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Hierarchical multiple informants
models: examining food environment
contributions to the childhood
obesity epidemic*

Jonggyu Baek,**" Brisa N. Sanchez?* and
Emma V. Sanchez-Vaznaugh”

Methods for multiple informants help to estimate the marginal effect of each multiple source predictor and for-
mally compare the strength of their association with an outcome. We extend multiple informant methods to the
case of hierarchical data structures to account for within cluster correlation. We apply the proposed method to
examine the relationship between features of the food environment near schools and children’s body mass index
z-scores (BMIz). Specifically, we compare the associations between two different features of the food environ-
ment (fast food restaurants and convenience stores) with BMIz and investigate how the association between the
number of fast food restaurants or convenience stores and child’s BMIz varies across distance from a school.
The newly developed methodology enhances the types of research questions that can be asked by investigators
studying effects of environment on childhood obesity and can be applied to other fields. Copyright © 2013 John
Wiley & Sons, Ltd.
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1. Introduction

The childhood obesity epidemic has led several researchers to examine factors beyond the individual
as possible causes of obesity. For instance, because children spend large amounts of time in schools,
there is increased interest in environmental factors in or around schools. The presence of food stores
such as fast food restaurants (FFR) or convenience stores (CS) has received attention as children may
purchase, or be exposed to advertising of energy-dense, nutrient-poor foods on their way to or from
school. These features of the environment near schools are typically operationalized as the number of
food stores within a specific distance from a school (e.g., number of stores falling within a circle of 1/2
mile radius around a school, also known as 1/2 mile ‘buffer’). The associations between each feature
and children’s body weight are examined in separate models because the marginal association between
each feature of the environment and children’s body weight is of substantive interest or because features
are strongly correlated making it difficult to include them simultaneously in one model. Comparing the
strength of associations between one food store type and another is of particular interest (e.g., CS vs.
FFR) because limiting certain types of food stores versus others may need to be considered from a policy
perspective. An overarching limitation of the methods presently employed in these prior studies is that
they do not rigorously examine or test differences among associations between environment features
and outcomes. Furthermore, the specific distance from a school at which the circle is drawn (also known
as buffer size) is typically chosen in an ad hoc manner, because the distance from a school at which
the presence of food stores may influence children’s body weight is unknown. Some researchers have
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compared associations of the outcome with a feature at different buffer sizes by examining the extent of
overlap of CIs of measures of association obtained from several buffer sizes or examined the distance
at which the association is, or ceases to be, significant [1]. However, comparing the extent of overlap
of CIs is problematic because the estimates are correlated. The purpose of the present research is to
develop a hierarchical multiple informant model (HMIM) that will facilitate comparing differences in
the associations of the same type of food store at several buffer sizes from a school and/or differences in
the associations of two or more types of food stores.

Methods for multiple informant data were independently proposed by Horton et al. [2] and Pepe et al.
[3] and have been comprehensively reviewed by Horton and Fitzmaurice [4]. The term ‘multiple infor-
mants’ refers to information from multiple sources used to measure the same construct. Horton et al. [2]
give an example of multiple informants, such as information collected from a child’s teacher and parent
to assess the child’s psychopathology. In our setting, the multiple informant predictors are features of
the environment (e.g., multiple store types or number of a given store type at several buffer sizes) that
may affect children’s weight.

Models for multiple informants can be constructed using non-standard generalized estimating
equation (GEE) methods to estimate the marginal association between each multiple source predictor
and an outcome, and provide a formal comparison of the strength of the associations between each
predictor with the outcome [2, 3]. Alternatively, Litman et al. [5] developed a maximum likelihood
estimation (MLE) approach that, under a joint normality of predictors and an outcome, can accom-
modate more general models than can be estimated with a GEE method. The MLE approach can
incorporate multiple informants measured in different scales and enable estimation of a common ‘stan-
dardized’ association (e.g., adjusted correlation coefficient), and incorporate data missing at random.
However, existing multiple informant methods are limited to non-hierarchical data where univariate
outcomes are measured on independent subjects. Although Horton and Fitzmaurice [4] stressed the
importance of complex survey designs, the estimating equations they employed assume independent
subjects.

In Section 2, we briefly review multiple informant methods for univariate outcomes, and extend multi-
ple informant approaches to a hierarchical data setting in Section 3. In Section 4, we present a small-scale
simulation study to highlight properties of the proposed methods. In Section 5, we apply the methods to
examine the association between the presence of food stores near schools and child’s body mass index
z-score (BMIz) using a surveillance dataset from all 5%, 7%, and 9" grade children enrolled in public
schools in the state of California. We use two different features of the food environment: FFR and CS.
Section 6 concludes with a discussion.

