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A global logrank test for adaptive
treatment strategies based on
observational studies
Zhiguo Li,a*† Marcia Valenstein,b,c Paul Pfeifferb,c and
Dara Ganoczyc

In studying adaptive treatment strategies, a natural question that is of paramount interest is whether there is
any significant difference among all possible treatment strategies. When the outcome variable of interest is time-
to-event, we propose an inverse probability weighted logrank test for testing the equivalence of a fixed set of
pre-specified adaptive treatment strategies based on data from an observational study. The weights take into
account both the possible selection bias in an observational study and the fact that the same subject may be
consistent with more than one treatment strategy. The asymptotic distribution of the weighted logrank statistic
under the null hypothesis is obtained. We show that, in an observational study where the treatment selection
probabilities need to be estimated, the estimation of these probabilities does not have an effect on the asymptotic
distribution of the weighted logrank statistic, as long as the estimation of the parameters in the models for these
probabilities is

p
n-consistent. Finite sample performance of the test is assessed via a simulation study. We also

show in the simulation that the test can be pretty robust to misspecification of the models for the probabilities of
treatment selection. The method is applied to analyze data on antidepressant adherence time from an observa-
tional database maintained at the Department of Veterans Affairs’ Serious Mental Illness Treatment Research
and Evaluation Center. Copyright © 2013 John Wiley & Sons, Ltd.
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1. Introduction

In the process of treating chronic diseases or conditions, it is common that the treatment needs to be
adjusted over time according to accruing patient information. Typically, treatments are adjusted accor-
ding to the efficacy, side effects, burden, and compliance, with current and previous treatments. For
example, in treating attention deficit hyperactivity disorder, patients may start with low-dose medication
and continue the medication if the response to the initial treatment is good; otherwise, the physician
may increase the dosage of the medication or switch the patient to behavioral therapy. The aim of
adaptively adjusting treatment is to optimize patient outcomes. Therefore, it is of interest to know if
different rules to specify treatment over time result in different outcomes and, if so, then what the best
rule is. Formally, a specific rule to specify treatment at each decision point over time according to all
available historical information up to that point is called an adaptive treatment strategy (abbreviated
treatment strategy or strategy), also called a dynamic treatment regime or a treatment policy [1–4].
In the aforementioned example, one possible strategy is to start with low-dose medication and con-
tinue low-dose medication if patient responds well; otherwise, switch to behavioral therapy. In most of
the cases, there are only two decision points as in the attention deficit hyperactivity disorder example,
but sometimes there may be more than two decision points, for which an example (in treating depres-
sion) can be found in [5]. In that case, a treatment strategy involves multiple decisions over time. It
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is worth mentioning that adaptive treatment strategies can be loosely thought of as adaptive treatment
sequences. However, even when treated with the same adaptive treatment strategy, different subjects
may follow different treatment sequences, depending on pre-treatment characteristics and intermediate
responses to treatments. For example, in the treatment strategy given earlier, some patients (respon-
ders to the initial low-dose medication) are continuously treated with low-dose medication, while other
patients (nonresponders to the initial low-dose medication) are initially treated with low-dose medi-
cation and then switch to behavioral therapy, although both groups of patients are consistent with the
same adaptive treatment strategy. Hence, there is a drastic difference between an adaptive treatment
strategy and a pre-determined non-adaptive treatment sequence. Our focus here is on adaptive treatment
strategies, and methods for dealing with non-adaptive treatment sequences can be found, for example,
in [6, 7].

