E., R. E. Brandt, K. J. Brown, and S. G. Warren ( 2010 ), The ablation zone in northeast Greenland: Ice types, albedos and impurities, J. Glaciol., 56, 101 – 113, doi: 10.3189/002214310791190776.en_US
dc.identifier.citedreferenceBollasina, M. A., Y. Ming, and V. Ramaswamy ( 2011 ), Anthropogenic aerosols and the weakening of the South Asian summer monsoon, Science, 334 ( 6055 ), 502 – 505, doi: 10.1126/science.1204994.en_US
dc.identifier.citedreferenceBonasoni, P., et al. ( 2010 ), Atmospheric brown clouds in the Himalayas: First two years of continuous observations at the Nepal Climate Observatory‐Pyramid (5079 m), Atmos. Chem. Phys., 10 ( 15 ), 7515 – 7531, doi: 10.5194/acp‐10‐7515‐2010.en_US
dc.identifier.citedreferenceBond, T. C. ( 2001 ), Spectral dependence of visible light absorption by carbonaceous particles emitted from coal combustion, Geophys. Res. Lett., 28 ( 21 ), 4075 – 4078.en_US
dc.identifier.citedreferenceBond, T. C., and R. W. Bergstrom ( 2006 ), Light absorption by carbonaceous particles: An investigative review, Aerosol Sci. Technol., 40 ( 1 ), 27 – 67.en_US
dc.identifier.citedreferenceBond, T. C., and H. Sun ( 2005 ), Can reducing black carbon emissions counteract global warming?, Environ. Sci. Technol., 39 ( 16 ), 5921 – 5926, doi: 10.1021/es0480421.en_US
dc.identifier.citedreferenceBond, T. C., T. L. Anderson, and D. Campbell ( 1999 ), Calibration and intercomparison of filter‐based measurements of visible light absorption by aerosols, Aerosol Sci. Technol., 30, 582 – 600.en_US
dc.identifier.citedreferenceBond, T. C., E. Bhardwaj, R. Dong, R. Jogani, S. K. Jung, C. Roden, D. G. Streets, and N. M. Trautmann ( 2007 ), Historical emissions of black and organic carbon aerosol from energy‐related combustion, 1850–2000, Global Biogeochem. Cycles, 21 ( 2 ), doi: 10.1029/2006GB002840.en_US
dc.identifier.citedreferenceBond, T. C., G. Habib, and R. W. Bergstrom ( 2006 ), Limitations in the enhancement of visible light absorption due to mixing state, J. Geophys. Res., 111 ( D20 ), 211, doi: 10.1029/2006JD007315.en_US
dc.identifier.citedreferenceBond, T. C., D. G. Streets, K. F. Yarber, S. M. Nelson, J. H. Woo, and Z. Klimont ( 2004 ), A technology‐based global inventory of black and organic carbon emissions from combustion, J. Geophys. Res., 109 ( D14 ), 203, doi: 10.1029/2003JD003697.en_US
dc.identifier.citedreferenceBond, T. C., C. Zarzycki, M. G. Flanner, and D. M. Koch ( 2011 ), Quantifying immediate radiative forcing by black carbon and organic matter with the Specific Forcing Pulse, Atmos. Chem. Phys., 11 ( 4 ), 1505 – 1525, doi: 10.5194/acp‐11‐1505‐2011.en_US
dc.identifier.citedreferenceBony, S., and J.‐L. Dufresne ( 2005 ), Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models, Geophys. Res. Lett., 32, L20806, doi: 10.1029/2005GL023851.en_US
dc.identifier.citedreferenceBorghesi, A., and G. Guizzetti ( 1991 ), Graphite (C), in Handbook of Optical Constants of Solids, Volume II, edited by E. D. Palik, 449 – 460 pp., Academic Press, Boston, MA.en_US
dc.identifier.citedreferenceBoucher, O., and M. Pham ( 2002 ), History of sulfate aerosol radiative forcings, Geophys. Res. Lett., 29 ( 9 ), 1308, doi: 10.1029/2001GL014048.en_US
dc.identifier.citedreferenceBoucher, O., and M. S. Reddy ( 2008 ), Climate trade‐off between black carbon and carbon dioxide emissions, Energ. Policy, 36, 193 – 200.en_US
dc.identifier.citedreferenceBoucher, O., et al. ( 1998 ), Intercomparison of models representing direct shortwave radiative forcing by sulfate aerosols, J. Geophys. Res., 103 ( D14 ), 16979 – 16998.en_US
dc.identifier.citedreferenceBradford, D. F. ( 2001 ), Global change—Time, money and tradeoffs, Nature, 410 ( 6829 ), 649 – 650, doi: 10.1038/35070707.en_US
dc.identifier.citedreferenceBrem, B. T., F. C. M. Gonzalez, S. R. Meyers, T. C. Bond, and M. J. Rood ( 2012 ), Laboratory‐measured optical properties of inorganic and organic aerosols at relative humidities up to 95%, Aerosol Sci. Technol., 46 ( 2 ), 178 – 190, doi: 10.1080/02786826.2011.617794.en_US
dc.identifier.citedreferenceBrimblecombe, P. ( 1977 ), London air‐pollution, 1500–1900, Atmos. Environ., 11 ( 12 ), 1157 – 1162, doi: 10.1016/0004‐6981(77)90091‐9.en_US
dc.identifier.citedreferenceBrioude, J., et al. ( 2009 ), Effect of biomass burning on marine stratocumulus clouds off the California coast, Atmos. Chem. Phys., 9 ( 22 ), 8841 – 8856, doi: 10.5194/acp‐9‐8841‐2009.en_US
dc.identifier.citedreferenceBrunekreef, B., R. Beelen, G. Hoek, L. Schouten, S. Bausch‐Goldbohm, P. Fischer, B. Armstrong, E. Hughes, M. Jerrett, and P. van den Brandt ( 2009 ), Effects of long‐term exposure to traffic‐related air pollution on respiratory and cardiovascular mortality in the Netherlands: The NLCS‐AIR study, Research Report, 139, Health Effects Institute, Boston, MA.en_US
dc.identifier.citedreferenceBryden, M., D. Still, P. Scott, G. Hoffa, D. Ogle, R. Bailis, and K. Goyer ( 2006 ), Design principles for wood burning cook stoves, EPA‐402‐K‐05‐004, Aprovecho Research Center.en_US
dc.identifier.citedreferenceBudyko, M. I. ( 1969 ), The effect of solar radiation variations on the climate of the Earth, Tellus, 21 ( 5 ), 611 – 619.en_US
dc.identifier.citedreferenceBueno, P. A., D. K. Havey, G. W. Mulholland, J. T. Hodges, K. A. Gillis, R. R. Dickerson, and M. R. Zachariah ( 2011 ), Photoacoustic measurements of amplification of the absorption cross section for coated soot aerosols, Aerosol Sci. Technol., 45, 1217 – 1230, doi: 10.1080/02786826.2011.587477.en_US
dc.identifier.citedreferenceCabada, J. C., S. Rees, S. Takahama, A. Khlystov, S. N. Pandis, C. I. Davidson, and A. L. Robinson ( 2004 ), Mass size distributions and size resolved chemical composition of fine particulate matter at the Pittsburgh supersite, Atmos. Environ., 38 ( 20 ), 3127 – 3141, doi: 10.1016/j.atmosenv.2004.03.004.en_US
dc.identifier.citedreferenceCachier, H., and M. H. Pertuisot ( 1994 ), Particulate carbon in Arctic ice, Analusis, 22 ( 7 ), M34 – M37.en_US
dc.identifier.citedreferenceCao, G. L., X. Y. Zhang, and F. C. Zheng ( 2006 ), Inventory of black carbon and organic carbon emissions from China, Atmos. Environ., 40 ( 34 ), 6516 – 6527, doi: 10.1016/j.atmosenv.2006.05.070.en_US
dc.identifier.citedreferenceCao, J. J., et al. ( 2005 ), Characterization and source apportionment of atmospheric organic and elemental carbon during fall and winter of 2003 in Xi'an, China, Atmos. Chem. Phys., 5, 3127 – 3137, doi: 10.5194/acp‐5‐3127‐2005.en_US
dc.identifier.citedreferenceCao, J. J., et al. ( 2007 ), Spatial and seasonal distributions of carbonaceous aerosols over China, J. Geophys. Res., 112, D22s11, doi: 10.1029/2006JD008205.en_US
dc.identifier.citedreferenceCappa, C. D., D. A. Lack, J. B. Burkholder, and A. R. Ravishankara ( 2008 ), Bias in filter‐based aerosol light absorption measurements due to organic aerosol loading: Evidence from laboratory measurements, Aerosol Sci. Technol., 42 ( 12 ), 1022 – 1032, doi: 10.1080/02786820802389285.en_US
dc.identifier.citedreferenceCappa, C. D., et al. ( 2012 ), Radiative absorption enhancements due to the mixing state of atmospheric black carbon, Science, 337, 1078 – 1081, doi: 10.1126/science.1223447.en_US
dc.identifier.citedreferenceCARB ( 2009 ), Technical Support Document: Proposed Regulation for In‐Use On‐Road Diesel Vehicles, 303, Table XIII‐301 pg. 175 pp., California Air Resources Board, Sacramento, CA.en_US
dc.identifier.citedreferenceCarmichael, G. R., et al. ( 2003 ), Evaluating regional emission estimates using the TRACE‐P observations, J. Geophys. Res., 108 ( D21 ), 8810, doi: 10.1029/2002JD003116.en_US
dc.identifier.citedreferenceCastelvecchi, D. ( 2009 ), Subcontinental smut: Is soot the culprit behind melting Himalayan glaciers?, Sci. Amer., December 15, http://www.scientificamerican.com/article.cfm?id=subcontinental‐smut‐himalayas.en_US
dc.identifier.citedreferenceCavalli, F., M. Viana, K. E. Yttri, J. Genberg, and J.‐P. Putaud ( 2010 ), Toward a standardised thermal‐optical protocol for measuring atmospheric organic and elemental carbon: The EUSAAR protocol, Atmos. Meas. Tech., 3 ( 1 ), 79 – 89, doi: 10.5194/amt‐3‐79‐2010.en_US
dc.identifier.citedreferenceCesana, G., and H. Chepfer ( 2012 ), How well do climate models simulate cloud vertical structure? A comparison between CALIPSO‐GOCCP satellite observations and CMIP5 models, Geophys. Res. Lett., 39, L20803, doi: 10.1029/2012GL053153.en_US
dc.identifier.citedreferenceCess, R. D., G. L. Potter, S. J. Ghan, and W. L. Gates ( 1985 ), The climatic effects of large injections of atmospheric smoke and dust—A study of climate feedback mechanisms with one‐dimensional and 3‐dimensional climate models, J. Geophys. Res., 90 ( D7 ), 2937 – 2950.en_US
dc.identifier.citedreferenceChakrabarty, R. K., H. Moosmüller, L.‐W. A. Chen, K. Lewis, W. P. Arnott, C. Mazzoleni, M. K. Dubey, C. E. Wold, W. M. Hao, and S. M. Kreidenweis ( 2010 ), Brown carbon in tar balls from smoldering biomass combustion, Atmos. Chem. Phys., 10 ( 13 ), 6363 – 6370, doi: 10.5194/acp‐10‐6363‐2010.en_US
dc.identifier.citedreferenceChan, T. W., J. R. Brook, G. J. Smallwood, and G. Lu ( 2011 ), Time‐resolved measurements of black carbon light absorption enhancement in urban and near‐urban locations of southern Ontario, Canada, Atmos. Chem. Phys., 11 ( 20 ), 10407 – 10432, doi: 10.5194/acp‐11‐10407‐2011.en_US
dc.identifier.citedreferenceChan, A. W. H., K. E. Kautzman, P. S. Chhabra, J. D. Surratt, M. N. Chan, J. D. Crounse, A. Kurten, P. O. Wennberg, R. C. Flagan, and J. H. Seinfeld ( 2009 ), Secondary organic aerosol formation from photooxidation of naphthalene and alkylnaphthalenes: Implications for oxidation of intermediate volatility organic compounds (IVOCs), Atmos. Chem. Phys., 9, 3049 – 3060, doi: 10.5194/acp‐9‐3049‐2009.en_US
dc.identifier.citedreferenceChan, T. W., et al. ( 2010 ), Observations of OM/OC and specific attenuation coefficients (SAC) in ambient fine PM at a rural site in central Ontario, Canada, Atmos. Chem. Phys., 10 ( 5 ), 2393 – 2411, doi: 10.5194/acp‐10‐2393‐2010.en_US
dc.identifier.citedreferenceChand, D., R. Wood, T. L. Anderson, S. K. Satheesh, and R. J. Charlson ( 2009 ), Satellite‐derived direct radiative effect of aerosols dependent on cloud cover, Nature Geosci., 2 ( 3 ), 181 – 184, doi: 10.1038/ngeo437.en_US
dc.identifier.citedreferenceCharalampopoulos, T. T., H. Chang, and B. Stagg ( 1989 ), The effects of temperature and composition on the complex refractive‐index of flame soot, Fuel, 68 ( 9 ), 1173 – 1179.en_US
dc.identifier.citedreferenceCharlson, R. J., and M. J. Pilat ( 1969 ), Climate: The influence of aerosols, J. Appl. Met., 8 ( 5 ), 1001 – 1002.en_US
dc.identifier.citedreferenceChen, W. T., R. A. Kahn, D. Nelson, K. Yau, and J. H. Seinfeld ( 2008 ), Sensitivity of multiangle imaging to the optical and microphysical properties of biomass burning aerosols, J. Geophys. Res., 113 ( D10 ), 203, doi: 10.1029/2007JD009414.en_US
dc.identifier.citedreferenceChen, W. T., Y. H. Lee, P. J. Adams, A. Nenes, and J. H. Seinfeld ( 2010a ), Will black carbon mitigation dampen aerosol indirect forcing?, Geophys. Res. Lett., 37, L09801, doi: 10.1029/2010GL042886.en_US
dc.identifier.citedreferenceChen, T., W. B. Rossow, and Y. C. Zhang ( 2000 ), Radiative effects of cloud‐type variations, J. Climate, 13, 264 – 286, doi: 10.1175/1520‐0442(2000)013<0264:REOCTV>2.0.CO;2.en_US
dc.identifier.citedreferenceChen, L. W. A., J. G. Watson, J. C. Chow, D. W. DuBois, and L. Herschberger ( 2010b ), Chemical mass balance source apportionment for combined PM 2.5 measurements from U. S. non‐urban and urban long‐term networks, Atmos. Environ., 44 ( 38 ), 4908 – 4918, doi: 10.1016/j.atmosenv.2010.08.030.en_US
dc.identifier.citedreferenceCheng, Y., et al. ( 2011 ), Mass absorption efficiency of elemental carbon and water‐soluble organic carbon in Beijing, China, Atmos. Chem. Phys., 11 ( 22 ), 11497 – 11510, doi: 10.5194/acp‐11‐11497‐2011.en_US
dc.identifier.citedreferenceChevallier, F., M. Fisher, P. Peylin, S. Serrar, P. Bousquet, F. M. Breon, A. Chedin, and P. Ciais ( 2005 ), Inferring CO 2 sources and sinks from satellite observations: Method and application to TOVS data, J. Geophys. Res., 110 ( D24 ), 309, doi: 10.1029/2005JD006390.en_US
dc.identifier.citedreferenceChevallier, F., A. Fortems, P. Bousquet, I. Pison, S. Szopa, M. Devaux, and D. A. Hauglustaine ( 2009 ), African CO emissions between years 2000 and 2006 as estimated from MOPITT observations, Biogeosciences, 6 ( 1 ), 103 – 111.en_US
dc.identifier.citedreferenceChin, M., T. Diehl, O. Dubovik, T. F. Eck, B. N. Holben, A. Sinyuk, and D. G. Streets ( 2009 ), Light absorption by pollution, dust, and biomass burning aerosols: A global model study and evaluation with AERONET measurements, Ann. Geophys., 27 ( 9 ), 3439 – 3464, doi: 10.5194/angeo‐27‐3439‐2009.en_US
dc.identifier.citedreferenceChin, M., P. Ginoux, S. Kinne, O. Torres, B. N. Holben, B. N. Duncan, R. V. Martin, J. A. Logan, A. Higurashi, and T. Nakajima ( 2002 ), Tropospheric aerosol optical thickness from the GOCART model and comparisons with satellite and Sun photometer measurements, J. Atmos. Sci., 59 ( 3 ), 461 – 483.en_US
dc.identifier.citedreferenceChow, J. C., and J. G. Watson ( 2002 ), Review of PM 2.5 and PM 10 apportionment for fossil fuel combustion and other sources by the chemical mass balance receptor model, Energy Fuel, 16 ( 2 ), 222 – 260, doi: 10.1021/Ef0101715.en_US
dc.identifier.citedreferenceChow, J. C., J. G. Watson, L.‐W. A. Chen, W. P. Arnott, and H. Moosmüller ( 2004 ), Equivalence of elemental carbon by thermal/optical reflectance and transmittance with different temperature protocols, Environ. Sci. Technol., 38, 4414 – 4422.en_US
dc.identifier.citedreferenceChow, J. C., J. G. Watson, D. Crow, D. H. Lowenthal, and T. Merrifield ( 2001 ), Comparison of IMPROVE and NIOSH carbon measurements, Aerosol Sci. Technol., 34 ( 1 ), 23 – 34.en_US
dc.identifier.citedreferenceChow, J. C., J. G. Watson, L. C. Pritchett, W. R. Pierson, C. A. Frazier, and R. G. Purcell ( 1993 ), The DRI thermal/optical reflectance carbon analysis system: Description, evaluation and applications in U.S. air quality studies, Atmos. Environ., 27A ( 8 ), 1185 – 1201, doi: 10.1016/0960‐1686(93)90245‐T.en_US
dc.identifier.citedreferenceChowdhury, Z., M. Zheng, J. J. Schauer, R. J. Sheesley, L. G. Salmon, G. R. Cass, and A. G. Russell ( 2007 ), Speciation of ambient fine organic carbon particles and source apportionment of PM 2.5 in Indian cities, J. Geophys. Res., 112 ( D15 ), doi:D15303, 10.1029/2007JD008386.en_US
dc.identifier.citedreferenceChristian, T. J., R. J. Yokelson, B. Cardenas, L. T. Molina, G. Engling, and S. C. Hsu ( 2010 ), Trace gas and particle emissions from domestic and industrial biofuel use and garbage burning in central Mexico, Atmos. Chem. Phys., 10 ( 2 ), 565 – 584, doi: 10.5194/acp‐10‐565‐2010.en_US
dc.identifier.citedreferenceChuang, C. C., J. E. Penner, J. M. Prospero, K. E. Grant, G. H. Rau, and K. Kawamoto ( 2002 ), Cloud susceptibility and the first aerosol indirect forcing: Sensitivity to black carbon and aerosol concentrations, J. Geophys. Res., 107 ( D21 ), 4564, doi: 10.1029/2000JD000215.en_US
dc.identifier.citedreferenceChung, C. E., and V. Ramanathan ( 2006 ), Weakening of North Indian SST gradients and the monsoon rainfall in India and the Sahel, J. Climate, 19 ( 10 ), 2036 – 2045.en_US
dc.identifier.citedreferenceChung, S. H., and J. H. Seinfeld ( 2002 ), Global distribution and climate forcing of carbonaceous aerosols, J. Geophys. Res., 107, doi: 10.1029/2001JD001397.en_US
dc.identifier.citedreferenceChung, S. H., and J. H. Seinfeld ( 2005 ), Climate response of direct radiative forcing of anthropogenic black carbon, J. Geophys. Res., 110 ( D11 ), 102, doi: 10.1029/2004JD005441.en_US
dc.identifier.citedreferenceChung, C. E., V. Ramanathan, and D. Decremer ( 2012 ), Observationally constrained estimates of carbonaceous aerosol radiative forcing, Proc. Natl. Acad. Sci. U.S.A., 109 ( 29 ), doi: 10.1073/pnas.1203707109.en_US
dc.identifier.citedreferenceChung, C. E., V. Ramanathan, and J. T. Kiehl ( 2002 ), Effects of the South Asian absorbing haze on the northeast monsoon and surface‐air heat exchange, J. Climate, 15 ( 17 ), 2462 – 2476.en_US
dc.identifier.citedreferenceChung, C. E., V. Ramanathan, D. Kim, and I. A. Podgorny ( 2005 ), Global anthropogenic aerosol direct forcing derived from satellite and ground‐based observations, J. Geophys. Res., 110 ( D24 ), 207, doi: 10.1029/2005JD006356.en_US
dc.identifier.citedreferenceChýlek, P., and J. A. Coakley ( 1974 ), Aerosols and climate, Science, 183, 75 – 77.en_US
dc.identifier.citedreferenceChýlek, P., and J. Wong ( 1995 ), Effect of absorbing aerosol on global radiation budget, Geophys. Res. Lett., 22 ( 8 ), 929 – 931.en_US
dc.identifier.citedreferenceChýlek, P., M. K. Dubey, U. Lohmann, V. Ramanathan, Y. J. Kaufman, G. Lesins, J. Hudson, G. Altmann, and S. Olsen ( 2006 ), Aerosol indirect effect over the Indian Ocean, Geophys. Res. Lett., 33, L06806, doi: 10.1029/2005GL025397.en_US
dc.identifier.citedreferenceChýlek, P., B. Johnson, P. A. Damiano, K. C. Taylor, and P. Clement ( 1995 ), Biomass burning record and black carbon in the GISP2 Ice Core, Geophys. Res. Lett., 22 ( 2 ), 89 – 92, doi: 10.1029/94GL02841.en_US
dc.identifier.citedreferenceChýlek, P., G. B. Lesins, G. Videen, J. G. D. Wong, R. G. Pinnick, D. Ngo, and J. D. Klett ( 1996 ), Black carbon and absorption of solar radiation by clouds, J. Geophys. Res., 101 ( D18 ), 23365 – 23371, doi: 10.1029/96JD01901.en_US
dc.identifier.citedreferenceChýlek, P., V. Ramaswamy, A. Ashkin, and J. M. Dziedzic ( 1983a ), Simultaneous determination of refractive‐index and size of spherical dielectric particles from light‐scattering data, Appl. Opt., 22 ( 15 ), 2302 – 2307, doi: 10.1364/AO.22.002302.en_US
dc.identifier.citedreferenceChýlek, P., V. Ramaswamy, and R. J. Cheng ( 1984 ), Effect of graphitic carbon on the albedo of clouds, J. Atmos. Sci., 41 ( 21 ), 3076 – 3084, doi: 10.1175/1520‐0469(1984)041<3076:EOGCOT>2.0.CO;2.en_US
dc.identifier.citedreferenceChýlek, P., V. Ramaswamy, and V. Srivastava ( 1983b ), Albedo of soot‐contaminated snow, J. Geophys. Res., 88 ( C15 ), 10837 – 10843, doi: 10.1029/JC088iC15p10837.en_US
dc.identifier.citedreferenceChýlek, P., V. Srivastava, L. Cahenzli, R. G. Pinnick, R. L. Dod, T. Novakov, T. L. Cook, and B. D. Hinds ( 1987 ), Aerosol and graphitic carbon content of snow, J. Geophys. Res., 92 ( D8 ), 9801 – 9809, doi: 10.1029/JD092iD08p0980.en_US
dc.identifier.citedreferenceClarke, A., and V. Kapustin ( 2010 ), Hemispheric aerosol vertical profiles: Anthropogenic impacts on optical depth and cloud nuclei, Science, 329 ( 5998 ), 1488 – 1492, doi: 10.1126/science.1188838.en_US
dc.identifier.citedreferenceClarke, A. D., and K. J. Noone ( 1985 ), Soot in the Arctic snowpack—A cause for perturbations in radiative transfer, Atmos. Environ., 19 ( 12 ), 2045 – 2053, doi: 10.1016/0004‐6981(85)90113‐1.en_US
dc.identifier.citedreferenceClarke, A. D., et al. ( 2004 ), Size distributions and mixtures of dust and black carbon aerosol in Asian outflow: Physiochemistry and optical properties, J. Geophys. Res., 109, D15S09, doi: 10.1029/2003JD004378.en_US
dc.identifier.citedreferenceClarke, A., et al. ( 2007 ), Biomass burning and pollution aerosol over North America: Organic components and their influence on spectral optical properties and humidification response, J. Geophys. Res., 112, D12s18, doi: 10.1029/2006JD007777.en_US
dc.identifier.citedreferenceCofala, J., M. Amann, Z. Klimont, K. Kupiainen, and L. Hoglund‐Isaksson ( 2007 ), Scenarios of global anthropogenic emissions of air pollutants and methane until 2030, Atmos. Environ., 41 ( 38 ), 8486 – 8499, doi: 10.1016/j.atmosenv.2007.07.010.en_US
dc.identifier.citedreferenceCollins, W. J., R. G. Derwent, C. E. Johnson, and D. S. Stevenson ( 2002 ), The oxidation of organic compounds in the troposphere and their global warming potentials Clim. Chang., 52 ( 4 ), 453 – 479, doi: 10.1023/A:1014221225434.en_US
dc.identifier.citedreferenceCollins, W. D., P. J. Rasch, B. A. Boville, J. J. Hack, J. R. McCaa, D. L. Williamson, B. P. Briegleb, C. M. Bitz, S.‐J. Lin, and M. Zhang ( 2006 ), The formulation and atmospheric simulation of the Community Atmosphere Model Version 3 (CAM3), J. Climate, 19, 2144 – 2161, doi: 10.1175/JCL13760.1.en_US
dc.identifier.citedreferenceCollins, W. J., S. Sitch, and O. Boucher ( 2010 ), How vegetation impacts affect climate metrics for ozone precursors, J. Geophys. Res., 115, D23308, doi: 10.1029/2010JD014187.en_US
dc.identifier.citedreferenceComiso, J. C., C. L. Parkinson, R. Gersten, and L. Stock ( 2008 ), Accelerated decline in the Arctic sea ice cover, Geophys. Res. Lett., 35 ( 1 ), 703, doi: 10.1029/2007GL031972.en_US
dc.identifier.citedreferenceConant, W. C., A. A. Nenes, and J. H. Seinfeld ( 2002 ), Black carbon radiative heating effects on cloud microphysics and implications for the aerosol indirect effect—1. Extended Kohler theory, J. Geophys. Res., 107, 4604, doi: 10.1029/2002jd002094.en_US
dc.identifier.citedreferenceConny, J. M., D. B. Klinedienst, S. A. Wight, and J. L. Paulsen ( 2003 ), Optimizing thermal‐optical methods for measuring atmospheric elemental (black) carbon: A response surface study, Aerosol Sci. Technol., 37 ( 9 ), 703 – 723, doi: 10.1080/02786820300920.en_US
dc.identifier.citedreferenceConway, H., A. Gades, and C. F. Raymond ( 1996 ), Albedo of dirty snow during conditions of melt, Water Resour. Res., 32 ( 6 ), 1713 – 1718.en_US
dc.identifier.citedreferenceCook, J., and E. J. Highwood ( 2004 ), Climate response to tropospheric absorbing aerosols in an intermediate general‐circulation model, Quart J. Roy. Meteor. Soc., 130 ( 596 ), 175 – 191, doi: 10.1256/qj.03.64.en_US
dc.identifier.citedreferenceCooke, W. F., and J. J. N. Wilson ( 1996 ), A global black carbon aerosol model, J. Geophys. Res., 101 ( D14 ), 19395 – 19409.en_US
dc.identifier.citedreferenceCooke, W. F., C. Liousse, H. Cachier, and J. Feichter ( 1999 ), Construction of a 1° × 1° fossil fuel emission data set for carbonaceous aerosol and implementation and radiative impact in the ECHAM4 model, J. Geophys. Res., 104 ( D18 ), 22137 – 22162.en_US
dc.identifier.citedreferenceCooke, W. F., V. Ramaswamy, and P. Kasibhatla ( 2002 ), A general circulation model study of the global carbonaceous aerosol distribution, J. Geophys. Res., 107 ( D16 ), doi: 10.1029/2001JD001274.en_US
dc.identifier.citedreferenceCooke, R. M., A. M. Wilson, J. T. Tuomisto, O. Morales, M. Tainio, and J. S. Evans ( 2007 ), A probabilistic characterization of the relationship between fine particulate matter and mortality: Elicitation of European experts, Environ. Sci. Technol., 41 ( 18 ), 6598 – 6605, doi: 10.1021/es0714078.en_US
dc.identifier.citedreferenceCOP‐15 ( 2009 ), COP‐15, Copenhagen Accord, Report of the Conference of the Parties on Its Fifteenth Session, Held in Copenhagen From 7 to 19 December 2009. Addendum. Part Two: Action Taken by the Conference of the Parties at Its Fifteenth Session, United Nations Framework Convention on Climate Change, http://unfccc.int/meetings/copenhagen_dec_2009/items/5262.php2009, 2009.en_US
dc.identifier.citedreferenceCorbett, J. J., D. A. Lack, J. J. Winebrake, S. Harder, J. A. Silberman, and M. Gold ( 2010 ), Arctic shipping emissions inventories and future scenarios, Atmos. Chem. Phys., 10, 9689 – 9704, doi: 10.5194/acpd‐10‐9689‐2010.en_US
dc.identifier.citedreferenceCorrigan, C. E., G. C. Roberts, M. V. Ramana, D. Kim, and V. Ramanathan ( 2008 ), Capturing vertical profiles of aerosols and black carbon over the Indian Ocean using autonomous unmanned aerial vehicles, Atmos. Chem. Phys., 8 ( 3 ), 737 – 747, doi: 10.5194/acp‐8‐737‐2008.en_US
dc.identifier.citedreferenceCozic, J., S. Mertes, B. Verheggen, D. J. Cziczo, S. J. Gallavardin, S. Walter, U. Baltensperger, and E. Weingartner ( 2008 ), Black carbon enrichment in atmospheric ice particle residuals observed in lower tropospheric mixed phase clouds, J. Geophys. Res., 113 ( D15 ), 209, doi: 10.1029/2007JD009266.en_US
dc.identifier.citedreferenceCrawford, I., et al. ( 2011 ), Studies of propane flame soot acting as heterogeneous ice nuclei in conjunction with single particle soot photometer measurements., Atmos. Chem. Phys., 11 ( 18 ), 9549 – 9561, doi: 10.5194/acp‐11‐9549‐2011.en_US