2. Review of univariate multiple informant models and generalized
estimating equations

2.1. Non-standard generalized estimating equation approach for multiple informant models with
independent subjects

Based on a non-standard application of GEE methods, Pepe ef al. [3] and Horton et al. [2] developed
a multiple informant model (MIM) to estimate the association between univariate outcomes and multi-
ple informant predictors. For the i’ (i = 1,...,n) subject, let ¥; be an outcome and Xy; be multiple
informants, k = 1, ..., K. The marginal associations between the outcome and each predictor, Xg;, are
defined by separate regressions

E[Yi|Xki]l = Bok + Bix Xki» )

where Bor and By are the intercept and the slope parameter in the k*# regression, k = 1,..., K. Joint
estimation of model parameters can be accomplished by re-structuring the data as

~ Bor ]
Y; 1 X; 0 0 ... 0 © l‘g“
B Y; _ 0 0 1 X ... 0 0 ﬂoz
Yi=| . Xi=| . } . B = 12 )
Yi | kxn) 0 0 0 0 .. 1 Xxi |(gyap Box
L Bk dokx)
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Note that 17,~ has K COEieS of the same outcome Y;, and covariate vectors, [1Xg;].k = 1,..., K, are
diagonally stacked in X;; correspondingly, B is a vector with all coefficients B, and By stacked.
Essentially, each subject is treated as an independent cluster with K repeated measures (which are in
fact K copies of the same outcome).

Under the assumption of the identity link, constant variance, and the working independence correlation
matrix, the GEE for 8 is

Y XK =o. ©)

By solving (3), the regression parameters 8 can be estimated, and the variance—covariance matrix for the
2K parameter estimates, ﬁ , can be derived by either the empirical variance estimator or the model-based
variance via the GEE approach [5]. Because the multiple informant model basically employs GEE with
re-structured data, binary or count data can be also fitted by changing the link function (e.g., logit, log)
[6].

Litman et al. [5] demonstrated that assuming the working independence correlation is optimal for
certain models because the non-standard GEE approach and MLE approach yield the same estimator.
Further, the working independence structure within cluster is necessary to ensure consistency in the non-
standard GEE approach [7, 8]. Indeed, without a zero constraint to off-diagonal terms, joint modeling
of the same outcome on multiple informants is invalid. For instance, suppose that we have an outcome
v and a predictor x;; for the jth subject at two occasions ¢ = 1, 2. Under a normal assumption of y;;
conditional on x;;, the joint distribution of y;; given x;; for r = 1,2 can be expressed as

[ yz:l Xi1,xi2] ~N ([ Bo1 +/311Xz:1 ][ o111 012 }) 4)
Yi2 Boz + Bi2xi2 012 022
An implicit assumption of GEE is that covariates at a given occasion are not related to the out-
come given the same covariate measured at another occasion, i.e., E[yi1|xi1,Xi2] = E[yi1|xi1] and
E[yiz|xi1, xi2] = E[yi2|xi2] [7, 8]. Another implicit assumption here is y;; # yi>. When y;; = yio,
the non-standard GEE approach needs to impose a zero constraint to o1, (all off-diagonal terms in the
covariance matrix).

In our motivating study, we are interested in the associations between multiple correlated predictors
and weight status of children nested in schools (i.e., hierarchical data). We next review hierarchical

modeling using well-developed GEE methods and subsequently extend the multiple informant model to
hierarchical data.

2.2. The generalized estimating equation model with exchangeable correlation structure

Generalized estimating equation methods have been well established and are extensively used to model
hierarchical data. We briefly review the specific case of GEE with an exchangeable correlation structure
as a building block for our proposed models in Section 3. Consider a simple case where data consist of
J clusters, each with 7 units with measures on an outcome and a covariate: {y;;, x;;},i = 1,...,n;
foreachof j =1,2,...,J clusters. Units are assumed to be correlated within clusters, but independent
across clusters. A common correlation structure used for this data is an exchangeable correlation—i.e.,
corr(yij, y;/j) = p,i # i’ in the j" cluster. A generalized linear model is commonly used to relate the
mean of y;;, ui; = E[yi;], to a covariate, x;;, via a link function g(-)

g(wij) = Po + Pixij, %)
and the variance of y;; is Var(yi;;) = ¢v(u;;), where v(-) is a known variance function, and ¢ is a

" ~ AT
dispersion parameter. Similar to (3), GEE estimates, § = (,30, ,31) are given by solving

J
2 DV -y =0, (©)

T 1/2 1/2
where Y ; = (yljw-w)’n_/j) = E[Y;],D; = 8;Lj/8(ﬂo,ﬂ1)T,V_,~ = Aj/ RjAj/ Aj =
pdiag {v (i1;).....v (1n,,j)} and R is a working correlation matrix [6]. For a continuous outcome
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yij with the identity link function and an exchangeable correlation assumption, the solution of (6) for 8
with known p is

-1
A J J
_ Ty-ly . Ty-ly .
ﬂ_(E jlejVj Xj) (EjlejVj Yj). 7
The empirical or ‘sandwich’ variance of ﬁ is

Var(B) = BFB, ®)

-1
where B = (L7, XTV7'X,)  F =/ XTIV (v, —ii,) (Y, - )" viix;.

Because ¢ and p are generally unknown, ﬁ needs to be iteratively re-estimated to update the estimated
variance—covariance matrix, V ;- To estimate the dispersion parameter ¢ and correlation p, refer to Liang
and Zeger [6]. Because the empirical variance estimator (8) protects against a misspecified working cor-
relation and variance structure, inference based on GEE estimators is robust to departures from the true
covariance structure [5, 6].

In Section 2.1, it is necessary to assume the working independence structure for a MIM for consis-
tency of the estimators, but for hierarchical models reviewed here, the working independence assumption
may be inefficient in some situations. Mancl and Leroux [9] demonstrated that loss of efficiency for the
working independence correlation assumption can be substantial even for small correlation when the
coefficient of variation in the cluster sizes (CV) is greater than 0.5. In our motivating data, the number
of children varies largely across schools (CV & 1.1). We extend the MIM to hierarchical data structures
by incorporating a block diagonal working correlation to make the model valid but with diagonal blocks
of exchangeable correlation structures to model correlations within clusters to enhance efficiency.