We are motivated by an observational study in antidepressant (AD) adherence in treating depression
in veterans in the U.S.A. In this study, data come from an observational database maintained at the
Department of Veteran Affairs’ Serious Mental Illness Treatment Research and Evaluation Center in
Ann Arbor, Michigan. This database has records of depressed veterans filling their prescribed ADs over
time, as well as patient demographic and comorbidity information. For any patient, the AD could be con-
tinued, switched, or discontinued over a certain period of time. Here, the decision about treatment switch
is made with a less structured conversation between the provider and the patient about symptom levels
and role functioning instead of a standardized scale. It is well known that in treating depression, one chal-
lenge is medication adherence, which can be limited by side effects or insufficient efficacy of common
ADs. Based on data from this database, an initial research question was whether there is any difference
in adherence time of the seven commonly prescribed ADs, where the adherence time is defined as the
time from initiating the AD to switching to another AD or discontinuation of the AD. A simple analysis
based on the data using Cox proportional hazards model showed that there is no significant difference
among the ADs. A further question raised by the physicians is whether there is any difference in adher-
ence time for different ‘combinations’ of the first ADs and the possible second ADs. Specifically, does
it matter which AD to start with, and if it is decided that the first AD is switched, does it matter which
AD to switch to? This is a typical problem of testing for the equivalence of all the adaptive treatment
strategies. Note that this is not a problem of comparing non-adaptive treatment sequences because the
decision of switching treatment is based on intermediate outcomes after initial treatment. Denote A1 to
be the initial AD, and denote A2 to be the second AD if there is a switch. Here, a strategy is defined
as follows: start with A1 and switch to A2 if it is decided that the initial AD needs to be switched;
otherwise, stay on A1. Here, the adherence time is time from initiating the first AD to the time of the
second AD switch. The standard logrank test is not applicable to testing the equivalence of all the strate-
gies based on observational data because of the following: (i) the treatments are not randomized, and
hence, selection bias resulting from the possibility that those who have worse outcomes may be more
likely to choose certain ADs is likely to exist; and (ii) a subject starting with, for example, AD A, who
did not have a switch of AD or discontinued the AD (in the study period), is consistent with any treat-
ment strategy with initial treatment A, which makes different comparison groups dependent. Therefore,
we need appropriate methods to adjust for the selection bias and to take into account the dependence
among strategies.

When the outcome variable is time-to-event, in order to test for the equivalence of all possible treat-
ment strategies based on data from observational studies, we generalize the standard logrank test (for
multiple groups) by using inverse probability weighting [8], where the weights can be regarded as the
inverse of the probability of being consistent with a certain strategy. If there are two decision points, then
this weight involves two probabilities, that is, the probability of selecting the first treatment and the con-
ditional probability of selecting the second treatment given the first treatment. This weight function takes
into account both the selection bias and the dependence among different groups mentioned earlier. Our
weight function is very similar to the weight function used in [9–11] for analyzing data from two-stage
stratified samples. However, in observational studies, the selection probabilities in the weight function
are unknown and thus have to be estimated from the observed data. We provide large sample distribution
for the test statistic to justify the usage of the weighted logrank test. As we will see, the estimation of the
probabilities does not have an effect on the asymptotic distribution of the weighted logrank statistic, as
long as the estimation of the parameters in the models for these probabilities is

p
n-consistent. Finally,

we argue that a doubly robust procedure to deal with the misspecification of the models for the selection
probabilities is practically not very helpful in our case, and we explore the robustness of the approach in
a sensitivity analysis in simulation.
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In order to compare different treatment strategies, investigators may also conduct randomized con-
trolled clinical trials, and in this scenario, the so-called sequential multiple assignment randomized trial
(SMART) has been the topic of many research articles. For example, [5, 12–15] considered the design
and sample size issues, and [16–21] focused on inference for treatment strategies based on data from
SMARTs, especially two-stage randomized trials, which is a special SMART with only two decision
points. Particularly, [21] considered the test for the equivalence of multiple treatment strategies, but it is
not applicable to observational studies. There is not much existing work as we are aware of in the setting
of observational studies. In [22], Murphy and collaborators proposed methodology for estimating the
mean response for a treatment strategy based on observational studies, but the outcome is assumed to be
uncensored. In [23, 24], the authors considered inference for observational studies where the outcome
can be censored but the focus is on estimation of the optimal treatment strategies. Our work is moti-
vated by an important practical problem raised by psychiatrists as described earlier. This work is novel
because there is no existing methodology that can find if there is any difference in a censored survival
outcome among multiple adaptive treatment strategies in the observational study setting. We propose the
appropriate methodology and establish the necessary theory for the statistical inference. A well-known
advantage of observational studies is their large sample sizes compared with clinical trials. For example,
in the VA database described earlier, there are records of 100,517 veterans taking AD medication. With
large sample sizes, we have sufficient power to detect any meaningful differences among the strategies.
As the number of treatment strategies may be large (usually at least four), testing such a hypothesis is
likely to be too ambitious in clinical trials, but usually, this should not be a problem for observational
studies.

The rest of the article is arranged as follows. In Section 2, we introduce the notation and assumptions.
In Section 3, we describe the weighted logrank test for observational studies and its asymptotic proper-
ties under the null hypothesis. We present results from a simulation study in Section 4, and the proposed
method is applied to analyze the AD adherence data in Section 5. Finally, we conclude with a discussion
in Section 6. The asymptotic distribution of the test statistic is derived in the Appendix.

