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ABSTRACT: Bacteroides thetaiotaomicron is a prominent
member of the human distal gut microbiota that specializes
in breaking down diet and host-derived polysaccharides.
While polysaccharide utilization has been well studied in B.
thetaiotaomicron, other aspects of its behavior are less well
characterized, including the factors that allow it to maintain
itself in the gut. Biofilm formation may be a mechanism for
bacterial retention in the gut. Therefore, we used custom
GeneChips to compare the transcriptomes of biofilm and
planktonic B. thetaiotaomicron during growth in mono-
colonized chemostats. We identified 1,154 genes with a
fold-change greater than 2, with confidence greater than or
equal to 95%. Among the prominent changes observed in
biofilm populations were: (i) greater expression of genes in
polysaccharide utilization loci that are involved in foraging of
O-glycans normally found in the gut mucosa; and (ii)
regulated expression of capsular polysaccharide biosynthesis
loci. Hierarchical clustering of the data with different
datasets, which were obtained during growth under a range
of conditions in minimal media and in intestinal tracts of
gnotobiotic mice, revealed that within this group of

differentially expressed genes, biofilm communities were
more similar to the in vivo samples than to planktonic cells
and exhibited features of substrate limitation. The current
study also validates the use of chemostats as an in vitro
“gnotobiotic” model to study gene expression of attached
populations of this bacterium. This is important to gut
microbiota research, because bacterial attachment and the
consequences of disruptions in attachment are difficult to
study in vivo.
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Introduction

The adult human gut microbiota is composed of members of
all three domains of life and their viruses. This community is
dominated by Bacteria, and specifically by members of two
bacterial phyla, the Bacteroidetes and Firmicutes. Bacteroides
thetaiotaomicron is prominently represented among the
Bacteroidetes in the distal gut, where it ferments chemically
diverse, complex dietary glycans to short chain fatty acids that
can be absorbed by the host (Koropatkin et al., 2012; Martens
et al., 2011). B. thetaiotaomicron is also able to utilize host
mucus glycans, such asmucin, including mucin O-glycans, as
nutrient substrates when polysaccharides are absent from the
host diet, giving it a competitive advantage over other, less
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versatile, simple sugar-fermenting bacteria (Benjdia
et al., 2011; Martens et al., 2008, 2011; Sonnenburg
et al., 2005).

The saccharolytic capabilities of B. thetaiotaomicron are
reflected in its genome. The type strain (VPI-5482) has 88
polysaccharide utilization loci (PULs), composed of 866
genes that comprise 18% of its genome (Martens et al., 2008).
Each PUL characterized to date encodes a group of cell
envelope-associated proteins collectively known as a Sus-like
system, which endows the bacterium with the ability to
metabolize a glycan or group of related glycans. Each of the
B. thetaiotaomicron Sus-like systems contains: (i) a homolog
of SusC, which is a TonB-dependent receptor that spans
the outer membrane and transports oligosaccharides in an
energy dependentmanner; and (ii) a homolog of SusD, which
is an outer membrane lipoprotein that binds specific glycans
and participates in delivering oligosaccharides to the SusC
transporter (Koropatkin et al., 2008; Reeves et al., 1996,
1997). In addition to SusC- and SusD-like proteins, a PUL
can include other outer membrane glycan binding proteins,
as well as various glycoside hydrolases, polysaccharide lyases,
and/or carbohydrate esterases (Koropatkin and Smith, 2010).
Whole genome transcriptional profiling, targeted gene
disruption, characterization of purified Sus proteins, and
assays of growth in vitro on glycan arrays [a high-throughput
method to directly measure functional interactions with
polysaccharides (Blixt et al., 2004; Padler-Karavani et al.,
2012; Stevens et al., 2006)] have helped define the
carbohydrate recognition and utilization capabilities of B.
thetaiotaomicron and the carbohydrate specificities of its PULs
(Kitamura et al., 2008; Koropatkin et al., 2009; Koropatkin
and Smith, 2010). The repertoire of PULs present in the
genome, and their patterns of gene expression help define the
niches of B. thetaiotaomicron and of other members of
Bacteroides in vivo (Martens et al., 2011; Sonnenburg
et al., 2010).