3. Hierarchical multiple informants model

3.1. Data structure and model

Let Y;; be an outcome of the i’ h unit (e. g., child’s BMIz) within the ;' h cluster (e. g., school) and denote
the mean of Y;; as u;; = E[Y;;].i = 1,...,n; for each of j = 1,2,...,J. For simplicity, assume
there are two multiple informant predictors measured at the cluster level, X;; and X»; (e.g., Xi; is the
number of FFR, and X5; is the number of CS within d miles from the j th school). Given a link function
g(), wi; can be modeled as

g(1ij) = Por + P11 Xyj ©)
g(uij) = Boz + P12Xz; ’

where Box and Bk for k = 1,2 are the population-level intercept and the slope parameter for the k"

regression.
Similar to (2), the data are re-structured as
B Ylj ] r1 le 0 0
: 0 0 Bo1 .
s | Yu s _ |1 Xy 0 0 | B | | B
Yj — Ylj P Xl - 0 0 1 ij ’ ﬂ - 1302 - ﬂl . (10)
: 0o 0 i Prz
BROTH LO 0 1 Xy |
Note that two copies of the outcome vector ¥; = (Yy;,..., Y,,j,j)T for all subjectsi = 1,2,...,n;
within the j th cluster are stacked. The covariate matrices X kj,k = 1,2, consist of n; copies of

the vector [1Xg;], and are diagonally stacked in X j Accordingly, B contains all Box and Bix, the
population-level intercept and slope parameter.

Including individual-level predictors and other cluster-level variables are straightforward. For
instance, let W;; = [ Zi; Z; ] include individual-level predictors Z;; and other cluster-level vari-
ables Z ;. Then, the covariate matrices, [ X1; W;; |and[ Xp; W;; ], within the j cluster can
be re-structured as in (10).
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Careful modeling of the correlation within clusters can improve inference of the population-level
parameters 3. However, because of the implicit assumptions of the GEE as discussed in Section 2.1, we
restrict the working covariance structure for the HMIM to a block diagonal matrix where the diagonal
blocks are the correlation structures given each correlated predictor. Let Vi; = ¢y Ry ;, where V; con-
sists of constant variance and a correlation matrix Ry T for k = 1, 2. In the motivating example, we use
an exchangeable correlation structure with correlation py to model Ry, because children within schools
can be assumed exchangeable. Hence, the working covariance matrix of the HMIM can be

i Vi 0
Vi= . (1)
0 V2] (2nj><2nj)

Note that V j consists of a block diagonal of distinct exchangeable covariance matrices, V'1; and V5,
given Xy; and X»;, respectively.

With V ;j and the identity link function, and by virtue of the block diagonal covariates and covariance
matrices, the estimator for 8

Al A
yields equivalent estimates to fitting a separate model for each predictor, § , 8 2
-1
8 [ g, ] (Zha x5viixy)  (Sia XGviiy))
= A2 = _1
J - J -
(Zj:l Xsz V21'1X2.i) (Zj:l Xsz szlyj)

The empirical or ‘sandwich’ variance—covariance for the estimated parameters is

(12)

Var (ﬁ) =BFB,

where B = (L1, 817" %)) and F = I X0, (7, - %) (7, - %,8) 7' %),

j=1
Equivalently, if the models for each multiple informant are ﬁtted separately,

@(ﬁ):B*F*B*, (13)

1

(21—1 Xl/) 0

0 (Z]_ngjV;le2j)

3 XyVite! XVt d rl oy Al
andF*:Z]J:l Y J v / , where ; | Y XUﬂAZ )
X2 V513 X2jV3r3 rj Y;—X»;p

That is, the empirical variance/covariance for ﬂ can be calculated using results from each fitted
marginal GEE model. From a practical point of view, fitting each marginal GEE model has computa-
tional efficiencies: (i) the dimension of the data will be smaller for any one model and (ii) available GEE
software can be implemented to obtain the empirical covariance matrix. Example R code for calculating
the empirical variance/covariance matrix (13) is provided in Appendix A.

where B* = 4

3.2. Hypothesis testing

One advantage of the HMIM is that it gives a formal test to compare the association among multi-
ple predictors on a univariate outcome while taking into account the correlation within clusters. In
our motivating example, we seek to compare the association of two different features of the food
environment (FFR vs. CS) with BMIz and to compare the associations between the number of FFR
(or CS) and child’s BMIz across several buffers. These tests can be conducted using general linear
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hypotheses expressed in the form Hy : LS = L, where L consists of [ linearly independent con-
straints on B, and L is a vector of constant terms (usually a zero vector). The Wald test statistic

A T — /A -1 ~ A
is T = (Lﬂ — LO) (L Var (ﬂ) LT> (Lﬂ — Lo) which, given the asymptotic normality of B,
asymptotically follows a chi-squared distribution with / DOF. We next describe a strategy to conduct
hypothesis tests.