dc.identifier.citedreferenceCroft, B., U. Lohmann, R. V. Martin, P. Stier, S. Wurzler, J. Feichter, C. Hoose, U. Heikkila, A. van Donkelaar, and S. Ferrachat ( 2010 ), Influences of in‐cloud aerosol scavenging parameterizations on aerosol concentrations and wet deposition in ECHAM5‐HAM, Atmos. Chem. Phys., 10 ( 4 ), 1511 – 1543, doi: 10.5194/acp‐10‐1511‐2010.en_US
dc.identifier.citedreferenceCroft, B., U. Lohmann, and K. von Salzen ( 2005 ), Black carbon ageing in the Canadian Centre for Climate modeling and analysis atmospheric general circulation model, Atmos. Chem. Phys., 5, 1931 – 1949, doi: 10.5194/acp‐5‐1931‐2005.en_US
dc.identifier.citedreferenceCrook, J. A., P. M. Forster, and N. Stuber ( 2011 ), Spatial patterns of modeled climate feedback and contributions to temperature response and polar amplification, J. Climate, 24, 3575 – 3592, doi: 10.1175/2011JCLI3863.1en_US
dc.identifier.citedreferenceCross, E. S., et al. ( 2010 ), Soot particle studies—Instrument inter‐comparison—Project overview, Aerosol Sci. Technol., 44 ( 8 ), 592 – 611, Pen_US
dc.identifier.citedreferenceCziczo, D. J., P. J. DeMott, S. D. Brooks, A. J. Prenni, D. S. Thomson, D. Baumgardner, J. C. Wilson, S. M. Kreidenweis, and D. M. Murphy ( 2004a ), Observations of organic species and atmospheric ice formation, Geophys. Res. Lett., 31 ( 12 ), 116, doi: 10.1029/2004GL019822.en_US
dc.identifier.citedreferenceCziczo, D. J., D. M. Murphy, P. K. Hudson, and D. S. Thomson ( 2004b ), Single particle measurements of the chemical composition of cirrus ice residue during CRYSTAL‐FACE, J. Geophys. Res., 109 ( D4 ), 201, doi: 10.1029/2003JD004032.en_US
dc.identifier.citedreferenceCziczo, D. J., et al. ( 2009 ), Inadvertent climate modification due to anthropogenic lead, Nature Geosci., 2 ( 5 ), 333 – 336, doi: 10.1038/ngeo499.en_US
dc.identifier.citedreferenceDarby, D. A., L. H. Burckle, and D. L. Clark ( 1974 ), Airborn dust on Arctic pack ice, its composition and fallout rate, Earth Planet Sci.Lett, 24 ( 2 ), 166 – 172.en_US
dc.identifier.citedreferenceDe Angelis, M., J. P. Steffensen, M. Legrand, H. Clausen, and C. Hammer ( 1997 ), Primary aerosol (sea salt and soil dust) deposited in Greenland ice during the last climatic cycle: Comparison with east Antarctic records, J. Geophys. Res., 102 ( C12 ), 26681 – 26698.en_US
dc.identifier.citedreferenceDeMott, P. J. ( 1990 ), An exploratory‐study of ice nucleation by soot aerosols, J. Appl. Meteorol., 29 ( 10 ), 1072 – 1079.en_US
dc.identifier.citedreferenceDeMott, P. J., Y. Chen, S. M. Kreidenweis, D. C. Rogers, and D. E. Sherman ( 1999 ), Ice formation by black carbon particles, Geophys. Res. Lett., 26, 2429 – 2432, doi: 10.1029/1999GL900580.en_US
dc.identifier.citedreferenceDeMott, P. J., D. J. Cziczo, A. J. Prenni, D. M. Murphy, S. M. Kreidenweis, D. S. Thomson, R. Borys, and D. C. Rogers ( 2003 ), Measurements of the concentration and composition of nuclei for cirrus formation, P. Natl. Acad. Sci. USA, 100 ( 25 ), 14655 – 14660, doi: 10.1073/pnas.2532677100.en_US
dc.identifier.citedreferenceDeMott, P. J., M. D. Petters, A. J. Prenni, C. M. Carrico, S. M. Kreidenweis, J. L. Collett, and H. Moosmüller ( 2009a ), Ice nucleation behavior of biomass combustion particles at cirrus temperatures, J. Geophys. Res., 114 ( D16 ), 205, doi: 10.1029/2009JD012036.en_US
dc.identifier.citedreferenceDeMott, P. J., A. J. Prenni, Z. Liu, S. M. Kreidenweis, M. D. Petters, C. H. Twohy, M. S. Richardson, T. Eidhammer, and D. C. Rogers ( 2010 ), Predicting global atmospheric ice nuclei distributions and their impact on climate, P. Natl. Acad. Sci. USA, 107, 11217 – 11222, doi: 10.1073/pnas.0910818107.en_US
dc.identifier.citedreferenceDeMott, P. J., K. Sassen, M. R. Poellot, D. Baumgardner, D. C. Rogers, S. D. Brooks, A. J. Prenni, and S. M. Kreidenweis ( 2009b ), African dust aerosols as atmospheric ice nuclei, Geophys. Res. Lett., 36 ( L07 ), 808, doi: 10.1029/2009GL037639.en_US
dc.identifier.citedreferenceDenman, K. L., et al. ( 2007 ), Couplings between changes in the climate system and biogeochemistry, in Climate Change 2007: The Physical Science Basis, edited by S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tigor and H. L. Miller, 129 – 234 pp., Cambridge University Press, Cambridge, United Kingdom.en_US
dc.identifier.citedreferenceDentener, F., et al. ( 2006 ), Emissions of primary aerosol and precursor gases in the years 2000 and 1750: Prescribed data‐sets for AeroCom, Atmos. Chem. Phys., 6, 4321 – 4344, doi: 10.5194/acp‐6‐4321‐2006.en_US
dc.identifier.citedreferenceDéry, S. J., and R. D. Brown ( 2007 ), Recent northern hemisphere snow cover extent trends and implications for the snow‐albedo feedback, Geophys. Res. Lett., 34 ( 22 ), L22504, doi: 10.1029/2007GL031474.en_US
dc.identifier.citedreferenceDeuzé, J. L., et al. ( 2001 ), Remote sensing of aerosol over land surfaces from POLDER/ADEOS‐1 polarized measurements, J. Geophys. Res., 106, 4913 – 4926, doi: 10.1029/2000JD900364.en_US
dc.identifier.citedreferenceDeville, R. E. L., N. Riemer, and M. West ( 2011 ), Weighted Flow Algorithms (WFA) for stochastic particle coagulation, J. Comput. Phys., 230 ( 23 ), 8427 – 8451, doi: 10.1016/j.jcp.2011.07.027.en_US
dc.identifier.citedreferenceDickerson, R. R., M. O. Andreae, T. Campos, O. L. Mayol‐Bracero, C. Neusuess, and D. G. Streets ( 2002 ), Analysis of black carbon and carbon monoxide observed over the Indian Ocean: Implications for emissions and photochemistry, J. Geophys. Res., 107 ( D19 ), 8017, doi: 10.1029/2001JD000501.en_US
dc.identifier.citedreferenceDiehl, K., and S. K. Mitra ( 1998 ), A laboratory study of the effects of a kerosene‐burner exhaust on ice nucleation and the evaporation rate of ice crystals, Atmos. Environ., 32 ( 18 ), 3145 – 3151.en_US
dc.identifier.citedreferenceDiehl, K., M. Simmel, and S. Wurzler ( 2006 ), Numerical sensitivity studies on the impact of aerosol properties and drop freezing modes on the glaciation, microphysics, and dynamics of clouds, J. Geophys. Res., 111 ( D07 ), 202, doi: 10.1029/2005JD005884.en_US
dc.identifier.citedreferenceDippel, B., H. Jander, and J. Heintzenberg ( 1999 ), NIR FT Raman spectroscopic study of flame soot, Phys. Chem. Chem. Phys., 1, 4707 – 4712.en_US
dc.identifier.citedreferenceDobbins, R. A., and C. M. Megaridis ( 1991 ), Absorption and scattering of light by polydisperse aggregates, Appl. Opt., 30 ( 33 ), 4747 – 4754.en_US
dc.identifier.citedreferenceDOE, U. S. Department of Energy ( 2010 ), Final Rule Technical Support Document: Energy Efficiency Program for Commercial and Industrial Equipment: Small Electric Motors, Appendix 15A. Social Cost of Carbon for Regulatory Impact Analysis under Executive Order 12866 13. http://www.epa.gov/oms/climate/regulations/scc‐tsd.pdf.en_US
dc.identifier.citedreferenceDoherty, S. J., P. K. Quinn, A. Jefferson, C. M. Carrico, T. L. Anderson, and D. Hegg ( 2005 ), A comparison and summary of aerosol optical properties as observed in situ from aircraft, ship, and land during ACE‐Asia, J. Geophys. Res., 110 ( D4 ), 201, doi: 10.1029/2004JD004964.en_US
dc.identifier.citedreferenceDoherty, S. J., S. G. Warren, T. C. Grenfell, A. D. Clarke, and R. E. Brandt ( 2010 ), Light‐absorbing impurities in Arctic snow, Atmos. Chem. Phys., 10 ( 23 ), 11647 – 11680, doi: 10.5194/acp‐10‐11647‐2010.en_US
dc.identifier.citedreferenceDoherty, S. J., T. C. Grenfell, S. Forsström, D. L. Hegg, S. G. Warren, and R. Brandt ( 2013 ), Observed vertical redistribution of black carbon and other light-absorbing particles in melting snow. J. Geophys. Res., 118, doi: 10.1029/2012JD018956.en_US
dc.identifier.citedreferenceDonahue, N. M., A. L. Robinson, C. O. Stanier, and S. N. Pandis ( 2006 ), Coupled partitioning, dilution, and chemical aging of semivolatile organics, Environ. Sci. Technol., 40 ( 8 ), 2635 – 2643, doi: 10.1021/es052297c.en_US
dc.identifier.citedreferenceDraine, B. T., and P. J. Flatau ( 1994 ), Discrete‐dipole approximation for scattering calculations, J. Opt. Soc. Am. A, 11 ( 4 ), 1491 – 1499.en_US
dc.identifier.citedreferenceDubovik, O., and M. D. King ( 2000 ), A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements, J. Geophys. Res., 105 ( D16 ), 20673 – 20696.en_US
dc.identifier.citedreferenceDubovik, O., B. Holben, T. F. Eck, A. Smirnov, Y. J. Kaufman, M. D. King, D. Tanre, and I. Slutsker ( 2002 ), Variability of absorption and optical properties of key aerosol types observed in worldwide locations, J. Atmos. Sci., 59 ( 3 ), 590 – 608.en_US
dc.identifier.citedreferenceDubovik, O., T. Lapyonok, Y. J. Kaufman, M. Chin, P. Ginoux, R. A. Kahn, and A. Sinyuk ( 2008 ), Retrieving global aerosol sources from satellites using inverse modeling, Atmos. Chem. Phys., 8 ( 2 ), 209 – 250, doi: 10.5194/acp‐8‐209‐2008.en_US
dc.identifier.citedreferenceDubovik, O., A. Smirnov, B. N. Holben, M. D. King, Y. J. Kaufman, T. F. Eck, and I. Slutsker ( 2000 ), Accuracy assessment of aerosol optical properties retrieved from Aerosol Robotic Network (AERONET) Sun and sky radiance measurements, J. Geophys. Res., 105 ( D8 ), 9791 – 9806.en_US
dc.identifier.citedreferenceDusek, U., G. P. Reischl, and R. Hitzenberger ( 2006a ), CCN activation of pure and coated carbon black particles, Environ. Sci. Technol., 40 ( 4 ), 1223 – 1230.en_US
dc.identifier.citedreferenceDusek, U., et al. ( 2006b ), Size matters more than chemistry for cloud‐nucleating ability of aerosol particles, Science, 312 ( 5778 ), 1375 – 1378.en_US
dc.identifier.citedreferenceDymarska, M., B. J. Murray, L. M. Sun, M. L. Eastwood, D. A. Knopf, and A. K. Bertram ( 2006 ), Deposition ice nucleation on soot at temperatures relevant for the lower troposphere, J. Geophys. Res., 111 ( D04 ), 204, doi: 10.1029/2005JD006627.en_US
dc.identifier.citedreferenceEaster, R. C., S. J. Ghan, Y. Zhang, R. D. Saylor, E. G. Chapman, N. S. Laulainen, H. Abdul‐Razzak, L. R. Leung, X. D. Bian, and R. A. Zaveri ( 2004 ), MIRAGE: Model description and evaluation of aerosols and trace gases, J. Geophys. Res., 109 ( D20 ), 210, doi: 10.1029/2004JD004571.en_US
dc.identifier.citedreferenceEck, T. F., et al. ( 2003 ), Variability of biomass burning aerosol optical characteristics in southern Africa during the SAFARI 2000 dry season campaign and a comparison of single scattering albedo estimates from radiometric measurements, J. Geophys. Res., 108 ( D13 ), 8477, doi: 10.1029/2002JD002321.en_US
dc.identifier.citedreferenceEkman, A. M. L., A. Engstrom, and C. Wang ( 2007 ), The effect of aerosol composition and concentration on the development and anvil properties of a continental deep convective cloud, Quart J. Roy. Meteor. Soc., 133 ( 627 ), 1439 – 1452, doi: 10.1002/qj.108.en_US
dc.identifier.citedreferenceEleftheriadis, K., S. Vratolis, and S. Nyeki ( 2009 ), Aerosol black carbon in the European Arctic: Measurements at Zeppelin station, Ny‐Ålesund, Svalbard from 1998–2007, Geophys. Res. Lett., 36, L0809, doi: 10.1029/2008GL035741.en_US
dc.identifier.citedreferenceElvidge, C. D., K. Baugh, B. Tuttle, D. Ziskin, T. Ghoshet, M. Zhizhin, and D. Pack ( 2009 ), Improving satellite data estimation of gas flaring volumes: Year two final report to the GGFR.en_US
dc.identifier.citedreferenceEngelbrecht, J. P., L. Swanepoel, J. C. Chow, J. G. Watson, and R. T. Egami ( 2002 ), The comparison of source contributions from residential coal and low‐smoke fuels, using CMB modeling, Environ. Sci. Technol., 5 ( 2 ), 157 – 167.en_US
dc.identifier.citedreferenceEPA ( 1992 ), Particulate Matter Best Available Control Measure Technical Guidance Documents for Prescribed Burning and Fugitive Dust, U. S. Environmental Protection Agency, Research Triangle Park, NC.en_US
dc.identifier.citedreferenceEPA ( 1996 ), Compilation of Air Pollution Emission Factors, Vol. 1, Stationary Point and Area Sources, AP42, Fifth ed., U.S. Environmental Protection Agency, Washington, DC.en_US
dc.identifier.citedreferenceEPA ( 2002 ), A Comprehensive Analysis of Biodiesel Impacts on Exhaust Emissions, U. S. Environmental Protection Agency, Draft Technical Report, Ann Arbor, MI.en_US
dc.identifier.citedreferenceEPA ( 2005 ), AirControlNET Version 4.1 Documentation Report, Prepared by E.H. Pechan & Associates Inc., Springfield, VA.en_US
dc.identifier.citedreferenceEPA ( 2008 ), Emission Factor Documentation for AP‐42: Section 12.2, Coke Production. Finalized by RTI International for U.S. Environmental Protection Agency., Research Triangle Park, NC.en_US
dc.identifier.citedreferenceEPA ( 2009a ), Integrated Science Assessment for Particulate Matter, U. S. Environmental Protection Agency, Washington, DC.en_US
dc.identifier.citedreferenceEPA ( 2009b ), Available from http://www.epa.gov/ne/eco/diesel/idling.html.en_US
dc.identifier.citedreferenceEPA ( 2012 ), Report to Congress on Black Carbon, US Environmental Protection Agency, Washington, DC, in preparation.en_US
dc.identifier.citedreferenceEssery, R. ( 1997 ), Modelling fluxes of momentum, sensible heat and latent heat over heterogeneous snow cover, Quart J. Roy. Meteor. Soc., 123 ( 543 ), 1867 – 1883.en_US
dc.identifier.citedreferenceEtyemezian, V., M. Tesfaye, A. Yimer, J. C. Chow, D. Mesfin, T. Nega, G. Nikolich, J. G. Watson, and M. Wondmagegn ( 2005 ), Results from a pilot‐scale air quality study in Addis Ababa, Ethiopia, Atmos. Environ., 39 ( 40 ), 7849 – 7860, doi: 10.1016/j.atmosenv.2005.08.033.en_US
dc.identifier.citedreferenceEyring, V., I. S. A. Isaksen, T. Berntsen, W. J. Collins, J. J. Corbett, O. Endresen, R. G. Grainger, J. Moldanova, H. Schlager, and D. S. Stevenson ( 2010 ), Transport impacts on atmosphere and climate: Shipping, Atmos. Environ. 44, 4735 – 4771, doi: 10.1016/j.atmosenv.2009.04.059.en_US
dc.identifier.citedreferenceFan, J. W., R. Y. Zhang, W. K. Tao, and K. I. Mohr ( 2008 ), Effects of aerosol optical properties on deep convective clouds and radiative forcing, J. Geophys. Res., 113 ( D08 ), 209, doi: 10.1029/2007JD009257.en_US
dc.identifier.citedreferenceFann, N., C. Fulcher, and B. Hubbell ( 2009 ), The influence of location, source, and emission type in estimates of the human health benefits of reducing a ton of air pollution, Air Quality, Atmosphere & Health, 2 ( 3 ), doi: 10.1007/s11869‐009‐0044‐0.en_US
dc.identifier.citedreferenceFederal Law Gazette ( 2010 ), First Regulation Implementing the Federal Pollution Control Act, Ordinance on Small and Medium‐Sized Combustion Plants—1. BimSchV, 26 January 2010, Federal Law Gazette, Part I, No. 4, Bonn, 2010.en_US
dc.identifier.citedreferenceFeingold, G., H. L. Jiang, and J. Y. Harrington ( 2005 ), On smoke suppression of clouds in Amazonia, Geophys. Res. Lett., 32 ( 2 ), 804, doi: 10.1029/2004GL021369.en_US
dc.identifier.citedreferenceFerek, R. J., D. A. Hegg, P. V. Hobbs, P. Durkee, and K. Nielsen ( 1998 ), Measurements of ship‐induced tracks in clouds off the Washington coast, J. Geophys. Res., 103 ( D18 ), 23199 – 23206.en_US
dc.identifier.citedreferenceFernandes, S. D., N. M. Trautmann, and D. G. Streets ( 2007 ), Global biofuel use, 1850–2000, Global Biogeochem. Cycles, 21 ( 2 ), doi: 10.1029/2006GB002836.en_US
dc.identifier.citedreferenceFetterer, F., and N. Untersteiner ( 1998 ), Observations of melt ponds on Arctic sea ice, J. Geophys. Res., 103 ( C11 ), 24821 – 24835, doi: 10.1029/98JC02034.en_US
dc.identifier.citedreferenceFialho, P., M. C. Freitas, F. Barata, B. Vieira, A. D. A. Hansen, and R. E. Honrath ( 2006 ), The Aethalometer calibration and determination of iron concentration in dust aerosols, J. Aerosol. Sci., 37 ( 11 ), 1497 – 1506, doi: 10.1016/j.jaerosci.2006.03.002.en_US
dc.identifier.citedreferenceFlanner, M. G., and C. S. Zender ( 2006 ), Linking snowpack microphysics and albedo evolution, J. Geophys. Res., 111 ( D12 ), 208, doi: 10.1029/2005JD006834.en_US
dc.identifier.citedreferenceFlanner, M. G., K. M. Shell, M. Barlage, D. K. Perovich, and M. A. Tschudi ( 2011 ), Radiative forcing and albedo feedback from the Northern Hemisphere cryosphere between 1979 and 2008, Nature Geosci., 4, 151 – 155, doi: 10.1038/ngeo1062.en_US
dc.identifier.citedreferenceFlanner, M. G., C. S. Zender, P. G. Hess, N. M. Mahowald, T. H. Painter, V. Ramanathan, and P. J. Rasch ( 2009 ), Springtime warming and reduced snow cover from carbonaceous particles, Atmos. Chem. Phys., 9 ( 7 ), 2481 – 2497, doi: 10.5194/acp‐9‐2481‐2009.en_US
dc.identifier.citedreferenceFlanner, M. G., C. S. Zender, J. T. Randerson, and P. J. Rasch ( 2007 ), Present‐day climate forcing and response from black carbon in snow, J. Geophys. Res., 112 ( D11 ), 202, doi: 10.1029/2006JD008003.en_US
dc.identifier.citedreferenceFletcher, J. O. ( 1968 ), The influence of the Arctic pack ice on climate, Meteor. Monogr., 8 ( 30 ), 93 – 99.en_US
dc.identifier.citedreferenceFornea, A. P., S. D. Brooks, J. B. Dooley, and A. Saha ( 2009 ), Heterogeneous freezing of ice on atmospheric aerosols containing ash, soot, and soil, J. Geophys. Res., 114, D13201, doi: 10.1029/2009JD011958.en_US
dc.identifier.citedreferenceForsström, S., J. Ström, C. A. Pedersen, E. Isaksson, and S. Gerland ( 2009 ), Elemental carbon distribution in Svalbard snow, J. Geophys. Res., 114 ( D19 ), 112, doi: 10.1029/2008JD011480.en_US
dc.identifier.citedreferenceForster, P. M., M. Blackburn, R. Glover, and K. P. Shine ( 2000 ), An examination of climate sensitivity for idealised climate change experiments in an intermediate general circulation model, Climate Dyn., 16 ( 10–11 ), 833 – 849.en_US
dc.identifier.citedreferenceForster, P., et al. ( 2007 ), Changes in atmospheric constituents and in radiative forcing, in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change edited by S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, and H. L. Miller, Cambridge University Press, New York, NY.en_US
dc.identifier.citedreferenceFreitas, S. R., K. M. Longo, M. Diasb, P. L. S. Diasb, R. Chatfield, E. Prins, P. Artaxo, G. A. Grell, and F. S. Recuero ( 2005 ), Monitoring the transport of biomass burning emissions in South America, Environ. Fluid Mech., 5 ( 1‐2 ), 135 – 167.en_US
dc.identifier.citedreferenceFriedlander, S. K. ( 1973 ), Chemical element balances and identification of air‐pollution sources, Environ. Sci. Technol., 7 ( 3 ), 235 – 240.en_US
dc.identifier.citedreferenceFriedman, B., G. Kulkarni, J. Beránek, A. Zelenyuk, J. A. Thornton, and D. J. Cziczo ( 2011 ), Ice nucleation and droplet formation by bare and coated soot particles, J. Geophys. Res., 116, D17203, doi: 10.1029/2011JD015999.en_US
dc.identifier.citedreferenceFroyd, K. D., D. M. Murphy, T. J. Sanford, D. S. Thomson, J. C. Wilson, L. Pfister, and L. Lait ( 2009 ), Aerosol composition of the tropical upper troposphere, Atmos. Chem. Phys., 9 ( 13 ), 4363 – 4385.en_US
dc.identifier.citedreferenceFuglestvedt, J. S., T. K. Berntsen, O. Godal, R. Sausen, K. P. Shine, and T. Skodvin ( 2003 ), Metrics of climate change: Assessing radiative forcing and emission indices, Clim. Chang., 58 ( 3 ), 267 – 331.en_US
dc.identifier.citedreferenceFuglestvedt, J. S., T. Berntsen, O. Godal, and T. Skodvin ( 2000 ), Climate implications of GWP based reductions in greenhouse gas emissions, Geophys. Res. Lett., 27, 409 – 412.en_US
dc.identifier.citedreferenceFuglestvedt, J. S., T. Berntsen, G. Myhre, K. Rypdal, and R. B. Skeie ( 2008 ), Climate forcing from the transport sectors, P. Natl. Acad. Sci. USA, 105 ( 2 ), 454 – 458.en_US
dc.identifier.citedreferenceFuglestvedt, J. S., K. P. Shine, T. Berntsen, J. Cook, D. S. Lee, A. Stenke, R. B. Skeie, G. J. M. Velders, and I. A. Waitz ( 2010 ), Transport impacts on atmosphere and climate: Metrics, Atmos. Environ., 44 ( 37 ), 4648 – 4677, doi: 10.1016/j.atmosenv.2009.04.044.en_US
dc.identifier.citedreferenceFuller, K. A. ( 1995 ), Scattering and absorption cross sections of compounded spheres. III. Spheres containing arbitrarily located spherical inhomogeneities, J. Opt. Soc. Am. A, 12 ( 5 ), 893 – 904, doi: 10.1364/JOSA.A.12.000893.en_US
dc.identifier.citedreferenceFuller, K. A., W. C. Malm, and S. M. Kreidenweis ( 1999 ), Effects of mixing on extinction by carbonaceous particles, J. Geophys. Res., 104 ( D13 ), 15941 – 15954, doi: 10.1029/1998JD100069.en_US
dc.identifier.citedreferenceFung, K. ( 1990 ), Particulate carbon speciation by MnO 2 oxidation, Aerosol Sci. Technol., 12, 122 – 127.en_US
dc.identifier.citedreferenceGarrett, T. J., and C. Zhao ( 2006 ), Increased Arctic cloud longwave emissivity associated with pollution from mid‐latitudes, Nature, 440, 787 – 789, doi: 10.1038/nature04636.en_US
dc.identifier.citedreferenceGarrett, T. J., C. Zhao, and P. C. Novelli ( 2010 ), Assessing the relative contributions of transport efficiency and scavenging to seasonal variability in Arctic aerosol, Tellus B, 62 ( 3 ), 190 – 196, doi: 10.1111/j.1600‐0889.2010.00453.x.en_US
dc.identifier.citedreferenceGayet, J. F., F. Auriol, A. Minikin, J. Strom, M. Seifert, R. Krejci, A. Petzold, G. Febvre, and U. Schumann ( 2002 ), Quantitative measurement of the microphysical and optical properties of cirrus clouds with four different in situ probes: Evidence of small ice crystals, Geophys. Res. Lett., 29 ( 24 ), 2230, doi: 10.1029/2001GL014342.en_US
dc.identifier.citedreferenceGelencsér, A. ( 2005 ), Carbonaceous Aerosol, 350 pp, Springer, Dordrecht, The Netherlands.en_US
dc.identifier.citedreferenceGettelman, A., X. Liu, D. Barahona, U. Lohmann, and C. Chen ( 2012 ), Climate impacts of ice nucleation, J. Geophys. Res., 117, D20201, doi: 10.1029/2012JD017950.en_US
dc.identifier.citedreferenceGhan, S. J., G. Guzman, and H. Abdul‐Razzak ( 1998 ), Competition between sea salt and sulfate particles as cloud condensation nuclei, J. Atmos. Sci., 55 ( 22 ), 3340 – 3347, doi: 10.1175/1520‐0469(19980055<3340:CBSSAS>2.0.CO;2.en_US
dc.identifier.citedreferenceGhan, S. J., X. Liu, R. C. Easter, R. Zaveri, P. J. Rasch, J.‐H. Yoon, and B. Eaton ( 2012 ), Toward a minimal representation of aerosols in climate models: Comparative decomposition of aerosol direct, semidirect, and indirect radiative forcing, J. Climate, 25 ( 19 ), 6461 – 6476, doi: http://dx.doi.org/10.1175/ JCLI‐D‐11‐00650.1.en_US
dc.identifier.citedreferenceGiglio, L., T. Loboda, D. P. Roy, B. Quayle, and C. O. Justice ( 2009 ), An active‐fire based burned area mapping algorithm for the MODIS sensor, Remote Sens. Environ., 113 ( 2 ), 408 – 420, doi: 10.1016/j.rse.2008.10.006.en_US
dc.identifier.citedreferenceGildemeister, A. E., P. K. Hopke, and E. Kim ( 2007 ), Sources of fine urban particulate matter in Detroit, MI, Chemosphere, 69 ( 7 ), 1064 – 1074, doi: 10.1016/j.chemosphere.2007.04.027.en_US
dc.identifier.citedreferenceGillett, N. P., and H. D. Matthews ( 2010 ), Accounting for carbon cycle feedbacks in a comparison of the global warming effects of greenhouse gases, Environ. Res. Lett., 5, 034011, doi: 10.1088/1748‐9326/5/3/034011.en_US
dc.identifier.citedreferenceGirard, E., J. P. Blanchet, and Y. Dubois ( 2005 ), Effects of Arctic sulphuric acid aerosols on wintertime low‐level atmospheric ice crystals, humidity and temperature at Alert, Nunavut, Atmos. Res., 73 ( 1–2 ), 131 – 148, doi: 10.1016/j.atmosres.2004.08.002.en_US
dc.identifier.citedreferenceGloersen, P., W. J. Campbell, D. J. Cavalieri, J. C. Comiso, and C. L. Parkinson ( 1992 ), Arctic and Antarctic Sea‐Ice, 1978–1987: Satellite Passive‐Microwave Observations and Analysis NASA Publication, SP‐511, 290 pp., NASA, Washington, DC.en_US
dc.identifier.citedreferenceGoldammer, J. G., and B. Seibert ( 1990 ), in Fire in the Tropical Biota. Ecosystem Processes and Global Challenges edited by J. G. Goldammer, 11 – 31 pp., Springer‐Verlag, Berlin‐Heidelberg‐New York, NY.en_US
dc.identifier.citedreferenceGong, S. L., T. L. Zhao, S. Sharma, D. Toom‐Sauntry, D. Lavoue, X. B. Zhang, R. Leaitch, and L. A. Barrie ( 2010 ), Identification of trends and inter‐annual variability of sulphate and black carbon in the Canadian High Arctic: 1981 to 2007, J. Geophys. Res., 115, D07305, doi: 10.1029/2009JD012943.en_US
dc.identifier.citedreferenceGotschi, T., et al. ( 2005 ), Elemental composition and reflectance of ambient fine particles at 21 European locations, Atmos. Environ., 39 ( 32 ), 5947 – 5958, doi: 10.1016/j.atmonsenv.2005.06.049.en_US