2. Notation and assumptions

For simplicity, we assume that there are only two decision points. Denote the baseline covariate vec-
tor as X1. At the beginning, a subject chooses a treatment, denoted by A1, from J possible treatments
1; 2; : : : ; and J . If at some time point after the initial treatment and before � , where � is the study dura-
tion, it is decided that the treatment is switched, the second treatment, denoted by A2, can be chosen
from any of K possible treatments 1; 2; : : :, and K. Denote all the observed data upon this time point as
X2, which may includeX1,A1, and some measurements about response, side effects, and so on, afterA1
is initiated. In this setting, there are JK possible treatment strategies. We define the following strategy
as strategy ‘jk’: start with treatment A1 D j , and if it is decided to switch treatment, then switch to
A2 D k, for 1 6 j 6 J , 1 6 k 6 K. Figure 1 illustrates all treatment strategies in the case where
J D K D 2. From the figure, we note that the group of subjects who do not have a switch of treatment
are consistent with two different treatment strategies.

Figure 1. Illustration of treatment strategies in an observational study. C: choosing treatments; switch: decide to
switch treatment before time � ; no switch: no switch of treatment before � . The quoted data on the right are the

strategies that the sequences are consistent with.
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The hypothesis we test is on counterfactual times to event [25], which we now define. Let T �j be the
time-to-event if the subject is treated with initial treatment A1 D j , and let Sj be the time to treat-
ment switch under initial treatment A1 D j . Denote T �

jk
to be the time from switching treatment

to the time of event if the subject is initially treated with A1 D j and then switches to A2 D k,

which is only defined if R�j D I
�
Sj < T

�
j

�
D 1. Denote Tjk to be counterfactual time-to-event if

the subject follows strategy jk, for 1 6 j 6 J and 1 6 k 6 K. The variable Tjk is related to the

aforementioned variables by the relationship Tjk D
�
1�R�j

�
T �j CR

�
j

�
Sj C T

�
jk

�
: All observed data

without censoring consist of .X1; A1; R�; R�A2; R�X2; R�S; T /, where R� D R�A1 , S D SA1 , and

T D
�
1�R�A1

�
T �A1 C R

�
A1

�
SA1 C T

�
A1A2

�
. If the data are subject to random censoring and C is the

censoring time, then all the observed data are .X1; A1; X2; R; RA2; RX2; V; U /, where U D T ^C ,
V D S ^U , and R D I .S 6 U/ is the indicator for switching treatment. Suppose the sample size is n.
Then the observed data for all n subjects are .X1i ; A1i ; X2i ; Ri ; RiA2i ; RiX2i ; Vi ; Ui /, 1 6 i 6 n,
which are n i.i.d. copies of .X1; A1; X2; R; RA2; RX2; V; U /. As usual, define the counting process
N.t/ D I.T 6 t; T 6 C/ and the ‘at-risk’ process Y.t/ D I.T > t; C > t /. Denote ƒjk.t/ to be the
cumulative hazard function of Tjk , 16 j 6 J; 16 k 6K. Then the hypothesis to be tested is

H0 Wƒjk.t/�ƒ.t/; 16 j 6 J; 16 k 6K;

where ƒ.t/ is the common cumulative hazard function under H0.
Suppose the probability of choosing the initial treatment A1 D j depends only on observed baseline

covariate vectorX1 and isP .A1 D j jX1/D pj .X1/, 16 j 6 J . Suppose that the probability of choos-
ing second treatment A2 D k depends only on X2 and is denoted by P .A2 D kjX2; RD 1/D qk .X2/,
1 6 k 6 K. Note that X2 contains A1, and hence, the choice of second-stage treatment may depend on
the first treatment. We assume that pj .X1/ > 0 and qk.X2/ > 0 for all X1 and X2, for 1 6 j 6 J and
16 k 6K. We make the consistency assumption [26] that for a subject who actually followed treatment
strategy jk, the observed time-to-event of this subject is equal to its counterfactual time-to-event under
strategy jk, for all strategies. We also assume that there are no unmeasured confounders, which means
that the treatment selection at each stage is independent of the potential times to event conditioning on
the covariate history and treatment history [26]. Finally, as usual, the censoring time C is assumed to be
independent of the time-to-event T .