Two approaches can be followed to compare the associations between two (or more) predictors on an
outcome (e.g., different features of food environment, X; = FFR and X, = CS on child’s BMIz within
a given buffer size). The first is to use the predictors in their original scales and test for equality of coef-
ficients, Hy : B11 = B12. Alternatively, if the scales are different (e.g., there is an overall preponderance
of one feature compared with the other), the predictors can be standardized so that the coefficients are
in standard deviation units (i.e., one standard deviation increase, or interquartile range increase). If we
fail to reject the null hypothesis that the effects of multiple informants are the same, then, as suggested
by Litman ef al. [5], a constrained model (i.e., a model that assumes 817 = B12) could be used to
increase power.

In our motivating example, we are also interested in comparing the effects of a given environmen-
tal feature (e.g., FFR) across several buffers on child’s BMIz. Suppose that there are a priori specified
distances of interest, d; < d» < -+ < dg from a school, and let X1, X5, ..., X be number of FFR
within the corresponding buffers. For exposition suppose K = 3. Then, let 815,k = 1,2, 3, be the cor-
responding marginal regression coefficients. We are interested in testing whether the effects differ, i.e.,
the overall test Hy : B11 = B12 = P13 vs. Hy : at least one differs. Failure to reject the null hypothesis
suggests that the most appropriate buffer size is at least up to d3 miles from a school. However, if the
overall null hypothesis is rejected, we suggest the following subsequent tests. First, test the one-sided
null hypothesis, Hy : f11 < B12. If the null hypothesis is rejected, then we decide that the buffer size
dy miles from a school has the strongest association, and testing stops. Otherwise, conduct a second
one-sided test Hy : B12 < B13. If the null hypothesis is rejected, stop and conclude the buffer with size
d; has strongest effects. Otherwise, buffer with size d3 is most relevant.

3.3. AR(I) and three-level nested structures

Given our motivating example, we consider hierarchical structures where individuals are nested in larger
units in which an exchangeable correlation structure is natural. However, hierarchical data can also
arise in longitudinal repeated measures for which other correlation structures may be better suited. The
HMIM can be applicable to this setting as well. For instance, let Y;; be the i*# child’s BMIz at time
t,i=1,2,...,nandt =1,2,..., T, and the two covariates be X1;; and X,;;. Data can be re-structured
in a similar manner as (10)

[ Y1 ] 1 Xy 00 00 T
: 0 0
- Y; ~ 1 Xy
Yz _ i 7Xi _ 1T 0 0
Yi1 0 0 1 X
: 0 0 :
| Yir L 0 0 I Xoir _

Note that ¥ i has two copies of the vector of repeated measures Y lT = [Y;1---Yir] and X ; has a block
diagonal structure of the two covariates including the intercepts. To reflect within-cluster correlation
over time in a longitudinal study, an AR(1) correlation structure can be used

i =

02 AR(1, p1)TxT 0
0 OZZAR(I,pz)TxT

where AR(1,p1) and AR(1, p) are AR(1) correlation structures with autocorrelation p; and ps,
respectively, and the variances are o7 and o7. Other variances can also be incorporated (e.g.,
non-constant variance if an outcome is binary).
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Another extension is for a three-level nested structure. For instance, suppose Y;;; is the i’ h child’s
BMI in the j*" school in the /' county, i = l,....nj,j =1,...,n;,1 =1,..., L. Assume that
there are two county-level covariates Xz;,k = 1,2, of interest for comparison. With the indepen-
dence assumption across counties and given each predictor Xg;, let the correlation within schools be
Corr (Yijllel, ,Y,v_,-l|Xk1,) = pz’,i # 1’, and let the correlation between schools within counties
be Corr (Y,-j1|Xk1, ,Y,-/j/l|Xk1,) = ,o,lz,j # j’. Data can be re-structured in a similar way as (10)
where a vector of an outcome is replicated twice at the county level, and the re-arranged covariate
matrix has a block diagonal structure. To account for the correlations within schools and the cor-
relation between schools in a county, a three-level exchangeable working covariance matrix can be
expressed as

ex (pkw) pllzlnﬂxnﬂ p,lél,,jlx,,j, |
b b
- olR; O Pelnjixny  €x (0F) = pRlngixny
i=| 0 ozk, | Re= k=12,
b b
Lo nyy PRlngixny o ex (pf) n iy xn jn,

where ex (p}’) is a nj; x nj; exchangeable correlation structure with the correlation p}’. The matrix
15 ;,%n;; 18 @anj X nj one matrix, and the dispersion parameter or variance parameter are olf.

4. Simulation study

We conducted a small-scale simulation study to provide guidance on practical approaches to estimate
model parameters and to examine properties of estimators and hypothesis tests. In available software,
the most straightforward way to implement the proposed method is to use the working independence
assumption within clusters. In standard GEEs, this approach is fully efficient when cluster sizes are
equal and covariates are invariant or mean-balanced within clusters but can suffer severe efficiency loss
otherwise [9].

Because the environmental effects in our motivating study will typically be small, loss or gain in effi-
ciency may have important implication for derived inferences. Hence, we examine statistical power of
detecting a small degree of differences of environmental effects assuming unequal large cluster sizes and
invariant covariates within clusters.

