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[1] Driver functions for the Earth’s magnetosphere-ionosphere system are derived from
physical principles. Two processes act simultaneously: a reconnection-coupled MHD
generator  and a viscous interaction.  accounts for the dayside reconnection rate, the
length of the reconnection X line, and current saturation limits for the solar wind generator.
Two viscous drivers are derived: Bohm viscosityℬ and the freestream-turbulence effect .
A problematic proxy effect is uncovered wherein the viscous driver functions also describe
the strength of reconnection. Two magnetospheric-driver functions written in terms of
upstream solar wind parameters are constructed:  +ℬ and  + . The driver functions
are tested against seven geomagnetic indices. The reaction of the geomagnetic indices to
 +ℬ and  + is nonlinear: Nonlinear versions of the driver functions are supplied.
Applying the driver functions at multiple time steps yields correlation coefficients of ~85%
with the AE and Kp indices; it is argued that multiple time stepping removes high-frequency
uncorrelated signal from the drivers. Autocorrelation-function analysis shows strong 1 day
and 1 year periodicities in the AE index, which are not in the solar wind driver functions;
correspondingly, high-pass and low-pass filtering finds uncorrelated signal at 1 day and 1 year
timescales. Residuals (unpredicted variance) between the geomagnetic indices and the driver
functions are analyzed: The residuals are anticorrelated with the solar wind velocity, the solar
F10.7 radio flux, and the solar wind current saturation parameter. Removing diurnal,
semiannual, and annual trends from the indices improves their correlation with the solar wind
driver functions. Simplified versions of the driver functions are constructed: The simplified
drivers perform approximately as well as the full drivers.
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1. Introduction

[2] The purpose of this report is to develop a physics-based
driver function to describe the coupling of the solar wind to
the Earth’s magnetosphere in terms of solar wind parame-
ters. A driver function  (t) that is a function of the time t
will be obtained, where the time dependence comes from
the time dependence of solar and solar wind parameters
such as the plasma velocity usw(t), the plasma number
density nsw(t), the interplanetary magnetic field (IMF) clock
angle θclock(t), the solar 10.7 cm radio flux F10.7(t), etc.
Hence,  (t) = (usw(t), nsw(t), θclock(t), F10.7(t),…).

[3] It is believed that there are two main physical processes
that couple the solar wind to the magnetosphere-ionosphere
system: a reconnection-based interaction [Dungey, 1961;
Sonnerup, 1974] and a viscous-type interaction [Axford,
1964; Farrugia et al., 2001]. The reconnection-based driver
is thought to be the dominant processes, with the viscous
interaction perhaps being dominant under northward IMF
when the total coupling is low [Mozer, 1984; Mozer et al.,
1994; Tsurutani and Gonzalez, 1995].
[4] Derivations of those two physical processes are pres-

ented, with the two processes combined into a single solar
wind driver function for the magnetosphere. To derive the
reconnection-coupled MHD generator, (1) a new locally
controlled reconnection picture will be used [Cassak and
Shay, 2007; Birn et al., 2008, 2010] to calculate the dayside
reconnection rate combined with (2) an estimate of the length
of the dayside X line obtained from global MHD simulations,
combined with (3) some MHD generator current saturation
physics. For the viscous interaction, new derivations
appropriate to the shocked flow of the magnetosheath
around the magnetosphere will be presented. The locally
controlled reconnection picture [Borovsky, 2008a, 2008b,
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2013; J. E. Borovsky, The solar wind electric field does not
control the dayside reconnection rate, submitted to Journal
of Geophysical Research, 2013] utilized in point 1 above is
in contrast to the commonly used boundary condition picture
[Axford, 1969] in which the solar wind electric field is taken
to be the driver of dayside reconnection [Wygant et al., 1983;
Gonzalez, 1990].
[5] The quality of a solar wind driver function for the

magnetosphere will be gauged by its ability to describe
the variance of geomagnetic activity indices [e.g., Reiff
et al., 1981; Baker et al., 1981; Reiff and Luhmann, 1986;
Baker, 1986; Finch and Lockwood, 2007; Newell et al.,
2007, 2008]. Here correlations between the temporal vari-
ance of the driver functions and the temporal variance of
seven geomagnetic indices will be used for guidance. The
seven indices that will be used are the auroral electrojet
indices AE, AU, and AL [Rostoker, 1972], the polar cap index
PCI [Troshichev et al., 2000], the planetary index Kp
[Rostoker, 1972], the midnight boundary index MBI
[Gussenhoven et al., 1983], and the pressure-corrected Dst
index Dst* [Borovsky and Denton, 2010a]. When correlating
the driver functions with geomagnetic indices, the best corre-
lations are obtained with time lags between the solar wind
measurements and the geomagnetic indices. For the seven in-
dices used, the time legs are 1 h for the AE, 1 h for AL, 1 h for
AU, 0 h for PCI, 1 h for Kp, 1 h for MBI, and 2 h for Dst*.
(Note the optimal time lag for PCI is a few minutes, but to
hourly accuracy, the lag is 0 h.) When correlating the viscous
driver functions with geomagnetic indices, the best correla-
tions are obtained with the same set of time lags for the seven
indices. These time lags are interpreted as response times for
the magnetosphere to the driving by the solar wind, with the
response times being the same (to within 1 h accuracy) for
the reconnection-coupled MHD generator driving as for the
viscous driving. For the correlations, hourly averaged values
of the indices and hourly averaged solar wind parameters
from OMNI2 [King and Papitashvili, 2005] will be used.
OMNI2 hourly averaged data are a standard for most contem-
porary statistical studies of solar wind driving [e.g., Newell
et al., 2007, 2008; Balikhin et al., 2010; Boynton et al.,
2011; Singh and Badruddin, 2012; Guo et al., 2012; Milan
et al., 2012; Luo et al., 2013], particularly when very long
time intervals are utilized [cf. McPherron et al., 2013].
[6] Note that the objective is not to obtain the most accurate

solar wind driver function for the prediction of geomagnetic
indices but rather to obtain a quantified physical picture of so-
lar wind/magnetosphere coupling. Adjustable tuning parame-
ters could improve the performance of the driver functions,
but tuning parameters will not be used. Note that there are
issues concerning the use of correlations to gauge the quality
of the solar wind driver functions for the magnetosphere:
[7] 1. The accuracy of knowing the parameters of the solar

wind that hits the Earth inferred from measurements from an
upstream solar wind monitor that is off the Sun-Earth line is
not perfect; and the accuracy of using geomagnetic indices
as a measure of the strength of solar wind/magnetosphere
coupling is also less than perfect.
[8] 2. Correlation coefficients quantify how much of the

variance of a function can be predicted by the variance of the
driver function:With many solar wind parameters strongly cor-
related with each other, there are physics-versus-mathematics
issues in the ability to predict variance. For example, the linear

correlation coefficient between hourly values of uswBsouth in the
solar wind and hourly values of theAE index is +0.626 whereas
the linear correlation coefficient between hourly values of
usw+75Bsouth and AE is +0.730 (with usw in units of km/s
and Bsouth in units of nT): Is usw+Bsouth a better physical
description of solar wind/magnetosphere coupling or does
usw+Bsouth have a better ability to describe variance in the solar
wind and in the AE index?
[9] 3. Owing to similarities in their functional forms we

will find that the viscous coupling functions are good proxies
for the strength of the reconnection-coupled generator, and it
is likely that the reconnection-based driving function is also
describing the viscous interaction.
[10] Driver functions for the magnetosphere that combine

the reconnection-coupled MHD generator plus the viscous
interaction are the goal [cf. Borovsky and Funsten, 2003a;
Newell et al., 2008]. The solar wind driver functions here will
be derived from physical principles.
[11] This paper is organized as follows. In section 2 the

reconnection-coupled MHD generator  is derived from
an estimate of the dayside local reconnection rate, an estimate
of the length of the dayside reconnection X line, and a factor
that accounts for the quality of the MHD generator. In section
3 two expressions are derived for the viscous interaction
between the supersonic solar wind and the magnetosphere
based on Bohm viscosityℬ and on the freestream-turbulence
effect . In section 4 the reconnection-coupled MHD gener-
ator and the Bohm and freestream viscous interactions are
combined to produce two solar wind driver functions
 +ℬ and  + for the magnetosphere, and the proper-
ties of those driver functions are studied via their relationships
with seven geomagnetic indices. That study involves analysis
of correlations, of low-pass and high-pass filtering, of autocor-
relation functions, of multi time step drivers, of temporal aver-
aging, of residual errors, and of diurnal and annual trends in
the indices. For easier use, simplified mathematical versions
  +ℬ and   +ℬ of the solar wind driver functions
 +ℬ and + are given in section 5. In section 6 phys-
ical processes that are missing from the derivations of the solar
wind driver functions for the magnetosphere are enumerated
and critical work that is needed is identified. The results are
summarized in section 7.

2. The Reconnection-Coupled MHD Generator

[12] Magnetic field line reconnection at the dayside mag-
netopause magnetically connects the MHD generator of the
moving solar wind/magnetosheath plasma to the Earth [cf.
Goertz et al., 1993]. After becoming magnetically connected,
the moving plasma drives currents into the polar ionospheres
and transports magnetic flux from the dayside magnetosphere
to the nightside magnetosphere, both processes driving con-
vection in the magnetosphere-ionosphere system. Changes in
the intensity of currents driven (1) directly by the solar wind,
(2) by magnetospheric convection, and (3) by changes in the
morphology of the magnetosphere are sensed by ground-
basedmagnetometers to produce various geomagnetic indices.
[13] The amount of coupling of the solar wind to the Earth

is proportional to the total reconnection rate, which is the
local reconnection rate integrated over the length of the
dayside reconnection X line. Sometimes (typically when
the solar wind Alfven speed is high) the solar wind plasma
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has difficulty supplying electrical current to the ionosphere to
which it is magnetically connected [Lavraud and Borovsky,
2008; Borovsky et al., 2009], leading to the familiar polar
cap potential saturation [e.g., Wygant et al., 1983; Reiff and
Luhmann, 1986; Weimer et al., 1990]. To account for this,
the mathematical formulation of the generator must include a
generator quality factor. The mathematical expression for the
reconnection coupled MHD generator  is of the form:

 ¼ local reconnection rateð Þ � length of X lineð Þ
� generator qualityð Þ (1)

[14] In sections 2.1–2.3 mathematical expressions for (1) the
local reconnection rate, (2) the effective length of the dayside X
line, and (3) the quality of the MHD generator will be derived.

2.1. The Dayside Reconnection Rate

[15] In a collisionless plasma, the rate of magnetic recon-
nection is controlled by the local plasma parameters at the
reconnection site: local Alfven speeds and local magnetic
field strengths. For antiparallel reconnection between asym-
metric plasmas like the magnetosphere and magnetosheath,
the rate is given by the Cassak-Shay equation [Cassak and
Shay, 2007; Birn et al., 2008, 2010]:

RCS ¼ 0:1=π1=2
� �

Bm
3=2Bs

3=2= Bmρs þ Bsρsð Þ1=2 Bm þ Bsð Þ1=2
n o

(2)

where B and ρ are the magnetic field strength and mass den-
sity of the two plasmas and where the subscripts “m” and “s”
denote the magnetospheric plasma and magnetosheath plasma,
respectively. The factor 0.1 in expression (2) is a geometric fac-
tor representing the angular aspect ratio between inflow and
outflow at the reconnection site [cf. Parker, 1979]: It is chosen
to be 0.1 to match the standard result that when the two plasmas
are asymmetric (Bm=Bs and ρm= ρs) that R=0.1 vAB [cf.
Borovsky and Hesse, 2007; Birn et al., 2008]. In addition
to a magnetic clock angle dependence which is not in
expression (2), four fundamental plasma parameters deter-
mine the dayside reconnection rate: Bm, Bs, ρm, and ρs.
Whatever controls those four plasma parameters at the mag-
netopause controls the reconnection rate between the solar
wind and the magnetosphere.
[16] Borovsky [2008a] developed a prescription to express

three of those four parameters (Bm, Bs, and ρs) in terms of up-
stream solar wind parameters and from the Cassak-Shay equa-
tion the derived a “rudimentary” reconnection rate expression
R1 for the magnetosphere. Borovsky [2013] followed that pre-
scription and accounted for the twist of the X line orientation
in asymmetric reconnection to derive a more correct expres-
sion R2 for the local reconnection rate. Since the mass density
ρm of the daysidemagnetosphere is not easily parameterized in
terms of upstream solar wind parameters [Borovsky et al.,
2013], ρm is taken to be 0 in the derivation of R2. Equations
(30)–(30) of Borovsky [2013] give

R2 ¼ 0:8π1=2mp
1=2nsw

1=2usw
2 1þ 0:5Mms

�2
� �

C�1=2 ghð Þ3=2= χg1=2 gχ þ hð Þ1=2
n o

(3)

[17] In expression (3),

χ ¼ 1þ βsð Þ1=2 (4a)

βs ¼ MA=6ð Þ1:92 (4b)

C ¼ C⊥ sin2θBn þ Cjj 1� sin2θBn
� �

(4c)

C⊥ ¼ 2:44� 10�4 þ 1þ 1:38 loge MAð Þ½ ��6
n o�1=6

(4d)

Cjj ¼ 4= 1þ 3Ms
�2

� �
(4e)

MA ¼ usw=vA (4f)

Ms ¼ usw=Cs (4g)

Mms ¼ usw= vA
2 þ Cs

2
� �1=2

(4h)

g ¼ sin αð Þ (4i)

h ¼ sin θclock � αð Þ (4j)

α ≈ θ=2� 15° 1� 1þ χð Þ�1=2
� �

sin θclockð Þ (4k)

where mp is the proton mass, θclock is the IMF clock angle
with respect to the Earth’s dipole, θBn is the angle of the
IMF relative to the Sun-Earth line, nsw and usw are the up-
stream solar wind number density and velocity, vA is the
Alfven speed in the solar wind upstream of the bow shock,
Cs= (γkB(Ti+ Te)/mp)

1/2 is the sound speed in the solar wind
upstream of the bow shock, α is the angle of orientation of
the reconnection X line from the direction of the magneto-
spheric magnetic field, and C⊥ and C|| are the density com-
pression ratios of the quasi-perpendicular and quasi-parallel
bow shock. The solar wind upstream Mach numbers in
expressions (4a)–(4k) are the Alfven Mach number MA, the
sonic Mach numberMs, and the magnetosonic Mach number
Mms. In expressions (4a)–(4k), βs is the plasma β value of the
magnetosheath near the magnetopause.
[18] Expression (4b) βs= (MA/6)

1.92 is central to evaluating χ
(expression (4a)), whose value strongly affects the reconnection
rate (expression (3)). The expression βs= (MA/6)

1.92 will be
used repeatedly in the latter sections of this report in pressure
balance arguments. This expression [Borovsky, 2008a, equation
(7)] was obtained by parameterizing the βs value of the
magnetosheath plasma near the nose of the magnetosphere in
a series of BATSRUS [De Zeeuw et al., 2000; Ridley et al.,
2010] global MHD simulations over a range (MA=1.9–16.2)
of solar wind Alfven Mach numbers [cf. Borovsky, 2008a,
Figure 3]. In section 2.2 a series of Lyon-Fedder-Mobarry
(LFM) [Lyon et al., 2004; Wiltberger et al., 2005] global
MHD simulations will be run over a range (MA=2–35) of solar
wind Alfven Mach numbers. Using those LFM simulations, βs
of the magnetosheath plasma is reparameterized as a function of
MA and the fit

βs ¼ MA=6:7ð Þ2:05 (5)

is obtained. At low Mach numbers, βs = (MA/6)
1.92 predicts

βs values that are higher (by 50% atMA=1); asMA increases,
the two expressions yield βs values that are closer to each
other, with the two βs values being identical at MA= 34. The
LFM parameterization βs= (MA/6.7)

2.05 confirms the validity
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of the BATSRUS result βs= (MA/6)
1.92. In the present study,

the expression βs= (MA/6)
1.92 will be used.

[19] Expression (3) contains information about how the
bow shock modifies the solar wind plasma, about how the
magnetosheath flow pattern modifies the solar wind plasma,
and about how asymmetric reconnection works. Expression
(3) has a strong dependence on the Alfven Mach number
MA of the solar wind, which determines the plasma β of the
magnetosheath, which in turn by pressure balance determines
the magnetic field strength of the magnetosheath plasma at the
magnetopause. It is convenient to rewrite expression (3) as

R2 ¼ nsw
1=2usw

2f MA;Mms; θclock ; θBnð Þ (6)

with the clock angle and Mach number dependence of R2 in
the function

f MA;Mms; θclock ; θBnð Þ ¼ 0:8π1=2mp
1=2 1þ 0:5Mms

�2
� �

C�1=2 ghð Þ3=2 χg1=2 gχ þ hð Þ1=2
n o

(7)

[20] Note in Borovsky [2013] that a correction to the
reconnection rate based on compressibility arguments [Birn
et al., 2010, 2012] was implemented. That correction led to
the Cassak-Shay-Birn equation for asymmetric reconnection.
Using the Cassak-Shay-Birn equation as a starting point for
the dayside reconnection function led to poorer performance
of that function. More will be said about this in section 2.4.
[21] In section 5 a simplified approximation of R2 from

Borovsky [2013] will be used to produce mathematically
simplified versions of the solar wind driver functions.

2.2. The Length of the Reconnection X Line

[22] For flow shears above the Alfven speed, it is believed
that reconnection becomes problematic. At high Mach num-
bers, the length of the dayside X line may be limited by flow
velocities of the magnetosheath plasma exceeding the local
Alfven speed, cutting off the efficiency of reconnection.
For symmetric reconnection, the argument is that if the shear
velocity (total jump in the flow speed between plasma 1 and
plasma 2) parallel to the direction of the reconnecting mag-
netic field exceeds twice the reconnection outflow speed, a
stable neutral line will not form [Mitchell and Kan, 1978;
Chen et al., 1997]. Computer simulations support this notion
[Chen et al., 1997; La Belle-Hamer et al., 1994; Cassak and
Otto, 2011].
[23] The effects of flow shear on magnetic field line reco-

nnection have not been sorted out for reconnection with a
guide field, particularly for asymmetric reconnection with a
guide field. For a magnetic field clock angle of θ, the asym-
metric reconnection outflow speed has an approximately sin
(θ/2) dependence [cf. Swisdak and Drake, 2007, equation
(8)], and the components of the shear velocity parallel to
the directions of the magnetic fields in the magnetosphere
and in the magnetosheath will also have θ dependences.
The velocity shear between the magnetosphere and magneto-
sheath may also affect the locations on the magnetopause
where reconnection occurs, hence it may affect the orienta-
tion of the X line. In the estimate of the length of the
reconnection X line presented here, all of these unknown
dependences on the clock angle θ will be ignored.