3. Weighted logrank test for observational studies

The standard logrank test for multiple groups is described in [27]. Suppose there are pC 1 groups to be
tested, indexed by j D 0; 1; : : : ; p. The i th individual in the j th group is indexed by j i , 1 6 i 6 nj ,
and 0 6 j 6 p. The total sample size is n D

Pp
jD0 nj . The null hypothesis is QH0 W ƒj .u/ � ƒ.u/,

06 j 6 p, whereƒj is the cumulative hazard function for the time-to-event for the j th group, andƒ is
the common cumulative hazard function under QH0. Let Yj i .t/ and Nj i .t/ be the at-risk process and the
counting process for the time-to-event of interest, respectively, for the i th subject in the j th group. Let
k� denote summation over subjects in the kth group, and let the double dots (��) denote summation over
all subjects. Define

dj D

pX
kD0

Z �

0

�
ıjk �

Yj �.u/

Y��.u/

�
dNk�.u/; 06 j 6 p;

where ıjk D I.j D k/, and let d D .d1; : : : ; dp/T . Let OD be the estimate of covariance matrix of d (see
[27], page 171 for details). The logrank statistic for testing QH0 is then defined as U D dT OD�1d: It can
be shown that the asymptotic distribution of U under QH0 is �2p .

For testing the equivalence of all treatment strategies based on observational data, our test is based on
a similar statistic as mentioned earlier, but we use inverse probability weighting [8] to adjust for poten-
tial selection bias. Weights in a simpler form are also needed for SMARTs (see, for example, [15, 21]).
If the probabilities pj .X1/ and qk.X2/ for treatment selection are known, the weight function used for
strategy jk is defined as

Wjk D
I .A1 D j /

pj .X1/

�
1�RC

I.A2 D k/

qk.X2/
R

�
; (1)
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for 1 6 j 6 J; 1 6 k 6K. For a given value of R, the weight is the inverse probability that the subject
is consistent with strategy jk. In practice, the probabilities pj .X/ and qk.X/ are unknown in observa-
tional studies, so we estimate them first, usually based on some parametric models pj .X1/D pj .X1; ˇ/

and qk.X2/ D qk.X2; �/, by estimating the unknown (finite dimensional) parameters � D
�
ˇT ; �T

�T
.

Denoting O� to be the estimate of � , we use the following estimated weight:

Wjk. O�/D
I .A1 D j /

pj .X1; Ǒ/

�
1�RC

I .A2 D k/

qk .X2; O�/
R

�
;

for strategy jk, for 1 6 j 6 J and 1 6 k 6 K. By using this weight function, we account not only
for the potential selection bias but also the fact that a single subject may be consistent with two or more
than two strategies. If this happens, then for this subject, the weight function is nonzero for all strategies
that this subject is consistent with. This weight function is constant and does not depend on the time. A
time-dependent weight that is more efficient was proposed by [17] and has been used by other authors
thereafter. This weight function is defined as

Wjk.t I O�/D
I .A1 D j /

pj .X1; Ǒ/

�
1�R.t/C

I .A2 D k/

qk .X2; O�/
R.t/

�
;

where R.t/D I.S 6min.t; T; C //. The reason that this weight is more efficient is discussed in [15,17].
For simplicity of presentation, in this section, we assume that the constant weight is used.

It is necessary to point out that, although we assume that there are two decision points (two stages),
our method generalizes to multiple stages straightforwardly, as also pointed out by [15]. If there are
multiple stages, the only difference is in the weight function. Instead of the inverse of the multiplication
of two probabilities, when there are multiple stages, the weight function would be the inverse of the
multiplication of multiple probabilities, one for the selection of treatment in each stage. We focus on the
two-stage case because in most practical situations only two stages are considered.

Let ıjk;j 0k0 D I.j D j 0; k D k0/. Similar as the dj s defined earlier, for strategy jk, we define

Ljk D

JX
j 0D1

KX
k0D1

Z �

0

"
ıjk;j 0k0 �

ONYWjk.u/

ONYW .u/

#
d ONNWj 0k0.u/;

where ONYWjk.u/ D
Pn
iD1Wjk;i .

O�/Yi .u/=n, ONNWjk.u/ D
Pn
iD1Wjk;i .