A major challenge for members of the gut microbiota is to
prevent washout from the gut habitat. The ability to form
“attached” populations would provide a competitive advan-
tage to a gut symbiont by increasing retention time, providing
access to solid state plant- and human-derived nutrient
substrates, and facilitating development of syntrophic
(nutrient-sharing) relationships with other members of the
microbiota (Sonnenburg et al., 2004). The formation of
extracellular matrices composed principally of polysacchar-
ides and other biological polymers with bound/embedded
microbes provides an important mechanism for microbes to
adhere to each other and to living or non-living surfaces, such
as food particles. The intestine is lined bymucus that serves as
a microhabitat for members of the microbiota, supplying
attachment sites (e.g., O-glycans) and nutrients (Ambort
et al., 2011, 2012; Lindén et al., 2008a,b; McGuckin
et al., 2011). Biofilm formation affects the motility of
microbes and also their response to nutrient limitation and
other stresses (Beloin and Ghigo, 2005; Lazazzera, 2005).
However, investigation of gut biofilms has been difficult
because of the challenges associated with accessing this

community in vivo, or replicating the gut environment in
vitro (Marzorati et al., 2011).

Studies have shown that B. thetaiotaomicron is prominently
represented on the surfaces of mixed food particles isolated
from human feces (Macfarlane and Dillon, 2007; Macfarlane
and Macfarlane, 2006), and undigested plant material in the
gut lumen and within the mucus layer of gnotobiotic mice
colonized by B. thetaiotaomicron and fed simple-sugar or
polysaccharide-rich diets (Sonnenburg et al., 2005). Because
both plant materials and host-derived mucus can serve as
carbon and energy sources for B. thetaiotaomicron, attachment
is likely to be mediated, at least in part, by Sus-like proteins
involved in nutrient binding (Shipman et al., 2000). When
cells bind to a nutrient that is part of a solid surface they, in
essence, attach to that surface. However, B. thetaiotaomicron
also attaches to glass surfaces, indicating that nutrient
binding is not its only attachment mechanism (Macfarlane
et al., 2005). One study demonstrated that attachment of this
bacterial species to glass was regulated by the availability of
soluble substrate (i.e., it occurred only under conditions
where glucose concentrations were high), indicating that
nutrient binding and attachment are tightly linked in this
organism (Macfarlane et al., 2005).

In the present study, we use GeneChip-based whole
genome transcriptional profiling to explore how biofilm
formation impacts gene expression in B. thetaiotaomicron. To
do so, we sampled mono-colonized chemostats, examining
biofilm as well as planktonic populations. The results are
compared to the transcriptional profiles of B. thetaiotaomicron
obtained in monocolonized gnotobiotic mice as well as
during in vitro culture as planktonic cells under defined
limiting and non-limiting nutrient conditions. Specifically,
we investigated the links between attachment, nutrient
binding and uptake, and capsule formation to generate
hypotheses on how attachment of this organism may affect
human health, and to compare biofilm and planktonic
populations as in vitro models of gene expression in vivo.

Results and Discussion

Growth in Chemostats and Differential Expression
Analysis

The sequenced type strain, B. thetaiotaomicron VPI-5482, was
inoculated into six sterile chemostats and fed continuously
with sterile tryptone, yeast extract, glucose (TYG) medium.
Growth proceeded at 37�C under an atmosphere of N2 and
CO2 (80%/20%). Each chemostat contained a carbon paper
growth surface to allow for biofilm formation. During the
first 24 h, dense planktonic growth occurred (OD600� 0.6).
Biofilm was not detected by scanning electron microscopy
(SEM) of the carbon paper surface at 8 h but was clearly
visible by the naked eye and SEM at 8 days (Fig. 1A–D).

RNA was extracted from planktonic cells harvested from
the chemostats after 8 h of growth. Biofilm cells were
removed from the carbon paper surface after 8 days of
growth. Because the experiments were performed in
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chemostats, both samples were in a steady-state growth phase
and not in stationary or exponential growth phases. The
samples were harvested at different operating periods and
hydraulic retention times (HRTs) to ensure that the
planktonic sample was not contaminated with biofilm cells
and vice versa. Gene expression was compared for biofilm
(n¼ 6) and planktonic (n¼ 6) samples using the Laplace EM
Microarray Analysis (LEMMA) method implemented as a
package in R (Bar et al., 2010). Using a false discovery rate of
0.05, 1,584 genes were detected as differentially expressed
between the two groups. Of these, we defined 1,145 genes as
“differentially expressed” for the rest of the study (base 2
logarithm of the fold-change in their expression was greater
than 1 [i.e., fold-change was greater than 2]). Transcripts
were categorized based on a variety of annotation schemes:
COG category, KEGG orthology group (KO) (KEGG
database), KEGG enzyme commission (EC) number,
carbohydrate active enzyme (CAZyme) family (CAZy
database), and peptidase family (MEROPS database). The
results are provided in Table S1. Using these annotations, we
determined which functional groups were significantly
enriched within the differentially expressed genes compared
to the genome (determined using the hypergeometric
distribution; P< 0.05; see Table S2). This analysis indicates
that groups that are significantly enriched within the
differentially expressed genes are specifically involved in
changes between biofilm and planktonic samples, but does

not take into account up- or down-regulation. Further
functional insights about the significance of these observed
differences in gene expression came from a follow-up analysis
that placed them in the context of B. thetaiotaomicron’s PULs.