4.1. Simulation setup

We set up the simulations to reflect two possible scenarios of the comparison of the marginal effects of
FFR across several buffers on child’s BMIz: (i) marginal effects of FFR are diminishing with distance
and (ii) marginal effects of FFR have threshold at some distance. For both simulation scenarios, sample
size, nesting structure (i.e., number of clusters and subjects per cluster), and distribution of the multiple
informants (the number of restaurants within 1/4, 1/2, and 3/4 miles from each school) were the same
as observed in the data example. For instance, in our motivating data, the average number of children
per school and its standard deviation are 145.6 and 159.5, respectively, yielding the CV of 1.1. This
means that unbalance of cluster size is large. For each simulation scenario we simulated 1000 datasets
where each data contain 926,018 observations nested in 6323 clusters. Multiple informants were fixed to
the observed number of FFR in the motivating example (Table I), thus we only generated outcome data
conditional on the predictors FFRy, k = 1,2, 3.

To simulate data for diminishing effects of FFR with distance, the marginal effect of FFR on child’s
BMIz within 1/4 miles was fixed at the observed value in our motivating example (81; = 0.0234).
True parameters of FFR within distance 1/2 and 3/4 miles, 81, and B;3, were set to B1, = af1; and
B13 = 0.8aB11, where 0 < a < 1, i.e., the effects of FFR consistently decrease over distance. Similarly,
for threshold effects with distance, 12 = af11 and B13 = aff11, where 0 < a < 1, i.e., the effects of
FFR decrease at some distance and continue to be constant. Here, the constant a controls the differences
across regression parameters. Figure 1 shows regression parameter values used in the simulations for a
range of values of a, for both diminishing effects and threshold effects.
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i) Diminishing effects of FFR ii) Threshold effects of FFR
Bay o By a=1

% a=1 %

- -

=}

£ :

g g

=

& = a=05
£ a=03 =

0+ a=0 0 a=0
T T T T T T
1 w2 4 144 112 34
Distance{mile) Distance(mile)

Figure 1. Regression parameter values used in simulations for i) diminishing and ii) threshold effects of fast food

restaurants at distance 1/4, 1/2, and 3/4 miles. True parameter settings are B12 = af11 at 1/2 mile, 813 = 0.8af11

at 3/4 mile for diminishing effects and 12> = aff11 at 1/2 mile, 813 = af11 at 3/4 mile for threshold effects,
such that a(0 < a < 1) controls the differences across parameters.

Note that, given the observed variances of the predictors (Table I), these effects constrain the marginal
covariances between predictors and outcome to ox,y = i 10)2(] = 0.011l,0x,y = a,3110§(2, and

Oxyy = aﬂ110)2(3 for threshold effects, and ox,y = 0. Saﬁua}z( for diminishing effects. Further, we

assumed the marginal outcome mean was @y = 0 (centered) and had marginal variance OY 0.14 (as
observed in our motivating data).

To simulate outcomes, we first generated cluster-level values from a normal distribution with
mean E [Y.;|FFRyj,. FFRy;, FFR3;| = yo + »1 FFRU + y2FFRy; + y3FFR3; and variance
Var [Y_v.leFle,FFR2]',FFR3]'] = 08 (0'82=O'Y Var (FFRU) 2Var (FFsz)—y;Var
(FFR3J')—2)/1)/2C0U(FFR1]', FFRZJ) 2)/2)/3C0U(FFR21, FFR3]) 2)/3)/1COU(FFR3]', FFRU))
The conditional mean of the cluster level given all three predictors was used because the outcome
needs to be simulated only once given all three predictors. We used the Sweep operator [10, 11] to
derive conditional associations, Yo, Y1, V2, ¥3 given the specified marginal associations B11, B12, B13
(see Appendix B). Given the cluster mean, we generated subject-level observations as Y;; = Y.; + ¢,

where €;; ~ N (0.02) 02 = lppy of,and py = Corr (Yij. Yirj) set to 0.05 for i # i’ in the 7" clus-
ter. With this parameter setting, the true marginal covariance matrix for the HMIM (11) has non-equal

blocks (see Appendix C).

4.2. Simulation results

Let /3 Ex denote the estimator for B in (12) when using V'i; = ¢y Ry as the diagonal blocks of V' (11),

with Rj; being an exchangeable correlation structure with parameter px, k = 1,2, 3. Similarly, let ﬁ I
denote the estimator for B when V ; consists of blocks of V; = ¢ Ri; with Ry; being the indepen-
dence correlation structure. From the 1000 datasets, the empirical power was calculated as the rate of
rejecting the overall test for comparing marginal effects B1x fork = 1,2, 3, 1.e., Hy : B11 = B12 = P13
versus H; : at least one differs, for both estimators. For a given data set, the null hypothesis was rejected
when the Wald test statistic 7' (Section 3.2) exceeded the critical value for a chi-squared distribution with
2 DOF. As shown in Figure 2, the empirical power of ﬁ Ex Was uniformly higher than ﬁ ; for diminish-
ing effects of FFR. Power was always greater than the significance level (0.05) because in the range of
a (0 < a < 1), true parameters of FFR were always distinguishable. The U-shape of the power function
within the range of a is due to the non-centrality parameter of the test statistic, 7', being a quadratic
function of a under the alternative hypothesis.