O�/Ni .u/=n, for 1 6 j 6 J and

16 k 6K, and ONYW .u/D
PJ
jD1

PK
kD1
ONYWjk.u/. Let

LD .L11; : : : ; L1K ; L21; : : : ; LJK�1/
T :

To state the asymptotic distribution for L, we need some additional notation. Define M.t/ D N.t/ �R t
0 Y.u/dƒ.u/. Denote �0 to be the true value of � . Let l D .l11; : : : ; l1K ; l21; : : : ; lJK�1/

T , where

ljk D

JX
j 0D1

KX
k0D1

�
ıjk;j 0k0 �

1

JK

	
Wj 0k0.�0/

Z �

0

dM.u/:

The following theorem gives the asymptotic distribution of
p
nL under H0. The proof of the theorem is

deferred to the Appendix.

Theorem 1
Assume that the probabilities pj .X1; ˇ/ and qk .X2; �/ are bounded away from 0, for 1 6 j 6 J and

1 6 k 6 K. Also assume that
p
n
�
O� � �0

�
D Op.1/. Then

p
nL!d N.0;†/ under H0 , as n!1,

where †D var.l/.
From the proof of the theorem, it is easy to see that, if the true weights Wjk.�0/ were used in con-

structing L, the asymptotic distribution of
p
nL underH0 would still be N.0;†/. Hence, the estimation
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of � does not affect the asymptotic behavior ofL, as long as
p
n
�
O� � �0

�
DOp.1/. In order to construct

the test statistic, we need to estimate the covariance matrix †. Denote

Oljk;i D

JX
j 0D1

KX
k0D1

�
ıjk;j 0k0 �

1

JK

	
Wj 0k0;i . O�/

Z �

0

n
dNi .u/� Yi .u/d Oƒ.u/

o
;

where Oƒ.t/ is obtained (under H0) from all subjects by the usual Nelson–Aalen estimator. Let Oli D�
Ol11;i ; : : : ; Ol1K;i ; Ol21;i ; : : : ; OlJK�1;i

�T
, 1 6 i 6 n. Then the covariance matrix † can be consistently

estimated by O†D
Pn
iD1
Oli Ol
T
i =n: Now, the test statistic for H0 is defined as

T D LT O†�1L:

By Theorem 1, under H0, nT converges to �2JK�1 in distribution as n!1. Under significance level
˛, we reject H0 when T > �2JK�1.˛/, where �2JK�1.˛/ is the upper 100� ˛ quantile of the �2JK�1 dis-
tribution. Note that the test of the equivalence of any subset of all the treatment strategies (for example,
two strategies) follows directly from the same idea.

Double robustness is often considered in similar circumstances when the assumed model for the esti-
mated probabilities may not be correct [28]. In a missing data problem, a doubly robust estimator is
asymptotically unbiased when either the assumed model for the mean outcome is correct or the model
for the missing probability is correct. In other words, the statistic is unbiased even when the assumed
probability model is incorrect as long as the assumed model for the mean outcome is correct. A simi-
lar property also holds for our inverse probability weighted logrank statistic described earlier. However,
here, what we need is not the correct model for the mean outcome (of the failure time T ); instead,
we need the correct model for the mean of a complicated quantity involving a stochastic integral with
respect to the counting process of the failure time (the details of which are omitted here). As the mean
of the this complicated quantity does not have a simple and intuitive interpretation as the mean outcome
of interest, it is difficult to have a correct model for this quantity. Consequently, it is not very helpful
to investigate the double robustness of the aforementioned weighted logrank statistic. Nevertheless, we
can perform a sensitivity analysis to assess the robustness of the inverse probability weighted logrank
test to the estimated weights. In the sensitivity analysis, we intentionally leave out some of the important
covariates in fitting the probabilities of treatment selection and check the resulting significance level of
the test procedure to see the extent to which it is affected when these covariates are left out.

4. Simulation

We carry out a Monte Carlo simulation study to assess the finite sample performance of the weighted
logrank test. For simplicity, we assume J DK D 2.