Substrate Acquisition and Utilization

As noted in the Introduction, B. thetaiotaomicronVPI-5482 has
88 PULs, containing a total of 866 genes. Two hundred
seventy eight of these genes were differentially expressed in
the biofilm cells, with 80 PULs being represented (although
not all genes in each of these 80 PULs were differentially
expressed). Among the 866 PUL genes are 209 susC/susD
homologs, 93 of which (51 SusC homologs and 42 SusD
homologs) were differentially expressed. With the exception
of two susC homologs and two susD homologs from three
different PULs all of the differentially expressed susC/susD
homologs showed increased expression in the biofilm
compared to planktonic populations. Table S3 provides: (i)
a rank ordering of PULs based on the magnitude of the
average difference in expression of their constituent genes
between biofilm versus planktonic populations; and (ii)
includes information about the differences in expression of
their other genes (e.g., CAZyme family members, hypotheti-
cal proteins). Figure 2 shows the change in expression for all
genes in the five PULs with the largest differences (ranking
based on their susC/susD responses) and annotation of the
genes that comprise these PULs. Interestingly, two of these 5
PULs, BT4294-4300, and BT2802-2809 are known to be induced
in response to host-derived glycans (Sonnenburg et al., 2005)
and five sulfatases, including a mucin-degrading sulfatase,
were expressed at significantly higher levels in biofilm
compared to planktonic cell populations (Table S3). One
possible reason for this is that starvation during biofilm
growth causes the cell to upregulate Sus-like systems to
“surveillance levels” that prime the cell to gather any
nutrients that are available. Alternatively, attachment per se
may prime B. thetaiotaomicron cells for degradation of host
mucins. Mono- and co-colonization studies in gnotobiotic
mice have established that sulfatases are important fitness
factors for B. thetaiotaomicron, especially when the mice were
fed a simple sugar diet that requires adaptive foraging on host
glycans (Benjdia et al., 2011).
The B. thetaiotaomicron genome contains 8 capsular

polysaccharide synthesis (CPS) loci, each comprised of 15–
32 genes (Martens et al., 2009). A total of 74 genes,
distributed among all 8 CPS loci, exhibited significant
differences in their expression between biofilm and plank-
tonic communities, including 13 genes that were upregulated
in CPS locus 8 (BT0037-68), and 24 genes that were
downregulated in CPS locus 1 (BT0375-402). This indicates
that specific changes in the capsule are required for
attachment or life in the biofilm (see Table S4 for a complete
list of the genes present in each CPS locus and the magnitude
of their differential expression in biofilm vs. planktonic
populations). Our findings show that attachment to a carbon
surface in a chemostat not only regulates expression of PULs

Figure 1. Attachment of B. thetaiotaomicron to carbon paper surfaces in the

chemostat. A–D: Scanning electron micrographs of the growth surface sampled at 8 h

(panels A and B) and 8 days (panels C and D) after inoculation. Few bacteria are shown

in panels A and B, illustrating the rarity of their association with the growth surface at

this early time point. Bars, 0.5mm.
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involved in adaptive forging of mucus glycans in vivo but also
regulates expression of capsular biosynthetic loci.We have not
defined how these changes impact capsular glycan composi-
tion. It is possible that changes in the capsule are involved in
interactions between biofilm community members, whether
at the level of attachment or nutrient sharing/harvest.

Comparison of Transcriptional Profiles of the Biofilm
Community to Profiles Obtained in vitro Under Defined
Growth Conditions and in Gnotobiotic Mice

To gain additional perspective about the response of
B. thetaiotaomicron to attachment and biofilm community
formation, we compared the GeneChip datasets we generated
in other studies to the datasets from biofilm and planktonic

communities in our chemostats. We previously used the
custom B. thetaiotaomicron GeneChip employed in the present
study to characterize the transcriptome of this organism
under a variety of conditions, including during in vitro
growth in defined minimal medium containing a range
of potential substrates, and in vivo in mono-associated
gnotobiotic mice consuming a plant polysaccharide-rich diet,
or a diet devoid of complex polysaccharides and rich in
simple sugars (see Table S5 for an annotated list of these five
datasets and their GEO accession numbers). The six datasets
were subjected to unsupervised hierarchical clustering
analysis with the dist and hclust functions in R. The results
of this analysis were visualized as a dendrogram, which was
labeled with relevant experimental information, as well as the
dataset of origin (Fig. 3).