[24] For symmetric reconnection, the reconnection outflow
speed is vA. The symmetric plasma reconnection rate as a
function of the shear velocity is plotted in Figure 3 of
Cassak and Otto [2011]: Here the rate falls off to about
70% of its no-shear value when the velocity jump is equal
to vA and the reconnection rate goes to zero when the jump
is equal to 2vA. For asymmetric reconnection between the
magnetosphere (subscript “m”) and the magnetosheath (sub-
script “s”), ignoring clock angle effects, the reconnection
outflow speed uout is given by [cf. Cassak and Shay, 2007,
equation (13)]

uout
2 ¼ BmBs=4πð Þ Bm þ Bsð Þ= ρmBs þ ρsBmð Þð Þ (8)

[25] Taking ρmBs≪ ρsBm (because Bs ≤ Bm and in general
ρm≪ ρs), expression (8) can be written as

uout ¼ vAs Bm=Bsð Þ þ 1ð Þ1=2 (9)

[26] By pressure balance across the magnetopause, the ra-
tio Bm/Bs can be written [cf. Borovsky, 2008a, equations (5)
and (6)] as

Bm=Bs ¼ 1þ βsð Þ1=2 (10)

[27] Expression (10) used in expression (9) yields

uout ¼ vAs 1þ βsð Þ1=2 þ 1
h i1=2

(11)

[28] For the magnetosheath flowing around the magneto-
sphere, the flow shear across the magnetopause increases in
intensity with increasing distance from the nose of the mag-
netosphere. When the flow speed u of the magnetosheath
along the magnetopause exceeds the local value of uout, the
reconnection will be reduced by about 70%, and when the
flow speed of the magnetosheath exceeds twice the local
value of uout, reconnection will be completely cut off. Here
we will take the position in the magnetosheath flow along
the magnetopause where u= uout to give the effective length
of the X line. Writing u= uout, using expression (11) for uout
and dividing both sides by vAs[(1 + βs)1/2 + 1]1/2 yields the
condition:

MA 1þ βsð Þ1=2 þ 1
h i�1=2

¼ 1 (12)

in the magnetosheath flow along the magnetopause for the
effective length of the X line.
[29] In Figure 1 the Alfven Mach number of the flow of

the magnetosheath around the Earth is shown for two cases:
low-Mach-number solar wind (MA = 2.01; top) and high-
Mach-number solar wind (MA = 40.2; bottom). The standoff
distance of the bow shock and flow pattern of the magneto-
sheath differ substantially between the low- and high-Mach-
number cases; the current systems in the bow shock and
magnetosheath also differ substantially [cf. Lopez et al.,
2011]. According to expression (4b), for solar wind Alfven
Mach numbers MA ≫ 6, the plasma β of the magnetosheath
is high and the magnetosheath flow can be described by gas
dynamics: For solar wind Alfven Mach numbers MA≪ 6,
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the plasma β of the magnetosheath is lower than unity and
the magnetosheath flow must be described by MHD. Note
in Figure 1 the difference in the pattern of color contours
in the magnetosheath: At low solar wind Mach number,
the Mach number contours in the magnetosheath are ap-
proximately perpendicular to the magnetosheath, and at
high solar wind Mach number, the Mach number contours
in the magnetosheath are approximately parallel to the magne-
topause. Note also in Figure 1 (top) for low-Mach-number
solar wind, there is a slingshot effect in the magnetosheath that
accelerates the sheath flow along the magnetopause to speeds
above the solar wind speed [cf. Lavraud et al., 2007; Lavraud
and Borovsky, 2008].
[30] To estimate the length of the reconnection X line, the

position at which the magnetosheath flow along the magneto-
pause goes through MA[(1 + βs)1/2 + 1]�1/2 = 1 (cf. expression
(12)) will be taken. For a series of computer simulations using
the LFM MHD code [Lyon et al., 2004; Wiltberger et al.,
2005] at the Community Coordinated Modeling Center
[Bellaire, 2006; Rastatter et al., 2012], contour plots of
the quantity MA[(1 + βs)1/2 + 1]�1/2 were examined and the

location where MA[(1 + βs)1/2 + 1]�1/2 = 1 in the mag-
netosheath flow along the magnetopause was measured as a
function of the Alfven Mach numberMA of the upstream solar
wind. In Figure 2 the position of theMA[(1 + βs)1/2 + 1]�1/2 = 1
contour given by expression (12) is shown for three snapshots
during a computer simulation in which the magnetic field
strength in the solar wind is varied to vary the upstream solar
wind Alfven Mach number. Shown in Figure 2 are cuts in
the equatorial plane: the black disc around the Earth has a
radius of 6 RE. The color scale is the logarithm of the total
electric current density in the plasma, highlighting the mag-
netopause in red and the bow shock in yellow. Contours of
MA[(1 + βs)1/2 + 1]�1/2 are plotted in black. In Figure 2 (top)
the solar wind Alfven Mach number is MA=2.01 and the
black contours intersect the magnetopause at a position angle
from the Sun-Earth line (nose) of about ξ =95°. In Figure 2
(middle; solar wind MA=5.2) the black contours intersect
the magnetopause at a position angle ξ =78° from the nose.
In Figure 2 (bottom) with solar windMA=27.9, the black con-
tours intersect the magnetopause at ξ = 34°.
[31] For three computer simulations in which the solar

wind magnetic field strength is varied to vary the solar
wind Alfven Mach number, the position angle ξ (in
degrees) of where the flow goes through the critical condition
MA[(1 + βs)1/2 + 1]�1/2 = 1 is plotted as a function of the
Alfven Mach number MA of the solar wind in Figure 3. The
three simulations have three different temperatures of the so-
lar wind plasma upstream of the bow shock: T= 1 eV (blue),
T= 10 eV (red), and T= 120 eV (green). This variation in
solar wind temperature varies the relationship between the
Alfven Mach number and the magnetosonic Mach number
of the solar wind. A definite trend of ξ versus MA is seen
and the value of the upstream temperature of the solar wind
does not systematically change the results. A power law fit
to the data points in Figure 3 yields

ξ ¼ 141°MA
�0:404 (13)

where ξ is in degrees.
[32] As an effective length of the dayside X line, the prod-

uct of the angle ξ (in radians) and the size of the magneto-
sphere will be taken. For the size of the magnetosphere, the
standoff distance d along the Sun-Earth line will be taken
[cf. Walker and Russell, 1995, equation (6.21)]:

d ¼ do nswusw
2

� ��1=6
(14)

where do = 6.81 × 1010 cm and where d is in units of cm, nsw
is in units of cm�3, and usw is in units of km/s. Taking ξ from
expression (13) given by the position where the flow goes
through MA[(1 + βs)1/2 + 1]�1/2 = 1 (expression (12)), the ef-
fective length LX line of the dayside X line is (with a factor
of 2 for the two sides away from the nose)

LX line ¼ 4:9 do nswusw
2

� ��1=6
MA

�0:404 (15)

[33] LX line is plotted as a function of the solar wind Alfven
Mach number MA in Figure 4.
[34] An indication of the AlfvenMach number dependence

of the length of the dayside neutral line can be seen in Figure 5
from an LFM computer simulation of the magnetosphere with
an IMF clock angle of 90°. In the three snapshots, the flow

Figure 1. The Alfven Mach number pattern of magneto-
sheath sheath flow at low and high Alfven Mach numbers
of the solar wind. The color contours are the local Alfven
Mach number v/vA of the plasma flow and the black contours
are the magnitude of the current density in the plasma
(outlining the magnetopause). (top)MA=2.01 for the upstream
solar wind (orange). (bottom) MA=40.2 in the upstream solar
wind (orange). (All panels are from run LFM4 [111412_2] at
the CCMC with southward IMF and Tsw=1 eV.).
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streamlines inside the dayside magnetosphere are traced and
flow vectors are shown. Figure 5 is for a simulation with
MA=2.03 (top), MA=10.2 (middle), and MA= 27.9 (bottom).
In the higher-Mach-number cases (middle and bottom) the
flow streamlines inside the magnetosphere focus toward the
nose of the magnetosphere, as if the reconnection intensity is
strong at the nose and weak away from the nose. In the low-
Mach-number case the streamlines aim sunward, without a
focus toward the nose, as if the reconnection X line were
strong all across the magnetosphere. The flow vector direc-
tions shown by the field of black arrowheads show the same
behavior: a dayside magnetospheric flow pattern focused
toward the nose when the solar wind Alfven Mach number
is high and a dayside magnetosphere flow that does not focus
to the nose when the AlfvenMach number of the solar wind is
low. One must use caution in the MHD simulations when

gauging the strength of reconnection since (1) reconnection is
enabled by numerical errors (high-order numerical diffusivity)
acting on the magnetic field at current sheets with thicknesses
approaching the grid spacing [Kuznetsova et al., 2007] and (2)
numerical errors in Faraday’s law ∂B/∂t = ∇ × (u × B) at
narrow flow gradients prevent the magnetic field from being
exactly convected with the flow.
[35] Note that Kelvin-Helmholtz instabilities at the magne-

topause for high shear velocities may enhance reconnection
via vortex-induced reconnection [cf. Chen et al., 1997;
Zhang et al., 2011] (see also section 6.1). This would produceFigure 2. The position of the critical magnetosheath flow

MA[(1 + βs)1/2 + 1]�1/2 = 1 contour along the magnetopause
is outlined with black curves in the three panels for three dif-
ferent solar wind Alfven Mach numbers. (top) MA = 2.01 in
the upstream solar wind. (middle) MA = 5.2 in the upstream
solar wind. (bottom) MA = 27.9 in the upstream solar wind.
(All panels from run LFM4 [111412_2] at CCMC with
southward IMF and Tsw = 1 eV.).

Figure 3. From three LFM computer simulations, the posi-
tion angle ξ where the magnetosheath flow along the magneto-
pause goes through the critical valueMA[(1 + βs)1/2 + 1]�1/2 = 1
plotted as a function of the Alfven Mach number MA of the
solar wind. The three simulations have three different temper-
atures of the solar wind plasma upstream of the bow shock:
T=1 eV (blue), T=10 eV (red), and T=120 eV (green).

Figure 4. From expression (15) an estimate of the length of
the dayside reconnection X line is plotted as a function of the
solar wind Alfven Mach number MA.
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an additional reconnection that increases with solar wind
Alfven Mach number, in opposition to the length of the X line
scaling given by expression (15).

2.3. MHD Generator Current Saturation

[36] After becoming magnetically connected to the polar
ionospheres by dayside reconnection, the moving solar
wind/magnetosheath plasma will supply electrical current to
each ionosphere producing resistive cross-polar cap electrical
potentials. This current couples the MHD generator of the
moving solar wind to the ionospheric load, tending to impose
the motional voltage from the solar wind onto the polar cap.
[37] The solar wind acts like a “current-limited Voltage gen-

erator” [Borovsky et al., 2009]: In the absence of a load it has a
fixed voltage and under a direct short it supplies a maximum
current. In the nomenclature of section 6 of Lysak [1990],
when the polar ionosphere has weak conductivity the solar
wind act like a fixed-voltage generator and when the polar
conductivity is strong, the solar wind acts like a fixed-current
generator. For a given solar wind motional potential Δϕsw,
the maximum field-aligned current that a flux tube of the solar
wind can supply is [cf. Borovsky et al., 2009, equation (8)]

Imax ¼ L=Wð ÞswΔϕsw=μovA (16)

where vA is the Alfven speed in the solar wind plasma and
(L/W)sw is the length to width cross-sectional shape of the
solar wind flux tube, with W being in the direction of the
potential drop Δϕsw. (For (L/W)sw = 1 and for a typical solar
wind with vA = 54 km/s, expression (16) yields 14.7 A/V as
the current the solar wind can supply to one ionosphere.) In
order for the collisionless plasma solar wind MHD genera-
tor to supply current to the ionosphere, it must undergo a
potential drop [cf. Borovsky et al., 2009, Figure 23]: The
electrical potential that the collisionless solar wind MHD
generator can apply onto the ionospheric load is

Δϕion ¼ Δϕsw 1� I=I maxð Þ½ � (17)

[38] The ionospheric potential must also be in agreement
with the resistive potential drop in the ionosphere governed
by the current I.
[39] For a given potentialΔϕion applied to the ionosphere, the

closure Pedersen current that the ionosphere carries is given by

I ion ¼ LionΔ∑P Δϕion=W ionð Þ ¼ L=Wð Þion∑PΔϕion (18)

where ∑P is the height-integrated Pedersen conductivity of
the ionosphere, Wion is the dimension over which Δϕion falls
in the ionosphere, Lion is the dimension perpendicular toWion

in the ionosphere, and (L/W)ion is the shape of the foot of the

Figure 5. For three different solar wind Alfven Mach num-
bers MA, flow vectors and streamlines of flow in the dayside
magnetosphere are plotted in the equatorial plane. The Mach
numbers are (top)MA=2.03, (middle)MA=10.2, and (bottom)
MA=27.9. The color contours are the logarithm of the total
current density in the plasma, highlighting the dayside magne-
topause in red and the bow shock in yellow. All three panels are
from the run LFM7 [111712_2] at the CCMC. All three panels
on the right are from the run LFM9 [120812_1] at the CCMC
with the top panel at MA=2.02.
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solar wind flux tube in the ionosphere. Using expression (18)
for Iion in expression (17) as the current I drawn from the
solar wind and using expression (16) to eliminate Imax,
expression (17) becomes

Δϕion ¼ Δϕsw 1� Q Δϕion=Δϕswð Þ½ � (19)

for the potential applied by the solar wind to the ionosphere,
where

Q ≡ μovA∑P L=Wð Þion= L=Wð Þsw (20)

[40] Expression (19) is solved for Δϕion to yield

Δϕion ¼ Δϕsw 1þ Qð Þ�1 (21)

[see also Gao et al., 2012, equation (4)] for the potential ap-
plied to the ionosphere by the solar wind. If the solar wind
MHD generator was not current limited, the potential applied
to the ionosphere would be Δϕsw. Instead, the potential is
reduced by the generator saturation parameter (1 +Q)�1.
Taking (L/W)ion ≈ (L/W)sw (which has been seen to be ap-
proximately true in global MHD simulations [Borovsky
et al., 2009]), expression (20) can be written as

Q ¼ vA∑P=796 (22)

where vA is expressed in units of km/s and ∑P is expressed in
units of mhos.
[41] Expression (19) is the Hill equation [cf. Hill et al.,

1976 equation (3); Siscoe et al., 2004, equation (1)], derived
by Hill et al. [1976] with arguments about limitations on the
distortion of the outer magnetosphere by ionosphere-
magnetosphere current systems and derived by Siscoe et al.
[2004] with arguments about the limitations of the momentum
of the solar wind and the amount of current that it can drive
into the magnetosphere-ionosphere system. Both of those pic-
tures yield values of Q ∝ vA ∑P, but with differing numerical
factors [e.g., Borovsky and Denton, 2006, equation (1)].
Ridley [2007] and Kivelson and Ridley [2008] use an Alfven
wing picture [cf. Mallinkrodt and Carlson, 1978] to obtain
expression (19); this picture yields the same numerical factor
in the value of Q as does expression (22) [cf. Borovsky
et al., 2009. equation (3)], without the consideration of the flux
tube eccentricity factors (L/W)ion and (L/W)sw.
[42] For the generator-quality factor in expression (1), the

quantity (1 +Q)�1 from expression (21) will be used with Q
given by expression (22). In general, the height-integrated
Pedersen conductivity ∑P of the polar ionosphere is not
known: equation (4) of Ober et al. [2003] will be used for
∑P, which is ∑P= 0.77 F10.7

1/2, with F10.7 being the Earth-
monitored 10.7 cm radio flux from the Sun.

2.4. Examining the Reconnection-Coupled
MHD Generator

[43] Using expression (6) for the local reconnection rate,
expression (15) for the effective length of the dayside
reconnection X line, and from expression (21) as the genera-
tor quality factor, expression (1) for the reconnection-
coupled MHD generator becomes

 ¼ 4:9donsw
1=2usw

2f MA;Mms; θclock; θBnð Þ nswusw
2

� ��1=6

MA
�0:404 1þ Qð Þ�1

(23)

with expressions (7) and (22) providing the definitions
f (MA,Mms, θclock, θBn) and Q(vA, ΣP) and where do = 6.81
× 1010 cm. With ∑P=0.77 F10.7

1/2, all parameters in expres-
sion (23) are written in terms of solar parameters and upstream
(from the bow shock) solar wind parameters.
[44] By comparing Figure 6 (top and bottom), the effect of

the generator-current limit (1+Q)�1 on the performance of
the reconnection-coupled generator  can be seen. In
Figure 6 (top) the 1 h lagged AE index AE1 is plotted as a func-
tion of a reconnection-coupled generator without the (1 +Q)�1

Figure 6. Examining the effect of the (1 +Q)�1 MHD gen-
erator saturation term in the expression for the reconnection-
coupled generator  . In the top panel the (1 +Q)�1 term is
not included in the reconnection-couple-generator expres-
sion; in the bottom panel it is. In the two panels, the black
points are the individual 1 h data points and the red points
are 300-point running averages of the black points. The horizon-
tal scales are chosen so that the shapes of the AE1< 400 nT
portions of the two red curves are about the same so the effect
of the inclusion of the (1 +Q)�1 term at large values of the
driver functions can be more clearly seen.
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term and (bottom) AE1 is plotted as a function of the
reconnection-coupled generator with the (1+Q)�1 term (ex-
pression (23)). The red 300-point running averages highlight
the trend in the black data points. Without the (1 +Q)�1

term, the data suffer a bendover of the AE1 index at high
values of the driver: This is the so-called polar-cap potential
saturation [cf.Wygant et al., 1983; Reiff and Luhmann, 1986;
Weimer et al., 1990]. Adding the (1+Q)�1 term in Figure 6
(bottom) largely eliminates that bendover and linearizes the re-
lationship between AE1 and at larger values of [see also
Lavraud and Borovsky, 2008, Figure 17]. Note that there is a
strong nonlinearity at weak values of  where the 300-point
running average in Figure 6 makes a strong bend going from a
horizontal orientation to a steep slope: This nonlinearity will
appear again in section 4.
[45] In Table 1 the linear correlation coefficients between

the reconnection-coupled generator and seven geomagnetic
indices are collected. In the bottom row of Table 1 the sum of
the correlation coefficients for all seven indices is displayed.
The correlation coefficients for a reconnection-coupled gener-
ator function  Birn based on the Cassak-Shay-Birn reco-
nnection rate [see Borovsky, 2013] and another  app based
on the approximated version of the dayside local reconnection
rate R2app [Borovsky, 2013, equation (34)] are also displayed in
Table 1. As can be seen, the three functions  ,  Birn, and
 app yield similar correlation coefficients, with those of 
being slightly superior. For practical purposes, the function
 app is much easier to implement (see section 5).