Assume that the baseline covariate vector is two dimensional, X1 D .X11; X12/
T , X11 follows a

Bernoulli distribution with success probability 0:3, and X12 follows a N.0; 1/ distribution truncated
at �1 and 1 to make it bounded. Given X1, the probability of choosing A1 D 1 as the initial treat-

ment is P .A1 D 1jX1/ D eˇ
TX1=

�
1C eˇ

TX1

�
, where ˇ D .0:5; 0:5/T . If it is decided that the

initial treatment is switched (R D 1), then the probability of choosing k as the second treatment is

P .A2 D 1jX2; RD 1/ D e�
TX1=

�
1C e�

TX1

�
, where � D .1;�0:8/. We first generate the counter-

factual times to event
�
Sj ; T

�
j ; T

�
j1; T

�
j2

�
, j D 1; 2. As these variables are likely to be dependent, we

generate them from a Frank copula model [29] with association parameter 0.5 and 0.7 for j D 1; 2,
respectively, which makes the components positively associated. The marginal distributions of all the
components are exponential distributions with parameters assuring that H0 holds. The dependence of
these times on X1 is enforced by a proportional hazards model. The censoring time C is assumed to
be independent of all other variables and be uniform in .0; 100/. Assuming � D 35, these parameters
generate about 30% censored subjects. The sample sizes we consider are nD 100, 500, 1000, 2000, and
10,000, which are reasonable in observational studies.

Under these scenarios, we generate observed data from the aforementioned generative model. Then
we fit linear logistic models for pj .X1/ and qk.X2/ using covariates X1 and X2, respectively, obtain
the fitted values of these functions, and calculate the (estimated) weights, including both the constant

Copyright © 2013 John Wiley & Sons, Ltd. Statist. Med. 2014, 33 760–771
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Table I. Empirical significance levels of the weighted logrank test and unweighted logrank test in observa-
tional studies in simulation.

Method nD 100 nD 500 nD 1000 nD 2000 nD 10; 000

Weighted 0.038 0.042 0.047 0.045 0.044
Unweighted 0.243 0.478 0.882 0.990 1
MIS1� 0.031 0.059 0.041 0.040 0.055
MIS2� 0.037 0.039 0.045 0.059 0.064
�Using the weighted method but leaving the first covariate out in fitting the probabilities of selecting treatments.
�Using the weighted method but leaving the second covariate out in fitting the probabilities of selecting treatments.

Table II. Comparison of the empirical covariance matrix of the weighted logrank statistic L D

.L11; L12; L21/
T with the mean of its estimated covariance matrices in the simulation (nD 500).

Empirical covariance matrix Mean of the estimated covariance matrices

0.602 �0.035 �0.347 0.641 �0.064 �0.332
�0.035 0.545 �0.268 �0.064 0.583 �0.303
�0.347 �0.268 0.604 �0.332 �0.303 0.651

weights and time-dependent weights, for all strategies for all subjects. Finally, L and O† are calculated to
form the test statistics. This procedure is repeated 1000 times, and the observed significance level, that
is, the percent of times H0 is rejected, is obtained. In the simulation, we also compare the results of the
weighted logrank test with the test without weight (equivalently, assume pj .X1/ � 1 and qk.X2/ � 1
for all j and k in the weight functions. In addition, we check the robustness of the test procedure by
intentionally leaving out one of the covariates X11 and X12 in fitting the logit models to estimate the
probabilities of treatment selection. We obtain empirical significance levels when the covariate is left
out.

The results of the simulation are shown in Tables I and II. We see that the empirical significance levels
of the weighted logrank test are close to the desired 5% level regardless of the sample size. The com-
ponents of the empirical covariance matrix of the statistic L are also close to the mean of the estimated
covariance matrix. However, if the logrank test is used without the inverse probability weighting, the
observed significance level can be far away from the desired level. The last two rows of Table I show
that the empirical significance level of the test is not affected much if one of the two covariates X11 and
X12 is left out in fitting the logit models for the probabilities of treatment selection. Results of additional
simulation, which are not shown here, indicate that the empirical significance level is affected more,
especially in very large samples, when X12 is left out in the model if X12 has a wider range of values,
for example, when it has aN.0; 1/ distribution truncated at �2 and 2. Therefore, empirically, we see that
our procedure is robust at least when important covariates that are left out have relatively narrow ranges.
The results of using time-dependent weights, which are not shown here, indicate that the observed sig-
nificance levels are very close to those with constant weights. Finally, we obtained simulation results in
a case where the other assumptions are similar but P .A2 D 1jX2; RD 1/ D e�X11=

�
1C e�X11

�
, that

is, the selection of the second treatment only depends on X11. The results are very similar to those in
Table I and are thus omitted.