Figure 2. Differential patterns of PUL gene expression. Gene effect (base 2 logarithm of the fold expression change) of each gene within the 5 most differentially expressed

PULs (based on change in susC/susD expression) and annotations for each gene. Bars are not shown for genes that were not detected as differentially expressed. Inducing

conditions for each PUL were determined in reference (3).
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Figure 3. Hierarchical clustering of transcriptional profiles of B. thetaiotaomicron grown under different environmental conditions. The analysis is based on genes that are

differentially expressed between biofilm and planktonic samples. Their expression under other environmental conditions was used to perform the unsupervised clustering shown,

using the hclust function in R. Color code: red labels, non-limited with complex sugars (NC) cluster; blue, non-limited with simple sugars (NS) cluster; yellow, substrate limited grown

in mouse (LM) cluster; green, the substrate limited grown in glass or tube (LG) cluster. Labels on the right indicate the datasets, and essential information describing them. Tables on

the left show loci and annotations for the five most discriminatory genes for each cluster (porcine gastric mucin, PMG).
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When all genes were used in the clustering analysis, the
biofilm and planktonic cells clustered together. However,
when the differentially expressed genes identified by the
chemostat experiment were used to perform the clustering
analysis, the first branch point showed a clear division based
on “substrate availability” (where available substrate is
defined as sugars or polysaccharides given within the
previous 6 h of growth). Using only the differentially
expressed genes highlighted differences between biofilm
and planktonic samples and allowed us to interpret these
differences in terms of other growth conditions. Within the
substrate limited cluster, there was a division between
cultures grown in vitro versus those harvested from the distal
gut (cecum) of mono-colonized gnotobiotic mice fed various
diets (Fig. 3). Non-limited samples broke into two groups
depending on whether complex or simple sugars were fed
(Fig. 3). Thus, overall, samples could be classified into four
major groups based on this clustering pattern: (i) substrate
limited, grown in mouse (LM); (ii) substrate limited, grown
in glass or tube (LG); (iii) non-limited with complex sugars
(NC); and (iv) non-limited with simple sugars (NS).

To observe which of the genes used in the clustering analysis
were predictive for the sample cluster, we used a machine
learning approach implemented in the PAMr package for R
(Tibshirani et al., 2002). With a threshold of 5.0, 278 “key
clustering genes” were required to accurately predict which of
the four major clusters each sample belonged to Table S6. These
genes represent the core transcriptomic changes among the four
groups and their potential phenotypic differences. The key

clustering geneswere enriched infiveCOG functional categories
compared to the genome and the differentially expressed genes:
(i) cell envelope biogenesis, outer membrane (M); (ii) inorganic
ion transport and metabolism (P); (iii) carbohydrate transport
and metabolism (G); (iv) amino acid transport and metabolism
(E); and (v) coenzyme metabolism (H), with the largest
enrichment in categories M and G. When combining the
annotated dendrogram with the machine learning results, it
becomes clear that the essential differences between the four
sample groups lie in carbohydrate uptake and utilization;
dendrogramclustering occurredmainly on the basis of substrate
type and availability and the key clustering genes were enriched
in carbohydrate utilization functions (Table S6). This indicates
that there were widespread differences in carbohydrate
utilization function between the biofilm and planktonic groups,
although both were grown under the same experimental
conditions, suggesting further that biofilm formation changes
carbohydrate binding, uptake and utilization in B. thetaiotaomi-
cron (Fig. 4).

Prospectus

Mechanisms that mediate and regulate attachment of gut
bacteria to various living and non-living surfaces represent a key
area that needs further investigation. Attachment is likely key to
harvesting nutrients present in partially digested food. Direct
attachment to other bacterial cells and/or gaining proximity to
these cells via attachment to common nutrient platforms could
be an important step in establishing syntrophic relationships, as

Figure 4. Summary of major transcriptional differences that distinguish the expressed functional features of biofilm and planktonic B. thetaiotaomicron populations present in

the chemostat.
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in water columns within aquatic ecosystems. Bacterial attach-
ment and the consequences of “attachment disorders” are
difficult to study in vivo, but the current study shows that
chemostats can be used as an in vitro “gnotobiotic” model to
study how a prominent human saccharolytic bacterium attaches
to a defined surface and its response to attachment. In terms of
gene expression, chemostat-grown cells were more similar in
vivo-grown cells than cells grown in batch-fed conditions were,
making chemostats a good choice for in vitro experiments with
this organism. In this system, we see that biofilm formation
occurs in a reproducible fashion and that attachment to a
carbon surface “primes” the organism to induce expression of
PULs involved degradation ofmucus glycanswhile also affecting
the expression of capsular polysaccharide biosynthetic genes
involved in decorating the surface of the bacterial cell with
carbohydrates. Both types of responses will change the
interactions of this organism with nutrient foundations,
including those derived from the host or capsular glycans of
other attached cells.
Hierarchical clustering of transcriptional profiles of B.

thetaiotaomicron populations studied under a wide variety of
environmental conditions indicate that populations in the gut of
mono-colonized gnotobioticmice fed various diets, and biofilm
communities elicit transcriptional responses resembling those
seen under nutrient limiting conditions, making them more
similar to each other than to high-nutrient growth conditions.
This study suggests that future genetic and biochemical/
metabolic analyses of B. thetaiotaomicron during its assembly into
biofilm communities within continuous flow chemostats may
provide new ways for defining and testing hypotheses about
how this mutualist attaches to various surfaces present in the
gut, acquires and processes various nutrients in an attached
state, and how it adjusts to various perturbations.

