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We investigate the comovement among Case-Shiller Home Price Indices for
14 metropolitan areas between 1992 and 2008. We define the portion of this
comovement deemed as fundamental (excessive) as the covariation that can
(cannot) be attributed to common fundamental factors directly influencing real
estate prices. We find that i) comovement among these markets considerably
increased over the sample period, especially in the late 1990s; ii) this increase
is mostly attributable to underlying systematic real and financial factors, con-
sistent with a greater fundamental integration of those markets; and iii) excess
comovement is a less important factor than commonly believed. We discuss
the implications of these results for the evolution of U.S. real estate prices over
the last two decades and the ongoing credit crisis.

The recent, widespread collapse of residential real estate prices in most
metropolitan areas across the United States has been the subject of an im-
mense amount of public outcry, policy debate and academic scrutiny (e.g.,
see Acharya and Richardson 2009, Brunnermeier 2009). In many publications,
the housing crisis has been compared to the dot.com bubble.1 For instance,
in July of 2007 Robert Shiller observed that housing prices were over-valued
throughout the nation and a correction could cost trillions of dollars.2 Numer-
ous websites such as housingdoom.com have emerged adding to the housing
bubble mania. Despite these passionate outpourings, relatively little research
has been done to measure and explain the level and dynamics of U.S. real
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1For example the popular web-based encyclopedia Wikipedia reports in the entry for
(en.wikipedia.org/wiki/United States housing bubble) that “[t]he housing bubble in the
U.S. was caused by historically low interest rates, poor lending standards, and a mania
for purchasing houses. This bubble is related to the stock market or dot-com bubble of
the 1990s.”
2“Subprime Shockwave,” Bloomberg News, July 19, 2007.
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estate price comovement in correspondence with that crisis. This is however
an issue of increasing importance for understanding the nearly contempora-
neous, ongoing turmoil in financial and credit markets since, for instance, the
rating and valuation of the mortgage-backed securities currently held by many
investors and financial institutions are crucially sensitive to whether the under-
lying portfolios of residential and/or commercial real estate loans were and still
are well-diversified (e.g., Sanders 2008, Gabriel, Quigley and Rosenthal 2009).

This study contributes to fill this gap by performing a comprehensive empirical
investigation of the process of price co-formation in the U.S. residential real
estate market over the last two decades. We use a dataset of Case-Shiller Home
Price Indices measuring the path of residential housing prices in 14 major U.S.
markets. We then decompose the observed raw comovement among these in-
dices into fundamental covariation—which we define to be covariation arising
from common fundamental pricing factors (such as mortgage rates, stock mar-
ket returns, etc.)—and excess covariation—which we define as the amount of
covariation beyond this fundamental level—and analyze their properties. In the
recent literature on financial crises, the degree of excess correlation is used as a
measure of financial contagion. Importantly, our empirical strategy allows for
both structural changes in the fundamental interdependence among residential
housing price changes (i.e., time-varying factor sensitivities) and dynamics of
their moments (i.e., nonstationarity). Measuring the extent and dynamics of
fundamental and excess comovement among U.S. residential real estate prices
(as well as their time-varying interaction), while explicitly accounting for those
prices’ evolving relationship with fundamental and non-fundamental sources
of risk, constitutes the main methodological contribution of our research.

This approach yields several novel insights. First, our analysis indicates that
unconditional, observed raw comovement in U.S. residential real estate prices
rose significantly between 1992 and 2008, more than doubling by the end of
the sample period. Our analysis also suggests that much of that increase stems
from fundamental correlation; much less can be attributed to excess correlation.
This inference is robust to various estimation procedures and statistical tests.
In particular, we show that housing price fluctuations in geographically diverse
U.S. metropolitan areas appear to be primarily driven by common fundamental
fluctuations in mortgage rates, realized and expected inflation as well as GDP
growth. Secondly, despite economically significant heterogeneity in the relation
between raw and excess comovement across those markets, the magnitude and
dynamics of the former appear to be only weakly related to those of the latter.
Accordingly, we find that observed raw comovement among U.S. residential
real estate prices experiences economically and statistically significant struc-
tural breaks upward over the sample period. All of these breaks occur in the
late 1990s, well before most commentators were calling attention to residential
price dynamics in the U.S., and cannot be explained by an increase in excess
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comovement. Thirdly, observed raw comovement of prices of single-home res-
idences in the U.S. is to a large extent, yet not exclusively, driven by underlying
systematic sources of risk in real, financial and real estate markets.