5. Analysis of antidepressant adherence data

The database at the Department of Veteran Affairs’ Serious Mental Illness Treatment Research and Eval-
uation Center has records of depressed veterans filling their prescribed ADs over time, which include
the dates of AD fill, the amount, and AD names. According to these data, we obtain for each subject the
adherence time, that is, time on drug before the second AD switch or discontinuation of the second AD.
As guidelines usually recommend treatment with ADs for at least 6 months, the study duration is set to
be � D 6. Specifically, the adherence time is calculated as follows. If a patient had a second AD switch in
the 6-month period, the adherence time is time from initiating the first AD to the time of the second AD
switch. For a patient who only had one AD switch in the 6-month period, the adherence time is time from
initiating the first AD to the time of discontinuation of the second AD if the second AD was discontinued
before 6 months, and it is censored at 6 months if the second AD was continued beyond 6 months. For a
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Table III. Choices of the first and second ADs (if there was a switch) among the 100,517 patients.

Second AD

Bupropion Citalopram Fluoxetine Mirtazapine Paraxetine Sertraline Venlafaxin NA

First AD Bupropion 0 574 215 174 472 159 154 10839
Citalopram 1338 0 603 791 685 571 479 32231
Fluoxetine 480 706 0 261 392 184 156 13781
Mirtazapine 199 417 115 0 378 127 96 6118
Paraxetine 240 289 88 132 0 112 103 6615
Sertraline 434 529 124 256 270 0 161 13043
Venlafaxin 216 202 67 124 79 66 0 4672

NA, no switch of treatment.

patient who did not have AD switch in the 6-month period, the adherence time is time from initiating the
first AD to the time of discontinuation of the first AD if the first AD was discontinued before 6 months,
and it is censored at 6 months if the first AD was continued beyond the 6 months. In addition to this, the
adherence time may be censored by death if the patient died in 6 months after initiating the first AD. We
are interested in knowing if there is any difference in adherence time if the patient is treated by different
treatment strategies, which are defined in Section 1. All of the patients started with one of seven ADs,
which include bupropion, citalopram, fluoxetine, mirtazapine, paraxetine, sertraline, and venlafaxin. For
patients who had at least one switch within 6 months, most of them switched to one of the remaining
six ADs other than the first one, but a small proportion of them switched to one of three ADs that are
not one of the seven initial ADs. However, as the proportion of subjects who switched to the other three
ADs is very small (less than 1%), they are excluded in our analysis. Table III lists the number of patients
who started each of the seven ADs and the number of patients who switched to each of the remaining six
ADs or did not have a switch. The total number of subjects included in our analysis is 100,517. There
are a total number of 7 � 6 D 42 strategies to be compared. The database also includes the following
demographic variables: date of birth, gender, race, ethnicity, and data for comorbidities including major
depression, personality disorder, alcohol abuse, and drug abuse.

Based on these data, we first fit a multicategory linear logistic model for the choice of the first AD,
including all the demographic and comorbidity variables as covariates, based on which we calculate
the fitted probabilities of choosing each of the seven ADs as the initial drug. Next, we fit a second lin-
ear logistic model for the choice of the second AD for those who switched AD in the 6-month period,
including all the aforementioned variables as well as the first AD as covariates. Based on this, the fitted
probabilities for choosing each of the seven ADs as the second AD are calculated. Then we calculate
the weights associated with each of the 42 strategies for each subject. Finally, we obtain the weighted
logrank test statistic. The test statistic is 7.55, which yields a p value close to 1 if compared with a �2

distribution with 41 degrees of freedom. We conclude that there is no significant difference among the
42 treatment strategies. An analysis using time-dependent weights yields similar results. There are two
possibilities for this: (i) it really does not matter which treatment to start with and which treatment to
switch to even for those who decided to switch treatment; or (ii) it does matter which treatment to switch
to for those who decided to switch treatment, but as most of subjects did not switch treatment, it does
not matter which treatment strategy a subject takes in the population level.

Finally, we make a cautionary note in making the conclusion. We showed by simulation that our test is
robust to misspecification of the treatment selection probabilities to some extent, but we cannot exclude
the possibility that the test is not robust when the probabilities are highly misspecified. This may happen
when covariates that influence the selection probabilities with wide ranges are not included in the models
for these probabilities. For example, the depression score at visit was not collected in our database and
thus was not included in the probability model. As the depression score is likely a variable that influences
the decision on AD selection and does not have a narrow range, exclusion of it may lead to erroneous
conclusion. Fortunately, as our result is highly insignificant, it is unlikely that missing some covariates
can make such a big difference that the result becomes significant. In practice, what one can do is to try
the best to include all possible variables that potentially influence the treatment selection. As the goal is
to fit the probabilities for the observed subjects as well as possible, as in the application of the propen-
sity score method, overfitting is not a problem here. Moreover, physicians play an important role in this
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aspect as they usually have a good idea about the potential factors that affect treatment selection. If it
is ascertained that all important variables are included, then we are confident in making the conclusion.
Otherwise, caution should be taken, especially when the result is borderline significant or insignificant.