Materials and Methods

Bacterial Strains and Culture Conditions

B. thetaiotaomicron strain VPI-5482 (ATCC 29148) was used
in all experiments. Tryptone, yeast extract, glucose (TYG)
medium was used for bacterial growth in the chemostats,
containing (per liter deionized water): tryptone, 10 g; yeast
extract, 5 g; glucose, 4 g; L-cysteine, 0.5 g; KH2PO4, 4 g;
K2HPO4, 9 g; TYG salt solution, 40mL; CaCl2·2H2O, 8mg;
FeSO4, 0.4mg; hematin, 1.2mg. TYG salt solution consists of
(per liter deionized water): MgSO4·7H2O, 0.5 g; NaHCO3,
10 g; NaCl, 2 g. All chemicals were used as purchased. Prior to
inoculation, the bacterial culture was pre-grown in TYG
medium overnight. Pre-cultures were inoculated directly
from frozen stocks prior to each experiment.

Chemostat Design and Operation

Two identical chemostats were constructed from glass with
a �210mL liquid volume. A water jacket around each
chemostat maintained an operating temperature of 37�C. A
54 cm2 carbon paper growth surface for biofilm attachment

was inserted into each chemostat, (P50, Ballard Material
Products, Lowel, MA). Before operation, the chemostats,
medium storage tanks, and all connections/pump tubing
were autoclaved at 121�C for 60min. Glucose and hematin
solutions were filter-sterilized (0.22-mm pore diameter), and
added to the medium storage tank after autoclaving. To
inoculate, 3mL of overnight-grown B. thetaiotaomicron culture
(�6� 109 CFU) were injected into the chemostats. The
chemostats were continuously fed with TYG medium at a
HRTof 13 h (unless stated otherwise). A N2/CO2 (80%/20%)
gasmixture was constantly sparged into the working chamber
to remove the potential oxygen flux from the feeding solution
and to compensate for the pressure loss due to the difference
of flow rates between influent and effluent. Cell density was
obtained by measuring optical density of 100mL aliquots of
the culture at awavelength of 600 nm (SynergyHTmicroplate
reader; Bio-TEK Instruments, Inc., Winooski, VT).

Sample Collection and RNA Extraction

Planktonic cells were harvested during the exponential
growth phase (optical density of 0.50–0.55 at 600 nm, 8 h
after inoculation). A sample of the working chamber culture
was collected in RNAprotect bacteria reagent (Qiagen, Inc.,
Valencia, CA) at a volumetric ratio of 1:2. After being
centrifuged at 5,000g for 30min, the supernatant was
decanted and the cells were stored at �80�C prior to
extraction of total RNA using an RNeasy kit (Qiagen).
Biofilm samples were collected after an 8-day operating

period. During the last two days of the operating period, the
HRT was shortened gradually until it was �30min. In this
way, planktonic cells were largely removed by fast replacement
of the medium. We do not anticipate that this change in HRT
would cause a significant impact on gene expression. Indeed,
the biofilm experienced substrate limitations (as shown by our
transcriptomic data) due to substrate diffusion limitations
even though the substrate concentration in the bulk liquidwas
high at an HRT of 30min. In addition, shortening the HRT
from 13 h to 30min would not have an overarching effect on
turbulence because of the presence of a magnetic stir bar. To
minimize RNA degradation in the biofilm during sampling,
the growth surface was immediately frozen in liquid nitrogen
after its removal from the chemostat. The growth surface was
cut into small pieces with sterile scissors and distributed into
2mL centrifuge vials containing 500mL of extraction buffer
(200mM Tris, pH 8.0/200mM NaCl/20mM EDTA), 210mL
of 20% SDS, 500mL of phenol/chloroform/isoamyl alcohol
(125:24:1, pH 4.5, Ambion, Foster City, CA) and 150mL of
0.1-mm silica beads. Biofilm and planktonic samples were
mechanically disrupted with a mini-beadbeater (BioSpec
Products, Inc., Bartlesville, OK) on instrument setting “high”
for 5min at room temperature. After centrifugation at 10,000g
for 3min, the supernatant was extracted once more with
phenol/chloroform/isoamyl alcohol and RNA was precipitat-
ed by adding 60mL of sodium acetate (3M) and 600mL of
ethanol (�20�C). The extracted RNA was stored in 100mL
of water at �80�C.
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GeneChip Analysis

