Show simple item record

Dravet syndrome patient‐derived neurons suggest a novel epilepsy mechanism

dc.contributor.authorLiu, Yuen_US
dc.contributor.authorLopez‐santiago, Luis F.en_US
dc.contributor.authorYuan, Yukunen_US
dc.contributor.authorJones, Julie M.en_US
dc.contributor.authorZhang, Helenen_US
dc.contributor.authorO'Malley, Heather A.en_US
dc.contributor.authorPatino, Gustavo A.en_US
dc.contributor.authorO'Brien, Janelle E.en_US
dc.contributor.authorRusconi, Raffaellaen_US
dc.contributor.authorGupta, Ajayen_US
dc.contributor.authorThompson, Robert C.en_US
dc.contributor.authorNatowicz, Marvin R.en_US
dc.contributor.authorMeisler, Miriam H.en_US
dc.contributor.authorIsom, Lori L.en_US
dc.contributor.authorParent, Jack M.en_US
dc.date.accessioned2013-09-04T17:18:34Z
dc.date.available2014-09-02T14:12:52Zen_US
dc.date.issued2013-07en_US
dc.identifier.citationLiu, Yu; Lopez‐santiago, Luis F. ; Yuan, Yukun; Jones, Julie M.; Zhang, Helen; O'Malley, Heather A.; Patino, Gustavo A.; O'Brien, Janelle E.; Rusconi, Raffaella; Gupta, Ajay; Thompson, Robert C.; Natowicz, Marvin R.; Meisler, Miriam H.; Isom, Lori L.; Parent, Jack M. (2013). "Dravet syndrome patientâ derived neurons suggest a novel epilepsy mechanism." Annals of Neurology 74(1): 128-139. <http://hdl.handle.net/2027.42/99647>en_US
dc.identifier.issn0364-5134en_US
dc.identifier.issn1531-8249en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/99647
dc.publisherWiley Periodicals, Inc.en_US
dc.titleDravet syndrome patient‐derived neurons suggest a novel epilepsy mechanismen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelPsychiatryen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.identifier.pmid23821540en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/99647/1/ana23897.pdf
dc.identifier.doi10.1002/ana.23897en_US
dc.identifier.sourceAnnals of Neurologyen_US
dc.identifier.citedreferenceLopez‐Santiago LF, Pertin M, Morisod X, et al. Sodium channel beta2 subunits regulate tetrodotoxin‐sensitive sodium channels in small dorsal root ganglion neurons and modulate the response to pain. J Neurosci 2006; 26: 7984 – 7994.en_US
dc.identifier.citedreferenceYu FH, Mantegazza M, Westenbroek RE, et al. Reduced sodium current in GABAergic interneurons in a mouse model of severe myoclonic epilepsy in infancy. Nat Neurosci 2006; 9: 1142 – 1149.en_US
dc.identifier.citedreferenceOgiwara I, Miyamoto H, Morita N, et al. Na(v)1.1 localizes to axons of parvalbumin‐positive inhibitory interneurons: a circuit basis for epileptic seizures in mice carrying an Scn1a gene mutation. J Neurosci 2007; 27: 5903 – 5914.en_US
dc.identifier.citedreferenceTakahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126: 663 – 676.en_US
dc.identifier.citedreferenceTakahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007; 131: 861 – 872.en_US
dc.identifier.citedreferenceYu J, Vodyanik MA, Smuga‐Otto K, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 2007; 318: 1917 – 1920.en_US
dc.identifier.citedreferencePark IH, Arora N, Huo H, et al. Disease‐specific induced pluripotent stem cells. Cell 2008; 134: 877 – 886.en_US
dc.identifier.citedreferenceMoretti A, Bellin M, Welling A, et al. Patient‐specific induced pluripotent stem‐cell models for long‐QT syndrome. N Engl J Med 2010; 363: 1397 – 1409.en_US
dc.identifier.citedreferenceItzhaki I, Maizels L, Huber I, et al. Modelling the long QT syndrome with induced pluripotent stem cells. Nature 2011; 471: 225 – 229.en_US
dc.identifier.citedreferenceYazawa M, Hsueh B, Jia X, et al. Using induced pluripotent stem cells to investigate cardiac phenotypes in Timothy syndrome. Nature 2011; 471: 230 – 234.en_US
dc.identifier.citedreferenceHarkin LA, McMahon JM, Iona X, et al. The spectrum of SCN1A‐related infantile epileptic encephalopathies. Brain 2007; 130 ( pt 3 ): 843 – 852.en_US
dc.identifier.citedreferenceRusconi R, Scalmani P, Cassulini RR, et al. Modulatory proteins can rescue a trafficking defective epileptogenic Nav1.1 Na+ channel mutant. J Neurosci 2007; 27: 11037 – 11046.en_US
dc.identifier.citedreferencePatino GA, Claes LR, Lopez‐Santiago LF, et al. A functional null mutation of SCN1B in a patient with Dravet syndrome. J Neurosci 2009; 29: 10764 – 10778.en_US
dc.identifier.citedreferenceFein AJ, Meadows LS, Chen C, et al. Cloning and expression of a zebrafish SCN1B ortholog and identification of a species‐specific splice variant. BMC Genomics 2007; 8: 226.en_US
dc.identifier.citedreferenceSmith RD, Goldin AL. Functional analysis of the rat I sodium channel in xenopus oocytes. J Neurosci 1998; 18: 811 – 820.en_US