6. Discussion

When faced with multiple adaptive treatment strategies, a natural question is whether all the strategies
are equivalent. Motivated by a real example in psychiatric studies, we present a weighted logrank test for
testing the equivalence of all possible adaptive treatment strategies in an observational study. The prob-
abilities in the weight function need to be estimated from the observed data. However, the estimation of
these probabilities does not affect the asymptotic behavior of the weighted logrank statistic, as long as
estimation of the parameters in the parametric models for these probabilities is

p
n-consistent. A doubly

robust procedure is not very helpful in this scenario because we need to correctly specify the mean of a
stochastic integral, which is difficult because it does not have a simple and intuitive interpretation. In a
simulation study, we show that the test is pretty robust when important covariates are left out in fitting
the probabilities of treatment selection when the range of these covariates is relatively narrow.

Appropriate test of all treatment strategies requires the positivity assumption described in Section 2.
When the positivity assumption does not hold, that is, the data for some of the treatment strategies are
sparse, care needs to be taken when using the proposed approach to compare all the strategies. The esti-
mation of weights associated with strategies with sparse data are likely to be unstable. In this case, one
may want to exclude those strategies with sparse data in the test.

In our study design, we assume the treatment is switched in the second stage if ‘it is decided that
the treatment needs to be switched’. This formulation is quite general and includes various possibilities.
There are many reasons to decide that the treatment needs to be switched, which include nonresponse
(efficacy), serious side effects, high burden, and so on. Also, it does not matter who makes the decision
for treatment switch. For example, it could be made by the physician or the patient or by both. More-
over, ‘switch’ can be ‘switch to a different treatment’ or ‘stay on the same treatment but with dose or
intensity change’. Our method applies to all types of observational studies, as long as we construct the
appropriate weight functions for the particular design. A difference between SMARTs and observational
studies is in the timing of treatment switch. In SMARTs, the treatment switch usually occurs at pre-
specified time points (e.g., at 3 months after initial treatment when the response nor nonresponse status
is checked) or can only occur at finite time points (e.g., during scheduled visits), while in observational
studies the treatment may be switched at any time. This difference does not affect the construction of the
weight function, as from (1) the weight only depends on the treatment switch indicator but not the timing
of switch.

If the test yields an insignificant result as in the earlier AD adherence example, then there is no neces-
sity for further exploration. However, if the test yields a significant result, then the most interesting
question in the next step is to find the best strategy or a set of best strategies. The statistical selection
method [30] can be used for this purpose. The selection based on (weighted) logrank statistic is not
straightforward, and this will be explored in future research.

Appendix

Here, we provide a sketch of the derivation of asymptotic distribution of the proposed weighted logrank
statistic given in Theorem 1. In the following, we always assume that H0 holds, and assume constant
weights are used for simplicity of presentation.

Define
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Denote PW .�/D @W.�/=@� and Prjk;n.u; �/D @rjk;n.u; �/=@� . By Taylor expansion, we have, for some
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By the proof of Theorem 1 in [17], we have
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This, combined with (3) and the law of large numbers, yields An D op.1/. Similar as the preceding
equation, we can show that supu2Œ0;�� j Prjk;n.u; �0/ � Prjk;0.u; �0/j D op.1/ for a deterministic function
Prjk;0.u; �0/. Consequently,
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and hence Cn D op
�
n�1=2

�
. As we assume
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n. O� � �0/ D Op.1/, by the preceding results and (2),

we obtain
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Now, we define the classes of functions
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op.1/ and the equicontinuity property of empirical processes [31], we have
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This completes the proof of the theorem.

Remark 1
From this proof, we can see that the fact that the estimation of � does not have an effect on the asymp-
totic distribution on

p
nL is due to (5), which is a result of (4). If (5) did not hold, then we would have

an asymptotic representation
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, and the asymptotic distribution of

p
nL would then be

influenced by that of
p
n
�
O� � �0

�
.
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