Total cellular RNA was purified using a Qiagen RNA Easy
mini kit according to the manufacturer’s directions.
Following extraction of RNA, samples were treated with
DNAse I (Ambion) and purified again with a Qiagen RNA
Easy column. Due to the large initial concentration of
contaminating DNA, biofilm samples were subjected to an
additional DNAse I treatment and purification. All samples
were monitored for DNA contamination by PCR using
primers specific for B. thetaiotaomicron genes. cDNA targets
were prepared as previously described according to a
standard Affymetrix protocol (Santa Clara, CA) and applied
to custom B. thetaiotaomicron GeneChips (Sonnenburg
et al., 2005). These GeneChips contain probe pairs derived
from 4,719 of the 4,779 predicted B. thetaiotaomicron genes.
GeneChip data was processed using Microarray Suite 5
(Affymetrix). Each array was normalized to an arbitrary
mean value of 500. The data generated for this study have
been deposited in NCBI’s Gene Expression Omnibus (GEO)
and are accessible through GEO Series accession number
GSE38534 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
ac c¼GSE38534) (Edgar et al., 2002).

Statistical Analysis

Differential expression analysis was performed using the
LEMMApackage for R, with a false discovery rate of 0.05 (Bar
et al., 2010). Expression values were normalized using the
quantile normalization function in R prior to the differential
expression analysis. Genes with a gene effect (base 2
logarithm of the fold expression change) less than 1 were
not considered. Hierarchical clustering was also performed in
R, using the dist function with the Euclidean method to
calculate the distance matrix and the hclust function with the
Wardmethod to generate the tree. Plots were drawn using the
plotColoredClusters function in the ClassDiscovery package,
which is part of the Object-Oriented Microarray and
Proteomic Analysis (OOMPA) suite (http://bioinformatics.
mdanderson.org/Software/OOMPA). GeneChip data for
B. thetaiotaomicron grown under different conditions used in
hierarchical clustering analyses was downloaded from the
NCBI GEO database. These datasets consisted of publicly
available data collected from a variety of previous studies on
B. thetaiotaomicron grown under widely varying conditions. In
general, all samples were grown either in standard culture
flasks with minimal or standard rich media (e.g., TYG), or in
mono-colonized gnotobiotic mice, and sampled at defined
time points for RNA extraction. More details are given in
Table S5, and more information about each study can be
found by looking up the relevant GEO accession number at
http://www.ncbi.nlm.nih.gov/geo/. All data were ranked
prior to analysis to normalize between different experiments
(Folsom et al., 2010). The significance of the enrichment of
different gene groups in the differentially expressed genes was
checked using the hypergeometric distribution using the
dhyper function in R, and a P-value cutoff of 0.05. Machine

learning to determine key genes in the clustering analysis was
performed using the PAMr package for R, with a threshold
value of 5.0 (Tibshirani et al., 2002).

Scanning Electron Microscopy

Small pieces of the carbon paper were fixed overnight in a
solution containing 2% glutaraldehyde at 4�C, followed by
washing with deionized water for 10–20min. Secondary
fixation was conducted in 1% osmium tetroxide at 4�C for
2 h. The carbon paper pieces were washed with deionized
water for 10–20min, dehydrated in a series of ethanol
solutions (50%, 70%, 90%, and 100%), and critical point
dried in CO2. The samples were coated with gold and viewed
using a scanning electronmicroscope (Hitachi S-450, Hitachi
Ltd, Tokyo, Japan). To examine biofilm formation during the
exponential growth phase (at 8 h, when planktonic cells were
harvested for RNA extraction), the growth surface was gently
rinsed with sterile phosphate buffer to remove any adsorbed
planktonic cells.

This work was funded by the National Science Foundation (CAREER
grant 0939882 to L.T.A.) and the NIH (DK30292 to J.I.G.).

References

Ambort D, van der Post S, Johansson MEV, MacKenzie J, Thomsson E,
Krengel U, Hansson GC. 2011. Function of the CysD domain of the gel-
forming MUC2 mucin. Biochem J 436:61–70.

Ambort D, Johansson MEV, Gustafsson JK, Nilsson HE, Ermund A,
Johansson BR, Koeck PJB, Hebert H, Hansson GC. 2012. Calcium and
pH-dependent packing and release of the gel-forming MUC2 mucin.
Proc Natl Acad Sci USA 109(15):5645–5650.