For the threshold effects of FFR, the empirical powers of both estimators 8 Ex and B 7 £0 to nominal
value (0.05) of Type I error rate when a = 1, or 11 = 12 = B13. When B s are distinguishable
or a goes to 0, the power for ﬂ Ex increases faster than for ﬂ ;- The crossing of the power curves of
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i) Diminishing effects of FFR ii) Threshold effects of FFR
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a(control the differences across parameters) a(control the differences across parameters)

Figure 2. Simulation results assessing power for the hypothesis test Ho : f11 = B12 = P13 for i) diminishing

and ii) threshold effects of fast food restaurants using hierarchical multiple informants model with exchangeable

(Ex.) and independence (Indep.) correlation structures. True parameter settings are 812 = af11, 13 = 0.8aB11
for diminishing effects and 12 = aB11, f13 = af11 for threshold effects.

the estimators may be due to Monte Carlo errors from the simulation. The Monte Carlo errors will be
negligible with an increased number of simulations.

Because of the large number of clusters, the empirical power from the overall test when Hy : 811 =
B12 = P13 is true preserved 5% Type I error rate. When the number of clusters is small, a bias corrected
sandwich estimator could be used [12].

4.3. Simulation conclusions

Accounting for correlation within clusters is important to better detect small differences between
marginal effects in an environmental study of clustered or hierarchical data. For instance, for thresh-
old and diminishing effects, this simulation shows that, if using ﬁ Ex 80% power was achieved when
a < 0.2. That is, to be statistically distinguishable, the association between the outcome and number of
FFR at the outer buffers needs to be at most 20% of the association with the number of FFR in the inner
buffer. However, note that if us1ng [3 1. 80% power could not be reached for any value of a.

The fact that power using ﬂ Ex 18 higher than ﬂ 7 can be explained by applying previous work on
asymptotic relative efficiency (ARE) of Mancl and Leroux [9]. According to their formula for ARE and
given that we have the conditions: (i) invariant covariates within clusters, (ii) unequal cluster sizes (CV
~ 1.1), (ii) large cluster size (J = 145.6), and (iv) intra-cluster correlation px ~ 0.05,k = 1,2, 3, the
ARE of ﬁ Ex O /§ 7 in the current data is about 0.55, meaning approximately 45% loss of efficiency by
employing the independence correlation structure even for small intra-cluster correlation and invariant
covariates within clusters.

This simulation study shows that an HMIM should be employed for formal testing of associations of
an outcome among correlated predictors in clustered or hierarchical data to increase power.

5. Data example

We used data for children who participated in the 2007 California physical fitness test (also known
as FitnessGram), which contains direct measures of children’s weight and height, among all children
attending 5th 7t apd oth grade, as well as other covariates such as age, sex, and race. Following prior
exclusion criteria, we used data on 926,018 children nested in 6,323 schools [13]. The location of FFR
and CS in California was purchased from InfoUSA, a commercial source. Geocodes for schools and
food stores were cross-referenced to obtain the counts of stores within 1/4, 1/2, and 3/4 mile of a school,
denoted by FFR;, FFR,, FFR3 and CS, CS;, CS3. We obtained data from the California Department of
Education’s databases, and the 2000 US Census to characterize the size and composition of the schools,
as well as the socio-economic conditions of the neighborhoods in which schools were located.
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Table I. Descriptive statistics for body mass index z-scores (BMIz)*, number of fast food restaurants and
convenience stores at three distances and their pairwise correlations.

Distance  Variable = Mean SD Corr. BMIz* FFR; FFR, FFR3 CS; CS, CS3

BMIz* 0.744 0374 BMIz* 1 0.04 0.09 0.13 0.13 020 0.25
1/4 mile FFR4 0.233  0.679 FFR1 1 0.55 0.36 025 023 0.21
1/2 mile FFR» 1.150  1.758 FFR» 1 0.73 0.19 038 037
3/4 mile FFR3 2709 2915 FFR3 1 0.15 037 0.50
1/4 mile CSy 0.178  0.473 CSy 1 0.53  0.39
1/2 mile CS, 0.774  1.083 CS, 1 0.76
3/4 mile CS3 1.697  1.845 CS3 1

BMIz* is the mean of child’s BMIz within schools.

Body mass index z-score was used as a continuous outcome. BMIz was derived by calculating body
mass index (weight in kg/ height in meters squared) and standardizing it according to an age and gender-
specific BMI distribution. In other words, BMIz indicates how much a child’s BMI differs from a
reference group of the same age and gender [14]. In contrast to BMI among adults, BMI among chil-
dren needs to be standardized to a reference population because they are still growing and their body
composition is changing as they grow [15] such that the meaning of BMI is not the same across age and
sex. Following prior analyses [13], we included individual-level and school-level covariates as adjust-
ment factors in models. The individual-level covariates are grade, age, gender, and race/ethnicity. The
school-level covariates are school’s racial composition, school’s neighborhood-level education, school’s
total enrollment, and percent of children enrolled in the free or reduced price meal program.

Descriptive statistics of child’s BMIz, the number of FFR and CS within distance 1/4, 1/2, and 3/4
miles are summarized in Table 1. The average number of children per school and its standard deviation
are 145.6 and 159.5, respectively, yielding the CV of 1.1.

We conducted two sets of analyses: (i) the comparison of two different features of food stores within
the same buffer, and (ii) the comparison of a food environment feature across several buffer sizes. In
both sets of analyses, we fitted an HMIM with both exchangeable and independence structures, and,
for comparison, also MIM without accounting for cluster correlation. Further, the individual-level and
school-level covariates described previously were included.