dc.identifier.citedreferenceGraber, E. R., and Y. Rudich ( 2006 ), Atmospheric HULIS: How humic‐like are they? A comprehensive and critical review, Atmos. Chem. Phys., 6, 729 – 753, doi: 10.5194/acp‐6‐729‐2006.en_US
dc.identifier.citedreferenceGrahame, T. J., and R. B. Schlesinger ( 2007 ), Health effects of airborne particulate matter: Do we know enough to consider regulating specific particle types or sources?, Inhal. Toxicol., 19 ( 6–7 ), 457 – 481, doi: 10.1080/08958370701382220.en_US
dc.identifier.citedreferenceGranier, C., U. Niemeier, J. H. Jungclaus, L. Emmons, P. Hess, J. F. Lamarque, S. Walters, and G. P. Brasseur ( 2006 ), Ozone pollution from future ship traffic in the Arctic northern passages, Geophys. Res. Lett., 33 ( 13 ), 807, doi: 10.1029/2006GL026180.en_US
dc.identifier.citedreferenceGraßl, H. ( 1975 ), Albedo reduction and radiative heating of clouds by absorbing aerosol particles, Cont. Atmos. Phys., 48, 199 – 210.en_US
dc.identifier.citedreferenceGreentech ( 2011 ), Monitoring of Brick Kilns and Strategies for Cleaner Brick Production in India, Shakti Sustainable Energy, Greentech Knowledge Solutions, New Delhi, India.en_US
dc.identifier.citedreferenceGregory, J. M., W. J. Ingram, M. A. Palmer, G. S. Jones, P. A. Stott, R. B. Thorpe, J. A. Lowe, T. C. Johns, and K. D. Williams ( 2004 ), A new method for diagnosing radiative forcing and climate sensitivity, Geophys. Res. Lett., 31 ( 3 ), 205, doi: 10.1029/2003GL018747.en_US
dc.identifier.citedreferenceGrenfell, T. C., S. J. Doherty, A. D. Clarke, and S. G. Warren ( 2011 ), Light absorption by particulate impurities in snow and ice determined by spectrophotometric analysis of filters, Appl. Opt., 50 ( 14 ), 2037 – 2048.en_US
dc.identifier.citedreferenceGrenfell, T. C., S. P. Neshyba, and S. G. Warren ( 2005 ), Representation of a nonspherical ice particle by a collection of independent spheres for scattering and absorption of radiation: 3. Hollow columns and plates, J. Geophys. Res., 110 ( D17 ), 203, doi: 10.1029/2005JD005811.en_US
dc.identifier.citedreferenceGroblicki, P. J., G. T. Wolff, and R. J. Countess ( 1981 ), Visibility‐reducing species in the Denver “brown cloud”—I. Relationships between extinction and chemical composition, Atmos. Environ., 15 ( 12 ), 2473 – 2484.en_US
dc.identifier.citedreferenceGuazzotti, S. A., et al. ( 2003 ), Characterization of carbonaceous aerosols outflow from India and Arabia: Biomass/biofuel burning and fossil fuel combustion, J. Geophys. Res., 108 ( D15 ), 4485, doi: 10.1029/2002JD003277.en_US
dc.identifier.citedreferenceGuenther, A., T. Karl, P. Harley, C. Wiedinmyer, P. I. Palmer, and C. Geron ( 2006 ), Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature), Atmos. Chem. Phys., 6, 3181 – 3210.en_US
dc.identifier.citedreferenceGundel, L. A., R. L. Dod, H. Rosen, and T. Novakov ( 1984 ), The relationship between optical attenuation and black carbon concentration for ambient and source particles, Sci. Total Environ., 36, 197 – 202.en_US
dc.identifier.citedreferenceGustafsson, O., M. Krusa, Z. Zencak, R. J. Sheesley, L. Granat, E. Engstrom, P. S. Praveen, P. S. P. Rao, C. Leck, and H. Rodhe ( 2009 ), Brown clouds over South Asia: Biomass or fossil fuel combustion?, Science, 323 ( 5913 ), 495 – 498, doi: 10.1126/science.1164857.en_US
dc.identifier.citedreferenceGuttikunda, S. K., and P. Jawahar ( 2012 ), Application of SIM‐air modeling tools to assess air quality in Indian cities, Atmos. Environ., 62, 551 – 561, http://dx.doi.org/10.1016/j.atmosenv.2012.08.074.en_US
dc.identifier.citedreferenceHaag, W., B. Karcher, J. Strom, A. Minikin, U. Lohmann, J. Ovarlez, and A. Stohl ( 2003 ), Freezing thresholds and cirrus cloud formation mechanisms inferred from in situ measurements of relative humidity, Atmos. Chem. Phys., 3 ( 5 ), 1791 – 1806, doi: 10.5194/acp‐3‐1791‐2003.en_US
dc.identifier.citedreferenceHadley, O. L., C. E. Corrigan, T. W. Kirchstetter, S. S. Cliff, and V. Ramanathan ( 2010 ), Measured black carbon deposition on the Sierra Nevada snow pack and implication for snow pack retreat, Atmos. Chem. Phys., 10, 7505 – 7513, doi: 10.5194/acpd‐10‐7505‐2010.en_US
dc.identifier.citedreferenceHaeberli, W. ( 1977 ), Sahara dust in the Alps—A short review, Z. Gletscher. Glazialgeol., 13, 206 – 208.en_US
dc.identifier.citedreferenceHagler, G. S. W., M. H. Bergin, E. A. Smith, and J. E. Dibb ( 2007a ), A summer time series of particulate carbon in the air and snow at Summit, Greenland, J. Geophys. Res., 112 ( D21 ), 309, doi: 10.1029/2007JD008993.en_US
dc.identifier.citedreferenceHagler, G. S. W., M. H. Bergin, E. A. Smith, J. E. Dibb, C. Anderson, and E. J. Steig ( 2007b ), Particulate and water‐soluble carbon measured in recent snow at Summit, Greenland, Geophys. Res. Lett., 34 ( 16 ), L16505, doi: 10.1029/2007GL030110.en_US
dc.identifier.citedreferenceHakami, A., D. K. Henze, J. H. Seinfeld, T. Chai, Y. Tang, G. R. Carmichael, and A. Sandu ( 2005 ), Adjoint inverse modeling of black carbon during the Asian Pacific Regional Aerosol Characterization Experiment, J. Geophys. Res., 110 ( D14 ), 301, doi:10.11029/12004JD005671.en_US
dc.identifier.citedreferenceHall, A., and X. Qu ( 2006 ), Using the current seasonal cycle to constrain snow albedo feedback in future climate change, Geophys. Res. Lett., 33 ( 3 ), L03502, doi: 10.1029/2005GL025127.en_US
dc.identifier.citedreferenceHallberg, A., J. A. Ogren, K. J. Noone, K. Okada, J. Heintzenberg, and I. B. Svenningson ( 1994 ), The influence of aerosol particle composition on cloud droplet formation, J. Atmos. Chem., 19, 153 – 171.en_US
dc.identifier.citedreferenceHallett, J., J. G. Hudson, and C. F. Rogers ( 1989 ), Characterization of combustion aerosols for haze and cloud formation, Aerosol Sci. Technol., 10, 70 – 83.en_US
dc.identifier.citedreferenceHanna, R., E. Duflo, and M. Greenstone ( 2012 ), Up in Smoke: The Influence of Household Behavior on the Long-Run Impact of Improved Cooking Stoves, Massachusetts Institute of Technology, Department of Economics Working Paper No. 12-10, Social Science Research Network, http://ssrn.com/abstract=2039004.en_US
dc.identifier.citedreferenceHansen, J., and L. Nazarenko ( 2004 ), Soot climate forcing via snow and ice albedos, P. Natl. Acad. Sci. USA, 101 ( 2 ), 423 – 428, doi: 10.1073/pnas.2237157100.en_US
dc.identifier.citedreferenceHansen, A. D. A., H. Rosen, and T. Novakov ( 1982 ), Real‐time measurement of the absorption coefficient of aerosol particles, Appl. Opt., 21 ( 17 ), 3060 – 3062.en_US
dc.identifier.citedreferenceHansen, J., M. Sato, P. Kharecha, G. Russell, D. W. Lea, and M. Siddall ( 2007 ), Climate change and trace gases, Philos. Trans. R. Soc. A—Math. Phys. Eng. Sci., 365 ( 1856 ), 1925 – 1954, doi: 10.1098/rsta.2007.2052.en_US
dc.identifier.citedreferenceHansen, J., M. Sato, and R. Ruedy ( 1997 ), Radiative forcing and climate response, J. Geophys. Res., 102 ( D6 ), 6831 – 6864.en_US
dc.identifier.citedreferenceHansen, J. E., M. Sato, R. Ruedy, A. Lacis, and V. Oinas ( 2000 ), Global warming in the twenty‐first century: An alternative scenario, P. Natl. Acad. Sci. USA, 97 ( 18 ), 9875 – 9880.en_US
dc.identifier.citedreferenceHansen, J., et al. ( 2005 ), Efficacy of climate forcings, J. Geophys. Res., 110 ( D18 ), D18104, doi: 10.1029/2005JD005776.en_US
dc.identifier.citedreferenceHaynes, B. S., and H. G. Wagner ( 1981 ), Soot formation, Prog. Energy Combust. Sci., 7, 229 – 273.en_US
dc.identifier.citedreferenceHaywood, J., and O. Boucher ( 2000 ), Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review, Rev. Geophys., 38 ( 4 ), 513 – 543.en_US
dc.identifier.citedreferenceHaywood, J. M., and V. Ramaswamy ( 1998 ), Global sensitivity studies of the direct radiative forcing due to anthropogenic sulfate and black carbon aerosols, J. Geophys. Res., 103 ( D6 ), 6043 – 6058.en_US
dc.identifier.citedreferenceHaywood, J. M., and K. P. Shine ( 1995 ), The effect of anthropogenic sulfate and soot aerosol on the clear sky planetary radiation budget, Geophys. Res. Lett., 22 ( 5 ), 603 – 606.en_US
dc.identifier.citedreferenceHazenkamp‐von Arx, M. E., et al. ( 2004 ), PM 2.5 and NO 2 assessment in 21 European study centres of ECRHS II: Annual means and seasonal differences, Atmos. Environ., 38 ( 13 ), 1943 – 1953, doi: 10.1016/j.atmosenv.2004.01.016.en_US
dc.identifier.citedreferenceHeald, C. L., and D. V. Spracklen ( 2009 ), Atmospheric budget of primary biological aerosol particles from fungal spores, Geophys. Res. Lett., 36, L09806, doi: 10.1029/2009GL037493.en_US
dc.identifier.citedreferenceHeald, C. L., D. J. Jacob, D. B. A. Jones, P. I. Palmer, J. A. Logan, D. G. Streets, G. W. Sachse, J. C. Gille, R. N. Hoffman, and T. Nehrkorn ( 2004 ), Comparative inverse analysis of satellite (MOPITT) and aircraft (TRACE‐P) observations to estimate Asian sources of carbon monoxide, J. Geophys. Res., 109 ( D23 ), 306, doi: 10.1029/2004JD005185.en_US
dc.identifier.citedreferenceHegerl, G. C., F. W. Zwiers, P. Braconnot, N. P. Gillett, Y. Luo, J. A. Marengo Orsini, N. Nicholls, J. E. Penner, and P. A. Stott ( 2007 ), Understanding and attributing climate change, in Climate Change 2007: The Physical Science Basis, edited by S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tigor and H. L. Miller, 129 – 234 pp., Cambridge University Press, Cambridge, United Kingdom.en_US
dc.identifier.citedreferenceHegg, D. A., S. G. Warren, T. C. Grenfell, S. J. Doherty, and A. D. Clarke ( 2010 ), Sources of light‐absorbing aerosol in Arctic snow and their seasonal variation, Atmos. Chem. Phys., 10, 10923 – 10938, doi: 10.5194/acp‐10‐10923‐2010.en_US
dc.identifier.citedreferenceHegg, D. A., S. G. Warren, T. C. Grenfell, S. J. Doherty, T. V. Larson, and A. D. Clarke ( 2009 ), Source attribution of black carbon in Arctic snow, Environ. Sci. Technol., 43 ( 11 ), 4016 – 4021.en_US
dc.identifier.citedreferenceHeidenreich, R. D., W. M. Hess, and L. L. Ban ( 1968 ), A test object and criteria for high resolution electron microscopy, J. Appl. Crystallogr., 1 ( 1–19 ).en_US
dc.identifier.citedreferenceHeierli, U., and S. Maithel ( 2008 ), Brick by brick: The Herculean task of cleaning up the Asian brick industry, in Swiss Agency for Development and Cooperation (SDC), edited by P. Osborn, Natural Resources and Environment Division, Berne, Switzerland.en_US
dc.identifier.citedreferenceHeintzenberg, J. ( 1980 ), Particle size distribution and optical properties of Arctic haze, Tellus, 32, 251 – 260.en_US
dc.identifier.citedreferenceHeintzenberg, J., and R. J. Charlson (Eds.) ( 2009 ), Clouds in the perturbed climate system: Their Relationship to energy balance, atmospheric dynamics, and precipitation, Strüngmann Forum Report, Volume 2, ISBN‐10: 0‐262‐01287‐1, The MIT Press, Cambridge, MA.en_US
dc.identifier.citedreferenceHeintzenberg, J., K. Okada, and J. Strom ( 1996 ), On the composition of non‐volatile material in upper tropospheric aerosols and cirrus crystals, Atmos. Res., 41 ( 1 ), 81 – 88.en_US
dc.identifier.citedreferenceHeller, W. ( 1965 ), Remarks on refractive index mixture rules, J. Phys. Chem., 69, 1123 – 1129.en_US
dc.identifier.citedreferenceHendricks, J., B. Kärcher, and U. Lohmann ( 2011 ), Effects of ice nuclei on cirrus clouds in a global climate model, J. Geophys. Res., 116, D18206, doi: 10.1029/2010JD015302.en_US
dc.identifier.citedreferenceHendricks, J., B. Karcher, U. Lohmann, and M. Ponater ( 2005 ), Do aircraft black carbon emissions affect cirrus clouds on the global scale?, Geophys. Res. Lett., 32, L12814, doi: 10.1029/2005GL022740.en_US
dc.identifier.citedreferenceHess, W. M., and C. R. Herd ( 1993 ), Microstructure, morphology, and general physical properties, in Carbon Black, edited by J.‐B. Donnet, R. C. Bansal and M.‐J. Wang, Marcel Dekker, New York, NY.en_US
dc.identifier.citedreferenceHess, M., P. Koepke, and I. Schult ( 1998 ), Optical properties of aerosols and clouds: The software package OPAC, Bull. Amer. Meteorol. Soc., 79 ( 5 ), 831 – 844.en_US
dc.identifier.citedreferenceHicks, S., and E. Isaksson ( 2006 ), Assessing source areas of pollutants from studies of fly ash, charcoal, and pollen from Svalbard snow and ice, J. Geophys. Res., 111 ( D2 ), D02113, doi: 10.1029/2005JD006167.en_US
dc.identifier.citedreferenceHien, P. D., V. T. Bac, and N. T. H. Thinh ( 2004 ), PMF receptor modelling of fine and coarse PM 10 in air masses governing monsoon conditions in Hanoi, northern Vietnam, Atmos. Environ., 38 ( 2 ), 189 – 201, doi: 10.1016/j.atmosenv.2003.09.064.en_US
dc.identifier.citedreferenceHiguchi, K., and A. Nagoshi ( 1977 ), Effect of particulate matter in surface snow layers on the albedo of perennial snow patches, in Isotopes and Impurities in Snow and Ice, IAHS, Publ. No. 118, 95 – 97 pp., International Association of Hydrological Sciences, Washington, DC.en_US
dc.identifier.citedreferenceHill, A. A., and S. Dobbie ( 2008 ), The impact of aerosols on non‐precipitating marine stratocumulus. II: The semi‐direct effect, Quart J. Roy. Meteor. Soc., 134 ( 634 ), 1155 – 1165, doi: 10.1002/qj.277.en_US
dc.identifier.citedreferenceHirdman, D., J. F. Burkhart, H. Sodemann, S. Eckhardt, A. Jefferson, P. K. Quinn, S. Sharma, J. Ström, and A. Stohl ( 2010a ), Long‐term trends of black carbon and sulphate aerosol in the Arctic: Changes in atmospheric transport and source region emissions, Atmos. Chem. Phys., 10, 9351 – 9368, doi: 10.5194/acp‐10‐9351‐2010.en_US
dc.identifier.citedreferenceHirdman, D., H. Sodemann, J. F. Burkhart, A. Jefferson, T. Mefford, P. K. Quinn, S. Sharma, J. Ström, and A. Stohl ( 2010b ), Source identification of short‐lived air pollutants in the Arctic using statistical analysis of measurement data and particle dispersion model output, Atmos. Chem. Phys., 10, 669 – 693, doi: 10.5194/acp‐10‐669‐2010.en_US
dc.identifier.citedreferenceHitzenberger, R., A. Petzold, H. Bauer, P. Ctyroky, P. Pouresmaeil, L. Laskus, and H. Puxbaum ( 2006 ), Intercomparison of thermal and optical measurement methods for elemental carbon and black carbon at an urban location, Environ. Sci. Technol., 40 ( 20 ), 6377 – 6383, doi: 10.1021/es051228v.en_US
dc.identifier.citedreferenceHolben, B. N., et al. ( 1998 ), AERONET—A federated instrument network and data archive for aerosol characterization, Remote Sens. Environ., 66, 1 – 16.en_US
dc.identifier.citedreferenceHoldsworth, G., K. Higuchi, G. A. Zielinski, P. A. Mayewski, M. Wahlen, B. Deck, P. Chýlek, B. Johnson, and P. Damiano ( 1996 ), Historical biomass burning: Late 19th century pioneer agriculture revolution in northern hemisphere ice core data and its atmospheric interpretation, J. Geophys. Res., 101 ( D18 ), 23317 – 23334, doi: 10.1029/96JD01158.en_US
dc.identifier.citedreferenceHoose, C., U. Lohmann, R. Erdin, and I. Tegen ( 2008 ), The global influence of dust mineralogical composition on heterogeneous ice nucleation in mixed‐phase clouds, Environ. Res. Lett., 3 ( 2 ), 5003, doi: 10.1088/1748‐9326/3/2/025003.en_US
dc.identifier.citedreferenceHopke, P. K. ( 2010 ), The application of receptor modeling to air quality data, Pollution Atmosphérique, Special Issue, 91 – 109.en_US
dc.identifier.citedreferenceHopkins, R. J., A. V. Tivanski, B. D. Marten, and M. K. Gilles ( 2007 ), Chemical bonding and structure of black carbon reference materials and individual carbonaceous atmospheric aerosols, J. Aerosol Sci, 38 ( 6 ), 573 – 591, doi: 10.1016/j.jaerosci.2007.03.009.en_US
dc.identifier.citedreferenceHorvath, H. ( 1993 ), Atmospheric light‐absorption ‐ A review, Atmospheric environment part A, 27 ( 3 ), 293 – 317, doi: 10.1016/0960‐1686(93)90104‐7.en_US
dc.identifier.citedreferenceHorvath, H. ( 1997 ), Systematic deviations of light absorption measurements by filter transmission methods, J. Aerosol Sci., 28, S55 – S56.en_US
dc.identifier.citedreferenceHouck, J. E., and B. N. Eagle ( 2006 ), Control Analysis and Documentation for Residential Wood Combustion in the MANE‐VU Region, OMNI Environmental Services, Alliance for Green Heat, Takoma Park, MD 20912.en_US
dc.identifier.citedreferenceHouthuijs, D., et al. ( 2001 ), PM 10 and PM 2.5 concentrations in Central and Eastern Europe: Results from the Cesar study, Atmos. Environ., 35 ( 15 ), 2757 – 2771.en_US
dc.identifier.citedreferenceHoyle, C. R., B. P. Luo, and T. Peter ( 2005 ), The origin of high ice crystal number densities in cirrus clouds, J. Atmos. Sci., 62 ( 7 ), 2568 – 2579.en_US
dc.identifier.citedreferenceHu, Y. T., S. L. Napelenok, M. T. Odman, and A. G. Russell ( 2009 ), Sensitivity of inverse estimation of 2004 elemental carbon emissions inventory in the United States to the choice of observational networks, Geophys. Res. Lett., 36 ( L15 ), 806, doi: 10.1029/2009GL039655.en_US
dc.identifier.citedreferenceHuang, J., Q. Fu, W. Zhang, X. Wang, R. Zhang, H. Ye, and S. G. Warren ( 2011 ), Dust and black carbon in seasonal snow across northern China, Bull. Am. Meteor. Soc., 92, 175 – 781.en_US
dc.identifier.citedreferenceHuang, L., S. L. Gong, C. Q. Jia, and D. Lavoue ( 2010 ), Importance of deposition process in simulating the seasonality of the Arctic black carbon aerosol, J. Geophys. Res., 115, D17207, doi: 10.1029/2009JD013478.en_US
dc.identifier.citedreferenceHuang, P.‐F., B. J. Turpin, M. J. Pipho, D. B. Kittleson, and P. H. McMurry ( 1994 ), Effects of water condensation and evaporation on diesel chain‐aggregate morphology, J. Aerosol Sci, 23 ( 3 ), 447 – 459.en_US
dc.identifier.citedreferenceHuebert, B. J., T. S. Bates, P. B. Russell, G. Shi, Y. J. Kim, K. Kawamura, G. Carmichael, and T. Nakajima ( 2003 ), An overview of ACE‐Asia: Strategies for quantifying the relationships between Asian aerosols and their climatic impacts, J. Geophys. Res., 108 ( D23 ), 8633, doi: 10.1029/2003JD003550.en_US
dc.identifier.citedreferenceHuneeus, N., F. Chevallier, and O. Boucher ( 2012 ), Estimating aerosol emissions by assimilating observed aerosol optical depth in a global aerosol model, Atmos. Chem. Phys., 12, 4585 – 4606, doi: 10.5194/acpd‐12‐4585‐2012.en_US
dc.identifier.citedreferenceHuneeus, N., et al. ( 2011 ), Global dust model intercomparison in AeroCom phase I, Atmos. Chem. Phys., 11 ( 15 ), 7781 – 7816, doi: 10.5194/acp‐11‐7781‐2011.en_US
dc.identifier.citedreferenceHuntzicker, J. J., R. L. Johnson, J. J. Shah, and R. A. Cary ( 1982 ), Analysis of organic and elemental carbon in ambient aerosols by a thermal‐optical method, in Particulate Carbon: Atmospheric Life Cycle, edited by G. T. Wolff and R. L. Klimisch, 79 – 88 pp., Plenum Press, New York, NY.en_US
dc.identifier.citedreferenceHuo, H., Y. Lei, Q. Zhang, L. Zhao, and K. He ( 2012 ), China's coke industry: Recent policies, technology shift, and implication for energy and the environment, Energ. Policy, 51, 397 – 404 (2012) http://dx.doi.org/10.1016/j.enpol.2012.08.041.en_US
dc.identifier.citedreferenceIchoku, C., and Y. J. Kaufman ( 2005 ), A method to derive smoke emission rates from MODIS fire radiative energy measurements, IEEE Trans. Geosci. Remote Sens., 43 ( 11 ), 2636 – 2649.en_US
dc.identifier.citedreferenceIPCC ( 1990 ), Intergovernmental Panel on Climate Change (IPCC): The Scientific Assessment, UNEP/WMO, Cambridge, United Kingdom.en_US
dc.identifier.citedreferenceIPCC ( 2007 ), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment, Report of the Intergovernmental Panel on Climate Change, 996 pp., Cambridge University Press, Cambridge, United Kingdom, and New York, NY, USA.en_US
dc.identifier.citedreferenceIPCC ( 2009 ), IPCC Expert Meeting on the Science of Alternative Metrics Meeting Report, 82 pp., Grand Hotel, Oslo, Norway.en_US
dc.identifier.citedreferenceIsaksen, I. S. A., et al. ( 2009 ), Atmospheric composition change: Climate‐chemistry interactions, Atmos. Environ., 43 ( 33 ), 5138 – 5192, doi: 10.1016/j.atmosenv.2009.08.003.en_US
dc.identifier.citedreferenceIskander, M. F., H. Y. Chen, and J. E. Penner ( 1991 ), Resonance optical absorption by fractal agglomerates of smoke aerosols, Atmos. Environ., 25A ( 11 ), 2563 – 2569.en_US
dc.identifier.citedreferenceIto, A., and J. Penner ( 2004 ), Global estimates of biomass burning emissions based on satellite imagery for the year 2000, J. Geophys. Res., 109 ( D14 ), doi: 10.1029/2003JD004423, issn: 0148‐0227.en_US
dc.identifier.citedreferenceIto, A., and J. Penner ( 2005 ), Historical emissions of carbonaceous aerosols from biomass and fossil fuel burning for the period 1870–2000, Global Biogeochem. Cycles, 19 ( 2 ), doi: 10.1029/2004GB002374.en_US
dc.identifier.citedreferenceIversen, T. ( 1984 ), On the atmospheric transport of pollution to the Arctic, Geophys. Res. Lett., 11, 457 – 460.en_US
dc.identifier.citedreferenceJackson, S. C. ( 2009 ), Parallel pursuit of near‐term and long‐term climate mitigation, Science, 326 ( 5952 ), 526 – 527, doi: 10.1126/science.1177042.en_US
dc.identifier.citedreferenceJacob, D. J., J. H. Crawford, M. M. Kleb, V. S. Connors, R. J. Bendura, J. L. Raper, G. W. Sachse, J. C. Gille, L. Emmons, and C. L. Heald ( 2003 ), Transport and Chemical Evolution over the Pacific (TRACE‐P) aircraft mission: Design, execution, and first results, J. Geophys. Res., 108 ( D20 ), 1 – 19, doi: 10.1029/2002JD003276.en_US
dc.identifier.citedreferenceJacob, D. J., et al. ( 2010 ), The Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) mission: Design, execution, and first results, Atmos Chem Phys, 10 ( 11 ), 5191 – 5212, doi: 10.5194/acp‐10‐5191‐2010.en_US
dc.identifier.citedreferenceJacobson, M. Z. ( 2000 ), A physically‐based treatment of elemental carbon optics: Implications for global direct forcing of aerosols, Geophys. Res. Lett., 27 ( 2 ), 217 – 220, doi: 10.1029/1999GL010968.en_US
dc.identifier.citedreferenceJacobson, M. Z. ( 2001a ), Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols, Nature, 409, 695 – 697.en_US
dc.identifier.citedreferenceJacobson, M. Z. ( 2001b ), Global direct radiative forcing due to multicomponent anthropgenic and natural aerosols, J. Geophys. Res., 106, 1551 – 1568, doi: 10.1029/2000JD900514.en_US
dc.identifier.citedreferenceJacobson, M. Z. ( 2002 ), Control of fossil‐fuel particulate black carbon and organic matter, possibly the most effective method of slowing global warming, J. Geophys. Res., 107 ( D19 ), 4410, doi: 10.1029/2001JD001376.en_US
dc.identifier.citedreferenceJacobson, M. Z. ( 2004a ), Climate response of fossil fuel and biofuel soot, accounting for soot's feedback to snow and sea ice albedo and emissivity, J. Geophys. Res., 109 ( D21 ), D21201, doi: 10.1029/2004JD004945.en_US
dc.identifier.citedreferenceJacobson, M. Z. ( 2004b ), The short‐term cooling but long-term global warming due to biomass burning, J. Climate, 17 ( 15 ), 2909 – 2926.en_US
dc.identifier.citedreferenceJacobson, M. Z. ( 2006 ), Effects of externally‐through‐internally‐mixed soot inclusions within clouds and precipitation on global climate, J. Phys. Chem. A, 110 ( 21 ), 6860 – 6873, doi: 10.1021/jp056391r.en_US
dc.identifier.citedreferenceJacobson, M. Z. ( 2010 ), Short‐term effects of controlling fossil‐fuel soot, biofuel soot and gases, and methane on climate, Arctic ice, and air pollution health, J. Geophys. Res., 115, D14209, doi: 10.1029/2009JD013795.en_US
dc.identifier.citedreferenceJacobson, M. Z. ( 2012 ), Investigating cloud absorption effects: Global absorption properties of black carbon, tar balls, and soil dust in clouds and aerosols, J. Geophys. Res., 117, D06205, doi: 10.1029/2011JD017218.en_US
dc.identifier.citedreferenceJacobson, M. Z., J. T. Wilkerson, A. D. Naiman, and S. K. Lele ( 2011 ), The effects of aircraft on climate and pollution. Part I: Numerical methods for treating the subgrid evolution of discrete size‐ and composition‐resolved contrails from all commercial flights worldwide, J. Comput. Phys., 230, 5115 – 5132, doi: 10.1016/j.jcp.2011.03.031.en_US
dc.identifier.citedreferenceJanssen, N. A., et al. ( 2011 ), Black carbon as an additional indicator of the adverse health effects of airborne particles compared with PM 10 and PM 2.5, Environ. Health Perspect., 119, 1691 – 1699, doi: 10.1289/ehp.1003369.en_US
dc.identifier.citedreferenceJanzen, J. ( 1979 ), The refractive index of carbon black, J. Colloid Interf. Sci., 69 ( 3 ), 436 – 447.en_US
dc.identifier.citedreferenceJanzen, J. ( 1980 ), Extinction of light by highly nonspherical strongly absorbing colloidal particles—Spectrophotometric determination of volume distributions for carbon‐blacks, Appl. Opt., 19 ( 17 ), 2977 – 2985, doi: 10.1364/AO.19.002977.en_US