3. The Viscous Interaction

[46] The viscous interaction is a transfer of momentum from
the flowing magnetosheath plasma across the magnetopause
into the magnetosphere. The mechanisms that transfer this
momentum across the magnetopause are not well understood.
[47] Two approaches to developing a driver function to

describe the viscous interaction between the solar wind and
the Earth’s magnetosphere will be taken. The first approach
is to (a) try to discern the physical mechanism of viscosity in
a collisionless plasma, (b) use that mechanism to calculate a
flow Reynolds number for the magnetosheath flowing around
the magnetosphere, and (c) use this Reynolds number in an
aerodynamic viscous-drag formula. This first approach was
taken, for example, by Vasyliunas et al. [1982]. For the mech-
anism of viscosity in a collisionless plasma, possibilities
include Coulomb collisions [Kaufman, 1960; Braginskii,
1965], Bohm Diffusion [Eviatar and Wolf, 1968; Borovsky,
2006], Landau damping [Borovsky and Gary, 2009], mass

diffusion by plasma waves [LaBelle and Treumann, 1988;
Johnson and Cheng, 1997], Kelvin-Helmholtz interactions
[Fejer, 1964; Nykyri and Otto, 2001], among other mecha-
nisms. Bohm diffusion will be used for this first approach.
[48] The second approach to developing a viscous driver

function is to exploit the “freestream turbulence effect” [Wu
and Faeth, 1994; Volino et al., 2003; Borovsky and Steinberg,
2006a], which allows one to obtain an effective Reynolds num-
ber for the flow that is independent of the actual mechanism of
viscosity. This effective Reynolds number is then used in an
aerodynamic viscous drag formula.
[49] In this section both approaches will be taken, yielding

a Bohm-viscosity driver function ℬ in section 3.1 and a
freestream-turbulence driver function  in section 3.3.
The two viscous drivers will be examined in section 3.3.

3.1. Bohm Viscosity

[50] In laboratory experiments, plasmas are often observed
to spread across the magnetic field with the Bohm-diffusion
rate [Bohm et al., 1949; Rynn, 1964; Taroni et al., 1994].
Bohm diffusion is associated with a spatial step that is the par-
ticle gyroradius and a time step that is the particle gyroperiod:
It can be thought of as the diffusion rate that results from the
interruption of particle gyroorbits on a gradient.
[51] The viscous drag force Fv on the object in the wind can

be written as [Faber, 1995]

Fv ¼ 0:5ρouo
2A Cv (24)

where ρo is the mass density of the wind, uo is flow velocity
of the ambient wind past the object, A is the cross-sectional
area of the object as seen by the flow, and Cv is the viscous
drag coefficient of the object. For subsonic flow, Cv depends
only on the shape of the object and the Reynolds number Re
of the flow past the object. Borovsky and Funsten [2003a]
estimated Cv for the Earth’s magnetosphere, obtaining

Cv ¼ 13Re�1=2 (25)

[52] Expressing the cross-sectional area of the Earth’s mag-
netosphere asA=π(d/2)2, where d is the diameter of the magne-
tosphere, and using expression (25), expression (24) becomes

Fv ¼ 13π=8ð Þρswusw2d2Re�1=2 (26)

where the subscript “sw” means the solar wind upstream of
the bow shock.

Table 1. Linear Correlation Coefficients rcorr Between Various Driver Functions and Seven Geomagnetic Indicesa

  app  Birn ℬ   +ℬ  +

AE 1 h lagged 0.758 0.746 0.743 0.533/0.372 0.537/0.443 0.797 0.782
AU 1 h lagged 0.660 0.649 0.654 0.567/0.341 0.623/0.444 0.701 0.700
�AL 1 h lagged 0.729 0.718 0.712 0.439/0.350 0.409/0.397 0.763 0.745
PCI 0.719 0.712 0.709 0.351/0.340 0.316/0.424 0.752 0.743
Kp 1 h lagged 0.648 0.637 0.642 0.610/0.531 0.658/0.632 0.778 0.781
�MBI 1 h lagged 0.707 0.696 0.697 0.588/0.422 0.583/0.498 0.775 0.762
�Dst* 2 h lagged 0.565 0.569 0.568 0.511/0.468 0.538/0.557 0.678 0.685
7-index sum 4.785 4.728 4.726 3.596/2.823 3.665/3.395 5.242 5.199

aThe correlation coefficients are for the January 1980 to May 2012 1 h resolution OMNI2 data set. For the Bohm viscosity driverℬ and the freestream-
turbulence driver , two sets of numbers are given: the first value is the correlation for only hours where the hourly averaged components of the solar wind
magnetic field yield GSM clock angles 0° ≤ θclock ≤ 20°; the second value is the correlation for all values of θclock. All rcorr values are positive. The bottom row
is the seven-index sum of the correlation coefficients.
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[53] The dimensionless Reynolds number Re is a measure
of the importance of viscous dissipation on a flow shear: It is
the ratio of a flow-crossing timescale and a viscous-dissipation
timescale. The Reynolds number is a property of the flow
pattern, not of the fluid. For a characteristic flow velocity u,
a characteristic length scale L in the flow pattern, and the kine-
matic (molecular) viscosity ν of the fluid, Re is

Re ¼ Lu=ν (27)

[e.g., Nakayama and Boucher, 1999]. For the magnetosheath
flow around the magnetosphere, we will take L to be the
diameter d of the magnetosphere and u to be bulk flow veloc-
ity of the magnetosheath. For the kinematic viscosity of a
collisionless magnetized plasma we have three possibilities
[Borovsky and Gary, 2009]: the Braginskii Coulomb collision
viscosity νBrag of the plasma (which for the magnetosheath
will be very small, ~1.3 × 106 cm2/s), the Landau-damping
shear viscosity νLandau (which will be larger), or the Bohm dif-
fusion coefficient νBohm (which will be the largest possible
value, ~1.0 × 1013 cm2/s).
[54] For this estimate, we will take the viscosity νBohm to

be equal to the Bohm-diffusion coefficient DB= (1/16)vTi
2/ωci

[Bohm et al., 1949; Rynn, 1964]. (See also Eviatar and
Wolf [1968] for an argument for Bohm diffusion acting
at the magnetopause and see Vasyliunas et al. [1982] for
a derivation of the viscous force on the magnetosphere
using the assumption of Bohm diffusion for the fluid
viscosity.) For the magnetosheath plasma (subscript “s”),
this is written as

νBohm ¼ 1=16ð Þ vTi2=ωci ¼ 1=16ð Þ ckBT is=eBs (28)

where Tis is the ion temperature of the magnetosheath plasma
and Bs is the magnetic field strength in the magnetosheath.
Taking Ti >>Te in the magnetosheath, the ion temperature
in the magnetosheath can be expressed in terms of the plasma
beta βs = 8πnskBTis/Bs

2 and the magnetic field strength Bs:3

kBT is ¼ βsBs
2=8πns (29)

[55] Using pressure-balance arguments, the magnetic field
strength in the magnetosheath adjacent to the frontside mag-
netopause is given by equation (5) of Borovsky [2008a]:

Bs ¼ 8πminswð Þ1=2usw 1þ 0:5Mms
�2

� �1=2
1þ βsð Þ�1=2 (30)

where the subscript “sw” stands for the solar wind upstream of
the bow shock. Here Mms is the magnetosonic Mach number
of the solar wind. Using expressions (29) and (30) to eliminate
kBTis and Bs, expression (28) becomes

νBohm ¼ cmi
1=2=16 8πð Þ1=2e

� �
βsns

�1=2usw

1þ 0:5Mms
�2

� �1=2
1þ βsð Þ�1=2

(31)

[56] Expressing the magnetosheath number density ns at the
dayside magnetopause as ns=Cnsw (cf. eq. (9) of Borovsky
[2008a]) where nsw is the upstream solar wind number density

and C is the density compression ratio of the nose of the bow
shock, expression (31) for the Bohm viscosity becomes

νBohm ¼ cmi
1=2=16 8πð Þ1=2e

� �
nsw

�1=2uswW (32)

where the parameter W is defined as

W ¼ βsC
�1=2 1þ 0:5Mms

�2
� �1=2

1þ βsð Þ�1=2 (33)

[57] Note that the plasma beta of the magnetosheath near
the dayside magnetopause can be parameterized as
βs = (MA/6)

1.92 [cf. Borovsky, 2008a, equation (7)], where
MA is the Alfven Mach number of the solar wind as seen by
the Earth, and the density compression ratio of the shock C
is also a function of the Mach number: hence,W is a function
only of the Mach number of the solar wind.
[58] The Reynolds number for the magnetosheath flow

around the magnetosphere (expression (27)) is now rewritten.
Taking the characteristic scale size of the flow to be L= d,
taking the characteristic flow speed of the magnetosheath to
be us=C

�1usw, and taking the magnetosheath’s viscosity to
be the Bohm viscosity νBohm, expression (27) becomes

Re ¼ dC�1usw=νBohm (34)

[59] Using expression (32) for the Bohm viscosity νBohm,
expression (34) for the Reynolds number of the magnetosheath
flow around the magnetosphere becomes

Re ¼ 16 8πð Þ1=2e=cmi
1=2

� �
dnsw

1=2C�1W�1 (35)

[60] Note all of the velocity dependence of the Reynolds
number is in the parameters C and W.
[61] The viscous force on the magnetosphere from the

magnetosheath flowing over its surface (assuming Bohm
diffusion acts) is given by inserting expression (35) for the
Reynolds number Re into expression (26):

Fv�Bohm ¼ 13π=8ð Þ mi c mi
1=2=16 8πð Þ1=2e

� �1=2

nsw
3=4usw

2d3=2 CWð Þ1=2 (36)

[62] Dropping the constants, this is conveniently written as

Fv�Bohm∝nsw
3=4usw

2d3=2 CWð Þ1=2 (37)

[63] The diameter d of the Earth’s magnetosphere can be
estimated from the pressure-standoff of the solar wind:
d ∝ (nswusw

2)�1/6 [cf. Walker and Russell, 1995, equation
(6.21)]. Using this, expression (37) becomes

Fv�Bohm∝nsw
1=2usw

3=2 CWð Þ1=2 (38)

[64] Using the parameterization from equation (10) of
Borovsky [2008a] for the compression ratio of the nose of the
bow shock C={2.44 × 10�4 + [1+1.38 loge(MA)]

�6}�1/6,
where MA=usw/vAsw is the Alfven Mach number of the up-
stream solar wind, and using equation (7) of Borovsky [2008a]
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to obtain βs= (MA/6)
1.92, the viscous force on the Earth given by

expression (38) can be written entirely in terms of the upstream
solar wind parameters nsw, usw, Bsw.
[65] As the Bohm-viscosity driver function ℬ, the power

delivered to the magnetosphere by the viscous interaction
can be approximated as PBohm ~ usFv-Bohm: with us=C

�1usw,
expression (38) yields

ℬ ¼ PBohm ∝ nsw
1=2usw

5=2C�1=2W 1=2 (39)

for the power delivered.
[66] Note that the viscous coupling functions of Vasyliunas

et al. [1982] are also based on Bohm diffusion acting at the
magnetopause. However, the derivation differs from the deriva-
tion here. Equation (1) of Vasyliunas et al. [1982] for the
viscosity is obtained by assuming Bohm diffusion acts, with
ν ∝ kBTi/B, with kBTi taken to be kBTi=miusw

2 for the
magnetosheath (which is appropriate for very high Mach
numbers where βs ≫ 1) and with B taken to be given by
B2 = 8πρswusw2 (which is the field strength in the magneto-
sphere near the magnetopause). The Reynolds number Re
[Vasyliunas et al., 1982, equation (7)] is then take to be
Re=uswd/ν (rather than Re= usd/ν). The viscous drag coeffi-
cient Cv is assumed to vary as Cv ∝ Re�1/2 (for the
Vasyliunas parameter b=0) and the power delivered by the vis-
cous interaction is taken to be P= uswFv (rather than P=usFv),
yielding, with the Re and ν values described in this paragraph,
the viscous power [Vasyliunas et al., 1982, equation (21)]

PVasyl ∝ nsw
1=2usw

5=2 (40)

[67] This expression differs by factors of the density-
compression ratio of the bow shock and by Mach-number-
dependent factors of the magnetosheath plasma beta from
expression (39) derived here.
[68] We note that the flow of the solar wind past the Earth

is supersonic. For Navier-Stokes fluids with wind speeds
comparable to and above the speed of sound, the coefficient
of viscous drag Cv (cf. expression (25)) has a Mach-number
dependence in addition to a Reynolds number dependence.
Above Mach number of unity, the viscous drag coefficient
decreases with increasing Mach number [e.g., Eckert, 1950;
Lobb et al., 1955; Hill, 1956]. The physical reasons for the
Mach-number dependence of the Navier-Stokes drag coeffi-
cient are a combination of compressibility of the fluid,
changes in the structure of the boundary layers, and thermal
transport effects that change the fluid’s kinematic viscosity.
Whether or not the Mach-number dependence of Cv is the
same for plasma flow as Navier-Stokes flow, and whether
or not the Mach-number dependence of Cv holds for Bohm
diffusion are two open questions. As a fit to multiple experi-
ments measuring the Mach-number dependence of the vis-
cous drag coefficient Cv, equation (12) of chapter 17 in
Hoerner [1965] yields the empirical factor

F ¼ 1þ 0:045M2
� ��1=4

(41)

that multiplies the drag coefficientCv. Expression (41) was fit
for Mach numbers 1<M< 5. Utilizing expression (41), we
can write a supersonic version of expression (39) as

PBohm ∝ nsw
1=2usw

5=2C�1=2W 1=2 1þ 0:045MA
2

� ��1=4
(42)

[69] Multiplying the Bohm driver ℬ by the empirical
factor (1 + 0.045M2)�1/4 substantially improves its ability to
predict variance in all seven geomagnetic indices examined
(see section 3.3). However, the physics-based justification
for this factor for the supersonic flow of a collisionless
magnetized plasma is weak. Hence, the Hoerning supersonic
factor will not be used on the Bohm-viscous driver ℬ.

3.2. The Freestream-Turbulence Effect

[70] It has been established that when the solar wind mag-
netic field is northward (wherein the viscous interaction
should dominate over the reconnection interaction), the level
of geomagnetic activity is controlled to some degree by the
amplitude of magnetic field fluctuations in the upstream
solar wind [Borovsky and Gosling, 2001; Borovsky and
Funsten, 2003a; Borovsky and Steinberg, 2006a; Borovsky,
2006, D’Amicis et al., 2007, 2009, 2010, 2011; Lyons
et al., 2009; Kim et al., 2011]. Borovsky and Funsten
[2003a] tested this observationally being careful to reduce
the effect of solar wind turbulence amplitude acting as a
proxy for other solar wind parameters.
[71] In this subsection an estimate of the viscous interac-

tion is presented without knowledge of the mechanism of vis-
cosity acting at the magnetopause. To do this we will make
use of analogies to Navier-Stokes viscous drag processes ver-
ified in wind tunnel experiments. The three factors we will
use are (1) the viscous drag on an object in a wind depends
on the shape of the object and the Reynolds number of the
flow of the wind past the object, (2) ambient turbulence in
the wind upstream of the object enhances the viscous drag,
and (3) the flow is supersonic.
[72] The first two of these factors have been considered by

Borovsky and Funsten [2003a], Borovsky and Steinberg
[2006a], and Borovsky [2006], where viscous drag coeffi-
cients for the Earth’s magnetosphere were derived. We will
improve on those calculations in this section and also utilize
the third factor.
[73] Experiments in fluid dynamics have shown that ambi-

ent turbulence in the fluid upsteam of an object will enhance
the viscous drag coupling between the wind and the object
[Blair, 1983; Hoffmann and Mohammadi, 1991; Volino
et al., 2003]. This is known as the “freestream turbulence ef-
fect” [Kwok and Melbourne, 1980; Sullerey and Khan, 1983;
Pal, 1985; Thole and Bogard, 1996]. The explanation of this
effect is that a turbulent fluid has an eddy viscosity νeddy in
addition to its kinematic viscosity νkin and this eddy viscosity
is much more efficient at transporting momentum across
shears in the fluid than is the kinematic viscosity. Hence,
the effective Reynolds number of the flow is [Wu and
Faeth, 1994; Volino, 1998]

Re ¼ Lu=νeddy (43)

which is much lower than Re= Lu/νkin as given by expression
(27). In agreement with this, examination of high-Reynolds-
number flows in wind tunnels with freestream turbulence
finds that the morphologies of the flow patterns resemble
low-Reynolds-number flows [cf. Ko and Graf, 1972;
Castro and Robins, 1977; Courchesne and Laneville, 1982;
Hoffmann, 1991; Scholten and Murray, 1998; Saathoff and
Melbourne, 1999; Huang and Lee, 2000]. The argument un-
derlying the freestream-turbulence effect on the viscous drag
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is that whatever the physical viscous mechanisms that couple
the momentum of the wind to the surface of the object, the
eddy viscosity of the fluid will boost the momentum transfer
from the distant fluid to the surface, analogous to the en-
hancement of momentum transport to the wall in turbulent
pipe flow as compared with laminar pipe flow [cf. Tritton,
1977, section 22.5].
[74] Combining expressions (24) and (25) and using ex-

pression (43) for Re, the viscous drag force is

Fv�free ¼ 6:5ρswusw
2A νeddy�s=usd

� �1=2
(44)

where the diameter d of the magnetosphere was taken for L
and where the subscripts “sw” and “s” stand for the solar
wind and the magnetosheath.
[75] From eq. (7) of Borovsky [2006], the eddy viscosity

for MHD turbulence in a collisionless plasma can be written

νeddy�s ¼ 0:361 δus2 þ δbs2
� �

=2
� �1=2

Lbl (45)