First, for the comparison of two different features of food stores within the same buffer, the counts of
FFR and CS were standardized to a mean of zero and a standard deviation of one because of potentially
different scales (e.g., an overall preponderance of one feature may be different compared with the other)
so that the coefficients are in standard deviation units. We use F’ fj, F3 'L F_,fj and C fj, 5 T C?fj to denote
the standardized number of FFR and CS within 1/4, 1/2, and 3/4 miles from the ;' h school, respectively,
and Z ,T/ to denote the vector of the individual-level and the school-level covariates or confounders. For
each of three buffers, k = 1, 2, 3, the fitted models are

E|BMIz|Fy. 2y | = B+ B P + 2B,

E [BMlzij|C,§j, Zij] = B + B CL; + Z1BG)-

The null hypotheses of interest are whether for each buffer, the association between the number of CS
and BMIz is the same as the association between the number of FFR and BMlz, i.e., Hy : ,Bles = ,BlckY
fork=1,2,3.

Table II provides the results for the comparison of FFR and CS within the same buffer size. For all
buffer sizes, the adjusted associations of CS with BMIz are significantly greater than those of FFR with
BMIz. For example, given the 1/4 mile buffer size, child’s BMIz increases 0.77 x 10~3 and 10.82x 1073
per one standard deviation increase of FFR (= 0.679) and CS (= 0.473), respectively, after adjusting
for individual and school factors. Using either an exchangeable correlation structure or the independence
structure, we reached the same substantive conclusion, although the point estimates are slightly different.

Second, to investigate how the association between the number of FFR (or CS) and BMIz varies across
several buffers, we fitted models E[BM 1 z;;|FFRyj, Z ;] = Box +Bix F FRx; +Z£ﬂ(k) fork =1,2,3
(similar for CS).
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Table II. Estimated associations* of two different features of the food environment (fast food restaurants vs.
convenience stores) within the same buffer on body mass index z-scores and hypotheses tests of equality of
the associations.

HMIM
Exchangeable Independence MIM

Distance Association™ or test Est. (SE) Est. (SE) Est. (SE)
1/4 mile Std. fast food (ﬂfl‘v) 0.77 (2.54) —0.11 (2.33) —0.11 (0.99)

Std. convenience stores (,BICf) 10.82 (2.44) 7.78 (2.40) 7.78 (1.12)

Ho:pE =p¢Y P = 0.001 P = 0.009 P < 0.0001
12mile  Std. fast food (ﬁfz) 196 (3.46) 275 (2.66) 275 (L.10)

Std. convenience stores (ﬂf;) 11.56 (2.88) 10.35 (2.72) 10.35 (1.14)

Ho: pEy =BG P = 0.003 P = 0.009 P < 0.0001
34mile  Std. fast food (,sg) 502 (3.36) 559 (2.73) 559 (1.15)

Std. convenience stores (ﬂlc;) 13.24 (3.00) 13.80 (2.82) 13.80 (1.18)

Ho:BE, =BG P = 0.005 P = 0.004 P < 0.0001

Associations are estimated on the basis of standardized number of fast food restaurants and convenience stores,
adjusting for individual-level and school-level covariates, using the proposed hierarchical multiple informants model
and the multiple informants model without accounting for within cluster correlation.

* Estimate and SE were multiplied by 103 to enhance readability.

The question of interest is whether the associations between the number of a given foods store type
(FFR or CS) varies across buffer sizes, i.e., the overall null hypothesis Hy : f11 = B12 = B13. Note that
the coefficients are expressed in units of BMIz per one unit increase in the number of stores, because the
same feature is being compared across buffers. The parameter estimates and the p-values for the overall
hypotheses tests are given in Table III.

The overall test for the associations of FFR across several buffers is not rejected (p = 0.895), mean-
ing the number of FFR within 1/4, 1/2, and 3/4 mile from a school do not have significantly different
associations with child’s BMIz. This implies that the most relevant buffer size is 3/4 mile from a school,
or potentially further. Child’s BMIz increases 1.72 x 10~3 per one FFR increment within 3/4 miles from
a school (p = 0.862, not reported in Table III). By employing either an exchangeable correlation matrix
or the independence structure, the same conclusion is derived.

Unlike the associations of FFR, the associations of CS across the buffers are significantly different
based on HMIM with the exchangeable correlation matrix (p = 0.004). On the basis of the result of
HMIM with the exchangeable correlation matrix, we performed subsequent hypothesis test as described
in Section 3.2. i.e., test the one-sided null hypothesis, Hy : B11 < B12. We rejected the one-sided null
hypothesis (p = 0.017) and concluded that the most relevant buffer size for the association between CS
and child’s BMIz is 1/4 mile from a school. Child’s BMIz increases 0.022 per one CS increment within
1/4 miles from a school after adjusting other covariates.

Note that in Tables II and III, the estimates and standard errors using an exchangeable correlation
matrix differ from those using the independence assumption. These changes result in test statistics
(e.g., a ratio of the difference between two regression parameters to its standard error) that are larger
when using the exchangeable correlation matrix and thus smaller p-values. For instance, in Table III the
overall null hypothesis yields a p-value = 0.118 when using the independence assumption within cluster
while an exchangeable assumption yielded a p—value = 0.004, highlighting the gain in efficiency when
using the exchangeable versus independence assumption.