dc.identifier.citedreferenceJenk, T. M., S. Szidat, M. Schwikowski, H. W. Gäggeler, S. Brütsch, L. Wacker, H. A. Synal, and M. Saurer ( 2006 ), Radiocarbon analysis in an Alpine ice core: Record of anthropogenic and biogenic contributions to carbonaceous aerosols in the past (1650–1940), Atmos. Chem. Phys., 6 ( 12 ), 5381 – 5390, doi: 10.5194/acp‐6‐5381‐2006.en_US
dc.identifier.citedreferenceJensen, E. J., O. B. Toon, S. A. Vay, J. Ovarlez, R. May, T. P. Bui, C. H. Twohy, B. W. Gandrud, R. F. Pueschel, and U. Schumann ( 2001 ), Prevalence of ice‐supersaturated regions in the upper troposphere: Implications for optically thin ice cloud formation, J. Geophys. Res., 106 ( D15 ), 17253 – 17266.en_US
dc.identifier.citedreferenceJetter, J. J., and P. Kariher ( 2009 ), Solid‐fuel household cook stoves: Characterization of performance and emissions, Biomass Bioenerg., 33, 294 – 305, doi: 10.1016/j.biombioe.2008.05.014.en_US
dc.identifier.citedreferenceJohansson, L. S., B. Leckner, L. Gustavsson, D. Cooper, C. Tullin, and A. Potter ( 2004 ), Emission characteristics of modern and old‐type residential boilers fired with wood logs and wood pellets, Atmos. Environ., 38 ( 25 ), 4183 – 4195, doi: 10.1016/j.atmosenv.2004.04.020.en_US
dc.identifier.citedreferenceJohansson, D. J. A., U. M. Persson, and C. Azar ( 2006 ), The cost of using global warming potentials: Analysing the trade off between CO 2, CH 4 and N 2 O, Clim. Chang., 77 ( 3–4 ), 291 – 309, doi: 10.1007/s10584‐006‐9054‐x.en_US
dc.identifier.citedreferenceJohnson, M. R., and A. R. Coderre ( 2011 ), An analysis of flaring and venting activity in the Alberta upstream oil and gas industry, J. Air Waste Manage. Assoc., 61 ( 2 ), 190 – 200, doi: 10.3155/1047‐3289.61.2.190.en_US
dc.identifier.citedreferenceJohnson, K. S., B. de Foy, B. Zuberi, L. T. Molina, M. J. Molina, Y. Xie, A. Laskin, and V. Shutthanandan ( 2006 ), Aerosol composition and source apportionment in the Mexico City metropolitan area with PIXE/PESA/STIM and multivariate analysis, Atmos. Chem. Phys., 6, 4591 – 4600, doi: 10.5194/acp‐6‐4591‐2006.en_US
dc.identifier.citedreferenceJohnson, M. R., R. W. Devillers, and K. A. Thomson ( 2011a ), Quantitative field measurement of soot emission from a large gas flare using Sky‐LOSA, Environ. Sci. Technol., 45 ( 1 ), 345 – 350, doi: 10.1021/es102230y.en_US
dc.identifier.citedreferenceJohnson, M., R. Edwards, C. A. Frenk, and O. Masera ( 2008 ), In‐field greenhouse gas emissions from cookstoves in rural Mexican households, Atmos. Environ., 42 ( 6 ), 1206 – 1222, doi: 10.1016/j.atmosenv.2007.10.034.en_US
dc.identifier.citedreferenceJohnson, T. M., S. Guttikunda, G. J. Wells, P. Artaxo, T. C. Bond, A. G. Russell, J. G. Watson, and J. West ( 2011b ), Tools for Improving Air Quality Management: A Review of Top‐Down Source Apportionment Techniques and Their Application in Developing Countries, ESMAP Publication Series, The World Bank, Washington, DC, USA.en_US
dc.identifier.citedreferenceJohnson, B. T., K. P. Shine, and P. M. Forster ( 2004 ), The semi‐direct aerosol effect: Impact of absorbing aerosols on marine stratocumulus, Quart J. Roy. Meteor. Soc., 130 ( 599 ), 1407 – 1422, doi: 10.1256/qj.03.61.en_US
dc.identifier.citedreferenceJones, G. S., N. Christidis, and P. A. Stott ( 2011 ), Detecting the influence of fossil fuel and bio‐fuel black carbon aerosols on near surface temperature changes, Atmos. Chem. Phys., 11, 799 – 816, doi: 10.5194/acpd‐11‐799‐2011.en_US
dc.identifier.citedreferenceJones, A., J. M. Haywood, and O. Boucher ( 2007 ), Aerosol forcing, climate response and climate sensitivity in the Hadley Centre climate model, J. Geophys. Res., 112 ( D20 ), 211, doi: 10.1029/2007JD008688.en_US
dc.identifier.citedreferenceJones, G. S., A. Jones, D. L. Roberts, P. A. Stott, and K. D. Williams ( 2005 ), Sensitivity of global‐scale climate change attribution results to inclusion of fossil fuel black carbon aerosol, Geophys. Res. Lett., 32 ( 14 ), 701, doi: 10.1029/2005GL023370.en_US
dc.identifier.citedreferenceJones, H. G., J. W. Pomeroy, D. A. Walker, and R. W. Hoham (Eds.) ( 2001 ), Snow Ecology, 398 pp., Cambridge University Press, New York, NY.en_US
dc.identifier.citedreferenceJoos, F., et al. ( 2012 ), Carbon dioxide and climate impulse response functions for the computation of greenhouse gas metrics: A multi‐model analysis, Atmos. Chem. Phys. Discuss., 12, 19799 – 19869, doi: 10.5194/acpd‐12‐19799‐2012.en_US
dc.identifier.citedreferenceJunker, C., and C. Liousse ( 2008 ), A global emission inventory of carbonaceous aerosol from historic records of fossil fuel and biofuel consumption for the period 1860–1997, Atmos. Chem. Phys., 8, 1195 – 1207, doi: 10.5194/acp‐8‐1195‐2008.en_US
dc.identifier.citedreferenceKahn, B. H., A. Gettelman, E. J. Fetzer, A. Eldering, and C. K. Liang ( 2009a ), Cloudy and clear‐sky relative humidity in the upper troposphere observed by the A‐train, J. Geophys. Res., 114, D00h02, doi: 10.1029/2009JD011738.en_US
dc.identifier.citedreferenceKahn, R. A., D. L. Nelson, M. J. Garay, R. C. Levy, M. A. Bull, D. J. Diner, J. V. Martonchik, S. R. Paradise, E. G. Hansen, and L. A. Remer ( 2009b ), MISR aerosol product attributes and statistical comparisons with MODIS, IEEE Trans. Geosci. Remote Sens., 47 ( 12 ), 4095 – 4114, doi: 10.1109/tgrs.2009.2023115.en_US
dc.identifier.citedreferenceKahn, R. A., B. J. Gaitley, M. J. Garay, D. J. Diner, T. F. Eck, A. Smirnov, and B. N. Holben ( 2010 ), Multiangle Imaging SpectroRadiometer global aerosol product assessment by comparison with the Aerosol Robotic Network, J. Geophys. Res., 115, D23209, doi: 10.1029/2010JD014601.en_US
dc.identifier.citedreferenceKahn, R., et al. ( 2009c ), Desert dust aerosol air mass mapping in the western Sahara, using particle properties derived from space‐based multi‐angle imaging, Tellus B, 61 ( 1 ), 239 – 251, doi: 10.1111/j.1600‐0889.2008.00398.x.en_US
dc.identifier.citedreferenceKahnert, M. ( 2010 ), On the discrepancy between modeled and measured mass absorption cross sections of light absorbing carbon aerosols, Aerosol Sci. Technol., 44 ( 6 ), 453 – 460, doi: 10.1080/02786821003733834.en_US
dc.identifier.citedreferenceKahnert, M., M. Lazaridis, S. Tsyro, and K. Torseth ( 2004 ), Requirements for developing a regional monitoring capacity for aerosols in Europe within EMEP, J. Environ. Monit., 6 ( 7 ), 646 – 655, doi: 10.1039/b315136k.en_US
dc.identifier.citedreferenceKaiser, J. W., Suttie, M., Flemming, J., Morcrette, J.‐J., Boucher, O., and Schultz, M. G. ( 2009 ), Global real‐time fire emission estimates based on space‐borne fire radiative power observations, AIP Conf. Proc., 1100, 645 – 648, doi: 10.1063/1.3117069.en_US
dc.identifier.citedreferenceKaiser, J. W., et al. ( 2012 ), Biomass burning emissions estimated with a global fire assimilation system based on observed fire radiative power, Biogeosciences, 9, 527 – 554, doi: 10.5194/bg‐9‐527‐2012.en_US
dc.identifier.citedreferenceKandlikar, M. ( 1996 ), Indices for comparing greenhouse gas emissions: Integrating science and economics, Energ. Econ., 18, 265 – 281.en_US
dc.identifier.citedreferenceKandlikar, M., C. Reynolds, and A. Grieshop ( 2009 ), A perspective paper on black carbon mitigation as a response to climate change, Report prepared for the Copenhagen Consensus on Climate, Copenhagen Consensus Center, Frederiksberg, Denmark.en_US
dc.identifier.citedreferenceKärcher, B., and U. Burkhardt ( 2008 ), A cirrus cloud scheme for general circulation models, Q. J. R. Meteorol. Soc., 134, 1439 – 1461, doi: 10.1002/qj.301.en_US
dc.identifier.citedreferenceKärcher, B., and P. Spichtinger ( 2009 ), Cloud‐controlling factors of cirrus, in Clouds in the Perturbed Climate System: Their Relationship to Energy Balance, Atmospheric Dynamics, and Precipitation, edited by J. Heintzenberg and R. J. Charlson, 235 – 268 pp., MIT Press, Cambridge, MA.en_US
dc.identifier.citedreferenceKärcher, B., and J. Ström ( 2003 ), The roles of dynamical variability and aerosols in cirrus cloud formation, Atmos. Chem. Phys., 3, 823 – 838, doi: 10.5194/acp‐3‐823‐2003.en_US
dc.identifier.citedreferenceKärcher, B., and F. Yu ( 2009 ), Role of aircraft soot emissions in contrail formation, Geophys. Res. Lett., 36, L01804, doi: 10.1029/2008GL036649.en_US
dc.identifier.citedreferenceKärcher, B., J. Hendricks, and U. Lohmann ( 2006 ), Physically based parameterization of cirrus cloud formation for use in global atmospheric models, J. Geophys. Res., 111 ( D1 ), 205, doi: 10.1029/2005JD006219.en_US
dc.identifier.citedreferenceKärcher, B., O. Möhler, P. J. DeMott, S. Pechtl, and F. Yu ( 2007 ), Insights into the role of soot aerosols in cirrus cloud formation, Atmos. Chem. Phys., 7 ( 16 ), 4203 – 4227, doi: 10.5194/acp‐7‐4203‐2007.en_US
dc.identifier.citedreferenceKärcher, B., T. Peter, U. M. Biermann, and U. Schumann ( 1996 ), The initial composition of jet condensation trails, J. Atmos. Sci., 53 ( 21 ), 3066 – 3083.en_US
dc.identifier.citedreferenceKasibhatla, P., A. Arellano, J. A. Logan, P. I. Palmer, and P. Novelli ( 2002 ), Top‐down estimate of a large source of atmospheric carbon monoxide associated with fuel combustion in Asia, Geophys. Res. Lett., 29 ( 19 ), doi: 10.1029/2002GL015581.en_US
dc.identifier.citedreferenceKasischke, E. S., and N. H. F. French ( 1995 ), Locating and estimating the areal extent of wildfires in Alaskan boreal forests using multiple‐season AVHRR NDVI composite data, Remote Sens. Environ., 51 ( 2 ), 263 – 275.en_US
dc.identifier.citedreferenceKaufman, Y. J., et al. ( 1998 ), Smoke, clouds, and radiation—Brazil (SCAR‐B) experiment, J. Geophys. Res., 103 ( D24 ), 31783 – 31808.en_US
dc.identifier.citedreferenceKeene, W. C., R. M. Lobert, P. J. Crutzen, J. R. Maben, D. H. Scharffe, T. Landmann, C. Hely, and C. Brain ( 2006 ), Emissions of major gaseous and particulate species during experimental burns of southern African biomass, J. Geophys. Res., 111 ( D4 ), 301, doi: 10.1029/2005JD006319.en_US
dc.identifier.citedreferenceKhalizov, A. F., H. X. Xue, L. Wang, J. Zheng, and R. Y. Zhang ( 2009 ), Enhanced light absorption and scattering by carbon soot aerosol internally mixed with sulfuric acid, J. Phys. Chem. A, 113, 1066 – 1074, doi: 10.1021/jp807531n.en_US
dc.identifier.citedreferenceKim, E., and P. K. Hopke ( 2007 ), Source identifications of airborne fine particles using positive matrix factorization and US environmental protection agency positive matrix factorization, J. Air Waste Manage. Assoc., 57 ( 7 ), 811 – 819, doi: 10.3155/1047‐3289.57.7.811.en_US
dc.identifier.citedreferenceKim, D., C. Wang, A. M. L. Ekman, M. C. Barth, and P. J. Rasch ( 2008 ), Distribution and direct radiative forcing of carbonaceous and sulfate aerosols in an interactive size‐resolving aerosol‐climate model, J. Geophys. Res., 113 ( D16 ), 309, doi: 10.1029/2007JD009756.en_US
dc.identifier.citedreferenceKinne, S., et al. ( 2006 ), An AeroCom initial assessment—optical properties in aerosol component modules of global models, Atmos. Chem. Phys., 6, 1815 – 1834, doi: 10.5194/acp‐6‐1815‐2006.en_US
dc.identifier.citedreferenceKirchstetter, T. W., J. Aguiar, S. Tonse, and T. Novakov ( 2008 ), Black carbon concentrations and diesel vehicle emission factors derived from coefficient of haze measurements in California: 1967–2003, Atmos. Environ., 42, 480 – 491.en_US
dc.identifier.citedreferenceKirchstetter, T. W., T. Novakov, and P. V. Hobbs ( 2004 ), Evidence that the spectral dependence of light absorption by aerosols is affected by organic carbon, J. Geophys. Res., 109 ( D21 ), D21208, doi: 10.1029/2004JD004999.en_US
dc.identifier.citedreferenceKlimont, Z., et al. ( 2009 ), Projections of SO 2, NO x, and carbonaceous aerosol emissions in Asia, Tellus B, 61 ( 4 ), 602 – 617, doi: 10.1111/j.1600‐0889.2009.00428.X.en_US
dc.identifier.citedreferenceKnorr, W., V. Lehsten, and A. Arneth ( 2012 ), Determinants and predictability of global wildfire emissions, Atmos. Chem. Phys., 61 ( 4 ), 6845 – 6861.en_US
dc.identifier.citedreferenceKnox, A., G. J. Evans, J. R. Brook, X. Yao, C. H. Jeong, K. J. Godri, K. Sabaliauskas, and J. G. Slowik ( 2009 ), Mass absorption cross‐section of ambient black carbon aerosol in relation to chemical age, Aerosol Sci. Technol., 43 ( 6 ), 522 – 532, doi: 10.1080/02786820902777207.en_US
dc.identifier.citedreferenceKoch, D. ( 2001 ), Transport and direct radiative forcing of carbonaceous and sulfate aerosols in the GISS GCM, J. Geophys. Res., 106 ( D17 ), 20311 – 20332, doi: 10.1029/2001JD900038.en_US
dc.identifier.citedreferenceKoch, D., and A. D. Del Genio ( 2010 ), Black carbon semi‐direct effects on cloud cover: Review and synthesis, Atmos. Chem. Phys., 10 ( 16 ), 7685 – 7696, doi: 10.5194/acp‐10‐7685‐2010.en_US
dc.identifier.citedreferenceKoch, D., and J. Hansen ( 2005 ), Distant origins of Arctic black carbon: A Goddard Institute for Space Studies ModelE experiment, J. Geophys. Res., 110 ( D4 ), 204, doi: 10.1029/2004JD005296.en_US
dc.identifier.citedreferenceKoch, D., S. Menon, A. Del Genio, R. Ruedy, I. Alienov, and G. A. Schmidt ( 2009a ), Distinguishing aerosol impacts on climate over the past century, J Climate, 22 ( 10 ), 2659 – 2677, doi: 10.1175/2008jcli2573.1.en_US
dc.identifier.citedreferenceKoch, D., T. C. Bond, D. Streets, N. Unger, and G. R. van der Werf ( 2007 ), Global impacts of aerosols from particular source regions and sectors, J. Geophys. Res., 112, D02205, doi: 10.1029/2005JD007024.en_US
dc.identifier.citedreferenceKoch, D., et al. ( 2009b ), Evaluation of black carbon estimations in global aerosol models, Atmos. Chem. Phys., 9 ( 22 ), 9001 – 9026, doi: 10.5194/acp‐9‐9001‐2009.en_US
dc.identifier.citedreferenceKoch, D., et al. ( 2011a ), Soot microphysical effects on liquid clouds, a multi‐model investigation, Atmos. Chem. Phys., 11 ( 3 ), 1051 – 1064, doi: 10.5194/acp‐11‐1051‐2011.en_US
dc.identifier.citedreferenceKoch, D., et al. ( 2011b ), Coupled aerosol‐chemistry‐climate twentieth century transient model investigation: Trends in short‐lived species and climate responses, J. Climate, 24, 2693 – 2714, doi: 10.1175/2011JCL13582.1.en_US
dc.identifier.citedreferenceKoffi, B., et al. ( 2012 ), Application of CALIOP layer product to evaluate the vertical distribution of aerosols estimated by global models: AeroCom phase I results, J. Geophys. Res., 117, D10201, 2012 doi: 10.1029/2011JD016858.en_US
dc.identifier.citedreferenceKöhler, K. A., P. J. DeMott, S. M. Kreidenweis, O. B. Popovicheva, M. D. Petters, C. M. Carrico, E. D. Kireeva, T. D. Khokhlova, and N. K. Shonija ( 2009 ), Cloud condensation nuclei and ice nucleation activity of hydrophobic and hydrophilic soot particles, Phys. Chem. Chem. Phys., 11 ( 36 ), 7906 – 7920, doi: 10.1039/b905334b.en_US
dc.identifier.citedreferenceKondo, Y., N. Oshima, M. Kajino, R. Mikami, N. Moteki, N. Takegawa, R. L. Verma, Y. Kajii, S. Kato, and A. Takami ( 2011a ), Emissions of black carbon in East Asia estimated from observations at a remote site in the East China Sea, J. Geophys. Res., 116, D16201, doi: 10.1029/2011JD015637.en_US
dc.identifier.citedreferenceKondo, Y., L. Sahu, N. Moteki, F. Khan, N. Takegawa, X. Liu, M. Koike, and T. Miyakawa ( 2011b ), Consistency and traceability of black carbon measurements made by laser‐induced incandescence, thermal‐optical transmittance, and filter‐based photo‐absorption techniques, Aerosol Sci. Technol., 45 ( 2 ), 295 – 312, doi: 10.1080/02786826.2010.533215.en_US
dc.identifier.citedreferenceKondo, Y., et al. ( 2009 ), Stabilization of the mass absorption cross section of black carbon for filter‐based absorption photometry by the use of a heated inlet, Aerosol Sci. Technol., 43 ( 8 ), 741 – 756, doi: 10.1080/02786820902889879.en_US
dc.identifier.citedreferenceKondo, Y., et al. ( 2011c ), Emissions of black carbon, organic, and inorganic aerosols from biomass burning in North America and Asia in 2008, J. Geophys. Res., 116, D08204, doi: 10.1029/2010JD015152.en_US
dc.identifier.citedreferenceKoop, T., B. P. Luo, A. Tsias, and T. Peter ( 2000 ), Water activity as the determinant for homogeneous ice nucleation in aqueous solutions, Nature, 406 ( 6796 ), 611 – 614.en_US
dc.identifier.citedreferenceKoopmans, A., and J. Koppejan ( 1997 ), Agricultural and forest residues: Generation, utilization and availability, in Regional Consultation on Modern Applications of Biomass Energy, FAO, edited, Paper presented at the Regional Consultation on Modern Applications of Biomass Energy, 6-10 January 1997, Kuala Lumpur, Malaysia (see United Nations Food and Agriculture Organization (FAO), 1998).en_US
dc.identifier.citedreferenceKopacz, M., D. L. Mauzerall, J. Wang, E. M. Leibensperger, D. K. Henze, and K. Singh ( 2011 ), Origin and radiative forcing of black carbon transported to the Himalayas and Tibetan Plateau, Atmos. Chem. Phys., 11, 2837 – 2852, doi: 10.5194/acp‐11‐2837‐2011.en_US
dc.identifier.citedreferenceKopacz, M., et al. ( 2010 ), Global estimates of CO sources with high resolution by adjoint inversion of multiple satellite datasets (MOPITT, AIRS, SCIAMACHY, TES), Atmos. Chem. Phys., 10 ( 3 ), 855 – 876.en_US
dc.identifier.citedreferenceKopp, R. E., and D. L. Mauzerall ( 2010 ), Assessing the climatic benefits of black carbon mitigation, Proc. Natl. Acad. Sci. USA, 107, 11703 – 11708, doi: 10.1073/pnas.0909605107.en_US
dc.identifier.citedreferenceKoren, I., Y. J. Kaufman, L. A. Remer, and J. V. Martins ( 2004 ), Measurement of the effect of Amazon smoke on inhibition of cloud formation, Science, 303 ( 5662 ), 1342 – 1345, doi: 10.1126/science.1089424.en_US
dc.identifier.citedreferenceKoren, I., J. V. Martins, L. A. Remer, and H. Afargan ( 2008 ), Smoke invigoration versus inhibition of clouds over the Amazon, Science, 321 ( 5891 ), 946 – 949, doi: 10.1126/science.1159185.en_US
dc.identifier.citedreferenceKristjansson, J. E. ( 2002 ), Studies of the aerosol indirect effect from sulfate and black carbon aerosols, J. Geophys. Res., 107 ( D15 ), 4246, doi: 10.1029/2001JD000887.en_US
dc.identifier.citedreferenceKuhlmann, J., and J. Quaas ( 2010 ), How can aerosols affect the Asian summer monsoon? Assessment during three consecutive pre‐monsoon seasons from CALIPSO satellite data, Atmos. Chem. Phys., 10 ( 10 ), 4673 – 4688, doi: 10.5194/acp‐10‐4673‐2010.en_US
dc.identifier.citedreferenceKupiainen, K., and Z. Klimont ( 2007 ), Primary emissions of fine carbonaceous particles in Europe, Atmos. Environ., 41, 2156 – 2170, doi: 10.1016/j.atmosenv.2006.10.066.en_US
dc.identifier.citedreferenceKurokawa, J., K. Yumimoto, I. Uno, and T. Ohara ( 2009 ), Adjoint inverse modeling of NO x emissions over eastern China using satellite observations of NO 2 vertical column densities, Atmos. Environ., 43 ( 11 ), 1878 – 1887, doi: 10.1016/j.atmosenv.2008.12.030.en_US
dc.identifier.citedreferenceKuwata, M., Y. Kondo, M. Mochida, N. Takegawa, and K. Kawamura ( 2007 ), Dependence of CCN activity of less volatile particles on the amount of coating observed in Tokyo, J. Geophys. Res., 112, D11207, doi: 10.1029/2006JD007758.en_US
dc.identifier.citedreferenceKuwata, M., Y. Kondo, and N. Takegawa ( 2009 ), Critical condensed mass for activation of black carbon as cloud condensation nuclei in Tokyo, J. Geophys. Res., 114, D20202, doi: 10.1029/2009JD012086.en_US
dc.identifier.citedreferenceLaborde, M., P. Mertes, P. Zieger, J. Dommen, U. Baltensperger, and M. Gysel ( 2012 ), Sensitivity of the Single Particle Soot Photometer to different black carbon types, Atmos. Meas. Tech., 5, 1031 – 1043, doi: 10.5194/amt‐5‐1031‐2012.en_US
dc.identifier.citedreferenceLack, D. A., and C. D. Cappa ( 2010 ), Impact of brown and clear carbon on light absorption enhancement, single scatter albedo and absorption wavelength dependence of black carbon, Atmos. Chem. Phys., 10 ( 9 ), 4207 – 4220, doi: 10.5194/acp‐10‐4207‐2010.en_US
dc.identifier.citedreferenceLack, D. A., C. D. Cappa, D. S. Covert, T. Baynard, P. Massoli, B. Sierau, T. S. Bates, P. K. Quinn, E. R. Lovejoy, and A. R. Ravishankara ( 2008 ), Bias in filter‐based aerosol light absorption measurements due to organic aerosol loading: Evidence from ambient measurements, Aerosol Sci. Technol., 42 ( 12 ), 1033 – 1041.en_US
dc.identifier.citedreferenceLack, D. A., C. D. Cappa, E. S. Cross, P. Massoli, A. T. Ahern, P. Davidovits, and T. B. Onasch ( 2009 ), Absorption enhancement of coated absorbing aerosols: Validation of the photo‐acoustic technique for measuring the enhancement, Aerosol Sci. Technol., 43 ( 10 ), 1006 – 1012, doi: 10.1080/02786820903117932.en_US
dc.identifier.citedreferenceLack, D. A., J. M. Langridge, R. Bahreinia, C. D. Cappa, A. M. Middlebrook, and J. P. Schwarz ( 2012 ), Brown carbon and internal mixing in biomass burning particles, P. Natl. Acad. Sci. USA, doi: 10.1073/pnas.1206575109.en_US
dc.identifier.citedreferenceLack, D. A., E. R. Lovejoy, T. Baynard, A. Pettersson, and A. R. Ravishankara ( 2006 ), Aerosol absorption measurement using photoacoustic spectroscopy: Sensitivity, calibration, and uncertainty developments, Aerosol Sci. Technol., 40 ( 9 ), 697 – 708, doi: 10.1080/02786820600803917.en_US
dc.identifier.citedreferenceLall, A. A., and S. K. Friedlander ( 2006 ), On‐line measurement of ultrafine aggregate surface area and volume distributions by electrical mobility analysis: I. Theoretical analysis, J. Aerosol. Sci., 37 ( 3 ), 260 – 271, doi: 10.1016/j.jaerosci.2005.05.021.en_US
dc.identifier.citedreferenceLamarque, J. F., et al. ( 2010 ), Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application, Atmos. Chem. Phys., 10 ( 15 ), 7017 – 7039, doi: 10.5194/acp‐10‐7017‐2010.en_US
dc.identifier.citedreferenceMedalia, A. I., and L. W. Richards ( 1972 ), Tinting strength of carbon black, J. Colloid Interf. Sci., 40 ( 2 ), 233 – 252.en_US
dc.identifier.citedreferenceLance, S., et al. ( 2009 ), Cloud condensation nuclei activity, closure, and droplet growth kinetics of Houston aerosol during the Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS), J. Geophys. Res.‐Atmos., 114, doi: 10.1029/2008JD011699.en_US
dc.identifier.citedreferenceLau, K. M., M. K. Kim, and K. M. Kim ( 2006 ), Asian summer monsoon anomalies induced by aerosol direct forcing: The role of the Tibetan Plateau, Climate Dyn., 26 ( 7–8 ), 855 – 864, doi: 10.1007/s00382‐006‐0114‐z.en_US
dc.identifier.citedreferenceLau, W. K. M., M. K. Kim, K. M. Kim, and W. S. Lee ( 2010 ), Enhanced surface warming and accelerated snow melt in the Himalayas and Tibetan Plateau induced by absorbing aerosols, Environ. Res. Lett., 5 ( 2 ), doi: 10.1088/1748‐9326/5/2/025204.en_US
dc.identifier.citedreferenceLavanchy, V. M. H., H. W. Gäggeler, U. Schotterer, M. Schwikowski, and U. Baltensperger ( 1999 ), Historical record of carbonaceous particle concentrations from a European high‐alpine glacier (Colle Gnifetti, Switzerland), J. Geophys. Res., 104 ( D17 ), 21227 – 21236, doi: 10.1029/1999JD900408.en_US
dc.identifier.citedreferenceLaw, K. S., and A. Stohl ( 2007 ), Arctic air pollution: Origins and impacts, Science, 315 ( 5818 ), 1537 – 1540, doi: 10.1126/science.1137695.en_US
dc.identifier.citedreferenceLee, S. H., D. M. Murphy, D. S. Thomson, and A. M. Middlebrook ( 2002 ), Chemical components of single particles measured with Particle Analysis by Laser Mass Spectrometry (PALMS) during the Atlanta SuperSite Project: Focus on organic/sulfate, lead, soot, and mineral particles, J. Geophys. Res., 107 ( D1–D2 ), 4003, doi: 10.1029/2000JD000011.en_US
dc.identifier.citedreferenceLee, K. B., M. W. Thring, and J. M. Beér ( 1962 ), On the rate of combustion of soot in a laminar soot flame, Combustion and Flame, 6, 137 – 145.en_US
dc.identifier.citedreferenceLee, D. S., et al. ( 2010 ), Transport impacts on atmosphere and climate: Aviation, Atmos. Environ., 44 ( 37 ), 4678 – 4734, doi: 10.1016/j.atmosenv.2009.06.005.en_US
dc.identifier.citedreferenceLefohn, A. S., J. D. Husar, and R. B. Husar ( 1999 ), Estimating historical anthropogenic global sulfur emission patterns for the period 1850–1990, Atmos. Environ., 33 ( 21 ), 3435 – 3444.en_US
dc.identifier.citedreferenceLegrand, M., S. Preunkert, M. Schock, M. Cerqueira, A. Kasper‐Giebl, J. Afonso, C. Pio, A. Gelencsér, and I. Dombrowski‐Etchevers ( 2007 ), Major 20th century changes of carbonaceous aerosol components (EC, WinOC, DOC, HULIS, carboxylic acids, and cellulose) derived from Alpine ice cores, J. Geophys. Res., 112 ( D23 ), D23S11, doi: 10.1029/2006JD008080.en_US