[see also Yoshizawa and Yokoi, 1996] where Lbl is the scale
size of an eddy (fluctuation) in the magnetosheath turbulence
that has a scale size approximately equal to the thickness of the
momentum-exchange boundary layer in the magnetosheath
along the magnetosphere, and δus and δbs are the amplitudes
of the flow and magnetic field fluctuations in the magneto-
sheath with scale size Lbl. In expression (45), b=B/(4πmin)

1/2

is the magnetic field written in Alfven units, where n is the
number density of the plasma.
[76] We wish to write the eddy viscosity of the magneto-

sheath νeddy-s in terms of upstream solar wind parameters that
are continuously measured; so we must estimate how much
the solar wind turbulence is amplified as the plasma passes
through the bow shock. At the nose of the bow shock the solar
wind bulk-flow velocity usw is slowed such that

us ¼ C�1usw (46)

where C is the density compression ratio of the shock (which
is a function of Mach number) and the number density of the
solar wind nsw is increased by

ns ¼ C nsw (47)

across the shock. The change in amplitude of the solar wind
turbulence fluctuations in passing through the bow shock is
estimated as follows. The solar wind fluctuations have δB
and δu vectors. They are largely Alfvenic (i.e., δu ≈ ±δb) cor-
responding to outward propagating Alfven waves, especially
in the fast wind of coronal-hole origin [Belcher and Davis,
1971; Borovsky, 2012a, Table 5]. The fluctuations are largely
noncompressive with δu and δB both approximately perpen-
dicular to the local mean field Bo [Horbury et al., 2008;
Podesta, 2009; Podesta and Tenbarge, 2012]. As the solar
wind plasma passes through the bow shock at the nose, the
two components of δB that are perpendicular to the shock
normal nwill be amplified by a factor of C and the third com-
ponent of δB that is parallel to the shock normal is unaffected.
The one component of δu that is parallel to the shock normal
will be reduced by a factor C�1 in crossing the shock and
the other two components of δu that are perpendicular to
the shock normal will be unaffected. The mean field Bo will
also be strengthened and bent away from the shock normal

direction in crossing the shock, and the mean flow will be
slowed (and also deflected [cf. Walters, 1964]) in crossing
the nose of the bow shock. To calculate the effects of the
bow shock on the fluctuations, it is convenient to define the
coordinate system according to the directions of the shock
normal n and the upstream mean magnetic field Bo. In the
plane containing the vectors n and Bo, two directions are in-
plane and parallel to the shock normal “p||” and in-plane
and perpendicular to the shock normal “p⊥”. The third direc-
tion is normal to the plane in the n × Bo cross-product direction
“c.”Upstream of the bow shock, the two in-plane components
δBp|| and δBp⊥ are related to the in-plane component of the
amplitude δBp by

δBpjj ¼ δBp sin θBnð Þ (48a)

δBp⊥ ¼ δBp cos θBnð Þ (48b)

where θBn is the upstream angle between Bo and the shock
normal n. Likewise for δup|| and δup⊥. In crossing the shock
from the solar wind to the magnetosheath, the three compo-
nents of δB are changed by

δBp⊥→CδBp⊥ ¼ CδBp cos θBnð Þ (49a)

δBpjj→δBpjj ¼ δBp sin θBnð Þ (49b)

δBc→CδBc (49c)

where C is the density compression ratio of the bow shock.
Likewise for the three components of the solar wind velocity
fluctuations δu, the transformation across the bow shock is

δup⊥→δup⊥ ¼ δup cos θBnð Þ (50a)

δupjj→C�1δupjj ¼ C�1δup sin θBnð Þ (50b)

δuc→δuc (50c)

[77] Thus, the magnetic field energy density δB2 = (δBp⊥
2

+ δBp||
2 + δBc

2) of the magnetic field fluctuations in the
magnetosheath is

δBs
2 ¼ C2δBp

2 cos2 θBnð Þ þ δBp
2 sin2 θBnð Þ þ C2δBc

2 (51)

[78] For turbulence in the solar wind that is isotropic normal
to Bo, δBp

2 = δBc
2 = δBsw

2/2: hence, expression (51) becomes

δBs
2 ¼ δBsw

2 C2 þ 0:5 1� C2
� �

sin2 θBnð Þ� �
(52)

[79] In Alfven units, δbs = δBs/(4πmins)
1/2 = δBsC

�1/2/
(4πminsw)

1/2, where expression (47) was utilized. With this,
expression (52) becomes

δbs2 ¼ δbsw2C�1 C2 þ 0:5 1� C2
� �

sin2 θBnð Þ� �
(53)

[80] Similarly, the energy density of the velocity fluctuations
δu2 = (δup⊥2 + δup||2 + δuc2) of in the magnetosheath is

δus2 ¼ δusw2 1� 0:5 1� C�2
� �

sin2 θBnð Þ� �
(54)

[81] In the solar wind, to within a factor of 2, δusw ≈ δbsw
[cf. Borovsky, 2012a, Figure 16]: This is particularly true at
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the higher frequency end of the inertial subrange [Marsch
and Tu, 1990; Podesta et al., 2006; Perez and Boldyrev,
2010] where the eddies of interest for the present calculation
are. Taking δusw = δbsw, expressions (53) and (54) yield, after
some algebra,

δbs2 þ δus2 ¼ δbsw2 1þ Cð Þ 1� 0:5 1� C�2
� �

sin2 θBnð Þ� �
(55)

[82] According to expression (55), the amplification of
the energy density of the fluctuations in the solar wind
(δbs2 + δus2)/(δbsw2 + δusw2) varies from unity at C=1 (which
is at a Mach number of unity) to 1.33 (for C=4 and
θBn=90°) to 2.5 (for C=4 and θBn= 0°). Note in the solar
wind that the velocity and magnetic field fluctuations are
largely Alfvenic with δusw in equipartition with δbsw as δbsw/
δusw ≈ ±1, in the outward traveling (away from the Sun) sense.
In passing through the bow shock, δush and δbsh are no longer
be in equipartition: δb is amplified and δu is reduced.
Expressions (53) and (54) yield δbs2/δus2 =C. For a shock
compression ratio C=4, δbs=±2 δus, independent of θBn.
This ratio represents counterpropagating Alfven fluctuations
[cf. Alfven and Falthammar, 1963, section 3.3.1] where a fluc-
tuation with δu ≫δb is analyzed). The counterpropagating
fluctuations in the magnetosheath may represent a more effec-
tive turbulence than the unbalanced fluctuations in the solar
wind [cf. Dobrowolny et al., 1980]. Note also that in crossing
the bow shock, some of the Alfvenic fluctuations of the solar
wind might be converted into compressional fluctuations in
the magnetosheath [cf. Ip and McKenzie, 1991].
[83] Inserting expression (55) into expression (45), the

eddy viscosity of the magnetosheath is expressed in terms
of solar wind fluctuation amplitudes as

νeddy�s ¼ 0:255δbsw 1þ Cð Þ1=2 1� 0:5 1� C�2
� �

sin2 θBnð Þ� �1=2
Lbl

(56)

[84] Here δbsw must be measured at a wave number corre-
sponding to Lbl in the magnetosheath. For a k�5/3 power
spectrum of magnetic field fluctuations, the amplitude of a
fluctuation δB varies as δB ∝ k�1/3 [cf. Gary and Borovsky,
2004, Appendix A]. In the solar wind, the fluctuation amplitude
is monitored at a fixed timescale τm. (For root-mean-square
(RMS) values of the vector magnetic field values going into a
1 h average, τm~ 20 min [Borovsky, 2006].) The scale size Lm
in the magnetosheath that the measurement at τm corresponds
to is Lm= τm us= τmC�1usw. Hence, the amplitude in the solar
wind corresponding to a spatial scale Lbl in the magnetosheath
is given by

δBsw ¼ δBm Lbl=Lmð Þ1=3 ¼ δBmLbl
1=3C1=3=τm1=3usw

1=3 (57)

[85] With the use of expression (57), expression (56) for
the eddy viscosity at scale Lbl in the magnetosheath becomes

νeddy�s ¼ 0:072 δBmLbl4=3=mi
1=2nsw1=2τm1=3usw1=3

� 	

� C1=3 1þ Cð Þ1=2 1� 0:5 1� C�2
� �

sin2 θBnð Þ� �1=2 (58)

where δBm is the measured level of fluctuations in the solar
wind at timescale τm.

[86] Inserting expression (58) for νeddy-s into expression
(44) and using expression (48) to eliminate us, writing
ρsw =mpnsw, δbsw = δBsw/(4πminsw)

1/2, and A= πd2/4,the vis-
cous drag force on the magnetosphere is written as

Fv�free ¼ 1:37mp
3=4nsw3=4usw4=3d

3=2Lbl2=3dBm
1=2tm�1=6C2=3 1þ Cð Þ1=4

� 1� 0:5 1� C�2
� �

sin2 θBnð Þ� �1=4
(59)

[87] Dropping the constants, expression (59) yields

Fv�free ∝ nsw
3=4usw

4=3δBm
1=2d3=2G (60)

where G=G(C) is given by

G ¼ C2=3 1þ Cð Þ1=4 1� 0:5 1� C�2
� �

sin2 θBnð Þ� �1=4
(61)

[88] The diameter d of the Earth’s magnetosphere can
be estimated from the pressure-standoff of the solar wind:
d ∝ (nswusw

2)�1/6 [cf. Walker and Russell, 1995, equation
(6.21)]. Using this, expression (60) becomes

Fv�free ∝ nsw
1=2usw

5=6δBm
1=2G (62)

[89] Expression (62) is similar to equation (30) of Borovsky
[2006], except for the Mach-number-dependent factor ofG(C)
that accounts for the change in amplitude of the solar wind
fluctuations across the bow shock and the slowing down of
the magnetosheath flow around the magnetosphere.
[90] Using the parameterization from equation (10) of

Borovsky [2008a] for the compression ratio of the nose of the
bow shock (cf. expression (4f)) C⊥ = {2.44 × 10�4 + [1 + 1.38
loge(MA)]

�6}�1/6, where MA= usw/vAsw is the Alfven Mach
number of the upstream solar wind, the viscous force on the
Earth given by expression (62) can be written entirely in
terms of the upstream solar wind parameters nsw, usw, Bsw,
and δBm.
[91] For the freestream-turbulence viscous driver ℬ, the

power delivered to the magnetosphere by the freestream-
turbulence viscous interaction will be used. This power can
be approximated as Pfree ~ usFv-free: with us=C

�1usw, expres-
sion (62) yields

 ¼ Pv�free∝nsw
1=2usw

11=6δBm
1=2C�1G (63)

for the power delivered. The compression ratio C (which also
appears in the term G(C)) can be parameterized by expres-
sion (4d).
[92] TheHoerner [1965] experimental factor for supersonic

Navier-Stokes flow F= (1+ 0.045M2)�1/4 from expression
(41) could also be used to multiply expression (63), yielding

Pv�free ∝ nsw
1=2usw

11=6δBm
1=2C�1G 1þ 0:045MA

2
� ��1=4

(64)

[93] Unlike the case for the Bohm-viscous driverℬ, mul-
tiplying the freestream-turbulence driver by the empirical
factor (1 + 0.045MA

2)�1/4 only improves the variance pre-
dictability for one geomagnetic index, Dst*. Since it cannot
be well justified physically for the solar wind flow, the
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Hoerner supersonic factor will not be employed with the
driver function  .

3.3. Examining the Viscous Drivers

[94] In the fourth and fifth columns of Table 1, linear cor-
relation coefficients between the viscous driversℬ and 
and the seven geomagnetic indices are collected. Since the
viscous interaction is most dominant when the reconnection
driver  is nearly off, the viscous drivers should have
their largest correlations with the geomagnetic indices when
the IMF clock angle θclock is near zero (northward IMF).
Likewise, when the clock angle is unrestricted, the recon-
nection driver  should dominate the variation of the geo-
magnetic indices and the correlations between the viscous
drivers and geomagnetic activity should be weak (since
the viscous drivers are not controlling most of the variation
of the indices). However, this is not the case. In the fourth
and fifth columns of Table 1, two sets of correlation coeffi-
cients are displayed: the first number is the correlation coef-
ficient for northward IMF (0° ≤ θclock ≤ 20°) and the second
number is the correlation coefficient for all values of θclock.
If the viscous driving functions ℬ and  were only
describing the viscous interaction, the first numbers in the
table would be much larger than the second numbers. For
the Bohm driver ℬ, the first values are definitely larger
than the second values: for the freestream-turbulence driver
 , the second values are on average slightly larger than the
first values. The fact that the driversℬ and show strong
correlation with the geomagnetic indices for all values of θclock
indicates that the ℬ and  drivers act as a proxy for the
reconnection interaction; i.e., they have an ability to quantify
the strength of the reconnection driver (in addition to being
able to quantify the strength of the viscous interaction). This
proxy effect is stronger for the freestream-turbulence driver
 than it is for the Bohm-viscosity driver ℬ.
[95] Correspondingly, it is likely the case that the recon-

nection driver  also describes in part the strength of the
viscous interaction.
[96] This proxy effect comes about from similarities in the

functional forms of  ,ℬ, and  : i.e., all increase with in-
creasing usw. This being the case, the viscous driversℬ and
are not orthogonal to the reconnection driver  : i.e., they are
not independent of each other. For all values of the clock
angle θclock, the linear correlation coefficient between  and
ℬ is +0.179, the linear correlation coefficient between 
and  is +0.351, and the linear correlation coefficient
between ℬ and  is +0.748.  and ℬ are more indepen-
dent of each other than are  and  .
[97] Examining the northward IMF (first) number in the

third and fourth columns of Table 1, the ℬ and  driver
functions have similar correlation coefficients with each of
the seven geomagnetic indices. The correlations are particu-
larly high with the 1 h lagged Kp index and particularly
low with the PCI index.

4. Assessing the Magnetospheric Driver Functions

[98] The reconnection-coupled MHD generator  and the
viscous drivers ℬ and  are put together by addition, yield-
ing two solar wind driver functions for the Earth’s magneto-
sphere:  +ℬ and  + . The values of  , ℬ, and 
come from expressions (23), (39), and (63). In this section those

two drivers are statistically analyzed to gain an increased under-
standing of how solar wind/magnetosphere coupling works.

4.1. Correlation Coefficients

[99] The Pearson linear correlation coefficients [Bevington
and Robinson, 1992, equation (11.17)] between the two com-
bined driver functions +ℬ and + and the seven geo-
magnetic indices appear in Table 1. In the bottom row of the
table is a seven-index sum of the correlations. Note that there
is one adjusted free parameter in every correlation between
 +ℬ and each index and between  + and each index
that arises as follows. The derivation of the reconnection-
coupled MHD generator does not calculate the level of the
AE index as a function of upstream solar wind parameters; it
calculates the total amount of dayside reconnection: There is
an unknown numerical factor that connects the amount of
reconnection with the level of the AE index. Likewise the
derived viscous coupling does not calculate the level of the
AE index; it calculates the total power delivered to the outer
magnetosphere by viscous processes: an unknown numerical
factor connects the outer magnetosphere power with the level
of the AE index. When the correlation coefficient between
and AE or between ℬ and AE is calculated, these unknown
numerical factors are irrelevant. But when andℬ are com-
bined to form +ℬ, the two numerical factors are not irrel-
evant. (In fact  has different units than ℬ and  :  has
units of electrical potential and ℬ and  have units of
power.) To fix this, a parameter “a” must be added creating
 + aℬ, with the value of a adjusted to optimize the correla-
tion of + aℬ withAE. Each time in Table 1 that +ℬ or
 + is correlated with one of the seven indices, a hidden
parameter “a” has been adjusted.
[100] In Table 1 the correlation coefficients between the

drivers and the geomagnetic indices are displayed. It is seen that
the combined drivers +ℬ and + more accurately de-
scribe the variance of the indices than do the individual drivers
 ,ℬ, or . The seven-index sums of the correlation coeffi-
cients in the bottom row clearly indicate this improvement.
[101] In Table 2 the mean absolute errors in the ability of the

two solar wind driver functions +ℬ and + to predict
the seven geomagnetic indices are assessed. In each case for a
given driver function  and a given geomagnetic index  ,
the analysis proceeds as follows: (1) the parameter “a” is
adjusted in  + aℬ or  + a to obtain the highest linear
correlation coefficient between the driver  and the index
 , (2) a least squares linear regression fit to the index  as a
function of the driver  is made with slope m and intercept
b, which is  fit =m + b, (3) the individual error  of the
driver fit m +b for each 1 h data point is calculated
 = (m + b) �  from individual values of I and  , and
(4) statistics of the absolute values of the errors | | are
performed. In Table 2 the mean value of the absolute errors
| | is collected between the two driver functions and the seven
geomagnetic indices. An examination of the error values in
Table 2 finds that as was the case with the correlation coeffi-
cients in Table 1, the two functions  +ℬ and  + do
similarly well at describing the geomagnetic indices.