Lastly, as shown in Tables II and Table III, the MIM without accounting for within-cluster correlation
provides the same point estimates of HMIM with the independence structure, but the failure to account
for hierarchical structures yields the underestimated standard errors, resulting in invalid inference.
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Table ITI. Estimated associations* between number of fast food restaurants (or convenience stores) and body
mass index z-scores across three distances and test of equality of association across distances.
HMIM
Exchangeable Independence MIM

Distance Association* or Test Est (SE) Est (SE) Est (SE)
1/4 mile Fast Food (B11) 1.14 (3.73) —0.17 (3.21) —0.17 (1.36)
1/2 mile Fast Food (B12) 1.12 (1.97) 1.56 (1.42) 1.56 (0.59)
3/4 mile Fast Food (B13) 1.72 (1.15) 1.92 (0.88) 1.92 (0.37)

Ho: B11 = P12 = P13 P =0.895 P=0.782 P =0.265
1/4 mile Convenience store (811) 22.89 (5.16) 16.47 4.77) 16.47 (2.23)
1/2 mile Convenience store (812) 10.67 (2.66) 9.55 (2.36) 9.55 (0.99)
3/4 mile Convenience store (813) 7.17 (1.62) 7.48 (1.44) 7.48 (0.60)

Ho: B11 = P12 = P13 P =0.004 P=0.118 P =<0.001

Associations are estimated from three different models, adjusting for individual-level and school-level covariates.
* Estimate and SE was multiplied by 103 to enhance readability

6. Discussion

We extended multiple informants methods to a hierarchical data setting to enable comparison of the
associations between multiple correlated predictors on a univariate outcome measured in clustered sets
of individuals. The method is based on a non-standard application of generalized estimating equations
and can be applied to settings where the outcome is continuous, count, or binary. In the simulation
study, we showed the improved power and efficiency of estimators based on using a block diagonal of
exchangeable correlation matrices instead of the working independence correlation structure. A practical
advantage of an HMIM is that it can be fitted using available GEE software. A marginal GEE model for
each multiple informant can be separately fitted, and then a joint empirical variance estimator can be cal-
culated to conduct hypothesis tests involving the marginal effects of predictors. We applied HMIMs to
examine how the association between the number of FRR (or CS) and child’s BMIz varies across several
buffers from a school and to compare the association of two different features of the food environment
(FFR vs. CS) with child’s BMIz. The overall hypothesis that the association between number of FFR
and child’s BMIz across several buffers is the same was not rejected, suggesting that the association of
the count of FFR up to 3/4 mile from a school does not differ significantly from the association at small
buffer sizes with accounting for individual-level and school-level covariates. In contrast, the association
of BMIz with the count of CS differs depending on distance from a school, with 1/4 mile being most
relevant buffer size. We also showed the association between the count of CS and BMIz is much stronger
compared with the association between FFR and BMIz.

We proposed a testing strategy that may be helpful in selecting an appropriate buffer size at which
to estimate the association between an environmental feature and an outcome. However, there are
some extreme cases where the hypothesis testing strategy may fail. For instance, if there are few or
no additional of food stores between distances di_; and dj, then the marginal association between
the number of food stores and child’s BMIz across buffers dy_; and dj; would likely to be the same
due to X;_;,; ~ Xi;. An alternative might be to define multiple informant covariates as the new
information not contained in the previous buffer, e.g., X; (§x) = Xx; — Xix—1,;, and fit a model
g(pij) = By + BTX; (81) + B5X, (82) + B5X,; (83). If B5 # O, then the buffer of size is d3 from
a school still provides information on child’s BMIz, and similarly for the other buffer sizes. However,
the interpretation of these coefficients is that of conditional associations, not marginal associations.

We also confirmed the underestimated variances of the estimators from the MIM because of the fail-
ure to incorporate hierarchical structures, which provide us invalid inference. The bootstrap method, as
pointed out by a referee, may be employed for valid inference. For instance, suppose that we have 5000
bootstrap estimates of regression parameters from the MIM. Then, the empirical variance/covariance of
the estimates can be used for hypothesis testing because the failure to account for hierarchical struc-
tures has little impact on the population point parameter estimates. The bootstrap method, however, may
require extensive computational time.

The main idea of MIM is very similar to seemingly unrelated regression methods (SUR) [16]. The
main difference between MIM and SUR is that in MIM the same outcome is replicated to form an
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outcome vector for the cluster with predictors changing from one replicate to another, whereas dif-
ferent outcomes form an outcome vector in SUR. Similarly, an HMIM is related to the model structure
described by Rochon [17]. The author employed SUR in a repeated measures setting for discrete and con-
tinuous outcome variables; nevertheless, here we extended MIM to hierarchical data to enable estimation
and testing of marginal effects of several correlated factors or multiple informants or predictors.

Possible extensions of this work may include estimating non-linear or semi-parametric associations
between multiple predictors and outcomes (e.g., penalized splines). Furthermore, the size of the buffer
may vary by whether schools are located in urban or rural locations, or other spatially varying features
of the environment. Hence, a future area of research can be to investigate the spatial variation of the
coefficients and/or tests presented in the present article.

The methods presented are motivated by school environment contributions to childhood obesity, yet
such methods apply more broadly to other environmental features and other types of nested outcome
data. For example, the proposed approach can be applied to study questions concerning the relative
influence of home versus work environment on adult health outcomes such as cardiovascular disease or
quality of life.
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