dc.identifier.citedreferenceLei, Y., Q. Zhang, K. B. He, and D. G. Streets ( 2011 ), Primary anthropogenic aerosol emission trends for China, 1990–2005, Atmos. Chem. Phys., 11, 931 – 954, doi: 10.5194/acp‐11‐931‐2011.en_US
dc.identifier.citedreferenceLevy, R. C., L. A. Remer, S. Mattoo, E. F. Vermote, and Y. J. Kaufman ( 2007 ), Second‐generating operational algorithm: Retrieval of aerosol properties over land from inversion of Moderate Resolution Imaging Spectroradiometer spectral reflectance, J. Geophys. Res., 112, D13211, doi: 10.1029/2006JD007811.en_US
dc.identifier.citedreferenceLewis, K., W. P. Arnott, H. Moosmüller, and C. E. Wold ( 2008 ), Strong spectral variation of biomass smoke light absorption and single scattering albedo observed with a novel dual‐wavelength photoacoustic instrument, J. Geophys. Res., 113, D16203, doi: 10.1029/2007JD009699.en_US
dc.identifier.citedreferenceLewis, K. A., et al. ( 2009 ), Reduction in biomass burning aerosol light absorption upon humidification: roles of inorganically‐induced hygroscopicity, particle collapse, and photoacoustic heat and mass transfer, Atmos. Chem. Phys., 9 ( 22 ), 8949 – 8966, doi: 10.5194/acp‐9‐8949‐2009.en_US
dc.identifier.citedreferenceLi, J., M. Posfai, P. V. Hobbs, and P. R. Buseck ( 2003 ), Individual aerosol particles from biomass burning in southern Africa: 2. Compositions and aging of inorganic particles, J. Geophys. Res., 108 ( D13 ), 8484, doi: 10.1029/2002JD002310.en_US
dc.identifier.citedreferenceLiley, J. B., et al. ( 2003 ), Black carbon in aerosol during BIBLE B, J. Geophys. Res., 108 ( D3 ), doi: 10.1029/2001JD000845.en_US
dc.identifier.citedreferenceLin, C.‐I., M. Baker, and R. J. Charlson ( 1973 ), Absorption coefficient of atmospheric aerosol: A method for measurement, Appl. Opt., 12 ( 6 ), 1356 – 1363.en_US
dc.identifier.citedreferenceLindesay, J. A., M. O. Andreae, J. G. Goldammer, G. Harris, H. J. Annegarn, M. Garstang, R. J. Scholes, and B. W. vanWilgen ( 1996 ), International geosphere‐biosphere programme international global atmospheric chemistry SAFARI‐92 field experiment: Background and overview, J. Geophys. Res., 101 ( D19 ), 23521 – 23530.en_US
dc.identifier.citedreferenceLiousse, C., J. E. Penner, C. Chuang, J. J. Walton, H. Eddleman, and H. Cachier ( 1996 ), A global three‐dimensional model study of carbonaceous aerosols, J. Geophys. Res., 101 ( D14 ), 19411 – 19432.en_US
dc.identifier.citedreferenceListon, G. E. ( 1995 ), Local advection of momentum, heat, and moisture during the melt of patchy snow covers, J. Appl. Meteorol., 34 ( 7 ), 1705 – 1715.en_US
dc.identifier.citedreferenceListon, G. E. ( 1999 ), Interrelationships among snow distribution, snowmelt, and snow cover depletion: Implications for atmospheric, hydrologic, and ecologic modeling, J. Appl. Meteorol., 38 ( 10 ), 1474 – 1487.en_US
dc.identifier.citedreferenceListon, G. E. ( 2004 ), Representing subgrid snow cover heterogeneities in regional and global models, J. Climate, 17 ( 6 ), 1381 – 1397.en_US
dc.identifier.citedreferenceListon, G. E., and M. Sturm ( 2004 ), The role of winter sublimation in the Arctic moisture budget, Nordic Hydrology, 35 ( 4–5 ), 325 – 334.en_US
dc.identifier.citedreferenceLiu, L., and M. I. Mishchenko ( 2005 ), Effects of aggregation on scattering and radiative properties of soot aerosols, J. Geophys. Res., 110, D11211, doi:11210.11029/12004JD005649.en_US
dc.identifier.citedreferenceLiu, J., S. Fan, L. W. Horowitz, and H. Levy II ( 2011 ), Evaluation of factors controlling long‐range transport of black carbon to the Arctic, J. Geophys. Res., 116, D04307, doi: 10.1029/2010JD015145.en_US
dc.identifier.citedreferenceLiu, X., J. E. Penner, S. J. Ghan, and M. Wang ( 2007 ), Inclusion of ice microphysics in the NCAR Community Atmospheric Model Version 3 (CAM3), J. Climate, 20, 4526 – 4547, doi: 10.1175/JCL14264.1.en_US
dc.identifier.citedreferenceLiu, X. H., J. E. Penner, and M. H. Wang ( 2009a ), Influence of anthropogenic sulfate and black carbon on upper tropospheric clouds in the NCAR CAM3 model coupled to the IMPACT global aerosol model, J. Geophys. Res., 114 ( D03 ), 204, doi: 10.1029/2008JD010492.en_US
dc.identifier.citedreferenceLiu, Y. Q., J. Stanturf, and S. Goodrick ( 2010 ), Trends in global wildfire potential in a changing climate, Forest Ecol. Manag., 259, 685 – 697, doi: 10.1016/j.foreco.2009.09.002.en_US
dc.identifier.citedreferenceLiu, Y., J. R. Sun, and B. Yang ( 2009b ), The effects of black carbon and sulphate aerosols in China regions on East Asia monsoons, Tellus B, 61 ( 4 ), 642 – 656, doi: 10.1111/j.1600‐0889.2009.00427.X.en_US
dc.identifier.citedreferenceLiu, X., et al. ( 2012 ), Toward a minimal representation of aerosols in climate models: Description and evaluation in the Community Atmosphere Model CAM5, Geosci. Model Dev., 5, 709 – 739, doi: 10.5194/gmd‐5‐709‐2012.en_US
dc.identifier.citedreferenceLivingston, J. M., et al. ( 2000 ), Shipboard sunphotometer measurements of aerosol optical depth spectra and columnar water vapor during ACE‐2, and comparison with selected land, ship, aircraft, and satellite measurements, Tellus B, 52 ( 2 ), 594 – 619.en_US
dc.identifier.citedreferenceLobert, J. M., D. H. Scharffe, W.‐M. Hao, T. A. Kuhlbusch, R. Seuwen, P. Warneck, and P. J. Crutzen ( 1991 ), Experimental evaluation of biomass burning emissions: Nitrogen and carbon containing compounds, in Global Biomass Burning: Atmospheric, clImatic, and Biospheric Implications, edited by J. S. Levine, Massachussetts Institute of Technology, The MIT Press, Cambridge, Massachusetts.en_US
dc.identifier.citedreferenceLohmann, U. ( 2002 ), A glaciation indirect aerosol effect caused by soot aerosols, Geophys. Res. Lett., 29 ( 4 ), 1052, doi: 10.1029/2001GL014357.en_US
dc.identifier.citedreferenceLohmann, U., and K. Diehl ( 2006 ), Sensitivity studies of the importance of dust ice nuclei for the indirect aerosol effect on stratiform mixed‐phase clouds, J. Atmos. Sci., 63 ( 3 ), 968 – 982.en_US
dc.identifier.citedreferenceLohmann, U., and J. Feichter ( 2001 ), Can the direct and semi‐direct aerosol effect compete with the indirect effect on a global scale?, Geophys. Res. Lett., 28 ( 1 ), 159 – 161, doi: 10.1029/2000GL012051.en_US
dc.identifier.citedreferenceLohmann, U., and J. Feichter ( 2005 ), Global indirect aerosol effects: A review, Atmos. Chem. Phys., 5, 715 – 737, doi: 10.5194/acp‐5‐715‐2005.en_US
dc.identifier.citedreferenceLohmann, U., and C. Hoose ( 2009 ), Sensitivity studies of different aeroso indirect effects in mixed‐phase clouds, Atmos. Chem. Phys., 9 ( 22 ), 8917 – 8934, doi: 10.5194/acp‐9‐8917‐2009.en_US
dc.identifier.citedreferenceLohmann, U., L. Rotstayn, T. Storelvmo, A. Jones, S. Menon, J. Quaas, A. M. L. Ekman, D. Koch, and R. Ruedy ( 2010 ), Total aerosol effect: Radiative forcing or radiative flux perturbation?, Atmos. Chem. Phys., 10 ( 7 ), 3235 – 3246, doi: 10.5194/acp‐11‐931‐2011.en_US
dc.identifier.citedreferenceLohmann, U., P. Stier, C. Hoose, S. Ferrachat, S. Kloster, E. Roeckner, and J. Zhang ( 2007 ), Cloud microphysics and aerosol indirect effects in the global climate model ECHAM5‐HAM, Atmos. Chem. Phys., 7 ( 13 ), 3425 – 3446, doi: 10.5194/acp‐7‐3425‐2007.en_US
dc.identifier.citedreferenceLu, Z., D. G. Streets, Q. Zhang, and S. Wang ( 2012 ), A novel back‐trajectory analysis of the origin of black carbon transported to the Himalayas and Tibetan Plateau during 1996–2010, Geophys. Res. Lett., 39, L01809, doi: 10.1029/2011GL049903.en_US
dc.identifier.citedreferenceLu, Z., Q. Zhang, and D. G. Streets ( 2011 ), Sulfur dioxide and primary carbonaceous aerosol emissions in China and India, 1996–2010, Atmos. Chem. Phys., 11, 9839 – 9864, doi: 10.5194/acp‐11‐9839‐2011.en_US
dc.identifier.citedreferenceLubin, D., and A. S. Simpson ( 1994 ), The longwave emission signature of urban pollution: Radiometric FTIR measurement, Geophys. Res. Lett., 21 ( 1 ), 37 – 40, doi: 10.1029/93GL03374.en_US
dc.identifier.citedreferenceLund, M. T., and T. Berntsen ( 2012 ), Parameterization of black carbon aging in the OsloCTM2 and implications for regional transport to the Arctic, Atmos. Chem. Phys., 12, 6999 – 7014, www.atmos‐chem‐phys.net/12/6999/2012/, doi: 10.5194/acpd‐11‐6999‐2012.en_US
dc.identifier.citedreferenceLuo, C., N. Mahowald, and J. del Corral ( 2003 ), Sensitivity study of meteorological parameters on mineral aerosol mobilization, transport and distribution, J. Geophys. Res., 108 ( D15 ), 4447, doi: 10.1029/2003JD0003483.en_US
dc.identifier.citedreferenceMacCarty, N., D. Still, and D. Ogle ( 2010 ), Fuel use and emissions performance on fifty cooking stoves in the laboratory and related benchmarks of performance, Energ. Sust. Dev., 14, 161 – 171.en_US
dc.identifier.citedreferenceMack, M. C., M. S. Bret‐Harte, T. N. Hollingsworth, R. R. Jandt, E. A. G. Schuur, G. R. Shaver, and D. L. Verbyla ( 2011 ), Carbon loss from an unprecedented Arctic tundra wildfire, Nature, 475 ( 7357 ), 489 – 492, doi: 10.1038/nature10283.en_US
dc.identifier.citedreferenceMagi, B. I., P. V. Hobbs, B. Schmid, and J. Redemann ( 2003 ), Vertical profiles of light scattering, light absorption, and single scattering albedo during the dry, biomass burning season in southern Africa and comparisons of in situ and remote sensing measurements of aerosol optical depths, J. Geophys. Res., 108 ( D13 ), 8504, doi: 10.1029/2002JD002361.en_US
dc.identifier.citedreferenceMahowald, N. M., D. R. Muhs, S. Levis, P. J. Rasch, M. Yoshioka, C. S. Zender, and C. Luo ( 2006 ), Change in atmospheric mineral aerosols in response to climate: Last glacial period, preindustrial, modern, and doubled carbon dioxide climates, J. Geophys. Res., 111, D10202, doi: 10.1029/2005JD006653.en_US
dc.identifier.citedreferenceMallet, M., J. C. Roger, S. Despiau, O. Dubovik, and J. P. Putaud ( 2003 ), Microphysical and optical properties of aerosol particles in urban zone during ESCOMPTE, Atmos. Res., 69 ( 1–2 ), 73 – 97.en_US
dc.identifier.citedreferenceMallet, M., J. C. Roger, S. Despiau, J. P. Putaud, and O. Dubovik ( 2004 ), A study of the mixing state of black carbon in urban zone, J. Geophys. Res., 109, D04202, doi:04210.01029/02003JD003940.en_US
dc.identifier.citedreferenceMalm, W. C., J. F. Sisler, D. Huffman, R. A. Eldred, and T. A. Cahill ( 1994 ), Spatial and seasonal trends in particle concentration and optical extinction in the United States, J. Geophys. Res., 99 ( D1 ), 1347 – 1370.en_US
dc.identifier.citedreferenceManne, A. S., and R. G. Richels ( 2001 ), An alternative approach to establishing trade‐offs among greenhouse gases, Nature, 410 ( 6829 ), 675 – 677.en_US
dc.identifier.citedreferenceManoli, E., D. Voutsa, and C. Samara ( 2002 ), Chemical characterization and source identification/apportionment of fine and coarse air particles in Thessaloniki, Greece, Atmos. Environ., 36 ( 6 ), 949 – 961.en_US
dc.identifier.citedreferenceMarcolli, C., S. Gedamke, T. Peter, and B. Zobrist ( 2007 ), Efficiency of immersion mode ice nucleation on surrogates of mineral dust, Atmos. Chem. Phys., 7 ( 19 ), 5081 – 5091, doi: 10.5194/acp‐7‐5081‐2007.en_US
dc.identifier.citedreferenceMarcq, S., P. Laj, J. C. Roger, P. Villani, K. Sellegri, P. Bonasoni, A. Marinoni, P. Cristofanelli, G. P. Verza, and M. Bergin ( 2010 ), Aerosol optical properties and radiative forcing in the high Himalaya based on measurements at the Nepal Climate Observatory‐Pyramid site (5079 m a.s.l.), Atmos. Chem. Phys., 10 ( 13 ), 5859 – 5872, doi: 10.5194/acp‐10‐5859‐2010.en_US
dc.identifier.citedreferenceMarinoni, A., P. Cristofanelli, P. Laj, R. Duchi, F. Calzolari, S. Decesari, K. Sellegri, E. Vuillermoz, G. P. Verza, P. Villani, and P. Bonasoni ( 2010 ), Aerosol mass and black carbon concentrations, two year‐round observations at NCO‐P (5079 m, Southern Himalayas), Atmos. Chem. Phys., 10, 8551 – 8562, www.atmos‐chem‐phys.net/10/8551/2010/, doi: 10.5194/acpd‐10‐8551‐2010.en_US
dc.identifier.citedreferenceMarley, N. A., J. S. Gaffney, J. C. Baird, C. A. Blazer, P. J. Drayton, and J. E. Frederick ( 2001 ), An empirical method for the determination of the complex refractive index of size‐fractionated atmospheric aerosols for radiative transfer calculations, Aerosol Sci. Technol., 34, 535 – 549.en_US
dc.identifier.citedreferenceMarlon, J. R., P. J. Bartlein, C. Carcaillet, D. G. Gavin, S. P. Harrison, P. E. Higuera, F. Joos, M. J. Power, and I. C. Prentice ( 2008 ), Climate and human influences on global biomass burning over the past two millennia, Nature Geosci., 1, 697 – 702, doi: 10.1038/ngeo313.en_US
dc.identifier.citedreferenceMartins, J. V., P. Artaxo, C. Liousse, J. S. Reid, P. V. Hobbs, and Y. Kaufman ( 1998a ), Effects of black carbon content, particle size, and mixing on light absorption by aerosol from biomass burning in Brazil, J. Geophys. Res., 103 ( D24 ), 32041 – 32050.en_US
dc.identifier.citedreferenceMartins, J. V., P. V. Hobbs, R. E. Weiss, and P. Artaxo ( 1998b ), Sphericity and morphology of smoke particles from biomass burning in Brazil, J. Geophys. Res., 103 ( D24 ), 32051 – 32057.en_US
dc.identifier.citedreferenceMassey, R. ( 1997 ), No‐Tillage and Conservation Tillage: Economic Considerations, University of Missouri Extension Publication G355, University of Missouri, Columbia, MO.en_US
dc.identifier.citedreferenceMassie, S. T., A. Heymsfield, C. Schmitt, D. Muller, and P. Seifert ( 2007 ), Aerosol indirect effects as a function of cloud top pressure, J. Geophys. Res., 112 ( D6 ), 202, doi: 10.1029/2006JD007383.en_US
dc.identifier.citedreferenceMatzl, M., and M. Schneebeli ( 2006 ), Measuring specific surface area of snow by near infrared photography, J. Glaciol., 52, 558 – 564.en_US
dc.identifier.citedreferenceMaykut, G. A., and N. Untersteiner ( 1971 ), Some results from a time‐dependent thermodynamic model of sea ice, J. Geophys. Res., 76 ( 6 ), 1550 – 1575, doi: 10.1029/JC076i006p01550.en_US
dc.identifier.citedreferenceMayol‐Bracero, O. L., R. Gabriel, M. O. Andreae, T. W. Kirchstetter, T. Novakov, J. Ogren, P. Sheridan, and D. G. Streets ( 2002 ), Carbonaceous aerosols over the Indian Ocean during the Indian Ocean Experiment (INDOEX): Chemical characterization, optical properties, and probable sources, J. Geophys. Res., 107 ( D19 ), 8030, doi: 10.1029/2000JD000039.en_US
dc.identifier.citedreferenceMcConnell, J. R., and R. Edwards ( 2008 ), Coal burning leaves toxic heavy metal legacy in the Arctic, P. Natl. Acad. Sci. USA, 105 ( 34 ), 12140 – 12144, doi: 10.1073/pnas.0803564105.en_US
dc.identifier.citedreferenceMcConnell, J. R., R. Edwards, G. L. Kok, M. G. Flanner, C. S. Zender, E. S. Saltzman, J. R. Banta, D. R. Pasteris, M. M. Carter, and J. D. W. Kahl ( 2007 ), 20th‐century industrial black carbon emissions altered Arctic climate forcing, Science, 317 ( 5843 ), 1381 – 1384, doi: 10.1126/science.1144856.en_US
dc.identifier.citedreferenceMcCormick, R. A., and J. H. Ludwig ( 1967 ), Climate modification by atmospheric aerosols, Science, 156 ( 3780 ), 1358 – 1359, doi: 10.1126/science.156.3780.1358.en_US
dc.identifier.citedreferenceMcDonald, J. D., B. Zielinska, E. M. Fujita, J. C. Sagebiel, J. C. Chow, and J. G. Watson ( 2000 ), Fine particle and gaseous emission rates from residential wood combustion, Environ. Sci. Technol., 34, 2080 – 2091.en_US
dc.identifier.citedreferenceMcFarquhar, G. M., and H. L. Wang ( 2006 ), Effects of aerosols on trade wind cumuli over the Indian Ocean: Model simulations, Quart J. Roy. Meteor. Soc., 132 ( 616 ), 821 – 843, doi: 10.1256/qj.04.179.en_US
dc.identifier.citedreferenceMcFiggans, G., et al. ( 2006 ), The effect of physical and chemical aerosol properties on warm cloud droplet activation, Atmos. Chem. Phys., 6, 2593 – 2649, doi: 10.5194/acp‐6‐2593‐2006.en_US
dc.identifier.citedreferenceMcKenzie, D., C. L. Raymond, L.‐K. B. Kellogg, R. A. Norheim, A. G. Andreu, A. C. Bayard, K. E. Kopper, and E. Elman ( 2007 ), Mapping fuels at multiple scales: landscape application of the Fuel Characteristic Classification System, Can. J. Forest Res., 37, 2421 – 2437, doi: 10.1139/X07‐056.en_US
dc.identifier.citedreferenceMedalia, A. I., and F. A. Heckman ( 1969 ), Morphology of aggregates—II. Size and shape factors of carbon black aggregates from electron microscopy, Carbon, 7, 569 – 582.en_US
dc.identifier.citedreferenceMedina, J., A. Nenes, R. E. P. Sotiropoulou, L. D. Cottrell, L. D. Ziemba, P. J. Beckman, and R. J. Griffin ( 2007 ), Cloud condensation nuclei closure during the International Consortium for Atmospheric Research on Transport and Transformation 2004 campaign: Effects of size‐resolved composition, J. Geophys. Res., 112 ( D10 ), doi: 10.1029/2006JD007588.en_US
dc.identifier.citedreferenceMeehl, G. A., J. M. Arblaster, and W. D. Collins ( 2008 ), Effects of black carbon aerosols on the Indian monsoon, J. Climate, 21 ( 12 ), 2869 – 2882, doi: 10.1175/2007jcli1777.1.en_US
dc.identifier.citedreferenceMehta, S., and C. Shahpar ( 2004 ), The health benefits of interventions to reduce indoor air pollution from solid fuel use: A cost‐effectiveness analysis, Energy Sustain. Dev., 8 ( 3 ), doi: 10.1016/S0973‐0826(08)60466‐4.en_US
dc.identifier.citedreferenceMenon, S., and A. D. Del Genio ( 2007 ), Evaluating the impacts of carbonaceous aerosols on clouds and climate, in Human‐Induced Climate Change: An Interdisciplinary Assessment edited by M. E. Schlesinger, H. Kheshgi, J. B. Smith, F. C. D. L. Chesnaye, J. M. Reilly, T. Wilson and C. Kolstad, 34 – 48 pp., Cambridge University Press, Cambridge UK, Cambridge Books Online, doi: 10.1017/CBO9780511619472.005.en_US
dc.identifier.citedreferenceMenon, S., A. D. Del Genio, D. Koch, and G. Tselioudis ( 2002a ), GCM Simulations of the aerosol indirect effect: Sensitivity to cloud parameterization and aerosol burden, J. Atmos. Sci., 59 ( 3 ), 692 – 713, doi: 10.1175/1520‐0469(2002)059<0692:gsotai>2.0.co;2.en_US
dc.identifier.citedreferenceMenon, S., J. Hansen, L. Nazarenko, and Y. F. Luo ( 2002b ), Climate effects of black carbon aerosols in China and India, Science, 297 ( 5590 ), 2250 – 2253.en_US
dc.identifier.citedreferenceMenon, S., D. Koch, G. Beig, S. Sahu, J. Fasullo, and D. Orlikowski ( 2010 ), Black carbon aerosols and the third polar ice cap, Atmos. Chem. Phys., 10 ( 10 ), 4559 – 4571, doi: 10.5194/acp‐10‐4559‐2010.en_US
dc.identifier.citedreferenceMerikanto, J., D. V. Spracklen, G. W. Mann, S. J. Pickering, and K. S. Carslaw ( 2009 ), Impact of nucleation on global CCN, Atmos. Chem. Phys., 9 ( 21 ), 8601 – 8616, doi: 10.5194/acp‐9‐8601‐2009.en_US
dc.identifier.citedreferenceMikhailov, E. F., S. S. Vlasenko, I. A. Podgorny, V. Ramanathan, and C. E. Corrigan ( 2006 ), Optical properties of soot‐water drop agglomerates: An experimental study, J. Geophys. Res., 111, D07209, doi: 10.1029/2005JD006389.en_US
dc.identifier.citedreferenceMiller, S. M., et al. ( 2008 ), Sources of carbon monoxide and formaldehyde in North America determined from high‐resolution atmospheric data, Atmos. Chem. Phys., 8 ( 24 ), 7673 – 7696, doi: 10.5194/acp‐8‐7673‐2008.en_US
dc.identifier.citedreferenceMillstein, D. E., and R. A. Harley ( 2010 ), Effects of retrofitting emission control systems on in‐use heavy diesel vehicles, Environ. Sci. Technol., 44 ( 13 ), 5042 – 5048, doi: 10.1021/es1006669.en_US
dc.identifier.citedreferenceMing, J., H. Cachier, C. Xiao, D. Qin, S. Kang, S. Hou, and J. Xu ( 2008 ), Black carbon record based on a shallow Himalayan ice core and its climatic implications, Atmos. Chem. Phys., 8 ( 5 ), 1343 – 1352, doi: 10.5194/acp‐8‐1343‐2008.en_US
dc.identifier.citedreferenceMing, Y., V. Ramaswamy, P. A. Ginoux, and L. H. Horowitz ( 2005 ), Direct radiative forcing of anthropogenic organic aerosol J. Geophys. Res., 110, D20208, doi: 10.1029/2004JD005573.en_US
dc.identifier.citedreferenceMing, Y., V. Ramaswamy, and G. Persad ( 2010 ), Two opposing effects of absorbing aerosols on global‐mean precipitation, Geophys. Res. Lett., 37 ( L13 ), 701, doi: 10.1029/2010GL042895.en_US
dc.identifier.citedreferenceMing, J., C. Xiao, H. Cachier, D. Qin, X. Qin, Z. Li, and J. Pu ( 2009 ), Black Carbon (BC) in the snow of glaciers in west China and its potential effects on albedos, Atmos. Res., 92 ( 1 ), 114 – 123.en_US
dc.identifier.citedreferenceMinikin, A., A. Petzold, J. Strom, R. Krejci, M. Seifert, P. van Velthoven, H. Schlager, and U. Schumann ( 2003 ), Aircraft observations of the upper tropospheric fine particle aerosol in the Northern and Southern Hemispheres at midlatitudes, Geophys. Res. Lett., 30 ( 10 ), 1503, doi: 10.1029/2002GL016458.en_US
dc.identifier.citedreferenceMinvielle, F., G. Cautenet, M. O. Andreae, F. Lasserre, G. Foret, S. Cautenet, J. F. Leon, O. L. Mayol‐Bracero, R. Gabriel, P. Chazette, and R. Roca ( 2004 ), Modelling the transport of aerosols during INDOEX 1999 and comparison with experimental data—1: Carbonaceous aerosol distribution, Atmos. Environ., 38 ( 12 ), 1811 – 1822, doi: 10.1016/j.atmosenv.2003.07.017.en_US
dc.identifier.citedreferenceMishchenko, M. I., L. Liu, L. D. Travis, and A. A. Lacis ( 2004 ), Scattering and radiative properties of semi‐external versus external mixtures of different aerosol types, J. Quant. Spectrosc. Radiat. Transfer, 88, 139 – 147.en_US
dc.identifier.citedreferenceMoffet, R. C., and K. A. Prather ( 2009 ), In‐situ measurements of the mixing state and optical properties of soot with implications for radiative forcing estimates, P. Natl. Acad. Sci. USA, 106 ( 29 ), 11872 – 11877.en_US
dc.identifier.citedreferenceMöhler, O., C. Linke, H. Saathoff, M. Schnaiter, R. Wagner, A. Mangold, M. Kramer, and U. Schurath ( 2005a ), Ice nucleation on flame soot aerosol of different organic carbon content, Meteor. Z., 14 ( 4 ), 477 – 484, doi: 10.1127/0941‐2948/2005/0055.en_US
dc.identifier.citedreferenceMöhler, S., et al. ( 2005b ), Effect of sulfuric acid coating on heterogeneous ice nucleation by soot aerosol particles, J. Geophys. Res., 110, D11210, doi: 10.1029/2004JD005169.en_US
dc.identifier.citedreferenceMolina, M., D. Zaelke, K. M. Sarma, S. O. Andersen, V. Ramanathan, and D. Kaniaru ( 2009 ), Reducing abrupt climate change risk using the Montreal Protocol and other regulatory actions to complement cuts in CO 2 emissions, P. Natl. Acad. Sci. USA, 106 ( 49 ), 20616 – 20621, doi: 10.1073/pnas.0902568106.en_US
dc.identifier.citedreferenceMollicone, D., H. D. Eva, and F. Achard ( 2006 ), Human role in Russian wild fires, Nature, 440 ( 7083 ), 436 – 437, doi: 10.1038/440436a.en_US
dc.identifier.citedreferenceNelson, J. ( 1989 ), Fractality of sooty smoke: Implications for the severity of nuclear winter, Nature, 339, 611 – 613.en_US
dc.identifier.citedreferenceMontgomery, W. D., R. E. Baron, and S. D. Tuladhar ( 2009 ), An Analysis of Black Carbon Mitigation as a Response to Climate Change, Report Prepared for the Copenhagen Consensus on Climate, Copenhagen Consensus Center, Frederiksberg, Denmark.en_US
dc.identifier.citedreferenceMoosmüller, H., W. P. Arnott, C. F. Rogers, J. L. Bowen, J. A. Gillies, W. R. Pierson, J. F. Collins, T. D. Durbin, and J. M. Norbeck ( 2001 ), Time‐resolved characterization of diesel particulate emissions. 2. Instruments for elemental and organic carbon measurements, Environ. Sci. Technol., 35 ( 10 ), 1935 – 1942.en_US
dc.identifier.citedreferenceMoosmüller, H., R. K. Chakrabarty, and W. P. Arnott ( 2009 ), Aerosol light absorption and its measurement: A review, J. Quant. Spectrosc. Radiat. Transfer 110 ( 11 ), 844 – 878 doi: 10.1016/j.jqsrt.2009.02.035.en_US
dc.identifier.citedreferenceMoosmüller, H., R. K. Chakrabarty, K. M. Ehlers, and W. P. Arnott ( 2011 ), Absorption Angström coefficient, brown carbon, and aerosols: Basic concepts, bulk matter, and spherical particles, Atmos. Chem. Phys., 11 ( 3 ), 1217 – 1225, doi: 10.5194/acp‐11‐1217‐2011.en_US
dc.identifier.citedreferenceMoosmüller, H., J. P. Engelbrecht, M. Skiba, G. Frey, R. K. Chakrabarty, and W. P. Arnott ( 2012 ), Single scattering albedo of fine mineral dust aerosols controlled by iron concentration, J. Geophys. Res., 117, D11210, doi: 10.1029/2011JD016909.en_US
dc.identifier.citedreferenceMoss, R. H., et al. ( 2010 ), The next generation of scenarios for climate change research and assessment, Nature, 463, 747 – 756, doi: 10.1038/nature08823.en_US