4.2. Nonlinear Driver Functions

[102] In Figure 7 (top) the 1 h lagged AE index is plotted as
a function of the solar wind driver  +ℬ: the black points
are the individual hours of data from 1980–2012. To show
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the trend underlying the black points, the red points are a
300-point running average of the black points. As can be seen
by the red curve, the response of AE1 to the driver  +ℬ is
not linear: There is a strong flattening of the response at low
values of  +ℬ. All three auroral electrojet indices AE,
AU, and AL show this flattening of the response at low values
of  +ℬ. The Dst*2 index shows a modest weakening of
the response at low  +ℬ, and the Kp1 and PCI indices
show slight weakenings at low +ℬ values. The MBI1 in-
dex shows no change at low +ℬ values but shows a bend
at high  +ℬ values.
[103] The response of the geomagnetic indices to the solar

wind driver can be made more linear by fitting the index as a
nonlinear function of the driver. In Figure 7 (bottom) such a
nonlinear fit is used to straighten out the response: the
nonlinear fit used is

NL  þℬ ;AE1ð Þ ¼ 1:43� 104 exp  þℬð Þ=168ð Þ=½526þ 27:2

exp  þℬð Þ=168ð ÞÞ� (65)

[104] This nonlinear function approximately has the func-
tional form NL( +ℬ, AE1) ≈ min(526, 27.2 exp(( +ℬ)/
168)). As noted in Figure 7 (bottom), the linear correlation co-
efficient between NL( +ℬ, AE1) and AE1 is +0.812, slightly
higher than the linear correlation coefficient of +0.797 between
 +ℬ and AE1. The exp(( +ℬ)/168) driving is flat near
 +ℬ ~0, becomes linear around +ℬ =168, and eventu-
ally levels off at high values of  +ℬ to 526.
[105] In Table 3 the linear correlation coefficients between

other nonlinear fits and the AE1 and Kp1 indices are displayed.
The nonlinear fits are

NL  þℬ ;Kp1ð Þ ¼ 14:6  þℬð Þ2:01=

16:6þ 0:877  þℬð Þ2:01
h i

(66a)

NL  þ ;AE1ð Þ ¼ 2:33� 104 exp  þð Þ=162ð Þ=½645þ 36:2

exp  þð Þ=162ð Þ� (66b)

NL  þ ;Kp1ð Þ ¼ 10:7  þð Þ1:67=

11:4þ 0:936  þð Þ1:67
h i

(66c)

[106] As seen in Table 3, using the nonlinear functional
forms improves the Pearson linear correlation coefficients
between the solar wind drivers and the geomagnetic indices.

4.3. Examination of Time Series

[107] Two examples of combined drivers describing the AE
index appear in Figures 8 and 9. The two examples are for
very different types of geomagnetic activity.
[108] In Figure 8 the AE index (no time lag) is plotted in

black for 12 days in September 2003. A coronal interaction
region passes the Earth from early on Day 259 to about mid-
day on Day 260, as labeled in the figure. The Alfven Mach
number MA = usw/vAsw of the upstream solar wind is plotted
in orange. The Mach number is high, except during the
passage of the CIR where MA ~ 4. The CIR stream interface
(the maximum of the vorticity of the solar wind plasma)
passed the Earth at about 1:30 UT on Day 260 [cf. Borovsky
and Denton, 2010b, Table 1]. Prior to the stream interface
the solar wind plasma was of helmet-streamer origin, with a
toward-to-away sector reversal passing the Earth at about
20:00 UT on Day 258 in the streamer plasma. At this time
of the year (fall), away sectors tend to be Russell-McPherron

Table 2. Mean Absolute Errors Between Seven Geomagnetic
Indices and Linear Regression Fits to Those Seven Indices by the
Two Solar Wind Drivers  +ℬ and  +

Number of Data Points  +ℬ  +
Error Error

AE 1 h lagged 189,320 86.3 nT 88.3 nT
AU 1 h lagged 189,320 34.3 nT 34.0 nT
�AL 1 h lagged 189,320 65.1 nT 66.8 nT
PCI 198,000 0.455 0.462
Kp 1 h lagged 198,460 0.685 0.670
�MBI 1 h lagged 121,076 0.866° 0.885°
�Dst* 2 h lagged 191,142 12.0 nT 11.9 nT

Figure 7. The AE1 index is plotted as a function of the (top)
 +ℬ driver and the (bottom) nonlinearNL( +ℬ) driver.
The black points are the individual 1 h data points and the red
points are 300-point running averages of the black points.
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geomagnetically effective and toward sectors tend to be
Russell-McPherron ineffective [Russell and McPherron,
1973]. After the passage of the stream interface, the solar
wind plasma is of coronal-hole origin: a high-speed stream
followed by the high-speed-stream trailing edge. Prior to
the sector reversal there is a classic “calm before the storm”
[Borovsky and Steinberg, 2006b] beginning at about 15:00 UT
on Day 252 and ending at about 17:00 UT on Day 258. A
storm commences (as determined by MBI crossing 60.7°) at
about 2:00 UT on Day 259. The storm lasts for about 5 days.
The nonlinear NL( +ℬ) driver (expression (65)) is plotted
in red and the nonlinearNL( + ) driver (expression (66b))
is plotted in blue. Also plotted in green is the Newell et al.
[2007] universal driver function. As can be seen in Figure 8,
at shorter timescales as the solar wind driver functions change
amplitude, the AE index responds. The high peaks in AE are in
general not captured by the behavior of the driver functions;
the troughs in AE tend to be better captured than the peaks.
The low-frequency overall level of activity seems to be well
captured by the drivers.
[109] In Figure 9 AE is plotted (with no lag) in black for 3

days during which a coronal mass ejection and its complex
sheath passed the Earth in November 2000. The coronal mass
ejection contained a magnetic cloud moving with a mean
speed of 530 km/s (Cloud 54 in the Lepping et al. [2005]
catalog). The magnetic field orientation inside the cloud
was south then north with a high field strength (~20 nT).

The cloud drove an interplanetary shock into the upstream
solar wind: The shock passed the Earth at about 10:00 UT
on Day 311. Between the shock and the front edge of the
magnetic cloud is the CME sheath. The leading portion of
this sheath (from 10:00 UT to 17:00 UT on Day 311) was
shocked coronal-hole-origin plasma (as determined from its
high proton-specific entropy and low O7+/O6+ and C6+/C5+

charge-state ratios [Siscoe and Intriligator, 1993; Zhao
et al., 2009]); the latter portion of this sheath (from 17:00
UT to 23:00 UT on Day 311) was shocked streamer-belt-
origin plasma (as determined from its low proton-specific
entropy and high O7+/O6+ and C6+/C5+ charge-state ratios
[Wang et al., 2012]). Ahead of the interplanetary shock
the plasma was of coronal-hole origin with an IMF that
was Parker-spiral orientation with an away-sector polarity.
For about 16 h after the magnetic cloud passed, the plasma
was ejecta-like, as determined from the presence of bidirec-
tional electron streaming [Gosling et al., 1987] and from
a magnetic field inclined strongly out of the ecliptic
plane (northward) [Borovsky, 2010a]. At about 10:00 UT
on Day 312, the ejecta ceased and the plasma was of
streamer-belt origin with a toward-sector Parker-spiral
orientation. In Figure 9 the nonlinear NL( +ℬ) driver
is plotted in red, the nonlinear NL( + ) driver is plotted
in blue, and the Newell et al. [2007] universal driver func-
tion is plotted in green. As can be seen, the AE index re-
sponds to the solar wind drivers with about a 1 h lag. AE
and the drivers track each other for the low-frequency
trends. The individual peaks and troughs of AE usually cor-
respond to peaks and troughs in the driver functions. Note
the strong deviation between all of the solar wind driver
functions and AE at 11:00 UT on Day 311: An examination
of the hourly averaged solar wind data for that hour found
that the IMF clock angle based on the hourly averaged mag-
netic field vector was strongly northward (θclock = 26°)
whereas the actual magnetic field orientation during that
hour had substantial variation and was not typically strongly
northward. Note the variation in the Alfven Mach number of
the solar wind (orange curve) during this 3 day interval,

Table 3. Linear Correlation Coefficients Between the Solar Wind
Drivers  +ℬ and  + and the Nonlinear Versions of the
Solar Wind Drivers NL( +ℬ) and NL( + ) and the
Geomagnetic Indices AE and Kp

 +ℬ  + NL( +ℬ) NL( + )

AE 1 h lagged 0.797 0.782 0.812 0.799
Kp 1 h lagged 0.778 0.781 0.789 0.812

Figure 8. For 12 days in September 2003, the AE index
and three driver functions are plotted. During this interval,
a CIR passed the Earth, preceded by helmet-streamer-origin
plasma, and followed by coronal-hole-origin plasma, a calm
then a storm resulted.

Figure 9. For 3 days in November 2000, the AE index and
three drivers are plotted. During this interval, a magnetic
cloud and its sheath passed the Earth, preceded by coronal-
hole-origin plasma, and followed by ejecta-like plasma.
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with very low Mach numbers (MA = 1.4–2.8) for the cloud
plasma and modest Mach numbers for the ejecta.
[110] The trends of the solar wind driver functions

 +ℬ and  + through the solar cycle are shown in
Figures 10 and 11: the top panels are AE and linear-regres-
sion fits of the driver functions to AE1 and the bottom panels
are Kp and linear regression fits of the driver functions to
Kp1. In blue the errors AEfit � AE1 and Kpfit � Kp1 between
the measured values of the indices and the linear regression
fits are plotted. All curves in Figures 10 and 11 are 27 day
running averages of 1 h values. Clear solar cycle depen-
dences are seen, with the solar wind driver functions
overpredicting the indices in the declining phases of the so-
lar cycles (years 1996 and 1997 and years 2006 to 2010),
where the error tends to be greater than 0. In the solar-max-
imum years 1998 to 2003, the solar wind driver functions
tend to underpredict the geomagnetic indices. Note an an-
nual effect to the AE index and a semiannual effect to the
Kp index; for AE, the error tends to peak at year’s end (win-
ter) and have minima in the middle of each year (summer),
whereas for Kp, the error has two peaks per year (winter
and summer) and two minima per year (spring and fall)
[Murayama, 1974; Hibberd, 1985].

4.4. Analysis of Autocorrelation Functions

[111] The autocorrelation function is a measure of persistence
in the time series. In Figures 12–14 the autocorrelation functions
of theNL( +ℬ) andNL( + ) drivers, the AE index, and
pertinent solar wind parameters are examined. The autocorrela-
tion function A(τ) of a time series s(t) of time t is constructed by
first subtracting off the average value of the time series 〈s(t)〉 to
produce a new function S(t) = s(t) � 〈s(t)〉;(τ) of s(t) is then

 τð Þ ¼ ∫S tð ÞS t � tð Þdt=∫S tð ÞS tð Þdt (67)

where the integration is over the data interval chosen. At
τ = 0, A(0) = 1.
[112] The autocorrelation functions of NL( +ℬ) (red

points), NL( + ) (green points), and AE (black curve)
are plotted in Figure 12 from lags τ =0 to τ =200 h. All have
1 h resolution in τ (since they are created from data with 1 h
temporal resolution). In Figure 12 the autocorrelation functions
of the AE index and the two drivers all decrease from unity
together at early times. At time lags of 12 h or more the
autocorrelation function of the AE index is falling off slower
than the autocorrelation functions of the NL( +ℬ) and
NL( + ) drivers: at these timescales the time series of

Figure 10. For the years 1995–2011, (top) the  +ℬ
driver function and the AE index and (bottom) the  +ℬ
driver and the Kp index are plotted. The difference (error) 
between the index and the driver is plotted in blue in both
panels. All curves are 27 day running averages of 1 h data.

Figure 11. For the years 1995–2011 the  + driver
function and the AE index (top) and the  + driver and
the Kp index (bottom) are plotted. The difference (error) 
between the index and the driver is plotted in blue in both
panels. All curves are 27-day running averages of 1 h data.
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AE has more persistence than the time series of NL( +ℬ)
and NL( + ). Note the 1 day periodicity of the AE index
shown by repeated peaks in the autocorrelation function at in-
teger numbers of days as indicated by the blue arrows. This pe-
riodicity is seen in the AE autocorrelation function out to about
16 days (not shown). This 1 day periodicity is not seen in the
autocorrelation functions of NL( +ℬ) and NL( + ).
In Figure 12 some persistence timescales are indicated with
the blue exponential curves; the autocorrelation of AE has a
predominant exp(�τ/69h) falloff, and the autocorrelations of
the NL( +ℬ) and NL( + ) drivers have exp(�τ/31h)
and exp(�τ/46h) falloffs. At τ ~ 86 h, all three autocorrelation
functions transition into a flat longer timescale persistence,
which is explored in Figure 13.
[113] Figure 13 shows the autocorrelation functions of the

NL( +ℬ) driver, the NL( + ) driver, and the AE in-
dex for time shifts τ up to 2.28 years with a logarithmic axis
for τ. The change in the autocorrelation functions at τ ~ 86 h
is clearly seen. Note the peaks in all three autocorrelations
at 27 days and multiples of 27 days. These represent recur-
rence of the solar wind plasma types [cf. Borovsky, 2012a,
Figure 20] with the ~27 day solar rotation. Note the 1 year
periodicity in the AE index indicated by the localized peaks
in the AE autocorrelation function at time lags τ = 1 year

and τ =2 years that are not in the NL( +ℬ) and NL
( + ) autocorrelation functions; this is highlighted by
the light-blue 54 day average of the black AE index autocorre-
lation and the yellow 54 day average of the red NL( +ℬ)
autocorrelation. These peaks in the AE autocorrelation func-
tion are probably owed to the tilt of the Earth’s North Pole
toward and away from the Sun in summer and winter.
[114] In Figure 14 the autocorrelation functions of the

nonlinear NL( +ℬ) (red points) and NL( + ) (green
points) drivers are compared with the autocorrelation func-
tions of the various terms in  +ℬ and  + (top) and
with the autocorrelation functions of key solar wind parame-
ters (bottom). Measuring the autocorrelation time as the time
lag required for the autocorrelation to drop to 1/e= 0.368 of
its original value, the NL( +ℬ) driver has and autocorrela-
tion time of ~12 h and the NL( + ) driver has an autocor-
relation time of ~10 h. The three terms of the R2 local
reconnection rate (cf. expressions (3) and (6)) are (1) nsw

1/

2usw
2 (the ram pressure driver of reconnection and the solar

wind density term in the Alfven speed) plotted in black, (2) f
(MA,Mms) (the plasma β modification of the magnetosheath
magnetic field strength) plotted in blue, and (3) sin2(θclock/2)
(which is an approximation to the dependence of R2 on the
IMF clock angle θclock and the reconnection X line tilt angle
α plotted in dark orange: nsw

1/2usw
2 has an autocorrelation time

of ~27 h, f(MA,Mms) has an autocorrelation time of ~16 h, and
sin2(θclock/2) has an autocorrelation time of ~3 h. The
reconnection-coupled generator G is the rate R2 is multiplied
by the length of the reconnection X line LX line (plotted in

Figure 12. The autocorrelation functions of the AE index
(black), the NL( +ℬ) driver (red), and the NL( + )
driver (green) are plotted. Specific values of the time lag are la-
beled in purple and specific exponential curves are shown in blue.

Figure 13. The autocorrelation functions of the AE index
(black), the NL( +ℬ) driver (red), and the NL( + )
driver (green) are plotted. Specific values of the time lag
are labeled in purple.

Figure 14. The autocorrelation functions of theNL( +ℬ)
driver and the NL( + ) driver are plotted as the red points
and the green points in both panels. (top) The autocorrelation
functions of various components of the  +ℬ and  +
drivers are plotted. (bottom) The autocorrelation functions of
several pertinent solar wind parameters are plotted.
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purple) and divided by 1+Q (plotted in pink). LX line and 1+Q
have autocorrelation times of ~25 h and ~48 h. Note that the
autocorrelation function of 1 +Q does not fall to small values
in Figure 14: Q has strong solar-cycle-timescale correlations.
In light green, the autocorrelation function of the Bohm viscos-
ity driverℬ (expression (39)) is plotted and in orange the au-
tocorrelation of the freestream-turbulence viscosity driver 
(expression (63)) is plotted; the 1/e autocorrelation time of
ℬ is ~29 h and the autocorrelation time of  is ~13 h. The
autocorrelation times of NL( +ℬ) and NL( + ) are
shorter than the autocorrelation times of all of the components
plotted in Figure 14 (top) except for sin2(θclock/2) which has a
correlation time of 3 h: the short correlation times (12 h and
10 h) of NL( +ℬ) and NL( + ) are owed mostly to
the rapid changes of sin2(θclock/2). Note in Figure 14 that the
shapes of the NL( +ℬ) and NL( + ) autocorrelation
functions are not determined by the temporal behavior of any
single term of  +ℬ or  + ; the temporal behavior is a
product of several terms.
[115] In Figure 14 (bottom) the autocorrelation functions

of the fundamental plasma parameters that enter into the
NL( +ℬ) and NL( + ) drivers are plotted [see also
Borovsky, 2012a, Figure 20 and Table 6]. The IMF orienta-
tion angles θclock (dark orange) and θBn (purple) have short
correlation times of ~3 h, the amplitude of the solar wind
magnetic field fluctuations δB (orange) has a correlation time
of ~7 h, the solar wind speed usw has a relatively long corre-
lation time of ~59 h, the autocorrelation of the F10.7 flux
(light green, with 1 day time resolution) is dominated by solar
cycle-timescale variations, and the parameters nsw (black),
MA (blue), and vA (pink) have correlation times of 16 h,

16 h, and 28 h. Again, the shapes of the autocorrelation func-
tions of NL( +ℬ) and NL( + ) are not dominated by
any one solar wind parameter.