Bar H, Booth J, Schifano E, Wells MT. 2010. Laplace approximated EM
microarray analysis: An empirical Bayes approach for comparative
microarray experiments. Stat Sci 25(3):388–407.

Beloin C, Ghigo J-M. 2005. Finding gene-expression patterns in bacterial
biofilms. Trends Microbiol 13(1):16–19.

Benjdia A, Martens EC, Gordon JI, Berteau O. 2011. Sulfatases and a radical
S-Adenosyl-l-methionine (AdoMet) enzyme are key for mucosal
foraging and fitness of the prominent human gut symbiont, Bacteroides
thetaiotaomicron. J Biol Chem 286(29):25973–25982.

Blixt O, Head S, Mondala T, Scanlan C, Huflejt ME, Alvarez R, Bryan MC,
Fazio F, Calarese D, Stevens J, Razi N, Stevens DJ, Skehel JJ, van Die I,
Burton DR, Wilson IA, Cummings R, Bovin N, Wong CH, Paulson
JC. 2004. Printed covalent glycan array for ligand profiling of
diverse glycan binding proteins. Proc Natl Acad Sci USA 101(49):
17033–17038.

Edgar R, Domrachev M, Lash AE. 2002. Gene expression omnibus: NCBI
gene expression and hybridization array data repository. Nucleic Acids
Res 30(1):207–210.

Folsom J, Richards L, Pitts B, Roe F, Ehrlich G, Parker A, Mazurie A, Stewart
P. 2010. Physiology of Pseudomonas aeruginosa in biofilms as revealed by
transcriptome analysis. BMC Microbiol 10(1):294.

Kitamura M, Okuyama M, Tanzawa F, Mori H, Kitago Y, Watanabe N,
Kimura A, Tanaka I, YaoM. 2008. Structural and functional analysis of a
glycoside hydrolase family 97 enzyme from Bacteroides thetaiotaomicron.
J Biol Chem 283(52):36328–36337.

Koropatkin NM, Smith TJ. 2010. SusG: A unique cell-membrane-associated
a-amylase from a prominent human gut symbiont targets complex
starch molecules. Structure 18(2):200–215.

Koropatkin NM, Martens EC, Gordon JI, Smith TJ. 2008. Starch catabolism
by a prominent human gut symbiont is directed by the recognition of
amylose helices. Structure 16(7):1105–1115.

172 Biotechnology and Bioengineering, Vol. 111, No. 1, January, 2014

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE38534
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE38534
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE38534
http://bioinformatics.mdanderson.org/Software/OOMPA
http://bioinformatics.mdanderson.org/Software/OOMPA
http://www.ncbi.nlm.nih.gov/geo/


Koropatkin N, Martens EC, Gordon JI, Smith TJ. 2009. Structure of a SusD
homologue, BT1043, involved in mucin O-glycan utilization in a
prominent human gut symbiont. Biochemistry 48(7):1532–1542.

Koropatkin NM, Cameron EA, Martens EC. 2012. How glycan metabolism
shapes the human gut microbiota. Nat Rev Microbiol 10(5):323–335.

Lazazzera BA. 2005. Lessons from DNA microarray analysis: The gene
expression profile of biofilms. Curr Opin Microbiol 8(2):222–227.

Lindén SK, Florin THJ, McGuckin MA. 2008a. Mucin dynamics in intestinal
bacterial infection. PLoS ONE 3(12):e3952.

Lindén SK, Sutton P, Karlsson NG, Korolik V, McGuckinMA. 2008b. Mucins
in the mucosal barrier to infection. Mucosal Immunol 1(3):183–197.

Macfarlane S, Dillon JF. 2007. Microbial biofilms in the human gastrointes-
tinal tract. J Appl Microbiol 102(5):1187–1196.

Macfarlane S, Macfarlane GT. 2006. Composition and metabolic activities of
bacterial biofilms colonizing food residues in the human gut. Appl
Environ Microbiol 72(9):6204–6211.

Macfarlane S, Woodmansey EJ, Macfarlane GT. 2005. Colonization of mucin
by human intestinal bacteria and establishment of biofilm communities
in a two-stage continuous culture system. Appl Environ Microbiol
71(11):7483–7492.

Martens EC, ChiangHC, Gordon JI. 2008.Mucosal glycan foraging enhances
fitness and transmission of a saccharolytic human gut bacterial
symbiont. Cell Host Microbe 4(5):447–457.

Martens EC, Roth R, Heuser JE, Gordon JI. 2009. Coordinate regulation of
glycan degradation and polysaccharide capsule biosynthesis by a
prominent human gut symbiont. J Biol Chem 284(27):18445–18457.