dc.identifier.citedreferenceMoteki, N., and Y. Kondo ( 2007 ), Effects of mixing state on black carbon measurements by laser‐induced incandescence, Aerosol Sci. Technol., 41 ( 4 ), 398 – 417, doi: 10.1080/02786820701199728.en_US
dc.identifier.citedreferenceMoteki, N., and Y. Kondo ( 2010 ), Dependence of laser‐induced incandescence on physical properties of black carbon aerosols: Measurements and theoretical interpretation, Aerosol Sci. Technol., 44 ( 8 ), 663 – 675, doi: 10.1080/02786826.2010.484450.en_US
dc.identifier.citedreferenceMoteki, N., Y. Kondo, Y. Miyazaki, N. Takegawa, Y. Komazaki, G. Kurata, T. Shirai, D. R. Blake, T. Miyakawa, and M. Koike ( 2007 ), Evolution of mixing state of black carbon particles: Aircraft measurements over the western Pacific in March 2004, Geophys. Res. Lett., 34, L11803, doi: 10.1029/2006GL028943.en_US
dc.identifier.citedreferenceMoteki, N., Y. Kondo, and S. Nakamura ( 2010 ), Method to measure refractive indices of small nonspherical particles: Application to black carbon particles, J. Aerosol. Sci., 41 ( 5 ), 513 – 521, doi: 10.1016/J.JAEROSCI.2010.02.013.en_US
dc.identifier.citedreferenceMoulliot, F., and C. B. Field ( 2005 ), Fire history and the global carbon budget: A 1° × 1° fire history reconstruction for the 20th century, Glob. Chang. Biol., 11, 398 – 420, doi: 10.1111/j.1365‐2486.2005.00920.X.en_US
dc.identifier.citedreferenceMugica, V., E. Ortiz, L. Molina, A. De Vizcaya‐Ruiz, A. Nebot, R. Quintana, J. Aguilar, and E. Alcantara ( 2009 ), PM composition and source reconciliation in Mexico City, Atmos. Environ., 43 ( 32 ), 5068 – 5074, doi: 10.1016/j.atmosenv.2009.06.051.en_US
dc.identifier.citedreferenceMuhlbauer, A., and U. Lohmann ( 2009 ), Sensitivity studies of aerosol‐cloud interactions in mixed‐phase orographic precipitation, J. Atmos. Sci., 66 ( 9 ), 2517 – 2538, doi: 10.1175/2009jas3001.1.en_US
dc.identifier.citedreferenceMukunda, H. S., S. Dasappa, P. J. Paul, N. K. S. Rajan, M. Yagnaraman, D. R. Kumar, and M. Deogaonkar ( 2010 ), Gasifier stoves—Science, technology and field outreach, Curr. Sci., 98 ( 5 ), 627 – 638.en_US
dc.identifier.citedreferenceMullins, J., and A. Williams ( 1987 ), The optical properties of soot: a comparison between experimental and theoretical values, Fuel, 66, 277 – 280.en_US
dc.identifier.citedreferenceMurphy, D. M., and T. Koop ( 2005 ), Review of the vapour pressures of ice and supercooled water for atmospheric applications, Quart J. Roy. Meteor. Soc., 131 ( 608 ), 1539 – 1565, doi: 10.1256/qj.04.94.en_US
dc.identifier.citedreferenceMurphy, D. M., J. C. Chow, E. M. Leibensperger, W. C. Malm, M. Pitchford, B. A. Schichtel, J. G. Watson, and W. H. White ( 2011 ), Decreases in elemental carbon and fine particle mass in the United States, Atmos. Chem. Phys., 11, 4679 – 4686, doi: 10.5194/acp‐11‐4679‐2011.en_US
dc.identifier.citedreferenceMurphy, D. M., D. J. Cziczo, P. K. Hudson, and D. S. Thomson ( 2007 ), Carbonaceous material in aerosol particles in the lower stratosphere and tropopause region, J. Geophys. Res., 112 ( D4 ), 203, doi: 10.1029/2006JD007297.en_US
dc.identifier.citedreferenceMurphy, D. M., S. Solomon, R. W. Portmann, K. H. Rosenlof, P. M. Forster, and T. Wong ( 2009 ), An observationally based energy balance for the Earth since 1950, J. Geophys. Res., 114 ( D17 ), 107, doi: 10.1029/2009JD012105.en_US
dc.identifier.citedreferenceMyhre, G., et al. ( 2009 ), Modelled radiative forcing of the direct aerosol effect with multi‐observation evaluation, Atmos. Chem. Phys., 9, 1365 – 1392, doi: 10.5194/acp‐9‐1365‐2009.en_US
dc.identifier.citedreferenceNaeher, L. P., M. Brauer, M. Lipsett, J. T. Zelikoff, C. D. Simpson, J. Q. Koenig, and K. R. Smith ( 2007 ), Woodsmoke health effects: A review, Inhal. Toxicol., 19 ( 1 ), 67 – 106.en_US
dc.identifier.citedreferenceNagashima, T., H. Shiogama, T. Yokohata, T. Takemura, S. A. Crooks, and T. Nozawa ( 2006 ), Effect of carbonaceous aerosols on surface temperature in the mid twentieth century, Geophys. Res. Lett., 33 ( 4 ), 702, doi: 10.1029/2005GL024887.en_US
dc.identifier.citedreferenceNaik, V., D. L. Mauzerall, L. W. Horowitz, M. D. Schwarzkopf, V. Ramaswamy, and M. Oppenheimer ( 2007 ), On the sensitivity of radiative forcing from biomass burning aerosols and ozone to emission location, Geophys. Res. Lett., 34 ( 3 ), L03818, doi: 10.1029/2006GL028149.en_US
dc.identifier.citedreferenceNakawo, M., C. F. Raymond, and A. Fountain (Eds.) ( 2000 ), Debris‐Covered Glaciers, 288 pp, IAHS Publication 264, International Association of Hydrological Sciences Press, Oxfordshire, United Kingdom.en_US
dc.identifier.citedreferenceNenes, A., and J. H. Seinfeld ( 2003 ), Parameterization of cloud droplet formation in global climate models, J. Geophys. Res., 108 ( D14 ), doi: 10.1029/2002JD002911.en_US
dc.identifier.citedreferenceNeususs, C., H. Wex, W. Birmili, A. Wiedensohler, C. Koziar, B. Busch, E. Bruggemann, T. Gnauk, M. Ebert, and D. S. Covert ( 2002 ), Characterization and parameterization of atmospheric particle number‐, mass‐, and chemical‐size distributions in central Europe during LACE 98 and MINT, J. Geophys. Res., 107 ( D21 ), 8127, doi: 10.1029/2001JD000514.en_US
dc.identifier.citedreferenceNguyen, H. N., et al. ( 2008 ), Chemical composition and morphology of individual aerosol particles from a CARIBIC flight at 10 km altitude between 50 degrees N and 30 degrees S, J. Geophys. Res., 113 ( D23 ), 209, doi: 10.1029/2008JD009956.en_US
dc.identifier.citedreferenceNovakov, T., and C. E. Corrigan ( 1995 ), Thermal characterization of biomass smoke particles, Microchim. Acta, 119, 157 – 166.en_US
dc.identifier.citedreferenceNovakov, T., and J. E. Hansen ( 2004 ), Black carbon emissions in the United Kingdom during the past four decades: An empirical analysis, Atmos. Environ., 38 ( 25 ), 4155 – 4163.en_US
dc.identifier.citedreferenceNovakov, T., M. O. Andreae, R. Gabriel, T. W. Kirchstetter, O. L. Mayol‐Bracero, and V. Ramanathan ( 2000 ), Origin of carbonaceous aerosols over the tropical Indian Ocean: Biomass burning or fossil fuels?, Geophys. Res. Lett., 27 ( 24 ), 4061 – 4064.en_US
dc.identifier.citedreferenceNovakov, T., V. Ramanathan, J. E. Hansen, T. W. Kirchstetter, M. Sato, J. E. Sinton, and J. A. Satahye ( 2003 ), Large historical changes of fossil‐fuel black carbon aerosols, Geophys. Res. Lett., 30 ( 6 ), 1324, doi: 10.1029/2002GL016345.en_US
dc.identifier.citedreferenceNRC ( 2011 ), National Research Council, Climate Stabilization Targets: Emissions, Concentrations, and Impacts Over Decades to Millennia, The National Academies Press, Washington, DC.en_US
dc.identifier.citedreferenceOanh, N. T. K., et al. ( 2006 ), Particulate air pollution in six Asian cities: Spatial and temporal distributions, and associated sources, Atmos. Environ, 40 ( 18 ), 3367 – 3380, doi:10.1016/j.atmosenv.2006.01.050.en_US
dc.identifier.citedreferenceO'Donnell, D., K. Tsigaridis, and J. Feichter ( 2011 ), Estimating the direct and indirect effects of secondary organic aerosols using ECHAM5‐HAM, Atmos. Chem. Phys., 11, 8635 – 8659, doi:10.519/acp‐11‐8635‐2011.en_US
dc.identifier.citedreferenceOgren, J. A., and R. J. Charlson ( 1983 ), Elemental carbon in the atmosphere: Cycle and lifetime, Tellus, 35B, 241 – 254.en_US
dc.identifier.citedreferenceOhara, T., H. Akimoto, J. Kurokawa, N. Horii, K. Yamaji, X. Yan, and T. Hayasaka ( 2007 ), An Asian emission inventory of anthropogenic emission sources for the period 1980–2020, Atmos. Chem. Phys., 7 ( 16 ), 4419 – 4444, doi: 10.5194/acp‐7‐4419‐2007.en_US
dc.identifier.citedreferenceOmar, A. H., et al. ( 2009 ), The CALIPSO automated aerosol classification and lidar ratio selection algorithm, J. Atmos. Oceanic Technol., 26, 1994 – 2014, doi: 10.1175/2009JTECHA1231.1.en_US
dc.identifier.citedreferenceO'Neill, B. C. ( 2000 ), The jury is still out on global warming potentials, Clim. Change, 44, 427 – 443.en_US
dc.identifier.citedreferenceOstro, B., M. Lipsett, P. Reynolds, D. Goldberg, A. Hertz, C. Garcia, K. D. Henderson, and L. Bernstein ( 2010 ), Long‐term exposure to constituents of fine particulate air pollution and mortality: Results from the California teachers study, Environ. Health Perspect., 118 ( 3 ), 363 – 369, doi: 10.1289/ehp.0901181.en_US
dc.identifier.citedreferenceOttmar, R. D., J. L. Peterson, B. Leenhouts, and J. E. Core ( 2001 ), Smoke management: techniques to reduce or redistribute emissions, in Smoke Management Guide for Prescribed and Wildland Fire: 2001 Edition, editors C.C. Hardy, R. D. Hardy, R. D. Ottmar, J. L. Peterson, J. E. Core, P. Seamon, National Wildfire Coordination Group, Boise, ID 83705, www.nwcg.gov/pms/pubs/SMG/SMG-72.pdf.en_US
dc.identifier.citedreferencePaatero, P. ( 1997 ), Least squares formulation of robust non‐negative factor analysis, Chemometr. Intell. Lab., 37 ( 1 ), 23 – 35.en_US
dc.identifier.citedreferencePainter, T. H., A. P. Barrett, C. C. Landry, J. C. Neff, M. P. Cassidy, C. R. Lawrence, K. E. McBride, and G. L. Farmer ( 2007 ), Impact of disturbed desert soils on duration of mountain snow cover, Geophys. Res. Lett., 34 ( 12 ), 502, doi: 10.1029/2007GL030284.en_US
dc.identifier.citedreferenceParashar, D. C., R. Gadi, T. K. Mandal, and A. P. Mitra ( 2005 ), Carbonaceous aerosol emissions from India, Atmos. Environ., 39 ( 40 ), 7861 – 7871, doi: 10.1016/j.atmosenv.2005.08.034.en_US
dc.identifier.citedreferenceParis, J. D., A. Stohl, P. Nédélec, M. Y. Arshinov, M. V. Panchenko, V. P. Shmargunov, K. S. Law, B. D. Belan, and P. Ciais ( 2009 ), Wildfire smoke in the Siberian Arctic in summer: Source characterization and plume evolution from airborne measurements, Atmos. Chem. Phys., 9 ( 23 ), 9315 – 9327, doi: 10.5194/acp‐9‐9315‐2009.en_US
dc.identifier.citedreferencePark, S. H., S. L. Gong, V. S. Bouchet, W. Gong, P. A. Makar, M. D. Moran, C. A. Stroud, and J. Zhang ( 2011 ), Effects of black carbon aging on air quality predictions and direct radiative forcing estimation, Tellus B, 63, 1026 – 1039, doi: 10.1111/j.1600‐0889.2011.00558.X.en_US
dc.identifier.citedreferencePark, R. J., D. J. Jacob, M. Chin, and R. V. Martin ( 2003 ), Sources of carbonaceous aerosols over the United States and implications for natural visibility, J. Geophys. Res., 108 ( D12 ), 4355, doi: 10.1029/2002JD003190.en_US
dc.identifier.citedreferencePark, R. J., M. J. Kim, J. I. Jeong, D. Youn, and S. Kim ( 2010 ), A contribution of brown carbon aerosol to the aerosol light absorption and its radiative forcing in East Asia, Atmos. Environ., 44 ( 11 ), 1414 – 1421, doi: 10.1016/j.atmosenv.2010.01.042.en_US
dc.identifier.citedreferencePark, K., D. B. Kittelson, M. R. Zachariah, and P. H. McMurry ( 2004 ), Measurement of inherent material density of nanoparticle agglomerates, J. Nanopart. Res., 6 ( 267–272 ).en_US
dc.identifier.citedreferenceParrish, D. D., D. T. Allen, T. S. Bates, M. Estes, F. C. Fehsenfeld, G. Feingold, R. Ferrare, R. M. Hardesty, J. F. Meagher, J. W. Nielsen‐Gammon, R. B. Pierce, T. B. Ryerson, J. H. Seinfeld, and E. J. Williams ( 2009 ), Overview of the second Texas air quality study (TexAQS II) and the gulf of Mexico atmospheric composition and climate study (GoMACCS), J. Geophys. Res., 114, D00f13, doi: 10.1029/2009JD011842.en_US
dc.identifier.citedreferencePatterson, E. M., and C. K. McMahon ( 1984 ), Absorption characteristics of forest fire particulate matter, Atmos. Environ., 18 ( 11 ), 2541 – 2551.en_US
dc.identifier.citedreferencePechony, O., and D. T. Shindell ( 2010 ), Driving forces of global wildfires over the past millennium and the forthcoming century, P. Natl. Acad. Sci. USA, 107 ( 45 ), 19167 – 19170, doi: 10.1073/pnas.1003669107.en_US
dc.identifier.citedreferencePenner, J. E., Y. Chen, M. Wang, and X. Liu ( 2009 ), Possible influence of anthropogenic aerosols on cirrus clouds and anthropogenic forcing, Atmos. Chem. Phys., 9 ( 3 ), 879 – 896.en_US
dc.identifier.citedreferencePenner, J. E., C. C. Chuang, and K. Grant ( 1998 ), Climate forcing by carbonaceous and sulfate aerosols, Climate Dyn., 14 ( 12 ), 839 – 851.en_US
dc.identifier.citedreferencePenner, J. E., H. Eddleman, and T. Novakov ( 1993 ), Towards the development of a global inventory for black carbon emissions, Atmos. Environ., 27A ( 8 ), 1277 – 1295.en_US
dc.identifier.citedreferencePenner, J. E., S. Y. Zhang, and C. C. Chuang ( 2003 ), Soot and smoke aerosol may not warm climate, J. Geophys. Res., 108 ( D21 ), 4657, doi: 10.1029/2003JD003409.en_US
dc.identifier.citedreferencePenner, J. E., et al. ( 2001 ), Aerosols: Their direct and indirect effects, in IPCC, 2001: Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, 289–348 pp., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.en_US
dc.identifier.citedreferencePerlwitz, J., and R. L. Miller ( 2010 ), Cloud cover increase with increasing aerosol absorptivity: A counterexample to the conventional semidirect aerosol effect, J. Geophys. Res., 115 ( D08 ), 203, doi: 10.1029/2009JD012637.en_US
dc.identifier.citedreferencePerovich, D. K., T. C. Grenfell, B. Light, and P. V. Hobbs ( 2002 ), Seasonal evolution of the albedo of multiyear Arctic sea ice, J. Geophys. Res., 107 ( C10 ), 8044, doi: 10.1029/2000JC000438.en_US
dc.identifier.citedreferencePeters, G. P., B. Aamaas, T. Berntsen, and J. S. Fuglestvedt ( 2011 ), The integrated global temperature change potential (iGTP) and relationships between emission metrics, Environ. Res. Lett., 6, 044021, doi: 10.1088/1748‐9326/6/4/044021.en_US
dc.identifier.citedreferencePetters, M. D., M. T. Parsons, A. J. Prenni, P. J. DeMott, S. M. Kreidenweis, C. M. Carrico, A. P. Sullivan, G. R. McMeeking, E. Levin, C. E. Wold, J. L. Collett, and H. Moosmüller ( 2009 ), Ice nuclei emissions from biomass burning, J. Geophys. Res., 114 ( D07 ), 209, doi: 10.1029/2008JD011532.en_US
dc.identifier.citedreferencePetzold, A., and R. Niessner ( 1996 ), Photoacoustic soot sensor for in‐situ black carbon monitoring, Appl. Phys. B—Lasers Opt., 63 ( 2 ), 191 – 197.en_US
dc.identifier.citedreferencePetzold, A., M. Gysel, X. Vancassel, R. Hitzenberger, H. Puxbaum, S. Vrochticky, E. Weingartner, U. Baltensperger, and P. Mirabel ( 2005a ), On the effects of organic matter and sulphur‐containing compounds on the CCN activation of combustion particles, Atmos. Chem. Phys., 5, 3187 – 3203.en_US
dc.identifier.citedreferencePetzold, A., H. Schloesser, P. J. Sheridan, W. P. Arnott, J. A. Ogren, and A. Virkkula ( 2005b ), Evaluation of multiangle absorption photometry for measuring aerosol light absorption, Aerosol Sci. Technol., 39, 40 – 51.en_US
dc.identifier.citedreferencePetzold, A., J. Strom, S. Ohlsson, and F. P. Schroder ( 1998 ), Elemental composition and morphology of ice‐crystal residual particles in cirrus clouds and contrails, Atmos. Res., 49 ( 1 ), 21 – 34.en_US
dc.identifier.citedreferencePhilippin, S., A. Wiedensohler, and F. Stratmann ( 2004 ), Measurements of non‐volatile fractions of pollution aerosols with an eight‐tube volatility tandem differential mobility analyzer (VTDMA‐8), J. Aerosol. Sci., 35 ( 2 ), 185 – 203, doi: 10.1016/j.jaerosci.2003.07.004.en_US
dc.identifier.citedreferencePhillips, V. T. J., P. J. DeMott, and C. Andronache ( 2008 ), An empirical parameterization of heterogeneous ice nucleation for multiple chemical species of aerosol, J. Atmos. Sci., 65 ( 9 ), 2757 – 2783, doi: 10.1175/2007jas2546.1.en_US
dc.identifier.citedreferencePolenske, K. R., and F. C. McMichael ( 2002 ), A Chinese cokemaking process‐flow model for energy and environmental analyses, Energ. Policy, 30 ( 10 ), 865 – 883, doi: 10.1016/S0301‐4215(01)00147‐1.en_US
dc.identifier.citedreferencePolissar, A., P. Hopke, and J. Harris ( 2001 ), Source regions for atmospheric aerosol measured at Barrow, Alaska, Environ. Sci. Technol., 35, 4214 – 4226.en_US
dc.identifier.citedreferencePolyakov, I. V., G. V. Alekseev, R. V. Bekryaev, U. Bhatt, R. L. Colony, M. A. Johnson, V. P. Karklin, A. P. Makshtas, D. Walsh, and A. V. Yulin ( 2002 ), Observationally based assessment of polar amplification of global warming, Geophys. Res. Lett., 29 ( 18 ), 1878, doi: 10.1029/2001GL011111.en_US
dc.identifier.citedreferencePope, C. A., M. Ezzati, and D. W. Dockery ( 2009 ), Fine‐particulate air pollution and life expectancy in the united states, N. Engl. J. Med., 360 ( 4 ), 376 – 386.en_US
dc.identifier.citedreferencePopovicheva, O., N. M. Persiantseva, N. K. Shonija, P. Demott, K. Köhler, M. Petters, S. Kreidenweis, V. Tishkova, B. Demirdjian, and J. Suzanne ( 2008 ), Water interaction with hydrophobic and hydrophilic soot particles, Phys. Chem. Chem. Phys., 10, 2332 – 2344, doi: 10.1039/B718944N.en_US
dc.identifier.citedreferencePósfai, M., J. R. Anderson, P. R. Buseck, and H. Sievering ( 1999 ), Soot and sulfate particles in the remote marine troposphere, J. Geophys. Res., 104 ( D17 ), 21685 – 21693.en_US
dc.identifier.citedreferencePósfai, M., R. Simonics, J. Li, P. V. Hobbs, and P. R. Buseck ( 2003 ), Individual aerosol particles from biomass burning in southern Africa: 1. Compositions and size distributions of carbonaceous particles, J. Geophys. Res., 108 ( D13 ), 8483, doi: 10.1029/2002JD002291.en_US
dc.identifier.citedreferencePower, M. J., et al ( 2008 ), Changes in fire regimes since the Last Glacial Maximum: An assessment based on a global synthesis and analysis of charcoal data, Climate Dyn., 30, 887 – 907, doi: 10.1007/s00382‐007‐0334‐X.en_US
dc.identifier.citedreferencePratt, K. A., P. J. DeMott, J. R. French, Z. Wang, D. L. Westphal, A. J. Heymsfield, C. H. Twohy, A. J. Prenni, and K. A. Prather ( 2009 ), In situ detection of biological particles in cloud ice‐crystals, Nature Geosci., 2 ( 6 ), 397 – 400, doi: 10.1038/ngeo521.en_US
dc.identifier.citedreferencePrenni, A. J., P. J. Demott, D. C. Rogers, S. M. Kreidenweis, G. M. McFarquhar, G. Zhang, and M. R. Poellot ( 2009 ), Ice nuclei characteristics from M‐PACE and their relation to ice formation in clouds, Tellus B, 61 ( 2 ), 436 – 448, doi: 10.1111/j.1600‐0889.2009.00415.X.en_US
dc.identifier.citedreferencePruppacher, H. R., and J. D. Klett ( 1997 ), Microphysics of Clouds and Precipitation, 954 pp., Kluwer Academic Publishers, Dordrecht, The Netherlands.en_US
dc.identifier.citedreferencePuxbaum, H., A. Caseiro, A. Sanchez‐Ochoa, A. Kasper‐Giebl, M. Claeys, A. Gelencsér, M. Legrand, S. Preunkert, and C. Pio ( 2007 ), Levoglucosan levels at background sites in Europe for assessing the impact of biomass combustion on the European aerosol background, J. Geophys. Res., 112, D23s05, doi: 10.1029/2006JD008114.en_US
dc.identifier.citedreferenceQian, Y., M. G. Flanner, L. R. Leung, and W. Wang ( 2011 ), Sensitivity studies of the impacts of Tibetan Plateau snowpack pollution on the Asian hydrologic cycle and monsoon climate, Atmos. Chem. Phys., 11, 1929 – 1948, doi: 10.5194/acp‐11‐1929‐2011.en_US
dc.identifier.citedreferenceQian, Y., W. I. Gustafson, L. R. Leung, and S. J. Ghan ( 2009 ), Effects of soot‐induced snow albedo change on snowpack and hydrological cycle in western United States based on Weather Research and Forecasting chemistry and regional climate simulations, J. Geophys. Res., 114 ( D03 ), 108, doi: 10.1029/2008JD011039.en_US
dc.identifier.citedreferenceQuaas, J., et al. ( 2009 ), Aerosol indirect effects—General circulation model intercomparison and evaluation with satellite data, Atmos. Chem. Phys., 9 ( 22 ), 8697 – 8717, doi: 10.5194/acp‐9‐8697‐2009.en_US
dc.identifier.citedreferenceQuerol, X., et al ( 2008 ), PM speciation and sources in Mexico during the MILAGRO‐2006 Campaign, Atmos. Chem. Phys., 8 ( 1 ), 111 – 128, doi: 10.5194/acp‐8‐111‐2008.en_US
dc.identifier.citedreferenceQuinn, P. K., and T. S. Bates ( 2005 ), Regional aerosol properties: Comparisons of boundary layer measurements from ACE 1, ACE 2, aerosols99, INDOEX, ACE Asia, TARFOX, and NEAQS, J. Geophys. Res., 110 ( D14 ), 202, doi: 10.1029/2004JD004755.en_US
dc.identifier.citedreferenceQuinn, P. K., and D. J. Coffman ( 1998 ), Local closure during the First Aerosol Characterization Experiment (ACE1): Aerosol mass concentration and scattering and backscattering coefficients, J. Geophys. Res., 103 ( D13 ), 16575 – 16596.en_US
dc.identifier.citedreferenceQuinn, P. K., T. S. Bates, E. Baum, N. Doubleday, A. M. Fiore, M. Flanner, A. Fridlind, T. J. Garrett, D. Koch, S. Menon, D. Shindell, A. Stohl, and S. G. Warren ( 2008 ), Short‐lived pollutants in the Arctic: Their climate impact and possible mitigation strategies, Atmos. Chem. Phys., 8, 1723 – 1725.en_US
dc.identifier.citedreferenceQuinn, P. K., et al. ( 2011 ), The impact of black carbon on Arctic Climate, 128 pp., Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway.en_US
dc.identifier.citedreferenceRaes, F., T. Bates, F. McGovern, and M. Van Liedekerke ( 2000 ), The 2nd aerosol characterization experiment (ACE‐2): General overview and main results, Tellus B, 52 ( 2 ), 111 – 125.en_US
dc.identifier.citedreferenceRamachandran, G., and P. C. Reist ( 1995 ), Characterization of morphological changes in agglomerates subject to condensation and evaporation using multiple fractal dimensions, Aerosol Sci. Technol., 23, 431 – 442.en_US
dc.identifier.citedreferenceRamana, M. V., and V. Ramanathan ( 2006 ), Abrupt transition from natural to anthropogenic aerosol radiative forcing: Observations at the ABC‐Maldives Climate Observatory, J. Geophys. Res., 111 ( D20 ), doi: 10.1029/2006JD007063.en_US
dc.identifier.citedreferenceRamanathan, V., et al ( 2007 ), Atmospheric brown clouds: Hemispherical and regional variations in long‐range transport, absorption, and radiative forcing, J. Geophys. Res., 112, D22S21, doi: 10.1029/2006JD008124.en_US
dc.identifier.citedreferenceRamanathan, V., and G. Carmichael ( 2008 ), Global and regional climate changes due to black carbon, Nature Geosci., 1 ( 4 ), 221 – 227, doi: 10.1038/ngeo156.en_US
dc.identifier.citedreferenceRamanathan, V., and Y. Y. Xu ( 2010 ), The Copenhagen Accord for limiting global warming: Criteria, constraints, and available avenues, P. Natl. Acad. Sci. USA, 107 ( 18 ), 8055 – 8062, doi: 10.1073/pnas.1002293107.en_US
dc.identifier.citedreferenceRamanathan, V., C. Chung, D. Kim, T. Bettge, L. Buja, J. T. Kiehl, W. M. Washington, Q. Fu, D. R. Sikka, and M. Wild ( 2005 ), Atmospheric brown clouds: Impacts on South Asian climate and hydrological cycle, P. Natl. Acad. Sci. USA, 102 ( 15 ), 5326 – 5333, doi: 10.1073/pnas.0500656102.en_US
dc.identifier.citedreferenceRamanathan, V., P. J. Crutzen, J. T. Kiehl, and D. Rosenfeld ( 2001a ), Aerosols, climate, and the hydrological cycle, Science, 294 ( 5549 ), 2119 – 2124.en_US
dc.identifier.citedreferenceRamanathan, V., et al ( 2001b ), Indian ocean experiment: An integrated analysis of the climate forcing and effects of the great Indo‐Asian haze, J. Geophys. Res., 106 ( D22 ), 28371 – 28398, doi: 10.1029/2001JD900133.en_US
dc.identifier.citedreferenceRandles, C. A., and V. Ramaswamy ( 2008 ), Absorbing aerosols over Asia: A Geophysical Fluid Dynamics Laboratory general circulation model sensitivity study of model response to aerosol optical depth and aerosol absorption, J. Geophys. Res., 113 ( D21 ), 203, doi: 10.1029/2008JD010140.en_US
dc.identifier.citedreferenceRasch, P. J., W. D. Collins, and B. E. Eaton ( 2001 ), Understanding the Indian Ocean Experiment (INDOEX) aerosol distributions with an aerosol assimilation, J. Geophys. Res., 106 ( D7 ), 7337 – 7355.en_US
dc.identifier.citedreferenceRasch, P. J., et al. ( 2000 ), A comparison of scavenging and deposition processes in global models: Results from the WCRP Cambridge Workshop of 1995, Tellus, 52B, 1025 – 1056.en_US
dc.identifier.citedreferenceRau, J. A. ( 1989 ), Composition and size distribution of residential wood smoke particles, Aerosol Sci. Technol., 10 ( 1 ), 181 – 192, doi: 10.1080/02786828908959233.en_US
dc.identifier.citedreferenceRCP Database ( 2009 ), Representative Concentration Pathways (RCP) Database (Version 2.0), International Institute for Applied Systems Analysis (IIASA), http://www.iiasa.ac.at/web‐apps/tnt/RcpDb/dsd?Action=htmlpage&page=about., edited.en_US
dc.identifier.citedreferenceReddy, M. S., and O. Boucher ( 2007 ), Climate impact of black carbon emitted from energy consumption in the world's regions, Geophys. Res. Lett., 34, L11802, doi: 10.1029/2006GL028904.en_US