4.5. Band-Pass Filtering

[116] Low-pass and high-pass filters are applied to the time
series AE1(t) and the solar wind driver function NL( +ℬ),
and the behavior of the correlation coefficient between AE1

and NL( +ℬ) is examined as functions of the filter cutoff
timescales tfilter.
[117] In Figure 15 (top) the linear correlation coefficient

rcorr between AE1 and the nonlinear NL( +ℬ) driver is
plotted as a function of the low-pass-filter timescale tfilter
[see also Finch and Lockwood, 2007]. For example, at a filter
timescale tfilter = 100 h, the correlation coefficient is +0.917.
This data point is obtained by cross-correlating a 100 h run-
ning average of the AE1 time series with a 100 h running
average of the NL( +ℬ) time series; the 100 h running av-
eraging removes variations in both time series with time-
scales shorter than about 100 h and only variations with
timescales slower than 100 h remain. Examining the curve
in Figure 15 (top), at tfilter = 1 h (unfiltered 1 h resolution data)
the correlation coefficient is rcorr = +0.815 (for the years
1995–2001). As the low-pass-filter timescale tfilter increases
from 1 h, the correlation coefficient between AE1 and the
 +ℬ driver function increases: This increase in correla-
tion is owed to the removal of high-frequency uncorrelated
information between AE1 and NL( +ℬ). This improve-
ment in the correlation coefficient continues as tfilter increases
up to about tfilter ~ 43 h where a local maximum of rcorr =
+0.923 is reached. As tfilter increases beyond 43 h, the corre-
lation coefficient decreases reaching a local minimum value
of rcorr = +0.889 at tfilter ~ 27 days. This decrease in correla-
tion is owed to the removal of correlated information with a
timescale of 27 days (the rotation period of the Sun).
Increasing the low-pass-filter timescale in the range 27 days
to 1 year produces another region of increase in the correla-
tion coefficient between AE1 and NL( +ℬ) with a local
peak of rcorr = +0.951 at tfilter = 1 year. This increase repre-
sents the removal of the periodic 1 year signal that is in the
AE index but not in the solar wind: it is the removal of an
uncorrelated signal and increases rcorr. A second local maxi-
mum at tfilter = 2 years is probably also related to the removal
of the 1 year periodic signal in AE.
[118] In Figure 15 (bottom) the linear correlation coefficient

between the high-pass-filtered AE1 time series and the high-
pass-filtered NL( +ℬ) driver function is plotted as a
function of the high-pass-filter timescale tfilter. For example,
at tfilter = 100 h, the high-pass-filtered AE1 time series is
formed by creating a 100 h running average of AE1(t) and then
subtracting that 100 h running average off the original unfil-
tered AE1(t) time series. Likewise for creating the high-pass-
filtered NL( +ℬ) time series. The first data point in
Figure 15 (bottom) is the correlation coefficient between AE1
and the NL( +ℬ) driver at tfilter = 3 h. This data point is
the correlation coefficient for the high-frequency signals with
timescale shorter than 3 h in the two time series, which is mostly
uncorrelated noise (rcorr = +0.321). As tfilter increases from 3 h,
more and more correlated signal in AE1 and NL( +ℬ) is
added and the correlation coefficient rcorr between them in-
creases. A broad maximum in the correlation coefficient is
obtained for a high-pass-filter timescale tfilter ~ 1100 h where

Figure 15. The correlation coefficients between AE1 and
NL( +ℬ) are plotted as functions of filter timescales
(top) when the two time series are both low-pass filtered and
(bottom) when they are both high-pass filtered.
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rcorr = +0.812. This maximum is probably owed to a combina-
tion of adding the highly correlated 27 day (648 h) timescales
but not including the uncorrelated 1 year periodicity of AE.
[119] Much of the uncorrelated signal between the  +ℬ

driver and the AE index comes on timescales of a few hours,
on timescales of 1 day (a periodicity in AE that is not in the
solar wind), and on timescales of 1 year (a periodicity in
AE that is not in the solar wind). Employing a wide band-pass
filter on both the AE index and the NL( +ℬ) driver func-
tion that removes variations with timescales of 1 day and
shorter, and that removes variations with timescale of 1 year
and longer resulted in an increase in the correlation coeffi-
cient between NL( +ℬ) and AE to +0.916 from +0.812
for the unfiltered time series.

4.6. Multi-time Step Driver Functions

[120] For a time series of values at discrete times ti, the corre-
lation produced between the driver function  and the 1 h
lagged AE index AE1 is a correlation between AE(ti) ↔
 (ti-1). Creating multi-time step solar wind driver functions
improves the linear correlation between the driver and geo-
magnetic indices [cf. Newell et al., 2007]. For example,
correlation between the AE index and a three-time step
driver would be written as

AE tið Þ↔c0 tið Þ þ c1 ti�1ð Þ þ c2 ti�2ð Þ (68)

where c0, c1, and c2 are weighting constants (chosen such that
c0 + c1 + c2 = 1). To perform such multi-time step driver cor-
relations, a computer code was written to optimally choose
the weighting constants c0, c1,… by randomly varying the
constants and only keeping the variation if it produced an
increase in the correlation coefficient with the geomagnetic
index time series. Driver functions with various numbers of
time steps were explored. For +ℬ and + driver fits
with AE, a three-time step fit was optimal; for  +ℬ and
 + driver fits with Kp, a 12-time step fit was superior.
[121] In Figure 16 the values of the weighting constants are

plotted for the fits between AE and Kp and the four driver

functions  +ℬ,  + , NL( +ℬ), and NL( + ).
Note in Figure 16, for AE the code yielded multi-time step
driver functions that were weighted heavily on the driver
function value 1 h prior to the geomagnetic index value.
For Kp the code yielded functions where the weighting is
spread further back in time.
[122] In Table 4 the linear correlation coefficients between

various multi-time step solar wind drivers and the AE and Kp
indices are displayed. The years 1995–2011 were used (the
Wind-ACE era) for better continuity of solar wind data.
The first two columns of Table 4 pertain to correlations using
only a single temporal value of the driver function for each
temporal value of the geomagnetic index: The Pearson linear
correlation coefficient rcorr and the fraction of the variance
1� rcorr

2 (in percent) of the index not described by the driver
are displayed. The final three columns of Table 4 pertain to
correlations using multiple time step values of the driver
function for each value of the geomagnetic index: The third
column displays the number of temporal values in the driver
Ntimes, the fourth column displays the Pearson linear correla-
tion coefficient rcorr between the driver and the geomagnetic
index, and the fifth column displays the fraction of the vari-
ance 1 � rcorr

2 (in percent) of the index not described by
the driver. In every case, the multi-time step driver function
substantially improves the correlation coefficient over the
single-time step solar wind driver. The peak correlation with
the AE index was found with NL( +ℬ) driver using three
time steps (as in expression (68)): A value rcorr = +0.847 was
obtained, with 28.3% of the variance of AE unaccounted for.
The peak correlation with the Kp index was found with NL
( + ) driver (expression (66c)) using 12 time steps: A
value rcorr = +0.871 was obtained, with 22.1% of the variance
of AE unaccounted for.

4.7. Averaging the Driver Functions

[123] In section 4.6, multi-time step driver functions
showed improved correlations between the driver functions
and the geomagnetic indices. Using multi-time step driver
functions is equivalent to using solar wind information at

Figure 16. The weighting constants (cf. expression (68)) for
multi-time step fits of the solar wind driver functions to the AE
and theKp indices. The hollow points are for three-time step fits
to AE and the solid points are for 12-time step fits to Kp.

Table 4. Improvement in the Linear Correlation Coefficient rcorr
a

Single Time Step Multiple Time Step

rcorr 1 � rcorr
2 Ntimes rcorr 1 � rcorr

2

Newell ↔ AE 0.782 38.8% 12 0.820 32.7%
Newell ↔ Kp 0.655 57.1% 12 0.754 43.1%
R2 ↔ AE 0.773 40.2% 12 0.808 34.7%
R2 ↔ Kp 0.706 50.2% 12 0.801 35.8%
 ↔ AE 0.760 42.2% 12 0.802 35.7%
 ↔ Kp 0.657 56.9% 12 0.762 41.9%
 +ℬ ↔ AE 0.797 36.5% 3 0.829 31.3%
 +ℬ ↔ Kp 0.782 38.8% 12 0.842 29.1%
 + ↔ AE 0.782 38.8% 3 0.812 34.1%
 + ↔ Kp 0.781 39.0% 12 0.844 28.8%
NL( +ℬ) ↔ AE 0.815 33.5% 3 0.847 28.3%
NL( +ℬ) ↔ Kp 0.793 37.1% 12 0.852 27.4%
NL( + ) ↔ AE 0.802 35.6% 3 0.833 30.6%
NL( + ) ↔ Kp 0.813 33.8% 12 0.871 24.1%

aBetween the solar wind driver functions  +ℬ and  + and the
geomagnetic indices AE and Kp when values of the driver from multiple time
steps are used versus when the value at a single time step is used, for the years
1995–2011. The fraction 1 � rcorr

2 of the variance of the indices that is not
accounted for by variance of the driver is displayed in percent. For the multiple
time step drivers, the number of time steps used Ntimes is also displayed.
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multiple time steps to describe the value of the geomagnetic
index at a given time step, in a sense, adding information.
Using multi-time step driver functions is also equivalent to
averaging the driver function to remove high-frequency
signal in the driver, in a sense, removing information. In this
section, running averages of the driver functions are explored
and cross-correlated with nonaveraged geomagnetic indices.
The years 1995–2011 are used for their better continuity of
solar wind data.
[124] In Table 5 the linear correlation coefficients rcorr

between the  +ℬ and  + drivers and the seven geo-
magnetic indices are recorded for a one-time step value of the
driver, a 2 h (two-point) running average of the driver, a 3 h
running average, a 4 h running average, and a 5 h running
average of the driver. The running averages are “boxcar”
averages with equal weight on each time step. For example,
a 5 h running average of the driver function  centered on
time step ti would be written as

 tiþ2ð Þ þ tiþ1ð Þ þ tið Þ þ ti�1ð Þ þ ti�2ð Þ½ �=5 (69)

[125] No averaging is performed on the geomagnetic indi-
ces. In Table 5 the subscript “1” on AE means a 1 h lag be-
tween the time of AE and the center of the running average
of the driver (accurate to within 0.5 h since the centers of the
two-point and four-point running averages are at half time
steps), the same for the subscripts on the other geomagnetic in-
dices in Table 5. Comparing the rcorr values in columns 1 and
2, it is seen that a 2 h running average of the driver improves
the correlation between both drivers and all seven indices.
Looking at the rcorr values in each row of Table 5, it is found
that for AE, AL, and PCI, a 2 h running average of the driver
is optimal, for AU, a 3 h running average of the driver is opti-
mal, and forKp, MBI, andDst*, a 5 h or more running average
of the driver is optimal. This indicates that indeed averaging
away high-frequency signal in the driver functions improves
the correlation with geomagnetic indices.
[126] In the cross correlations of Table 5 the time differ-

ence between the geomagnetic index and the center of the
driver time average was preserved. Thus, information about

the driver could be used from the past and from the future
as seen from the time step of the geomagnetic index. In
Table 6 correlation coefficients between the seven indices
and time-averaged  +ℬ and  + driver functions
are presented for time averaging that runs only into the past
with respect to the geomagnetic index time step. For exam-
ple, a 5 h running average of the driver, the geomagnetic in-
dex at time step ti will be cross-correlated with a driver
averaging that including time steps ti, ti-1, ti-2, ti-4, ti-5. The ex-
ception is Dst* where the averaging of the driver can be cen-
tered even further in the past: Dst* prefers a large time lag
and the preferred lag increases with the driver averaging.
[127] In Table 7 running averages that are confined to the

past of the nonlinear versions NL( +ℬ) and NL( + )
of the driver functions are cross-correlated with nonaveraged
AE and Kp indices. Here it is again seen that the averaging of
the driver function improves the correlation with the geomag-
netic indices. This averaging is a removal of higher-frequency
signal from the driver functions. For the AE index, 2 h or 3 h
averaging of the nonlinear drivers is optimal. For the Kp index,
4 h averaging of the nonlinear drivers is found to be optimal.
[128] The running averages of +ℬ and + that are

confined to the present and past (Tables 6 and 7) can be used
as driver functions in the sense that a geomagnetic index can
be predicted from solar wind measurements without requiring
measurements from the future. As can be seen in Table 7, sim-
ple running averages of the NL( +ℬ) and NL( + )
driver functions yield rcorr values of up to 0.832 with AE (for
a 2 h running average of NL( +ℬ)) and up to 0.862 with
Kp (for a 4 h running average of NL( + )).

4.8. Statistical Analysis of the Unpredicted Variance

[129] To obtain information about trends in the solar wind
driver functions, the residuals (errors) between the indices I
and the linear regression fits to the indices m + b are exam-
ined. In this analysis the driver function is used to describe as
much of the variance of the geomagnetic index as possible,
and the measured value of the geomagnetic index is
subtracted from that predicted variance and the residual var-
iance of the index is analyzed. That “error” E= (m + b)� I
is a function of the time t. The correlation coefficients be-
tween E(t) and the various solar and solar wind parameters
are collected into Table 8. The four columns of Table 8 are
the correlations for (1) the difference between the prediction
of the +ℬ driver and the 1 h lagged AE index, (2) the dif-
ference between the prediction of the  +ℬ driver and the
1 h lagged Kp index, (3) the difference between the predic-
tion of the  + driver and the 1 h lagged AE index, and
(4) the difference between the prediction of the  +
driver and the 1 h lagged Kp index. In calculating the correla-
tion coefficients, there is typically about N=190,000 data
points. Uncorrelated data would have correlation coefficients
in the range of ±2/N1/2 [e.g., Beyer, 1966; Bendat and
Piersol, 1971], which is ±0.005. Correlation coefficients sig-
nificantly larger in magnitude than 0.005 indicate a definite
(but not necessarily strong) correlation or anticorrelation.
Examining Table 8, very little in the sense of systematic pat-
terns is seen. Looking at entries with correlation coefficients
larger than 20% (greater than +0.20 or less than �0.20), all
of the unpredicted variances of the AE and Kp indices show
anticorrelations with usw, with F10.7, and with (1+Q). The
solar wind driver functions tend to predict AE1 and Kp1 values

Table 5. Pearson’s Linear Correlation Coefficients rcorr Between
Time-Averaged Driver Functions and Nonaveraged Geomagnetic
Indices for the Years 1995–2011a

1 2 h 3 h 4 h 5 h
Time Step Average Average Average Average

AE1 ↔  +ℬ 0.797 0.820 0.800 0.808 0.795
AE1 ↔  + 0.782 0.804 0.786 0.792 0.781
AU1 ↔  +ℬ 0.705 0.729 0.739 0.731 0.729
AU1 ↔  + 0.703 0.725 0.735 0.727 0.725
�AL1 ↔  +ℬ 0.763 0.783 0.777 0.766 0.749
�AL1 ↔  + 0.745 0.764 0.759 0.747 0.731
PCI0 ↔  +ℬ 0.754 0.800 0.778 0.784 0.764
PCI0 ↔  + 0.744 0.789 0.766 0.774 0.754
Kp1 ↔  +ℬ 0.782 0.814 0.830 0.840 0.843
Kp1 ↔  + 0.781 0.809 0.825 0.833 0.838
�MBI1 ↔  +ℬ 0.780 0.821 0.834 0.835 0.844
�MBI1 ↔  + 0.767 0.808 0.822 0.825 0.831
�Dst*2 ↔  +ℬ 0.677 0.702 0.722 0.733 0.741
�Dst*2 ↔  + 0.687 0.714 0.729 0.744 0.754

aThe time averaging is performed with a running (boxcar) average. In this
table the time lag between each geomagnetic index and the center time of the
time averaging of the driver is preserved. All rcorr values are positive.
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that are too low at higher values of usw, at higher values of
F10.7, and at higher values of (1 +Q); likewise the drivers tend
to overpredict the indices when usw, F10.7, and (1+Q) are low.
Hence, if the driver functions were (a) increased in strength
slightly with increasing solar wind speed usw, (b) increased
in strength slightly with increasing F10.7, and (c) increased in
strength slightly with (1+Q), they would do better jobs at
predicting the AE and Kp indices. The Kp residual from
the  +ℬ driver (second column) shows anticorrelations
with |Bsw| and δBvec and positive correlation with MA of the
solar wind: The other three columns do not show significant
correlation or anticorrelation with δBvec or MA.
[130] Table 9 looks at the cross correlations between the

four sets of residuals (unpredicted variances) between the
two solar wind drivers +ℬ and + and the two indi-
ces AE1 and Kp1 and finds that the residuals are not indepen-
dent of each other. The correlations between the AE residuals
from the  +ℬ and the  + drivers are extremely
strong (+0.965) and the correlations between theKp residuals
from the +ℬ and the + drivers are also very strong
(+0.877). The correlations between the Kp residuals and the
AE residuals are quite significant (+0.510 and +0.465) but
not as strong. The strong correlations between the residuals

of AE1 ↔  +ℬ and the residuals of AE1 ↔  + indi-
cate that the  +ℬ and  + drivers have very similar
temporal behavior. (Likewise for the residuals of Kp1 ↔
 +ℬ and the residuals ofKp1↔ + ). Indeed, the lin-
ear correlation coefficients between the  +ℬ and  +
drivers for AE1 and for Kp1 are +0.979 and +0.921, respec-
tively. On the contrary, the linear correlation coefficient
between AE1 and Kp1 is +0.774.

4.9. Detrending the Indices

[131] Analysis of residual errors will bring out the annual
and diurnal trends that are in the indices but not in the solar
wind. Detrending the indices by subtracting off those annual
and diurnal trends will result in improved correlation coeffi-
cients between the solar wind drivers and the indices.
[132] As seen in Figures 10 and 11, there are strong annual

and semiannual trends in the residual error between the solar
wind driver functions and the indices. The amplitudes of
these trends can be seen in Figure 17 for AE (top) and
for Kp (bottom). In the figure, fits to the indices from the
NL( +ℬ) (blue) and NL( + ) (red) driver functions
are subtracted off the measured values of the indices and
4000-point running averages are plotted as functions of the
day of year. The annual trend in AE is clearly seen in
Figure 17 (top) [see also Allen and Kroehl, 1975, Figures 9
and 10; Ahn et al., 2000, Figure 4], with the smooth green
curve being the fit to the data, given by

AEannual ¼ T1 þ T2 þ T3 (70)

where

T1 ¼ 13:1 (71a)

T2 ¼ �49:0 cos8 day� 3:7ð Þπ=365ð Þ (71b)

T3 ¼ 10:2 cos day� 163:6ð Þ2π=365ð Þ (71c)

where “day” is the day of year. The annual variation of AE is
dominated by the second term T2 (expression (71b), which
corresponds to an anomalously low AE during the winter sea-
son. Figure 17 (bottom) clearly shows a semiannual variation

Table 6. Pearson’s Linear Correlation Coefficients rcorr Between
Time-Averaged Driver Functions and Nonaveraged Geomagnetic
Indices for the Years 1995–2011a

1 2 h 3 h 4 h 5 h
Time Step Average Average Average Average

AE ↔  +ℬ 0.797 0.820 0.800 0.798 0.775
AE ↔  + 0.782 0.804 0.786 0.803 0.762
AU ↔  +ℬ 0.705 0.729 0.739 0.732 0.716
AU ↔  + 0.703 0.725 0.735 0.728 0.714
�AL ↔  +ℬ 0.763 0.783 0.777 0.751 0.727
�AL ↔  + 0.745 0.764 0.759 0.734 0.710
PCI ↔  +ℬ 0.754 0.800 0.787 0.764 0.736
PCI ↔  + 0.744 0.789 0.777 0.756 0.729
Kp ↔  +ℬ 0.782 0.814 0.830 0.833 0.828
Kp ↔  + 0.781 0.809 0.825 0.829 0.825
�MBI ↔  +ℬ 0.780 0.782 0.823 0.840 0.843
�MBI ↔  + 0.767 0.766 0.807 0.825 0.831
�Dst* ↔  +ℬ 0.677 0.704 0.722 0.733 0.741
�Dst* ↔  + 0.687 0.714 0.731 0.744 0.754

aThe time averaging is performed with a running (boxcar) average. In this
table the time averaging is restricted to time values of the solar wind that are
in the present or past relative to the time value of the geomagnetic index. All
rcorr values are positive.