Martens EC, Lowe EC, Chiang H, Pudlo NA, Wu M, McNulty NP, Abbott
DW, Henrissat B, Gilbert HJ, Bolam DN, Gordon JI. 2011. Recognition
and degradation of plant cell wall polysaccharides by two human gut
symbionts. PLoS Biol 9(12):e1001221.

MarzoratiM, Van denAbbeele P, Possemiers S, Benner J, VerstraeteW, Van de
Wiele T. 2011. Studying the host-microbiota interaction in the human
gastrointestinal tract: Basic concepts and in vitro approaches. Ann
Microbiol 61(4):709–715.

McGuckin MA, Lindén SK, Sutton P, Florin TH. 2011. Mucin dynamics and
enteric pathogens. Nat Rev Microbiol 9(4):265–278.

Padler-Karavani V, Song XZ, Yu H, Hurtado-Ziola N, Huang SS, Muthana S,
Chokhawala HA, Cheng JS, Verhagen A, Langereis MA, Kleene R,
Schachner M, de Groot RJ, Lasanajak Y, Matsuda H, Schwab R, Chen X,
Smith DF, Cummings RD, Varki A. 2012. Cross-comparison of protein
recognition of sialic acid diversity on two novel sialoglycanmicroarrays. J
Biol Chem 287(27):22593–22608.

Reeves AR, D’Elia JN, Frias J, Salyers AA. 1996. A Bacteroides thetaiotaomicron
outer membrane protein that is essential for utilization of maltooligo-
saccharides and starch. J Bacteriol 178(3):823–830.

Reeves AR, Wang GR, Salyers AA. 1997. Characterization of four outer
membrane proteins that play a role in utilization of starch by Bacteroides
thetaiotaomicron. J Bacteriol 179(3):643–649.

Shipman JA, Berleman JE, Salyers AA. 2000. Characterization of four outer
membrane proteins involved in binding starch to the cell surface of
Bacteroides thetaiotaomicron. J Bacteriol 182(19):5365–5372.

Sonnenburg JL, Angenent LT, Gordon JI. 2004. Getting a grip on things: how
do communities of bacterial symbionts become established in our
intestine? Nat Immunol 5(6):569–573.

Sonnenburg JL, Xu J, Leipi DD, Chen C-H, Westover BP, Weatherford J,
Buhler JD, Gordon JI. 2005. Glycan foraging in vivo by an intestine-
adapted bacterial symbiont. Science 307(5717):1955–1959.

Sonnenburg ED, Zheng H, Joglekar P, Higginbottom SK, Firbank SJ, Bolam
DN, Sonnenburg JL. 2010. Specificity of polysaccharide use in intestinal

bacteroides species determines diet-induced microbiota alterations. Cell
141(7):1241–1252.

Stevens J, Blixt O, Glaser L, Taubenberger JK, Palese P, Paulson JC,Wilson IA.
2006. Glycan microarray analysis of the hemagglutinins from modern
and pandemic influenza viruses reveals different receptor specificities.
J Mol Biol 355(5):1143–1155.

Tibshirani R, Hastie T, Narasimhan B, Chu G. 2002. Diagnosis of multiple
cancer types by shrunken centroids of gene expression. Proc Natl Acad
Sci USA 99(10):6567–6572.

Supporting Information

Additional supporting information may be found in the
online version of this article at the publisher’s web-site.

Table S1. List of differentially expressed genes between
biofilm and planktonic populations with a false discovery rate
of 0.05. A positive gene effect indicated higher expression in
biofilm versus planktonic. Genes were annotated using a
variety of databases as described in the main text.

Table S2. Analysis of the percentage of each functional
category within the B. thetaiotaomicron genome and within the
group of differentially genes (dexpr) between planktonic and
biofilm-associated cells. Groups marked with an � were
significantly enriched in the differentially expressed genes as
determined using a hypergeometric distribution.

Table S3. Annotated list of genes within polysaccharide
utilization loci (PULs) including ranking based on average
change in expression, gene effect of differentially expressed
genes, and gene descriptions.

Table S4. List of differentially expressed genes within capsular
polysaccharide synthesis (CPS) loci, annotated with gene
effect and P-value.

Table S5. Annotated list of datasets used in clustering
analysis, including relevant experimental information and
GEO accession numbers. Dataset 1: comparison of cells
grown with glucose or PMG glycans in different culture
volumes (Martens et al., 2008). Dataset 2: comparison of
strains with various sigma factors knocked out, grown on
glucose or glycans (Martens et al., 2009). Dataset 3:
comparison of wild type and a chuR knockout strain, grown
in gnotobiotic mouse ceca. Dataset 4: comparison of cells
harvested before and after lactose addition to the growth
medium. Dataset 5: comparison of cells grown in different
medium types or in mouse ceca.

Table S6. Full list of key clustering genes with annotations.
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