dc.identifier.citedreferenceReddy, M. S., O. Boucher, Y. Balkanski, and M. Schulz ( 2005a ), Aerosol optical depths and direct radiative perturbations by species and source type, Geophys. Res. Lett., 32 ( 12 ), 803, doi: 10.1029/2004GL021743.en_US
dc.identifier.citedreferenceReddy, M. S., O. Boucher, N. Bellouin, M. Schulz, Y. Balkanski, J. L. Dufresne, and M. Pham ( 2005b ), Estimates of global multicomponent aerosol optical depth and direct radiative perturbation in the Laboratoire de Meteorologie Dynamique general circulation model, J. Geophys. Res., 110, D10s16, doi: 10.1029/2004jd004757.en_US
dc.identifier.citedreferenceReddy, M. S., and C. Venkataraman ( 2002a ), Inventory of aerosol and sulphur dioxide emissions from India: Part I—Fossil fuel combustion, Atmos. Environ., 36, 677 – 697.en_US
dc.identifier.citedreferenceReddy, M. S., and C. Venkataraman ( 2002b ), Inventory of aerosol and sulphur dioxide emissions from India, Part II—Biomass combustion, Atmos. Environ., 36 ( 4 ), 699 – 712, doi:10.1016.S1352‐2310(01)00464‐2.en_US
dc.identifier.citedreferenceRedemann, J., et al. ( 2000 ), Retrieving the vertical structure of the effective aerosol complex index of refraction from a combination of aerosol in situ and remote sensing measurements during TARFOX, J. Geophys. Res., 105 ( D8 ), 9949 – 9970.en_US
dc.identifier.citedreferenceReff, A., P. V. Bhave, H. Simon, T. G. Pace, G. A. Pouliot, J. D. Mobley, and M. Houyoux ( 2009 ), Emissions inventory of PM 2.5 trace elements across the United States, Environ. Sci. Technol., 43 ( 15 ), 5790 – 5796, doi: 10.1021/es802930X.en_US
dc.identifier.citedreferenceReid, J. S., R. Koppmann, T. F. Eck, and D. P. Eleuterio ( 2005 ), A review of biomass burning emissions part II: Intensive physical properties of biomass burning particles, Atmos. Chem. Phys., 5, 799 – 825, doi: 10.5194/acp‐5‐799‐2005.en_US
dc.identifier.citedreferenceReid, J. S., P. V. Hobbs, C. Liousse, J. v. Martins, R. E. Weiss, and T. F. Eck ( 1998 ), Comparisons of techniques for measuring shortwave absorption and black carbon content of aerosols from biomass burning in Brazil, J. Geophys. Res., 103 ( D24 ), 32031 – 32040.en_US
dc.identifier.citedreferenceReid, J. S., et al. ( 2009 ), Global monitoring and forecasting of biomass‐burning smoke: Description of and lessons from the fire locating and modeling of burning emissions (FLAMBE) program, IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens., 2 ( 3 ), 144 – 162, doi: 10.1109/jstars.2009.2027443.en_US
dc.identifier.citedreferenceRemer, L. A., et al ( 2005 ), The MODIS aerosol algorithm, products, and validation, J. Atmos. Sci., 62 ( 4 ), 947 – 973.en_US
dc.identifier.citedreferenceRichardson, M. S., et al. ( 2007 ), Measurements of heterogeneous ice nuclei in the western United States in springtime and their relation to aerosol characteristics, J. Geophys. Res., 112 ( D2 ), 209, doi: 10.1029/2006JD007500.en_US
dc.identifier.citedreferenceRiddle, S. G., M. A. Robert, C. A. Jakober, M. P. Hannigan, and M. J. Kleeman ( 2008 ), Size‐resolved source apportionment of airborne particle mass in a roadside environment, Environ. Sci. Technol., 42 ( 17 ), 6580 – 6586.en_US
dc.identifier.citedreferenceRiemer, N., M. West, R. A. Zaveri, and R. C. Easter ( 2009 ), Simulating the evolution of soot mixing state with a particle‐resolved aerosol model, J. Geophys. Res., 114 ( D9 ), 202, doi: 10.1029/2008JD011073.en_US
dc.identifier.citedreferenceRoberts, D. L., and A. Jones ( 2004 ), Climate sensitivity to black carbon aerosol from fossil fuel combustion, J. Geophys. Res., 109 ( D16 ), 202, doi: 10.1029/2004JD004676.en_US
dc.identifier.citedreferenceRobinson, A. L., N. M. Donahue, M. K. Shrivastava, E. A. Weitkamp, A. M. Sage, A. P. Grieshop, T. E. Lane, J. R. Pierce, and S. N. Pandis ( 2007 ), Rethinking organic aerosols: Semivolatile emissions and photochemical aging, Science, 315, 1259 – 1262, doi: 10.1126/science.1133061.en_US
dc.identifier.citedreferenceRoden, C. A., T. C. Bond, S. Conway, A. B. S. Pinel, N. MacCarty, and D. Still ( 2009 ), Laboratory and field investigations of particulate and carbon monoxide emissions from traditional and improved cookstoves, Atmos. Environ., 43 ( 6 ), 1170 – 1181, doi: 10.1016/j.atmosenv.2008.05.041.en_US
dc.identifier.citedreferenceRodhe, H., O. Akesson, and C. Persson ( 1972 ), An investigation into regional transport of soot and sulfate aerosols, Atmos. Environ., 6 ( 9 ), 675 – 693, doi: 10.1016/0004‐6981(72)90025‐X.en_US
dc.identifier.citedreferenceRoeckner, E., P. Stier, J. Feichter, S. Kloster, M. Esch, and I. Fischer‐Bruns ( 2006 ), Impact of carbonaceous aerosol emissions on regional climate change, Climate Dyn., 27 ( 6 ), 553 – 571, doi: 10.1007/s00382‐006‐0147‐3.en_US
dc.identifier.citedreferenceRogers, D. C., P. J. DeMott, S. M. Kreidenweis, and Y. L. Chen ( 1998 ), Measurements of ice nucleating aerosols during SUCCESS, Geophys. Res. Lett., 25 ( 9 ), 1383 – 1386.en_US
dc.identifier.citedreferenceRose, D., et al. ( 2011 ), Cloud condensation nuclei in polluted air and biomass burning smoke near the mega‐city Guangzhou, China—Part 2: Size‐resolved aerosol chemical composition, diurnal cycles, and externally mixed weakly CCN‐active soot particles, Atmos. Chem. Phys., 11 ( 6 ), 2817 – 2836, doi: 10.5194/acp‐11‐2817‐2011.en_US
dc.identifier.citedreferenceRosen, H., A. D. A. Hansen, L. Gundel, and T. Novakov ( 1978 ), Identification of the optically absorbing component in urban aerosols, Appl. Opt., 17 ( 24 ), 3859 – 3861.en_US
dc.identifier.citedreferenceRosen, H., A. D. A. Hansen, L. Gundel, and T. Novakov ( 1979 ), Identification of the graphitic carbon component of source and ambient particulates by Raman spectroscopy and an optical attenuation technique, in Carbonaceous Particles in the Atmosphere, 229 – 232 pp. Lawrence Berkeley Laboratory, Berkeley, CA.en_US
dc.identifier.citedreferenceRosen, H., A. D. A. Hansen, and T. Novakov ( 1984 ), Role of graphitic carbon particles in radiative transfer in the Arctic haze, Sci. Total Environ., 36 ( JUN ), 103 – 110.en_US
dc.identifier.citedreferenceRotstayn, L. D., M. D. Keywood, B. W. Forgan, A. J. Gabric, I. E. Galbally, J. L. Gras, A. K. Luhar, G. H. McTainsh, R. M. Mitchell, and S. A. Young ( 2009 ), Possible impacts of anthropogenic and natural aerosols on Australian climate: A review, Int. J. Climatol., 29, 461 – 479, doi: 10.1002/joc.1729.en_US
dc.identifier.citedreferenceRotstayn, L. D., et al. ( 2007 ), Have Australian rainfall and cloudiness increased due to the remote effects of Asian anthropogenic aerosols?, J. Geophys. Res., 112 ( D9 ), 202, doi: 10.1029/2006JD007712.en_US
dc.identifier.citedreferenceRoy, D. P., P. E. Lewis, and C. O. Justice ( 2002 ), Burned area mapping using multi‐temporal moderate spatial resolution data—A bi‐directional reflectance model‐based expectation approach, Remote Sens. Environ., 83 ( 1–2 ), 263 – 286.en_US
dc.identifier.citedreferenceRuckstuhl, C., J. R. Norris, and R. Philipona ( 2010 ), Is there evidence for an aerosol indirect effect during the recent aerosol optical depth decline in Europe?, J. Geophys. Res., 115, D04204, doi: 10.1029/2009JD012867.en_US
dc.identifier.citedreferenceRussell, L. ( 2003 ), Aerosol organic‐mass‐to‐organic‐carbon ratios, Environ. Sci. Technol., 37, 2982 – 2987.en_US
dc.identifier.citedreferenceRussell, P. B., R. W. Bergstrom, Y. Shinozuka, A. D. Clarke, P. F. DeCarlo, J. L. Jimenez, J. M. Livingston, J. Redemann, O. Dubovik, and A. Strawa ( 2010 ), Absorption Angstrom Exponent in AERONET and related data as an indicator of aerosol composition, Atmos. Chem. Phys., 10 ( 3 ), 1155 – 1169, doi: 10.5194/acp‐10‐1155‐2010.en_US
dc.identifier.citedreferenceRussell, P. B., P. V. Hobbs, and L. L. Stowe ( 1999 ), Aerosol properties and radiative effects in the United States East Coast haze plume: An overview of the Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX), J. Geophys. Res., 104 ( D2 ), 2213 – 2222.en_US
dc.identifier.citedreferenceRypdal, K., N. Rive, T. Berntsen, H. Fagerli, Z. Klimont, T. K. Mideksa, and J. S. Fuglestvedt ( 2009a ), Climate and air quality‐driven scenarios of ozone and aerosol precursor abatement, Environ. Sci. Policy, 12 ( 7 ), 855 – 869, doi: 10.1016/j.envsci.2009.08.002.en_US
dc.identifier.citedreferenceRypdal, K., N. Rive, T. K. Berntsen, Z. Klimont, T. K. Mideksa, G. Myhre, and R. B. Skeie ( 2009b ), Costs and global impacts of black carbon abatement strategies, Tellus B, 61 ( 4 ), 625 – 641, doi: 10.1111/j.1600‐0889.2009.00430.X.en_US
dc.identifier.citedreferenceRypdal, K., F. Stordal, J. S. Fuglestvedt, and T. Berntsen ( 2005 ), Introducing top‐down methods in assessing compliance with the Kyoto Protocol, Climate Policy, 5 ( 4 ), 393 – 405.en_US
dc.identifier.citedreferenceSahu, S. K., G. Beig, and C. Sharma ( 2008 ), Decadal growth of black carbon emissions in India, Geophys. Res. Lett., 35 ( 2 ), doi: 10.1029/2007GL032333.en_US
dc.identifier.citedreferenceSakurai, H., K. Park, P. H. McMurry, D. D. Zarling, D. B. Kittelson, and P. J. Ziemann ( 2003 ), Size‐dependent mixing characteristics of volatile and nonvolatile components in diesel exhaust aerosols, Environ. Sci. Technol., 37, 5487 – 5495.en_US
dc.identifier.citedreferenceSalam, A., H. Bauer, K. Kassin, S. M. Ullah, and H. Puxbaum ( 2003 ), Aerosol chemical characteristics of a mega‐city in Southeast Asia (Dhaka‐Bangladesh), Atmos. Environ., 37 ( 18 ), 2517 – 2528, doi: 10.1016/s1352‐2310(03)00135‐3.en_US
dc.identifier.citedreferenceSamset, B. H., and G. Myhre ( 2011 ), Vertical dependence of black carbon, sulphate and biomass burning aerosol radiative forcing, Geophys. Res. Lett., 38, L24802, doi: 10.1029/2011GL049697.en_US
dc.identifier.citedreferenceSandu, I., J. L. Brenguier, O. Geoffroy, O. Thouron, and V. Masson ( 2008 ), Aerosol impacts on the diurnal cycle of marine stratocumulus, J. Atmos. Sci., 65 ( 8 ), 2705 – 2718, doi: 10.1175/2008jas2451.1.en_US
dc.identifier.citedreferenceSarofim, M., B. DeAngelo, R. Beach, K. Weitz, M. Bahner, and A. Zapata ( 2010 ), Marginal abatement curves for U.S. black carbon emissions, J. Integr. Environ. Sci., 7 ( S1 ), 279 – 288, doi: 10.1080/19438151003774455.en_US
dc.identifier.citedreferenceSatheesh, S. K., and V. Ramanathan ( 2000 ), Large differences in tropical aerosol forcing at the top of the atmosphere and Earth's surface, Nature, 405, 60 – 63, doi: 10.1038/35011039.en_US
dc.identifier.citedreferenceSato, M., J. Hansen, D. Koch, A. Lacis, R. Ruedy, O. Dubovik, B. Holben, M. Chin, and T. Novakov ( 2003 ), Global atmospheric black carbon inferred from AERONET, P. Natl. Acad. Sci. USA, 100 ( 11 ), 6319 – 6324, doi: 10.1073/pnas.0731897100.en_US
dc.identifier.citedreferenceSchauer, J. J., W. F. Rogge, L. M. Hildemann, M. A. Mazurek, and G. R. Cass ( 1996 ), Source apportionment of airborne particulate matter using organic compounds as tracers, Atmos. Environ., 30 ( 22 ), 3837 – 3855.en_US
dc.identifier.citedreferenceSchmid, H., et al. ( 2001 ), Results of the “carbon conference” international aerosol carbon round robin test stage I, Atmos. Environ., 35, 2111 – 2121.en_US
dc.identifier.citedreferenceSchmid, B., et al. ( 2003 ), Coordinated airborne, spaceborne, and ground‐based measurements of massive thick aerosol layers during the dry season in southern Africa, J. Geophys. Res., 108 ( D13 ), 8496, doi: 10.1029/2002JD002297.en_US
dc.identifier.citedreferenceSchnaiter, M., H. Horvath, O. Möhler, K.‐H. Naumann, H. Saathoff, and O. Schock ( 2003 ), UV‐VIS‐NIR spectral optical properties of soot and soot‐containing aerosols, J. Aerosol Sci., 34, 1421 – 1444, doi: 10.1016/S0021‐8502(03)00361‐6.en_US
dc.identifier.citedreferenceSchnaiter, M., C. Linke, O. Möhler, K.‐H. Naumann, H. Saathoff, R. Wagner, U. Schurath, and B. Wehner ( 2005 ), Absorption amplification of black carbon internally mixed with secondary organic aerosol, J. Geophys. Res., 110 ( D19 ), 204, doi: 10.1029/2005JD006046.en_US
dc.identifier.citedreferenceSchröder, F. P., B. Karcher, A. Petzold, R. Baumann, R. Busen, C. Hoell, and U. Schumann ( 1998 ), Ultrafine aerosol particles in aircraft plumes: In situ observations, Geophys. Res. Lett., 25 ( 15 ), 2789 – 2792.en_US
dc.identifier.citedreferenceSchrooten, L., I. De Vlieger, F. Lefebre, and R. Torfs ( 2006 ), Costs and benefits of an enhanced reduction policy of particulate matter exhaust emissions from road traffic in Flanders, Atmos. Environ., 40 ( 5 ), 904 – 912, doi: 10.1016/j.atmosenv.2005.10.013.en_US
dc.identifier.citedreferenceSchultz, M. G., and M. Wooster ( 2008 ), Evaluation of a fire radiative power product derived from METEOSAT 8/9 and identification of operational user needs, FREEVAL final report, Band/Volume 23, Darmstadt, Germany.en_US
dc.identifier.citedreferenceSchultz, M. G., A. Heil, J. J. Hoelzemann, A. Spessa, K. Thonicke, J. G. Goldammer, A. C. Held, J. M. C. Pereira, and M. van het Bolscher ( 2008 ), Global wildland fire emissions from 1960 to 2000, Global Biogeochem. Cycles, 22 ( 2 ), doi: 10.1029/2007GB003031.en_US
dc.identifier.citedreferenceSchulz, M., et al. ( 2006 ), Radiative forcing by aerosols as derived from the AeroCom present‐day and pre‐industrial simulations, Atmos. Chem. Phys., 6, 5225 – 5246, doi: 10.5194/acp‐6‐5225‐2006.en_US
dc.identifier.citedreferenceSchuster, G. L., O. Dubovik, B. N. Holben, and E. E. Clothiaux ( 2005 ), Inferring black carbon content and specific absorption from Aerosol Robotic Network (AERONET) aerosol retrievals, J. Geophys. Res., 110, D10S17, doi: 10.1029/2004JD004548.en_US
dc.identifier.citedreferenceSchwarz, J. P., J. R. Spackman, R. S. Gao, L. A. Watts, P. Stier, M. Schulz, S. M. Davis, S. C. Wofsy, and D. W. Fahey ( 2010 ), Global‐scale black carbon profiles observed in the remote atmosphere and compared to models, Geophys. Res. Lett., 37 ( L18 ), 812, doi: 10.1029/2010GL044372.en_US
dc.identifier.citedreferenceSchwarz, J. P., et al. ( 2006 ), Single‐particle measurements of midlatitude black carbon and light‐scattering aerosols from the boundary layer to the lower stratosphere, J. Geophys. Res., 111 ( D16 ), 207, doi: 10.1029/2006JD007076.en_US
dc.identifier.citedreferenceSchwarz, J. P., et al. ( 2008a ), Coatings and their enhancement of black carbon light absorption in the tropical atmosphere, J. Geophys. Res., 113 ( D3 ), 203, doi: 10.1029/2007JD009042.en_US
dc.identifier.citedreferenceSchwarz, J. P., et al. ( 2008b ), Measurement of the mixing state, mass, and optical size of individual black carbon particles in urban and biomass burning emissions, Geophys. Res. Lett., 35 ( 13 ), 810, doi: 10.1029/2008GL033968.en_US
dc.identifier.citedreferenceSedlacek, A. J., E. R. Lewis, L. Kleinman, J. Xu, and Q. Zhang ( 2012 ), Determination of and evidence for non‐core‐shell structure of particles containing black carbon using the Single‐Particle Soot Photometer (SP2), Geophys. Res. Lett., 39, doi: 10.1029/2012GL050905.en_US
dc.identifier.citedreferenceSeifert, P., A. Ansmann, D. Mueller, U. Wandinger, D. Althausen, A. J. Heymsfield, S. T. Massie, and C. Schmitt ( 2007 ), Cirrus optical properties observed with lidar, radiosonde, and satellite over the tropical Indian Ocean during the aerosol‐polluted northeast and clean maritime southwest monsoon, J. Geophys. Res., 112 ( D17 ), 205, doi: 10.1029/2006JD008352.en_US
dc.identifier.citedreferenceShah, S. D., D. R. Cocker, K. C. Johnson, J. M. Lee, B. L.n Soriano, and J. W. Miller ( 2007 ), Reduction of particulate matter emissions from diesel backup generators equipped with four different exhaust aftertreatment devices, Environ. Sci. Technol., 41 ( 14 ), 5070 – 5076, doi: 10.1021/es0614161.en_US
dc.identifier.citedreferenceShah, S. D., D. R. Cocker, J. W. Miller, and J. M. Norbeck ( 2004 ), Emission rates of particulate matter and elemental and organic carbon from in‐use diesel engines, Environ. Sci. Technol., 38, 2544 – 2550.en_US
dc.identifier.citedreferenceSharma, S., E. Andrews, L. A. Barrie, J. A. Ogren, and D. Lavoué ( 2006 ), Variations and sources of the equivalent black carbon in the high Arctic revealed by long‐term observations at Alert and Barrow: 1989–2003, J. Geophys. Res., 111, D14208, doi: 10.1029/2005JD006581.en_US
dc.identifier.citedreferenceSharma, S., J. R. Brook, H. Cachier, J. Chow, A. Gaudenzi, and G. Lu ( 2002 ), Light absorption and thermal measurements of black carbon in different regions of Canada, J. Geophys. Res., 107 ( D24 ), 4771, doi: 10.1029/2002JD002496.en_US
dc.identifier.citedreferenceShaw, R. A., A. J. Durant, and Y. Mi ( 2005 ), Heterogeneous surface crystallization observed in undercooled water, J. Phys. Chem. B, 109 ( 20 ), 9865 – 9868, doi: 10.1021/jp0506336.en_US
dc.identifier.citedreferenceShea, R. W., B. W. Shea, J. B. Kauffman, D. E. Ward, C. I. Haskins, and M. C. Scholes ( 1996 ), Fuel biomass and combustion factors associated with fires in savanna ecosystems of South Africa and Zambia, J. Geophys. Res., 101 ( D19 ), 23551 – 23568, doi: 10.1029/95JD02047.en_US
dc.identifier.citedreferenceSheesley, R. J., J. J. Schauer, and M. L. Orf ( 2010 ), Assessing the impact of industrial source emissions on atmospheric carbonaceous aerosol concentrations using routine monitoring networks, J. Air Waste Manage. Assoc., 60 ( 2 ), 149 – 155, doi: 10.3155/1047‐3289.60.2.149.en_US
dc.identifier.citedreferenceShindell, D., and G. Faluvegi ( 2009 ), Climate response to regional radiative forcing during the twentieth century, Nature Geosci., 2 ( 4 ), 294 – 300, doi: 10.1038/ngeo473.en_US
dc.identifier.citedreferenceShindell, D. T., G. Faluvegi, N. Bell, and G. A. Schmidt ( 2005 ), An emissions‐based view of climate forcing by methane and tropospheric ozone, Geophys. Res. Lett., 32, L04803.en_US
dc.identifier.citedreferenceShindell, D., G. Faluvegi, M. Walsh, S. C. Anenberg, R. V. Dingenen, N. Z. Muller, J. Austin, D. Koch, and G. Milly ( 2011 ), Climate, health, agricultural and economic impacts of tighter vehicle‐emission standards, Nature Climate Change, 1, 59 – 66, doi: 10.1038/nclimate1066.en_US
dc.identifier.citedreferenceShindell, D., M. Schulz, Y. Ming, T. Takemura, G. Faluvegi, and V. Ramaswamy ( 2010 ), Spatial scales of climate response to inhomogeneous radiative forcing, J. Geophys. Res., 115, D19110, doi: 10.1029/2010jd014108.en_US
dc.identifier.citedreferenceShindell, D. T., et al. ( 2008 ), A multi‐model assessment of pollution transport to the Arctic, Atmos. Chem. Phys., 8 ( 17 ), 5353 – 5372, doi: 10.5194/acp‐8‐5353‐2008.en_US
dc.identifier.citedreferenceShindell, D., et al. ( 2012 ), Simultaneously mitigating near‐term climate change and improving human health and food security, Science, 335 ( 6065 ), 183 – 189, doi: 10.1126/science.1210026.en_US
dc.identifier.citedreferenceShine, K. P., T. K. Berntsen, J. S. Fuglestvedt, R. B. Skeie, and N. Stuber ( 2007 ), Comparing the climate effect of emissions of short‐ and long‐lived climate agents, Philos. Trans. R. Soc. A—Math. Phys. Eng. Sci., 365 ( 1856 ), 1903 – 1914, doi: 10.1098/rsta.2007.2050.en_US
dc.identifier.citedreferenceShine, K. P., J. Cook, E. J. Highwood, and M. M. Joshi ( 2003 ), An alternative to radiative forcing for estimating the relative importance of climate change mechanisms, Geophys. Res. Lett., 30 ( 20 ), 2047, doi: 10.1029/2003GL018141.en_US
dc.identifier.citedreferenceShine, K. P., J. S. Fuglestvedt, K. Hailemariam, and N. Stuber ( 2005 ), Alternatives to the global warming potential for comparing climate impacts of emissions of greenhouse gases, Clim. Chang., 68, 281 – 302.en_US
dc.identifier.citedreferenceShiraiwa, M., Y. Kondo, T. Iwamoto, and K. Kita ( 2010 ), Amplification of light absorption of black carbon by organic coating, Aerosol Sci. Technol., 44 ( 1 ), 46 – 54, doi: 10.1080/02786820903357686.en_US
dc.identifier.citedreferenceShiraiwa, M., Y. Kondo, N. Moteki, N. Takegawa, Y. Miyazaki, and D. R. Blake ( 2007 ), Evolution of mixing state of black carbon in polluted air from Tokyo, Geophys. Res. Lett., 34, L16803, doi: 10.1029/2007GL029819.en_US
dc.identifier.citedreferenceShiraiwa, M., Y. Kondo, N. Moteki, N. Takegawa, L. K. Sahu, A. Takami, S. Hatakeyama, S. Yonemura, and D. R. Blake ( 2008 ), Radiative impact of mixing state of black carbon aerosol in Asian outflow, J. Geophys. Res., 113, D24210, doi: 10.1029/2008JD010546.en_US
dc.identifier.citedreferenceSimon, M., S. Plummer, F. Fierens, J. J. Hoelzemann, and O. Arino ( 2004 ), Burnt area detection at global scale using ATSR‐2: The GLOBSCAR products and their qualification, J. Geophys. Res., 109 ( D14 ), doi: 10.1029/2003JD003622.en_US
dc.identifier.citedreferenceSinton, J. E., K. R. Smith, J. W. Peabody, L. Yaping, Z. Xiliang, R. Edwards, and G. Quan ( 2004 ), An assessment of programs to promote improved household stoves in China, Energy Sustain. Dev., 8 ( 3 ), 33 – 52.en_US
dc.identifier.citedreferenceSkeie, R. B., T. Berntsen, G. Myhre, C. A. Pedersen, J. Ström, S. Gerland, and J. A. Ogren ( 2011 ), Black carbon in the atmosphere and snow, from pre‐industrial times until present, Atmos. Chem. Phys., 11, 6809 – 6836, doi: 10.5194/acp‐11‐6809‐2011.en_US
dc.identifier.citedreferenceSlowik, J. G., K. Stainken, P. Davidovits, L. R. Williams, J. T. Jayne, C. E. Kolb, D. R. Worsnop, Y. Rudich, P. F. DeCarlo, and J. L. Jimenez ( 2004 ), Particle morphology and density characterization by combined mobility and aerodynamic diameter measurements. Part 2: Application to combustion‐generated soot aerosols as a function of fuel equivalence ratio, Aerosol Sci. Technol., 38, 1206 – 1222.en_US
dc.identifier.citedreferenceSlowik, J. G., et al. ( 2007 ), An inter‐comparison of instruments measuring black carbon content of soot particles, Aerosol Sci. Technol., 41 ( 3 ), 295 – 314, doi: 10.1080/02786820701197078.en_US
dc.identifier.citedreferenceSmith, K. R., R. Uma, V. V. N. Kishore, K. Lata, V. Joshi, J. Zhang, R. A. Rasmussen, and K. A. Khalil ( 2000a ), Greenhouse gases from small‐scale combustion devices in developing countries: Household stoves in India, EPA‐600/R‐00‐052, Environmental Protection Agency, Research Triangle Park, NC.en_US
dc.identifier.citedreferenceSmith, K. R., R. Uma, V. V. N. Kishore, J. Zhang, V. Joshi, and M. A. K. Khalil ( 2000b ), Greenhouse implications of household stoves: An analysis for India, Ann. Rev. Energy Environ., 25, 741 – 763.en_US
dc.identifier.citedreferenceSmith, K. R., K. Dutta, C. Chengappa, P. P. S. Gusain, O. Masera, V. Berrueta, R. Edwards, R. Bailis, and K. N. Shields ( 2007 ), Monitoring and evaluation of improved biomass cookstove programs for indoor air quality and stove performance: Conclusions from the Household Energy and Health Project, Energy Sustain. Dev., 11 ( 2 ), 5 – 18.en_US
dc.identifier.citedreferenceSmith, K. R., J. P. McCracken, L. Thompson, R. Edwards, K. N. Shields, E. Canuz, and N. Bruce ( 2010 ), Personal child and mother carbon monoxide exposures and kitchen levels: Methods and results from a randomized trial of woodfired chimney cookstoves in Guatemala (RESPIRE), J. Expo. Sci. Env. Epid., 20 ( 5 ), 406 – 416, doi: 10.1038/jes.2010.30.en_US
dc.identifier.citedreferenceSmith, K. R., S. Mehta, and M. Maeusezahl‐Feuz ( 2004 ), Indoor Smoke From Household Solid Fuels, 1435 – 1493 pp., World Health Organization, Geneva, Switzerland.en_US
dc.identifier.citedreferenceSmith, K. R., et al. ( 2009 ), Health and climate change 5 public health benefits of strategies to reduce greenhouse‐gas emissions: Health implications of short‐lived greenhouse pollutants, Lancet, 374 ( 9707 ), 2091 – 2103, doi: 10.1016/s0140‐6736(09)61716‐5.en_US
dc.identifier.citedreferenceSoden, B. J., and I. M. Held ( 2006 ), An assessment of climate feedbacks in coupled ocean‐atmosphere models, J. Climate, 19 ( 23 ), 3354 – 3360, doi: 10.1175/JCLI3799.1.en_US
dc.identifier.citedreferenceSofiev, M., R. Vankevich, M. Lotjonen, M. Prank, V. Petukhov, T. Ermakova, J. Koskinen, and J. Kukkonen ( 2009 ), An operational system for the assimilation of the satellite information on wild‐land fires for the needs of air quality modelling and forecasting, Atmos. Chem. Phys., 9 ( 18 ), 6833 – 6847, doi: 10.5194/acp‐9‐6833‐2009.en_US
dc.identifier.citedreferenceSoja, A. J., W. R. Cofer, H. H. Shugart, A. I. Sukhinin, P. W. Stackhouse, D. J. McRae, and S. G. Conard ( 2004 ), Estimating fire emissions and disparities in boreal Siberia (1998–2002), J. Geophys. Res., 109, D14s06, doi: 10.1029/2004JD004570.en_US