dc.identifier.citedreferenceFrankel WN. Genetics of complex neurological disease: challenges and opportunities for modeling epilepsy in mice and rats. Trends Genet 2009; 25: 361 – 367.en_US
dc.identifier.citedreferenceErceg S, Laínez S, Ronaghi M, et al. Differentiation of human embryonic stem cells to regional specific neural precursors in chemically defined medium conditions. PLoS One 2008; 3: e2122.en_US
dc.identifier.citedreferenceKim JE, O'Sullivan ML, Sanchez CA, et al. Investigating synapse formation and function using human pluripotent stem cell‐derived neurons. Proc Natl Acad Sci U S A 2011; 108: 3005 – 3010.en_US
dc.identifier.citedreferenceKoch P, Opitz T, Steinbeck JA, et al. A rosette‐type, self‐renewing human ES cell‐derived neural stem cell with potential for in vitro instruction and synaptic integration. Proc Natl Acad Sci U S A 2009; 106: 3225 – 3230.en_US
dc.identifier.citedreferenceShi Y, Kirwan P, Livesey FJ. Directed differentiation of human pluripotent stem cells to cerebral cortex neurons and neural networks. Nat Protoc 2012; 7: 1836 – 1846.en_US
dc.identifier.citedreferenceMantegazza M. Dravet syndrome: insights from in vitro experimental models. Epilepsia 2011; 52 ( suppl 2 ): 62 – 69.en_US
dc.identifier.citedreferenceCheah CS, Yu FH, Westenbroek RE, et al. Specific deletion of NaV1.1 sodium channels in inhibitory interneurons causes seizures and premature death in a mouse model of Dravet syndrome. Proc Natl Acad Sci U S A 2012; 109: 14646 – 14651.en_US
dc.identifier.citedreferenceMistry A, Miller A, Thompson C, et al. Strain and age‐dependent differences in hippocampal neuron sodium current densities in a mouse model of Dravet Syndrome. Soc Neurosci Abstr 2012;G29:548.en_US
dc.identifier.citedreferenceGuerrini R, Striano P, Catarino C, Sisodiya SM. Neuroimaging and neuropathology of Dravet syndrome. Epilepsia 2011; 52 ( suppl 2 ): 30 – 34.en_US
dc.identifier.citedreferenceGuerrini R, Dravet C, Genton P, et al. Lamotrigine and seizure aggravation in severe myoclonic epilepsy. Epilepsia 1998; 39: 508 – 512.en_US
dc.identifier.citedreferenceDimos JT, Rodolfa KT, Niakan KK, et al. Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science 2008; 321: 1218 – 1221.en_US
dc.identifier.citedreferenceEbert AD, Yu J, Rose FF Jr, et al. Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature 2009; 457: 277 – 280.en_US
dc.identifier.citedreferenceMarchetto MC, Carromeu C, Acab A, et al. A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells. Cell 2010; 143: 527 – 539.en_US
dc.identifier.citedreferenceCatterall WA, Dib‐Hajj S, Meisler MH, Pietrobon D. Inherited neuronal ion channelopathies: new windows on complex neurological diseases. J Neurosci 2008; 28: 11768 – 11777.en_US
dc.identifier.citedreferenceKullmann DM, Waxman SG. Neurological channelopathies: new insights into disease mechanisms and ion channel function. J Physiol 2010; 588: 1823 – 1827.en_US
dc.identifier.citedreferenceDravet C, Bureau M, Oguni H, et al. Severe myoclonic epilepsy in infancy: Dravet syndrome. Adv Neurol 2005; 95: 71 – 102.en_US
dc.identifier.citedreferenceGuerrini R, Aicardi J. Epileptic encephalopathies with myoclonic seizures in infants and children (severe myoclonic epilepsy and myoclonic‐astatic epilepsy). J Clin Neurophysiol 2003; 20: 449 – 461.en_US
dc.identifier.citedreferenceClaes L, Del‐Favero J, Ceulemans B, et al. De novo mutations in the sodium‐channel gene SCN1A cause severe myoclonic epilepsy of infancy. Am J Hum Genet 2001; 68: 1327 – 1332.en_US
dc.identifier.citedreferenceMeisler MH, Kearney JA. Sodium channel mutations in epilepsy and other neurological disorders. J Clin Invest 2005; 115: 2010 – 2017.en_US
dc.identifier.citedreferenceKanai K, Hirose S, Oguni H, et al. Effect of localization of missense mutations in SCN1A on epilepsy phenotype severity. Neurology 2004; 63: 329 – 334.en_US
dc.identifier.citedreferenceCeulemans BP, Claes LR, Lagae LG. Clinical correlations of mutations in the SCN1A gene: from febrile seizures to severe myoclonic epilepsy in infancy. Pediatr Neurol 2004; 30: 236 – 243.en_US
dc.identifier.citedreferenceCatterall WA, Kalume F, Oakley JC. NaV1.1 channels and epilepsy. J Physiol 2010; 588: 1849 – 1859.en_US
dc.identifier.citedreferenceSpampanato J, Escayg A, Meisler MH, Goldin AL. Functional effects of two voltage‐gated sodium channel mutations that cause generalized epilepsy with febrile seizures plus type 2. J Neurosci 2001; 21: 7481 – 7490.en_US
dc.identifier.citedreferenceLossin C, Rhodes TH, Desai RR, et al. Epilepsy‐associated dysfunction in the voltage‐gated neuronal sodium channel SCN1A. J Neurosci 2003; 23: 11289 – 11295.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.