Table 7. Linear Correlation Coefficients rcorr Between the Two
Time-Averaged Nonlinear Driver Functions NL( +ℬ) and NL
( + ) and Nonaveraged Geomagnetic Indices AL and Kp for
the Years 1995–2011a

1 2 h 3 h 4 h 5 h
Time Step Average Average Average Average

AE ↔ NL( +ℬ) 0.815 0.838 0.837 0.813 0.790
AE ↔ NL( + ) 0.802 0.824 0.824 0.801 0.779
Kp ↔ NL( +ℬ) 0.793 0.825 0.842 0.844 0.839
Kp ↔ NL( + ) 0.813 0.844 0.860 0.862 0.857

aThe time averaging is performed with a running (boxcar) average. In this
table the time averaging is restricted to time values of the solar wind that are
in the present or past relative to the time value of the geomagnetic index. All
rcorr values are positive.

Table 8. Linear Correlation Coefficients rcorr Between the
Residuals (Errors) of the Two Solar Wind Driver Functions
 +ℬ and  + and Their Target Geomagnetic Indices AE1

and Kp1

Errors

( +ℬ)fit �
AE1

( +ℬ)fit �
Kp1

( + )fit �
AE1

( + )fit �
Kp1

usw �0.094 �0.177 �0.206 �0.312
nsw +0.045 +0.017 +0.058 +0.065
Tp �0.057 �0.168 �0.086 �0.138
|Bsw| �0.081 �0.350 +0.024 �0.010
MA +0.069 +0.276 +0.069 +0.041
Bz +0.066 �0.122 +0.098 �0.020
θclock +0.084 +0.188 +0.047 +0.084
θBn �0.110 �0.061 �0.087 �0.025
Pram +0.035 +0.059 +0.002 +0.005
δBm �0.002 �0.003 +0.040 +0.033
δBvec �0.050 �0.283 +0.052 +0.016
F10.7 �0.180 �0.271 �0.118 �0.181
1 +Q �0.178 �0.355 �0.103 �0.213
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of the residual Kp index [cf. McIntosh, 1959; Murayama,
1974]. The smooth green curve in Figure 17 (bottom) is a co-
sine fit to the data points:

Kpsemiannual ¼ �0:135 cos dayþ 5:4ð Þ4π=365ð Þ (72)

where again “day” is the day of year. This residual of Kp is
high during the spring and fall seasons and low during the
winter and summer. The cause of this Kpsemiannual variation
might be unaccounted for physics in the solar wind driver
functions and the Russell-McPherron effect; however, the
Russell-McPherron effect has a diurnal pattern that varies
from season to season [cf. Russell and McPherron, 1973,
Figure 5; Cliver et al., 2000, Figure 2] and, as will be seen
the paragraphs below, the diurnal pattern of the Kp residual
is the same in all four seasons. Cliver et al. [2000] argue
that there is a semiannual variation of geomagnetic activity
beyond the Russell-McPherron effect caused by the sun-
ward-antisunward tilt of the Earth’s dipole; however,
again, this dipole tilt effect predicts a diurnal variation that
varies with season [cf. Cliver et al., 2000, Figure 1]
whereas the diurnal variation of the Kp residual does not
vary with season.
[133] The combined annual and diurnal residual errors for

the AE index are explored in Figure 18. Here fits to the AE1

index from the NL( +ℬ) and NL( + ) driver func-
tions are subtracted off the measured value of the AE index.
The hourly points are separated into four seasons and then
plotted as a function of universal time, where a random
number between 0.0 and 1.0 is added to the hourly value
of UT to spread the points. The 1001-point running aver-
ages are plotted in Figure 18. The seasons are spring (green:
days 35–126), summer (blue: days 126–217), fall (red: days
217–310), and winter (black: days 310–35). As can be seen,
there are strong diurnal trends to AE that vary from season to
season, with the diurnal trend reversing from summer to
winter: in summer AE peaks at ~5 UT and in winter AE
peaks at ~15 UT. There are also seasonally varying offsets
to the level of AE, with the offset value negative in winter
and positive in summer. The diurnal pattern of the AE resid-
ual from season to season looks similar to the AE variation
in Plate 4 of Cliver et al. [2000], except for the seasonal var-
iation of the offsets. Cliver et al. attribute this AE variation
to sunward-antisunward dipole tilt effects on the dayside
reconnection rate: Lyatsky et al. [2001] attribute the AE

pattern to solar illumination effects on both polar caps.
The asymmetry in the annual variation of AE with the sharp
deep minimum in winter (cf. Figure 17 (top) and expression
(71b)) may indicate that illumination of the northern polar
cap where the AE stations are located may control the diur-
nal and annual patterns of the AE residual. The four smooth
curves in Figure 18 are cosine fits to the data for the four
seasons. All of the points in Figure 18 can be approximately

Table 9. Linear Correlation Coefficients Between the Various Sets
of Residuals (Errors) Between the AE1 and Kp1 Indices and the
Solar Wind Drivers  +ℬ and  +

Errors

( +ℬ)fit �
AE1

( +ℬ)fit �
Kp1

( + )fit �
AE1

( + )fit �
Kp1

Errors +1.000 +0.465 +0.965 +0.456
( +ℬ)fit � AE1

Errors +0.465 +1.000 +0.395 +0.877
( +ℬ)fit � Kp1
Errors +0.965 +0.395 +1.000 +0.510
( + )fit � AE1

Errors +0.456 +0.877 +0.510 +1.000
( + )fit � Kp1

Figure 17. (top) The annual trend in the residual error for
AE and (bottom) the semiannual trend in the residual error
for Kp are shown. The blue and red points are 2000-point
running averages in day-of-year minus the residual error for
the nonlinear  +ℬ and nonlinear  + drivers, respec-
tively. The green curves are fits to the data. Data from the
years 1980–2011 are used.
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fit by the AEtrend function that describes and annual and
diurnal trends:

AEtrend ¼ c1 þ c2 cos UT� 3:6ð Þ2π=24ð Þ (73)

where

c1 ¼ 0:530þ 28:8 cos dayþ 3:76ð Þ2π=365ð Þ (74a)

c2 ¼ 15:8þ 22:5 cos dayþ 1:79ð Þ2π=365ð Þ (74b)

where UT is the universal time in hours and day is the day of
the year.
[134] The diurnal residual error for the Kp index is

explored in Figure 19. Here fits to the Kp1 index from the
NL( +ℬ) (blue) and NL( + ) (red) drivers are
subtracted off the measured value of the Kp index.
Random numbers between 0.0 and 1.0 are added to the
hourly value of UT to spread the points and 1001-point run-
ning averages are plotted. In Figure 19 (top) the data are
separated by season: spring (green), summer (blue), fall
(red), and winter (black). As can be seen in Figure 19
(top), there are strong diurnal trends to Kp that are similar
in every season. In Figure 19 (middle) trigonometric fits to
the data in the top panel are plotted, with one fit for each sea-
son. Except for the semiannual offsets, the fits have similar
shape from one season to the next. (This is very different
from the AE residuals (cf. Figure 18) where the diurnal var-
iations change from season to season.) In each season, Kp is
anomalously low in the 3–12 UT band. In Figure 19 (bot-
tom) the Kp residual data for all four seasons are plotted to-
gether, with a 400-point running average in UT. The blue

points are the Kp residual for the NL( +ℬ) driver and
the red points are the Kp residual for the NL( + ) driver.
The smooth green curve in the bottom panel is a UT trigono-
metric fit to all of the data. The fit has three terms:

Kpdiurnal ¼ T1 þ T2 þ T3 (75)

where

T1 ¼ 0:051 (76a)

T2 ¼ �0:191 cos8 UT� 8:9ð Þπ=24ð Þ (76b)

T3 ¼ �0:0519 cos UT� 13:6ð Þ2π=24ð Þ (76c)

[135] Detrending the AE and Kp indices by subtracting off
AEtrend(UT,day) and Kpdiurnal(UT) given by expressions (73)
and (75) improves the correlation coefficients rcorr between so-
lar wind drivers and the AE and Kp indices. This is demon-
strated in Tables 10 (for AE) and 11 (for Kp) where the
correlation coefficients for the indices AE and Kp are
compared with the correlation coefficients for the detrended
indices AE � AEtrend and Kp� Kptrend. In Table 10 the corre-
lation coefficients rcorr for AE all increase by a factor of from
0.77% to 1.18%when the AE index is detrended for the diurnal
and annual variations; in Table 11 the correlation coefficients
rcorr for Kp all increase by a factor of from 0.14% to 0.19%
when the Kp index is detrended for the diurnal variation.
[136] One could also detrend Kp for its semiannual varia-

tion to further improve the correlation coefficients, but some
of that semiannual variation could be caused by unaccounted
for physics in the solar wind driver. The final column of
Table 11 displays the coefficients for Kp detrended of both
the diurnal variation Kpdiurnal (expression (75)) and the semi-
annual variation Kpsemiannual (expression (72)). Detrending
for both increases all of the correlation coefficients by a fac-
tor of from 0.27% to 0.43%.

5. Simplified Versions of the Driver Functions for
Practical Use

[137] The two solar wind driver functions  +ℬ and
 + (using expression (23) for  ) are mathematically
complicated due to the complicated nature of the term f(MA,
Mms,θclock,θBn) (expression (7) and definitions given by expres-
sions (4a)–(4k)) in the dayside reconnection rate expression.
The term f(MA,Mms,θclock,θBn) contains information about the
modification of the solar wind plasma by the bow shock and
by the magnetosheath flow pattern.
[138] In Borovsky [2013] a greatly simplified approxima-

tion of the derived dayside reconnection rate R2 was obtained
by functionally fitting the Alfven Mach number dependence
of R2 and by ignoring the twist of the X line orientation away
from the θclock/2 position. That resulted in the approximation
[cf. Borovsky, 2013, equation (34)]

R2app ¼ 1:68� 10�2 sin2 θclock=2ð Þnsw1=2usw2MA
�0:3044

exp � MA=3:18½ �1=2
� �

(77)

where all the definitions in expressions (4a)–(4k) are unneces-
sary. An approximated version of the reconnection-coupled
generator  is obtained by multiplying expression (77) by

Figure 18. The diurnal trend in minus the residual error for
AE is shown separating the 1980–2011 data into the four sea-
sons of the year. The two shades of colors are for the
nonlinear  +ℬ and nonlinear  + drivers. The data
points plotted are 1000-point running averages in UT. The
smooth curves are fits to the data.
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expression (15) for the length of the dayside X line and by
(1 +Q)�1 for the generator current saturation: dropping the
constants, this results in

Gapp ¼ sin2 θclock=2ð Þnsw1=3usw5=3MA
�0:7084

exp � MA=3:18½ �1=2
� �

1þ Qð Þ�1
(78)

where Q=Q(nsw, Bsw, F10.7) is given by expression (22).
Correlation coefficients between app and the seven geomag-
netic indices appear in Table 1, where the performance of
 app can be compared with the performance of  . As can
be seen  app is slightly inferior to the full expression for  .
[139] The simplified versions of the  +ℬ and  +

driver functions are attained by adding the Bohm and
freestream viscous drivers to expression (78), with an arbi-
trary constant aBohm or afree (see Table 12). Writing the sim-
plified version of the Bohm-viscosity  +ℬ driver as
  +ℬ = app + aBohmℬ and using expressions (78) for
 app and 39 for ℬ, this is

  þℬ ¼ sin2 θclock=2ð Þnsw1=3usw5=3MA
�0:7084

exp � MA=3:18½ �1=2
� �

1þ Qð Þ�1

þ aBohmnsw1=2usw5=2C
�1=2W 1=2

(79)

where C= {2.44 × 10�4 + [1 + 1.38 loge(MA)]
�6}�1/6 and

where W is given by expression (33). Writing the simpli-
fied version of the freestream-turbulence  + driver
as   + = app + afree and using expressions (78)
for  app and (63) for  , this is

  þℬ ¼ sin2 θclock=2ð Þnsw1=3usw5=3MA
�0:7084

exp � MA=3:18½ �1=2
� �

1þ Qð Þ�1

þafreensw1=2usw11=6δBm
1=2C�1G (80)

with G given by expression (61). (From an examination of
the similarity of the functional forms of the first and second
terms in both expressions (79) and (80), one can see the
proxy effect wherein the viscous driver (second term) also
describes reconnection and wherein the reconnection driver
(first term) also describes the viscous interaction.).
[140] In Table 12 the values of the constants aBohm and afree

in expressions (79) and (80) are given for use with each of the
seven geomagnetic indices. Table 12 also contains the linear
correlation coefficients between the simplified solar wind
drivers   +ℬ and   + and the seven geomagnetic
indices. Comparing the correlation coefficients of Table 12

Figure 19. (top) The diurnal trend in the residual error for
Kp is shown separating the 1980–2011 data into the four sea-
sons of the year and running 1000-point running averages in
UT; the two shades of colors are for the nonlinear  +ℬ
and nonlinear  + drivers. (middle) Trigonometric fits
to the data in the top panel are plotted. (bottom) The 1980–
2011 data are plotted without separation into seasons and
4000-point running averages are applied. The green curve
in the bottom panel is a trigonometric fit to the data. In all
panels, minus the residual error is plotted.
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for   +ℬ and  + with the correlation coefficients for
 +ℬ and + in Table 1, one can see that the  +ℬ
approximation to  +ℬ actually performs slightly better
than  +ℬ and that the   + approximation to  +
performs slightly worse than  + does. The simplified
expressions (79) and (80) are much easier to implement than
are the full expressions for  +ℬ and  + .

6. Drawbacks, Complications, and Unknowns

[141] In this report, derived driver functions for solar wind/
magnetosphere coupling were developed and tested for their
ability to account for the behavior of seven geomagnetic indi-
ces. Linear correlation coefficients rcorr between the two solar
wind drivers +ℬ and + and the indices at less than
the 80% level were obtained (cf. Table 1). Nonlinear versions
of the two driver functions were given and the correlation co-
efficients between the AE and Kp indices and those nonlinear
drivers surpassed 80% (cf. Table 3). Multi-time step versions
of the nonlinear solar wind drivers brought the linear correla-
tion coefficients with the AE and Kp indices up to the 85%
level (cf. Table 4). Detrending the indices for diurnal and
annual variations produced further improvements.
[142] More sophistication in the mathematical connection of

the solar wind driver functions to the geomagnetic indices may
provide improved correlation coefficients. There are multiple
time lags [cf. Smith et al., 1999; Fung and Shao, 2008] and
almost certainly variable time lags [cf. Rucker and Trattner,
1991] between the solar wind and the magnetosphere-
ionosphere system that could be explicitly accounted for in
future versions of the solar wind driver functions. Utilizing
solar wind measurements and geomagnetic indices at higher
time resolution (minutes) instead of hourly averages should
also shed new light on the abilities of the driver functions
and on the physics of solar wind/magnetosphere coupling.

6.1. What Physics Is Missing?

[143] We know that there are missing physical processes in
the picture of solar wind/magnetosphere coupling derived in
this report. Seven examples follow:
[144] 1. The mass density of the dayside magnetosphere

has been set to 0 in all of the coupling calculations in this

report. However, it is known that during geomagnetically
active times, the mass density of the dayside magnetosphere
can be comparable to that of the magnetosheath inside of
plasmaspheric drainage plumes [Borovsky and Denton, 2008]
and across the dayside [Takahashi et al., 2010]. Estimates of
the storm time reduction of solar wind/magnetosphere cou-
pling by magnetospheric mass (by the plasmaspheric drainage
plume, by O+ in the ion plasma sheet, and by the warm plasma
cloak) are tens of percent [Borovsky et al., 2013]. A parameter-
ization of the magnetospheric mass density in terms of up-
stream solar wind parameters and solar parameters (although
probably with a long time lag) could be used to improve the
capability of the existing reconnection-coupled MHD genera-
tor portion of the physical driver functions.
[145] 2. Kelvin-Helmholtz-facilitated reconnection [Nykyri

and Otto, 2001; Nakamura et al., 2006; Chen et al., 1997;
Zhang et al., 2011] is not included in the present derivation
of solar wind/magnetosphere coupling functions. In the calcu-
lation of the effective length of the dayside reconnectionX line
in section 2.2, it was argued that reconnection is hindered
when the flow shear of the magnetosheath along the magneto-
pause becomes too large. However, at those locations of large
flow shear, Kelvin-Helmholtz rollup of the magnetopause may
actually increase reconnection.
[146] 3. Behind-the-cusp reconnection between the lobe

magnetic field and the solar wind [Gosling et al., 1991;
Song et al., 1999] is not included in our derivation of solar
wind/magnetosphere coupling functions. Predominantly,
under northward IMF, connection of the solar wind MHD
generator to the Earth via high-latitude reconnection can
occur, competing with the viscous interaction when the
magnetosphere is in a quiet state.
[147] 4. The modulation of the viscous interaction between

the magnetosheath flow and the magnetosphere by the pres-
ence or absence of momentum transfer in Kelvin-Helmholtz
processes [e.g., Miura, 1984; Farrugia and Gratton, 2011]
has not been included in the present derivation of solar wind/

Table 10. Linear Correlation Coefficients rcorr Between Various
Driver Functions and the AE Indexa

rcorr for AE rcorr for AE � AEtrend

R1 ↔ AE1 0.750 0.757
Newell ↔ AE1 0.780 0.787
R2 ↔ AE1 0.774 0.781
 ↔ AE1 0.757 0.765
ℬ ↔ AE1 0.372 0.375
 ↔ AE1 0.443 0.448
 +ℬ ↔ AE1 0.797 0.804
 + ↔ AE1 0.782 0.790
NL( +ℬ) ↔ AE1 0.812 0.820
NL( + ) ↔ AE1 0.799 0.807
2 h ave NL( +ℬ) ↔ AE0 0.837 0.845
2 h ave NL( + ) ↔ AE0 0.823 0.831
3-point NL( +ℬ) ↔ AE0 0.847 0.855
3-point NL( + ) ↔ AE0 0.833 0.841

aIn the first column the AE index is not detrended and in the second column
the AE index is detrended for diurnal and annual variations. The data are from
the years 1980–2011.