dc.identifier.citedreferenceSokolik, I. N., and O. B. Toon ( 1996 ), Direct radiative forcing by anthropogenic airborne mineral aerosols, Nature, 381, 681 – 683.en_US
dc.identifier.citedreferenceSokolov, A. P. ( 2006 ), Does model sensitivity to changes in CO 2 provide a measure of sensitivity to other forcings?, J. Climate, 19, 3294 – 3306, doi: 10.1175/JCL13791.1.en_US
dc.identifier.citedreferenceSolmon, F., F. Giorgi, and C. Liousse ( 2006 ), Aerosol modelling for regional climate studies: Application to anthropogenic particles and evaluation over a European/African domain, Tellus B, 58 ( 1 ), 51 – 72, doi: 10.1111/j.1600‐0889.2005.00155.X.en_US
dc.identifier.citedreferenceSolomon, P. A., et al. ( 2003 ), Overview of the 1999 Atlanta supersite project, J. Geophys. Res., 108 ( D7 ), 8413, doi: 10.1029/2001JD001458.en_US
dc.identifier.citedreferenceSong, Y., Y. H. Zhang, S. D. Xie, L. M. Zeng, M. Zheng, L. G. Salmon, M. Shao, and S. Slanina ( 2006 ), Source apportionment of PM 2.5 in Beijing by positive matrix factorization, Atmos. Environ., 40 ( 8 ), 1526 – 1537, doi: 10.1016/j.atmosenv.2005.10.039.en_US
dc.identifier.citedreferenceSorensen, C. M. ( 2001 ), Light scattering by fractal aggregates: a review, Aerosol Sci. Technol., 35, 648 – 687.en_US
dc.identifier.citedreferenceSpracklen, D. V., K. S. Carslaw, U. Poschl, A. Rap, and P. M. Forster ( 2011 ), Global cloud condensation nuclei influenced by carbonaceous combustion aerosol, Atmos. Chem. Phys., 11 ( 17 ), 9067 – 9087, doi: 10.5194/acp‐11‐9067‐2011.en_US
dc.identifier.citedreferenceStamnes, K., S. C. Tsay, W. Wiscombe, and K. Jayaweera ( 1988 ), Numerically stable algorithm for discrete‐ordinate‐method radiative‐transfer in multiple‐scattering and emitting layered media, Appl. Opt., 27, 2502 – 2509.en_US
dc.identifier.citedreferenceStavrakou, T., and J. F. Müller ( 2006 ), Grid‐based versus big region approach for inverting CO emissions using Measurement of Pollution in the Troposphere (MOPITT) data, J. Geophys. Res., 111 ( D15 ), 304, doi: 10.1029/2005JD006896.en_US
dc.identifier.citedreferenceStevens, B., and G. Feingold ( 2009 ), Untangling aerosol effects on clouds and precipitation in a buffered system, Nature, 461 ( 7264 ), 607 – 613, doi: 10.1038/nature08281.en_US
dc.identifier.citedreferenceStier, P., J. Feichter, S. Kloster, E. Vignati, and J. Wilson ( 2006a ), Emission‐induced nonlinearities in the global aerosol system: Results from the ECHAM4‐HAM aerosol‐climate model, J. Climate, 19, 3845 – 3862.en_US
dc.identifier.citedreferenceStier, P., J. H. Seinfeld, S. Kinne, and O. Boucher ( 2007 ), Aerosol absorption and radiative forcing, Atmos. Chem. Phys., 7, 5237 – 5261.en_US
dc.identifier.citedreferenceStier, P., J. H. Seinfeld, S. Kinne, J. Feichter, and O. Boucher ( 2006b ), Impact of nonabsorbing anthropogenic aerosols on clear‐sky atmospheric absorption, J. Geophys. Res., 111 ( D18 ), D18201, doi: 10.1029/2006JD007147.en_US
dc.identifier.citedreferenceStith, J. L., C.H. Twohy, P. J. DeMott, D. Baumgardner, T. Campos, R. Gao, and J. Anderson ( 2011 ), Observations of ice nuclei and heterogeneous freezing in a Western Pacific extratropical storm, Atmos. Chem. Phys., 11 ( 13 ), 6229 – 6243, doi: 10.5194/acp‐11‐6229‐2011.en_US
dc.identifier.citedreferenceStith, J. L., et al. ( 2009 ), An overview of aircraft observations from the Pacific Dust Experiment campaign, J. Geophys. Res., 114 ( D05 ), 207, doi: 10.1029/2008JD010924.en_US
dc.identifier.citedreferenceStocks, B. J., et al. ( 2002 ), Large forest fires in Canada, 1959–1997, J. Geophys. Res., 108 ( D1 ), doi: 10.1029/2001JD000484.en_US
dc.identifier.citedreferenceStohl, A. ( 2006 ), Characteristics of atmospheric transport into the Arctic troposphere, J. Geophys. Res., 111 ( D11 ), D11306, doi: 10.1029/2005JD006888.en_US
dc.identifier.citedreferenceStohl, A., et al. ( 2007 ), Arctic smoke and ash: Record high air pollution levels in the European Arctic due to agricultural fires in Eastern Europe in spring 2006, Atmos. Chem. Phys., 7 ( 2 ), 511 – 534, doi: 10.5194/acp‐7‐511‐2007.en_US
dc.identifier.citedreferenceStone, E. A., G. C. Lough, J. J. Schauer, P. S. Praveen, C. E. Corrigan, and V. Ramanathan ( 2007 ), Understanding the origin of black carbon in the atmospheric brown cloud over the Indian Ocean, J. Geophys. Res., 112 ( D22 ), D22s23, doi: 10.1029/2006JD008118.en_US
dc.identifier.citedreferenceStorelvmo, T. ( 2012 ), Uncertainties in aerosol direct and indirect effects attributed to uncertainties in convective transport parameterizations, Atmos. Res., 118, 357 – 369, doi: 10.1016/j.atmosres.2012.06.022.en_US
dc.identifier.citedreferenceStorelvmo, T., C. Hoose, and P. Eriksson ( 2011 ), Global modeling of mixed‐phase clouds: The albedo and lifetime effects of aerosols, J. Geophys. Res., 116, D05207, doi: 10.1029/2010JD014724.en_US
dc.identifier.citedreferenceStorelvmo, T., J. E. Kristjansson, and U. Lohmann ( 2008 ), Aerosol influence on mixed‐phase clouds in CAM‐Oslo, J. Atmos. Sci., 65 ( 10 ), 3214 – 3230, doi: 10.1175/2008jas2430.1.en_US
dc.identifier.citedreferenceStreets, D. G. ( 2007 ), Dissecting future aerosol emissions: Warming tendencies and mitigation opportunities, Clim. Chang., 81 ( 3–4 ), 313 – 330, doi: 10.1007/s10584‐006‐9112‐8.en_US
dc.identifier.citedreferenceStreets, D. G., and K. Aunan ( 2005 ), The importance of China's household sector for the black carbon emissions, Geophys. Res. Lett., 32, 1 – 4.en_US
dc.identifier.citedreferenceStreets, D., H. Akimoto, P. Artaxo, Z. Klimont, K. Kupiainen, G. Janssens‐Maenhout, and H. Vallack ( 2011 ), Black carbon and tropospheric ozone precursors: Driver, emissions and trends, in Integrated Assessment of Black Carbon and Tropospheric Ozone, edited, 282 p., United Nations Environment Programme, Nairobi, Kenya, and World Meteorological Organization, Geneva, Switzerland.en_US
dc.identifier.citedreferenceStreets, D. G., T. C. Bond, T. Lee, and C. Jang ( 2004 ), On the future of carbonaceous aerosol emissions, J. Geophys. Res., 109 ( D24 ), doi: 10.1029/2004JD004902.en_US
dc.identifier.citedreferenceStreets, D. G., F. Yan, M. Chin, T. Diehl, N. Mahowald, M. Schultz, M. Wild, Y. Wu, and C. Yu ( 2009 ), Anthropogenic and natural contributions to regional trends in aerosol optical depth, 1980–2006, J. Geophys. Res., 114, doi: 10.1029/2008JD011624.en_US
dc.identifier.citedreferenceStreets, D. G., K. F. Yarber, J. H. Woo, and G. R. Carmichael ( 2003a ), Biomass burning in Asia: Annual and seasonal estimates and atmospheric emissions, Global Biogeochem. Cycles, 17 ( 4 ), 1099, doi: 10.1029/2003gb002040.en_US
dc.identifier.citedreferenceStreets, D. G., Q. Zhang, L. Wang, K. He, J. Hao, Y. Wu, Y. Tang, and G. R. Carmichael ( 2006 ), Revisiting China's CO emissions after the Transport and Chemical Evolution over the Pacific (TRACE‐P) mission: Synthesis of inventories, atmospheric modeling, and observations, J. Geophys. Res., 111 ( D14 ), 306, doi: 10.1029/2006JD007118.en_US
dc.identifier.citedreferenceStreets, D. G., et al. ( 2003b ), An inventory of gaseous and primary aerosol emissions in Asia in the year 2000, J. Geophys. Res., 108 ( D21 ), 8809, doi: 10.1029/2002JD003093.en_US
dc.identifier.citedreferenceStröm, J., and S. Ohlsson ( 1998 ), In situ measurements of enhanced crystal number densities in cirrus clouds caused by aircraft exhaust, J. Geophys. Res., 103 ( D10 ), 11355 – 11361.en_US
dc.identifier.citedreferenceSubramanian, R., T. C. Bond, W. Thiansathit, N. T. K. Oanh, K. G. Duleep, I. Paw‐armart, and E. Winijkul ( 2009 ), Source characterization to support quantification of co‐benefits: A piggyback study in Bangkok, Thailand, Environ. Sci. Technol., 43, 4213 – 4218.en_US
dc.identifier.citedreferenceSubramanian, R., A. Y. Khlystov, and A. L. Robinson ( 2006 ), Effect of peak inert‐mode temperature on elemental carbon measured using thermal‐optical analysis, Aerosol Sci. Technol., 40 ( 10 ), 763 – 780, doi: 10.1080/02786820600714403.en_US
dc.identifier.citedreferenceSun, H., L. Biedermann, and T. C. Bond ( 2007 ), Color of brown carbon: A model for ultraviolet and visible light absorption by organic carbon aerosol, Geophys. Res. Lett., 34 ( 17 ), L17813, doi: 10.1029/2007GL029797.en_US
dc.identifier.citedreferenceSzidat, S., T. M. Jenk, H. A. Synal, M. Kalberer, L. Wacker, I. Hajdas, A. Kasper‐Giebl, and U. Baltensperger ( 2006 ), Contributions of fossil fuel, biomass‐burning, and biogenic emissions to carbonaceous aerosols in Zurich as traced by C‐14, J. Geophys. Res., 111, D07206, doi: 10.1029/2005JD006590.en_US
dc.identifier.citedreferenceTakemura, T., T. Nozawa, S. Emori, T. Y. Nakajima, and T. Nakajima ( 2005 ), Simulation of climate response to aerosol direct and indirect effects with aerosol transport‐radiation model, J. Geophys. Res., 110 ( D2 ), 202, doi: 10.1029/2004JD005029.en_US
dc.identifier.citedreferenceTan, Q., W. L. Chameides, D. Streets, T. Wang, J. Xu, M. Bergin, and J. Woo ( 2004 ), An evaluation of TRACE‐P emission inventories from China using a regional model and chemical measurements, J. Geophys. Res., 109, D22305, doi: 10.1029/2004JD005071.en_US
dc.identifier.citedreferenceTargino, A. C., et al. ( 2009 ), Influence of particle chemical composition on the phase of cold clouds at a high‐alpine site in Switzerland, J. Geophys. Res., 114 ( D18 ), 206, doi: 10.1029/2008JD011365.en_US
dc.identifier.citedreferenceTegen, I., P. Hollrig, M. Chin, I. Fung, D. Jacob, and J. Penner ( 1997 ), Contribution of different aerosol species to the global aerosol extinction optical thickness: Estimates from model results, J. Geophys. Res., 102 ( D20 ), 23895 – 23915, doi: 10.1029/97JD01864.en_US
dc.identifier.citedreferenceTen Hoeve, J. E., L. A. Remer, and M. Z. Jacobson ( 2011 ), Microphysical and radiative effects of aerosols on warm clouds during the Amazon biomass burning season as observed by MODIS: Impacts of water vapor and land cover, Atmos. Chem. Phys., 11, 3021 – 3036, doi: 10.5194/acp‐11‐3021‐2011.en_US
dc.identifier.citedreferenceTextor, C., et al. ( 2006 ), Analysis and quantification of the diversities of aerosol life cycles within AeroCom, Atmos. Chem. Phys., 6, 1777 – 1813, doi: 10.5194/acp‐6‐1777‐2006.en_US
dc.identifier.citedreferenceTextor, C., et al. ( 2007 ), The effect of harmonized emissions on aerosol properties in global models—An AeroCom experiment, Atmos. Chem. Phys., 7 ( 17 ), 4489 – 4501, doi: 10.5194/acp‐7‐4489‐2007.en_US
dc.identifier.citedreferenceThevenon, F., F. S. Anselmetti, S. M. Bernasconi, and M. Schwikowski ( 2009 ), Mineral dust and elemental black carbon records from an Alpine ice core (Colle Gnifetti glacier) over the last millennium, J. Geophys. Res., 114 ( D17 ), 102, doi: 10.1029/2008JD011490.en_US
dc.identifier.citedreferenceThompson, L. G., S. Hastenrath, and B. Morales‐Arnao ( 1979 ), Climatic ice core records from the tropical Quelccaya ice cap, Science, 203 ( 4386 ), 1240 – 1243.en_US
dc.identifier.citedreferenceTol, R. S. J. ( 2008 ), The social cost of carbon: Trends, outliers and catastrophes, Economics: The Open‐Access, Open‐Assessment E‐Journal, 2, 2008 – 25.en_US
dc.identifier.citedreferenceTol, R. S. J., T. K. Berntsen, B. C. O'Neill, J. S. Fuglestvedt, and K. P. Shine ( 2012 ), A unifying framework for metrics for aggregating the climate effect of different emissions, Environ. Res. Lett., 7, 044006, doi: 10.1088/1748‐9326/7/4/044006.en_US
dc.identifier.citedreferenceToon, O. B., C. P. McKay, T. P. Ackerman, and K. Santhanam ( 1989 ), Rapid calculation of radiative heating rates and photodissociation rates in Inhomogeneous multiple scattering atmospheres, J. Geophys. Res., 94 ( D13 ), 16287 – 16301, doi: 10.1029/JD094iD13p16287.en_US
dc.identifier.citedreferenceTorres, O., P. K. Bhartia, J. R. Herman, and Z. Ahmad ( 1998 ), Derivation of aerosol properties from satellite measurements of backscattered ultraviolet radiation: Theoretical basis, J. Geophys. Res., 103, 17099 – 17110, doi: 10.1029/98JD00900.en_US
dc.identifier.citedreferenceTorres, O., P. K. Bhartia, J. R. Herman, A. Sinyuk, P. Ginoux, and B. Holben ( 2002 ), A long‐term record of aerosol optical depth from TOMS observations and comparison to AERONET measurements, J. Atmos. Sci., 59 ( 3 ), 398 – 413.en_US
dc.identifier.citedreferenceTosca, M. G., J. T. Randerson, C. S. Zender, M. G. Flanner, and P. J. Rasch ( 2010 ), Do biomass burning aerosols intensify drought in equatorial Asia during El Nino?, Atmos. Chem. Phys., 10 ( 8 ), 3515 – 3528, doi: 10.5194/acp‐10‐3515‐2010.en_US
dc.identifier.citedreferenceTsyro, S., D. Simpson, L. Tarrason, Z. Klimont, K. Kupiainen, C. Pio, and K. E. Yttri ( 2007 ), Modeling of elemental carbon over Europe, J. Geophys. Res., 112, D23s19, doi: 10.1029/2006JD008164.en_US
dc.identifier.citedreferenceTurco, R. P., O. B. Toon, T. P. Ackerman, J. B. Pollack, and C. Sagan ( 1983 ), Nuclear winter: Global consequences of multiple nuclear explosions, Science, 222 ( 4630 ), 1283 – 1292.en_US
dc.identifier.citedreferenceTuretsky, M. R., E. S. Kane, J. W. Harden, R. D. Ottmar, K. L. Manies, E. Hoy, and E. S. Kasischke ( 2010 ), Recent acceleration of biomass burning and carbon losses in Alaskan forests and peatlands, Nature Geosci., 4, 27 – 31, doi: 10.1038/ngeo1027.en_US
dc.identifier.citedreferenceTurpin, B. J., R. A. Cary, and J. J. Huntzicker ( 1990 ), An in situ, time‐resolved analyzer for aerosol organic and elemental carbon, Aerosol Sci. Technol., 12, 161 – 171.en_US
dc.identifier.citedreferenceTwohy, C. H., and B. W. Gandrud ( 1998 ), Electron microscope analysis of residual particles from aircraft contrails, Geophys. Res. Lett., 25 ( 9 ), 1359 – 1362.en_US
dc.identifier.citedreferenceTwohy, C. H., and M. R. Poellot ( 2005 ), Chemical characteristics of ice residual nuclei in anvil cirrus clouds: Evidence for homogeneous and heterogeneous ice formation, Atmos. Chem. Phys., 5, 2289 – 2297.en_US
dc.identifier.citedreferenceTwohy, C. H., P. J. DeMott, D. A. Pratt, R. Subramanian, G. L. Kok, S. M. Murphy, T. Lersch, A. J. Heymsfield, Z. E. Wang, K. A. Prather, and J. H. Seinfeld ( 2010 ), Relationships of biomass‐burning aerosols to ice in orographic wave clouds, J. Atmos. Sci., 67 ( 8 ), 2437 – 2450, doi: 10.1175/2010JAS3310.1.en_US
dc.identifier.citedreferenceTwomey, S. A. ( 1959 ), The nuclei of natural cloud formation. Part II: The supersaturation in natural clouds and the variation of cloud droplet concentrations, Geofis. Pura. Appl, 43, 227 – 242.en_US
dc.identifier.citedreferenceTwomey, S. A. ( 1991 ), Aerosols, clouds and radiation, Atmos. Environ., 25A ( 11 ), 2435 – 2442.en_US
dc.identifier.citedreferenceUekoetter, F. ( 2005 ), The strange career of the Ringelmann smoke chart, Environ. Monit. Assess., 106 ( 1–3 ), 11 – 26, doi: 10.1007/s10661‐005‐0756‐z.en_US
dc.identifier.citedreferenceUherek, E., et al. ( 2010 ), Transport impacts on atmosphere and climate: Land transport, Atmos. Environ., 44 ( 37 ), 4772 – 4816, doi: 10.1016/j.atmosenv.2010.01.002.en_US
dc.identifier.citedreferenceUNECE ( 1999 ), Protocol to the 1979 Convention on Long‐Range Transboundary Air Pollution to Abate Acidification, Eutrophication and Ground‐Level Ozone. Adopted in Gothenburg, Sweden, on 30 November, 1999. http://www.unece.org/env/lrtap/multi_h1.html.en_US
dc.identifier.citedreferenceUNECE ( 2011 ), Options for Revising the 1999 Gothenburg Protocol to Abate Acidification, Eutrophication and Ground‐level Ozone. ECE/EB.AIR/2011/8 Revised at the 29th Session of the Executive Body of the LRTAP Convention; http://www.unece.org/fileadmin/DAM/env/documents/2011/eb/ebbureau/ece.eb.air.2011.8.‐REVISED_1612am_AK.doc.en_US
dc.identifier.citedreferenceUNEP ( 2011 ), Near‐Term Climate Protection and Clean Air Benefits: Actions for Controlling Short‐Lived Climate Forcers, 78 pp., United Nations Environment Programme, Nairobi, Kenya.en_US
dc.identifier.citedreferenceUNEP/WMO ( 2011a ), Integrated Assessment of Black Carbon and Tropospheric Ozone: Summary for Decision Makers, 38 pp., United Nations Environment Programme, Nairobi, Kenya, and World Meteorological Organization, Geneva, Switzerland.en_US
dc.identifier.citedreferenceUNEP/WMO ( 2011b ), Integrated Assessment of Black Carbon and Tropospheric Ozone, 282 pp., United Nations Environment Programme, Nairobi, Kenya, and World Meteorological Organization, Geneva, Switzerland.en_US
dc.identifier.citedreferenceUNFCCC ( 1992 ), United Nations Framework Convention on Climate Change, 24 pp., United Nations.en_US
dc.identifier.citedreferenceUnger, N., T. C. Bond, J. S. Wang, D. M. Koch, S. Menon, D. T. Shindell, and S. Bauer ( 2010 ), Attribution of climate forcing to economic sectors, P. Natl. Acad. Sci. USA, 107 ( 8 ), 3382 – 3387, doi: 10.1073/pnas.0906548107.en_US
dc.identifier.citedreferenceUSDA ( 2005 ), A strategic assessment of forest biomass and fuel reduction treatments in Western states, Gen. Tech. Rep., RMRS‐GTR‐149, U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station.en_US
dc.identifier.citedreferencevan Aardenne, J. A., F. J. Dentener, J. G. J. Olivier, C. G. M. Klein Goldewijk, and J. Lelieveld ( 2001 ), A 1° × 1° resolution data set of historical anthropogenic trace gas emissions for the period 1890–1990. Global Biogeochem Cycles, 15 ( 4 ), 909 – 928, doi: 10.1029/2000gb001265.en_US
dc.identifier.citedreferenceVan Dingenen, R., et al. ( 2004 ), A European aerosol phenomenology—1: Physical characteristics of particulate matter at kerbside, urban, rural and background sites in Europe, Atmos. Environ., 38 ( 16 ), 2561 – 2577, doi: 10.1016/j.atmosenv.2004.01.040.en_US
dc.identifier.citedreferenceVan‐Hulle, P., M. Talbaut, M. Weill, and A. Coppalle ( 2002 ), Inversion method and experiment to determine the soot refractive index: Application to turbulent diffusion flames, Meas. Sci. Technol., 13 ( 3 ), 375 – 382.en_US
dc.identifier.citedreferenceVenkataraman, C., G. Habib, A. Eiguren‐Fernandez, A. H. Miguel, and S. K. Friedlander ( 2005 ), Residential biofuels in south Asia: Carbonaceous aerosol emissions and climate impacts, Science, 307, 1454 – 1456.en_US
dc.identifier.citedreferenceVenkataraman, C., G. Habib, D. Kadamba, M. Shrivastava, J. F. Leon, B. Crouzille, O. Boucher, and D. G. Streets ( 2006 ), Emissions from open biomass burning in India: Integrating the inventory approach with high‐resolution Moderate Resolution Imaging Spectroradiometer (MODIS) active‐fire and land cover data, Global Biogeochem. Cycles, 20, Gb2013, doi: 10.1029/2005gb002547.en_US
dc.identifier.citedreferenceVermote, E., E. Ellicott, O. Dubovik, T. Lapyonok, M. Chin, L. Giglio, and G. J. Roberts ( 2009 ), An approach to estimate global biomass burning emissions of organic and black carbon from MODIS fire radiative power, J. Geophys. Res., 114, D18205, doi: 10.1029/2008JD011188.en_US
dc.identifier.citedreferenceViana, M., et al. ( 2008 ), Source apportionment of particulate matter in Europe: A review of methods and results, J. Aerosol. Sci., 39 ( 10 ), 827 – 849, doi: 10.1016/j.jaerosci.2008.05.007.en_US
dc.identifier.citedreferenceVignati, E., M. Karl, M. Krol, J. Wilson, P. Stier, and F. Cavalli ( 2010 ), Sources of uncertainties in modelling black carbon at the global scale, Atmos. Chem. Phys., 10 ( 6 ), 2595 – 2611, doi: 10.5194/acp‐10‐2595‐2010.en_US
dc.identifier.citedreferenceVirkkula, A., N. C. Ahlquist, D. S. Covert, W. P. Arnott, P. J. Sheridan, P. K. Quinn, and D. J. Coffman ( 2005 ), Modification, calibration and a field test of an instrument for measuring light absorption by particles, Aerosol Sci. Technol., 39, 68 – 83.en_US
dc.identifier.citedreferenceVogelmann, A. M., A. Robock, and R. G. Ellingson ( 1988 ), Effects of dirty snow in nuclear winter simulations, J. Geophys. Res., 93 ( D5 ), 5319 – 5332.en_US
dc.identifier.citedreferenceWagner, R., T. Ajtai, K. Kandler, K. Lieke, C. Linke, T. Muller, M. Schnaiter, and M. Vragel ( 2012 ), Complex refractive indices of Saharan dust samples at visible and near UV wavelengths: A laboratory study, Atmos. Chem. Phys., 12 ( 5 ), 2491 – 2512, doi: 10.5194/acp‐12‐2491‐2012.en_US
dc.identifier.citedreferenceWalsh, M. P. ( 2008 ), Ancillary benefits for climate change mitigation and air pollution control in the world's motor vehicle fleets, Annu. Rev. Public Health, 29, 1 – 9, doi: 10.1146/annurev.publhealth.29.091307.183257.en_US
dc.identifier.citedreferenceWang, C. ( 2004 ), A modeling study on the climate impacts of black carbon aerosols, J. Geophys. Res., 109 ( D3 ), 106, doi: 10.1029/2003JD004084.en_US
dc.identifier.citedreferenceWang, C. ( 2007 ), Impact of direct radiative forcing of black carbon aerosols on tropical convective precipitation, Geophys. Res. Lett., 34 ( 5 ), 709, doi: 10.1029/2006GL028416.en_US
dc.identifier.citedreferenceWang, C., D. Kim, A. M. L. Ekman, M. C. Barth, and P. J. Rasch ( 2009a ), Impact of anthropogenic aerosols on Indian summer monsoon, Geophys. Res. Lett., 36 ( L21 ), 704, doi: 10.1029/2009GL040114.en_US
dc.identifier.citedreferenceWang, Z. L., H. Zhang, and X. S. Shen ( 2011 ), Radiative forcing and climate response due to black carbon in snow and ice, Adv. Atmos. Sci., 28 ( 6 ), 1336 – 1344, doi: 10.1007/s00376‐011‐0117‐5.en_US
dc.identifier.citedreferenceWang, S., X. Zhao, X. Li, W. Wei, and J. Hao ( 2009b ), Emission characteristics of fine particles from grate firing boilers (in Chinese), Environ. Sci., 30 ( 4 ), 963 – 968.en_US
dc.identifier.citedreferenceWang, S. X., M. Zhao, J. Xing, Y. Wu, Y. Zhou, Y. Lei, K. B. He, L. X. Fu, and J. M. Hao ( 2010 ), Quantifying the air pollutants emission reduction during the 2008 Olympic games in Beijing, Environ. Sci. Technol., 44 ( 7 ), 2490 – 2496, doi: 10.1021/es9028167.en_US
dc.identifier.citedreferenceWang, M., et al. ( 2012 ), Constraining cloud lifetime effects of aerosols using A‐Train satellite observations, Geophys. Res. Lett., 39, L15709, doi: 10.1029/2012GL052204.en_US
dc.identifier.citedreferenceWard, D. E., R. A. Susott, J. B. Kauffman, R. E. Babbitt, D. L. Cummings, B. Dias, B. N. Holben, Y. J. Kaufman, R. A. Rasmussen, and A. W. Setzer ( 1992 ), Smoke and fire characteristics for cerrado and deforestation burns in Brazil—BASE‐B experiment, J. Geophys. Res., 97 ( D13 ), 14601 – 14619.en_US
dc.identifier.citedreferenceWarneke, C., et al. ( 2009 ), Biomass burning in Siberia and Kazakhstan as an important source for haze over the Alaskan Arctic in April 2008, Geophys. Res. Lett., 36 ( 2 ), L02813, doi: 10.1029/2008GL036194.en_US
dc.identifier.citedreferenceWarren, S. G. ( 1982 ), Optical‐properties of snow, Rev. Geophys., 20 ( 1 ), 67 – 89.en_US
dc.identifier.citedreferenceWarren, S. G., and A. D. Clarke ( 1990 ), Soot in the atmosphere and snow surface of Antarctica, J. Geophys. Res., 95 ( D2 ), 1811 – 1816.en_US
dc.identifier.citedreferenceWarren, S. G., and W. J. Wiscombe ( 1980 ), A model for the spectral albedo of snow. II: Snow containing atmospheric aerosols, J. Atmos. Sci., 37 ( 12 ), 2734 – 2745.en_US
dc.identifier.citedreferenceWarren, S. G., and W. J. Wiscombe ( 1985 ), Dirty snow after nuclear‐war, Nature, 313 ( 6002 ), 467 – 470.en_US
dc.identifier.citedreferenceWarren, S. G., I. G. Rigor, N. Untersteiner, V. F. Radionov, N. N. Bryazgin, Y. I. Aleksandrov, and R. Colony ( 1999 ), Snow depth on Arctic sea ice, J. Climate, 12 ( 6 ), 1814 – 1829.en_US
dc.identifier.citedreferenceWatson, J. G., L. W. A. Chen, J. C. Chow, P. Doraiswamy, and D. H. Lowenthal ( 2008 ), Source apportionment: Findings from the US Supersites program, J. Air Waste Manage. Assoc., 58 ( 2 ), 265 – 288, doi: 10.3155/1047‐3289.58.2.265.en_US
dc.identifier.citedreferenceWatson, J. G., J. C. Chow, J. L. Bowen, D. H. Lowenthal, S. Hering, P. Ouchida, and W. Oslund ( 2000 ), Air quality measurements from the Fresno Supersite, J. Air Waste Manage. Assoc., 50 ( 8 ), 1321 – 1334.en_US
dc.identifier.citedreferenceWatson, J. G., J. C. Chow, and L.‐W. A. Chen ( 2005 ), Summary of organic and elemental carbon/black carbon analysis methods and intercomparisons, Aerosol Air Qual. Res., 5 ( 1 ), 65 – 102.en_US
dc.identifier.citedreferenceWatson, J. G., J. C. Chow, D. H. Lowenthal, L. C. Pritchett, C. A. Frazier, G. R. Neuroth, and R. Robbins ( 1994 ), Differences in the carbon composition of source profiles for diesel‐powered and gasoline‐powered vehicles, Atmos. Environ., 28 ( 15 ), 2493 – 2505.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.