Table 11. Linear Correlation Coefficients rcorr Between Various
Driver Functions and the Kp Indexa

rcorr for Kp
rcorr for

Kp � Kpdiurnal
rcorr for Kp �

Kpdiurnal � Kpsemi

R1 ↔ Kp1 0.774 0.748 0.750
Newell ↔ Kp1 0.653 0.653 0.655
R2 ↔ Kp1 0.704 0.706 0.707
 ↔ Kp1 0.648 0.649 0.650
ℬ ↔ Kp1 0.531 0.532 0.533
 ↔ Kp1 0.632 0.633 0.634
 +ℬ ↔ Kp1 0.778 0.779 0.780
 + ↔ Kp1 0.781 0.783 0.784
NL( +ℬ) ↔ Kp1 0.789 0.790 0.791
NL( + ) ↔ Kp1 0.812 0.813 0.815
2 h ave NL( +ℬ)
↔ Kp0

0.821 0.823 0.824

2 h ave NL( + )
↔ Kp0

0.843 0.845 0.846

12-point NL( +ℬ)
↔ Kp0

0.852 0.853 0.854

12-point NL( + )
↔ Kp0

0.871 0.872 0.874

aIn the first column theKp index is not detrended, in the second columnKp
is detrended for its diurnal variation, and in the third column the Kp index is
detrended for diurnal and semiannual variations. The data are from the
years 1980–2011.
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magnetosphere coupling functions. The conditions for Kelvin-
Helmholtz-mediated reconnection could involve critical turn-
on criteria expressed as functions of solar wind parameters.
[148] 5. Tilted X line effects, such as a different scaling of

the reconnection X line length as the IMF clock angle varies
or the draping of field lines making the actual reconnection
clock angle differ from the IMF clock angle, have not been
mathematically included in the present derivation of solar
wind/magnetosphere coupling functions.
[149] 6. Mass transfer from the solar wind into the mag-

netosphere [Borovsky et al., 1998; Denton and Borovsky,
2009] has not been factored into the present picture of the
coupling. Evidence for the density of the solar wind af-
fecting the response of the Earth during storms has been
found [cf. Smith et al., 1999; Lavraud et al., 2006; Singh
and Badruddin, 2012]. Solar plasma leaking into the magneto-
sphere from a high-density solar wind produces stronger-
than-normal diamagnetic currents [Borovsky and Denton,
2010a] that can register in Dst* and that may produce
stronger-than-normal magnetotail activity. Such mass-
coupling effects (probably with time lags of hours) could
be included in a future picture of solar wind/magneto-
sphere coupling.
[150] 7. The freestream-turbulence effect in section 3.3 is

based on an eddy-viscosity calculation that relies on a
measure of the amplitude of the MHD turbulence in the
upstream solar wind. For this amplitude, the RMS level of
magnetic field-vector fluctuations δBmmeasured in the solar
wind was used. However, all of the magnetic field fluctua-
tions in the solar wind are not turbulence: In addition to
turbulent fluctuations there are also convected current
sheets [Bruno et al., 2007; Borovsky, 2008b; Miao et al.,
2011], steepened Alfven waves [Vasquez and Hollweg,
1999; Tsurutani & Ho, 1999; Gosling et al., 2011], and
other forms of tangential discontinuities [Hollweg, 1982;
Mariani et al., 1983; Tu and Marsch, 1995]. By taking the
RMS level of magnetic field fluctuations δBm, the amplitude
of turbulence in the solar wind is probably substantially
overestimated and the scalings of the turbulence amplitude
with solar wind parameters may be incorrect. Developing
a methodology to remove the signal of advected current
sheets from the solar wind magnetic field time series to then
more accurately measure the amplitude of true turbulence in
the solar wind [cf. Borovsky, 2010b] could improve the
accuracy of the freestream-turbulence driver  .

6.2. Noise

[151] In the solar wind and geomagnetic data sets, there are
sources of noise, i.e., sources of uncorrelated variations be-
tween the two data sets. Five examples follow:
[152] 1. There is error in the knowledge of the upstream so-

lar wind conditions at Earth owed to the use of a solar wind
monitor that is off the Sun-Earth line. The transverse correla-
tion length for the magnetic structure of the solar wind is ~45
RE [Richardson and Paularena, 2001] and upstream moni-
tors are often farther than this length from the Sun-Earth line.
Even if the upstream monitor were on the Sun-Earth line, the
velocity vector of the solar wind varies by several degrees
several times per hour [Borovsky, 2012b] so the sampled so-
lar wind would not always hit the Earth. Temporal evolution
of solar wind structure during the 30–80 min advection time
between the upstreammonitor and the Earth is another source
of error in the knowledge of the solar parameters at Earth.
[153] 2. There are pitfalls to hourly averaging the solar

wind measurements, particularly for the IMF clock angle
θclock (see discussion of Figure 9), which is a sensitive pa-
rameter in the coupling functions.
[154] 3. The appropriateness of using geomagnetic indices as

measures of the global coupling between the solar wind and the
magnetosphere can be questioned [e.g., Baumjohann, 1986;
Kamide and Rostoker, 2004]. The responses of geomagnetic
indices may be nonlinear (cf. Figure 7 and section 4.2), and
geomagnetic indices can respond to local phenomenon [Liou
et al., 2013] as well as to global phenomena.
[155] 4. There may be hysteresis in the behavior of the mag-

netosphere-ionosphere system wherein the state of the system
not only depends on the recent history of the solar wind param-
eters but also depends on the recent history of the magneto-
sphere. An example of this is the preconditioning of the
magnetosphere by long periods of geomagnetic calm that af-
fects the way the magnetosphere responds to the solar wind
[Borovsky and Steinberg, 2006b; Borovsky and Denton, 2013].
[156] 5. The magnetosphere, line tied to the resistive iono-

sphere, is a high-Reynolds-number system [Borovsky and
Funsten, 2003b; Borovsky and Denton, 2008]. At high
Reynolds numbers, no steady state solutions exist [Feynman
et al., 1964]. As such, the state of the system and any measure-
ment in the system are irreproducible [Tennekes and Lumley,
1972]; consequently, for a given driving condition, the state
of the magnetosphere will vary from realization to realization.
The magnetosphere-ionosphere system can only be described
statistically and there will always be a variance that cannot be
predicted. The amplitude of that variance will depend on the
timescale of the measurement and on an interplay between
timescales of variation of the driver and the range of character-
istic timescales of the system.

6.3. Most Immediate Improvements

[157] A significant advantage that the local control of
reconnection rate picture has [cf. Cassak and Shay, 2007;
Borovsky and Hesse, 2007] is that the mass density of the
magnetospheric plasma can be included in the solar wind/
magnetosphere coupling physics [cf. Borovsky et al., 2008,
2013]. A next step in the improvement of physical solar wind
driver functions for the magnetosphere is to include a param-
eterization of the mass density ρm of the dayside magneto-
sphere into the driver functions. This involves multiplying

Table 12. Linear Correlation Coefficients rcorr Between the Two
Simplified Solar Wind Drivers   +ℬ and   + and Seven
Geomagnetic Indicesa

  +ℬ = app + aBohmℬ   + = app + afree

aBohm rcorr afree rcorr

AE 1 h lagged 8.60 × 10�5 0.797 1.00 × 10�3 0.775
AU 1 h lagged 9.25 × 10�5 0.699 1.39 × 10�3 0.693
�AL 1 h lagged 8.35 × 10�5 0.764 8.35 × 10�4 0.738
PCI 8.25 × 10�5 0.756 1.01 × 10�3 0.740
Kp 1 h lagged 1.72 × 10�4 0.783 2.99 × 10�3 0.779
�MBI 1 h lagged 1.16 × 10�4 0.782 1.58 × 10�3 0.759
�Dst* 2 h lagged 1.71 × 10�4 0.695 2.92 × 10�3 0.691
7-index sum 5.276 5.175

aThe values of the constants aBohm and afree in the expressions for  +ℬ

and   + are also given for each geomagnetic index.
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the reconnection-coupled generator  by (1 + (ρm/ρsw)
C�1[1 + (MA/6)

1.92]�1/2)�1/2 to correct for the fact that ρm
was taken to be 0 in the denominator of the Cassak-Shay
equation when the function R2 (expression (3)) was derived.
In this factor, ρsw is the mass density of the solar wind and
C is the compression ratio of the bow shock (expression
(4c)). Parameterization of ρm in terms of upstream solar
wind conditions (and perhaps in terms of the time history
of geomagnetic activity) is a priority.
[158] A critical lack of knowledge about reconnection is

the effect of flow shear on asymmetric reconnection with a
guide field. Via numerical simulations, a parametric study
of the reconnection rate versus the magnitude of the velocity
shear is needed, with the flow shear direction varied system-
atically (a) with respect to the direction of the magnetic field
in the slow Alfven speed plasma, (b) with respect to the di-
rection of the magnetic field in the fast Alfven speed plasma,
and (c) with respect to the direction of the guide field. With
the results of such a study, the length of the dayside X line
could be better parameterized as functions of upstream solar
wind parameters and in particular as a function of the IMF
clock angle.

7. Summary

[159] Driver functions for the Earth’s magnetosphere-
ionosphere system were derived from physical principles,
based on two processes acting simultaneously on the mag-
netosphere: a reconnection-coupled MHD generator 
and a viscous interaction. Two possibilities for the physical
processes dominating the viscous interaction were pursued,
Bohm viscosity and the freestream-turbulence effect: This
resulted in two viscous-interaction driver functions ℬ and
 . The reconnection-coupled generator driver and a vis-
cous driver were summed to form two combined solar wind
driver functions:  +ℬ and  + . The following is the
summary of findings for the derivation, study, and testing of
the solar wind driver functions:
[160] 1. A reconnection-coupled generator driver function

 was derived based on the local control of the magnetic
field line reconnection rate at the dayside magnetopause, on
an estimate of the length of the dayside reconnection X line,
and on current-saturation limits of the solar wind generator.
[161] 2. With the use of a series of global MHD computer

simulations of the magnetosheath flow pattern for a large
range of solar wind Mach numbers, an expression for the
length of the dayside reconnection X line based on the cut-
off of reconnection by flow shear at the magnetopause
was derived.
[162] 3. A quality factor for the MHD generator of the

solar wind was derived based on current-saturation physics
for MHD generators operating in collisionless plasmas.
[163] 4. A Bohm-viscosity viscous driver functionℬ was

derived based on the properties of the shocked magnetosheath
plasma flowing around the Earth’s magnetosphere. A calcula-
tion of the viscosity led to a calculation of the flow Reynolds
number which led to a calculation of the viscous drag on
the magnetosphere.
[164] 5. A freestream-turbulence viscous driver function

 was derived based on the amplification of solar wind mag-
netic field fluctuations and velocity fluctuations through the
bow shock. The fluctuation amplitude in the magnetosheath

led to a calculation of the eddy viscosity of the magnetosheath,
which led to a flow Reynolds number, which led to a calcula-
tion of the viscous drag on the magnetosphere.
[165] 6. The correlations between the temporal behavior

of the viscous driver functions ℬ and  and the temporal
behavior of seven geomagnetic indices were examined as
function of the IMF clock angle. A proxy effect was uncov-
ered wherein the viscous driver functions not only describe
the strength of the viscous interaction but also describe the
strength of the reconnection interaction between the solar
wind and the magnetosphere. It is likely that the converse is
also true, that the reconnection-coupled-generator function
 also describes the strength of the viscous interaction.
[166] 7. Combined reconnection plus viscous driver func-

tions were assembled. Two driver functions for the magneto-
sphere result: +ℬ and + . Both are written in terms
of solar parameters and upstream solar wind parameters.
[167] 8. The solar wind driver functions  +ℬ and

 + were tested against seven geomagnetic indices using
1 h time resolution OMNI2 data for the solar wind parame-
ters going into the driver functions.
[168] 9. The reaction of the geomagnetic indices to the

solar wind driver functions  +ℬ and + is nonlinear.
Nonlinear fits between the driver functions and the AE and Kp
indices were made and nonlinear versions of the solar wind
driver functionsNL( +ℬ) andNL( + ) were supplied.
[169] 10. The  +ℬ and  + driver functions showed

correlation coefficients of less than 80% with the seven
geomagnetic indices. The nonlinear versions NL( +ℬ) and
NL( + ) of the driver functions showed correlation coeffi-
cients of approximately 80% with the AE and Kp indices.
[170] 11. Multiple time step solar wind driver functions

were examined and correlation coefficients with the geomag-
netic indices of approximately 85% resulted.
[171] 12. Visual inspection of the temporal plots of the so-

lar wind driver functions NL( +ℬ) and NL( + ) and
of the AE index found that the driver functions do poorly at
predicting localized peaks in the AE index.
[172] 13. Inspection of the time series of the driver func-

tions NL( +ℬ) and NL( + ) and the AE and Kp indi-
ces found that a signal with a 1 year periodicity occurs in the
AE index that does not occur in the solar wind driver func-
tions. Similarly, a semiannual variation is found in the Kp
index that is not seen in the driver functions.
[173] 14. Autocorrelation functions of the solar wind driver

functions NL( +ℬ) and NL( + ), the AE index, and
pertinent solar wind parameters were examined. It was found
that the temporal persistence in the driver function time series
was less than the persistence in the AE index time series. No
single solar wind parameter had a temporal response similar
to the temporal response of the driver functions.
[174] 15. The autocorrelation functions showed strong 1

day and 1 year periodicities in the AE index that are not in
the solar wind driver functions.
[175] 16. The autocorrelation functions showed strong 27

day periodicities in the solar wind driver functions as in the
AE index.
[176] 17. High-pass filtering and low-pass filtering of the

driver functions  +ℬ and  + and of the AE index
showed timescales of strongly correlated signal and time-
scales of noncorrelated signals. Twenty-seven day timescales
were strongly correlated between the driver functions and the
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AE index; few hours and 1 year timescales were poorly cor-
related between the drivers and the AE index.
[177] 18. Band-pass filtering the AE index and the NL

( +ℬ) driver function to remove variations with time-
scales shorter than 1 day and longer than 1 year resulted
in an increase in the correlation coefficient between NL
( +ℬ) and AE to +0.916 from +0.812 for the unfiltered
time series.
[178] 19. Multiple time step solar wind driver functions

were examined with a computer code that optimized the time
step weights to obtain the best correlations with geomagnetic
indices. To describe the behavior of the AE index, solar wind
driver functions with three time steps worked well, with the
strongest weight on the time step 1 h prior to AE. For the
Kp index, solar wind driver functions with 12 time steps
worked well, with the weighting of the driver functions
spread back in time at least 12 h.
[179] 20. It was argued that using multi-time step driver

functions is equivalent to averaging the driver functions to re-
move high-frequency signal in the driver. Simple boxcar run-
ning averaging of the driver functions was found to always
improve their ability to describe the variance of the geomag-
netic indices. Optimal driver-averaging times could be a
short as 2 h for some geomagnetic indices.
[180] 21. Improved driver functions that utilize boxcar run-

ning averages of the driver functions that did not require fu-
ture values of solar wind parameters were explored: rcorr
values of up to +0.832 with AE and up to +0.862 with
Kp were obtained. For AE, the unaccounted for variance is
1 � rcorr

2 = 30.8% and for Kp the unaccounted variance is
1 � rcorr

2 = 25.7%.
[181] 22. The residuals (also known as the errors or the

unpredicted variance) between the measured geomagnetic in-
dices and the predictions of the solar wind driver functions
were analyzed. It was found that the residuals were
anticorrelated with the solar wind velocity, anticorrelated
with the solar F10.7 radio flux, and anticorrelated with the so-
lar wind current-saturation parameter. Although not physi-
cally justified, using adjustable tuning parameters on these
three quantities could improve the performance of a future
solar wind driving function.
[182] 23. Analysis of the residual errors finds annual and

diurnal trends in AE and semiannual and diurnal trends in
Kp. It is argued that the diurnal and annual trends in AE
and the diurnal trends in Kp are not in the solar wind, rather
they are properties intrinsic to those indices. Removal of
those annual and diurnal trends from the AE and Kp indices
improves the correlations between the solar wind drivers
and the indices.
[183] 24. Simplified mathematical versions   +ℬ and

  + of the solar wind driver functions  +ℬ and
 + were constructed. It was found that the simplified
drivers   +ℬ and   + perform approximately as well
as the full drivers  +ℬ and  + do.
[184] 25. Physical processes that are missing from the

derivations of the driver functions were discussed: The list
of missing processes includes accounting for the mass den-
sity of the magnetospheric plasma (the plasmasphere effect),
Kelvin-Helmholtz facilitated reconnection, reconnection be-
hind the cusps, Kelvin-Helmholtz modulation of the viscous
interaction, X line tilt effects, and the effects of the transfer of
solar wind plasma into the magnetosphere.

[185] 26. Sources of errors and noise in the AE index and in
the solar wind driver functions were discussed. Those sources
include errors in the knowledge of the solar wind conditions at
Earth, errors introduced by hourly averaging, questions about
the validity of using geomagnetic indices as measures of the
coupling of the solar wind to the magnetosphere, hysteresis
in the behavior of the magnetosphere-ionosphere system,
and unpredictable variance in the high-Reynolds-number
magnetosphere-ionosphere system.
[186] 27. The improvements most critically needed for an

advancement of the physics of the solar wind driver functions
for the magnetosphere were deemed to be (1) a parameteriza-
tion of the mass density of the dayside magnetosphere (which
can substantially affect the dayside reconnection rate and
hence affect the strength of the reconnection-coupled gener-
ator) and (2) a parametric study of the effects of flow shear
on asymmetric reconnection with a guide field (which can
lead to better parameterizations of the length of the dayside
X line in terms of upstream-solar wind parameters).
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