Broadly interpreted, our evidence indicates that the increase in observed raw
comovement among prices of metropolitan U.S. residential real estate markets
over the last two decades is (economically and statistically) significant, per-
sistent and consistent with a greater fundamental integration of these markets.
As such, that increase may have also played a role in the relatively poorer
performance of diversified mortgage lenders in the U.S. during the 2007-2008
credit crisis—as reported in some recent studies (e.g., Loutskina and Strahan
2011, Purnanandam 2011)—by making their loan portfolios more sensitive to
real estate price fluctuations and thus weakening their overall financial positions
more significantly during the accompanying economic downturn, i.e., precisely
when diversification benefits were most necessary.

As mentioned above, our study contributes to a growing literature investigating
the covariation of U.S. real estate prices. A comprehensive survey is beyond
the scope of this article. For example, at the micro level, Ioannides (2002),
Immergluck and Smith (2006), Harding, Rosenblatt and Yao (2008) and Lin,
Rosenblatt and Yao (2009) find evidence of non-fundamental spillover effects
of distressed, foreclosed or vacant single-family homes in the U.S. on the value
of non-distressed, non-vacant nearby properties between 1989 and 2007. At the
macro level, Redfearn (1999) explores the role of industrial similarities in ex-
plaining the intermetropolitan correlation of quarterly housing returns between
1975 and 1996; Chiang (2010) reports that the comovement of monthly equity
returns of Real Estate Investment Trusts (REITs) within the same property
type—i.e., of REITs sensitive to common property-type information shocks—
has increased between 1980 and 2004.

Our article is closest to two sets of contemporaneous studies. Within the former,
Miao, Ramchander and Simpson (2011) and Zhu, Füss and Rottke (2013) find
evidence of significant volatility interdependence in the U.S. residential real
estate market in the last two decades. Volatility dynamics have been shown
to bias the estimation of measures of return interdependence (e.g., Forbes and
Rigobon 2002). Our statistical procedure is designed to control for those dy-
namics and their effects on levels and dynamics of residential real estate return
correlations. Within the latter, Saks (2008) finds that national economic condi-
tions can explain a “non-trivial” portion of both new construction and annual
changes in house prices between 1981 and 2006. Yunus and Swanson (2013)
find significantly greater cointegration among broad U.S. housing regions since
the bursting of the housing bubble in 2006. They interpret this evidence as con-
sistent with the notion that financial crises are typically accompanied by greater,
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possibly “contagious” cross-market linkages. Our analysis indicates that, once
we control for dynamics in volatility and factor loadings (also affected by peri-
ods of turmoil), the interdependence among U.S. residential real estate returns
increased much earlier, yet unlikely so because of contagion.

The outline of this study is as follows. The second section describes our data
and our empirical methodology. The third section presents and interprets our
results. The fourth section concludes.

Measuring Price Comovement

There is an extensive literature studying the comovement among asset prices
in financial markets.3 The objective of this study is to assess the extent and
dynamics of fundamental and excess comovement in real asset markets. In
particular, we focus on the market for single-family residences in the U.S. Fol-
lowing that aforementioned literature (e.g., Bekaert, Hodrick and Zhang 2009),
we define excess comovement in this market as comovement among housing
prices beyond the degree that is justified by economic fundamentals—i.e., by
factors affecting the long-term valuation of those residences—and contagion
as the circumstance of its occurrence. In this section we amend the multi-step
methodology of Kallberg and Pasquariello (2008) to estimate the degree of
intertemporal fundamental and excess comovement among a set of K real asset
prices.

Housing Price Data

The basic dataset we use in this paper consists of monthly returns for K = 14
S&P/Case-Shiller seasonally adjusted Home Price Indices (CSIs, rkt) between
January 1987 and December 2008. These indices correspond to 14 individ-
ual metropolitan markets: Los Angeles, San Diego, San Francisco, Denver,
Washington (DC), Miami, Tampa (FL), Chicago, Boston, Charlotte (NC), Las
Vegas, New York, Cleveland (OH) and Portland (OR).4

3For example, see King and Wadhwani (1990), Pindyck and Rotemberg (1990, 1993),
Karolyi and Stulz (1996), Fleming, Kirby and Ostdiek (1998), Barberis, Shleifer and
Wurgler (2005), Bekaert, Harvey and Ng (2005), Kallberg, Liu and Pasquariello (2005)
and Bekaert, Hodrick and Zhang (2009).
4Virtually identical inference ensues from employing non-seasonally adjusted CSI re-
turns or from including six additional metropolitan areas (Atlanta, Dallas, Detroit,
Minneapolis, Phoenix and Seattle) whose Home Price Indices are unavailable over
earlier portions of our sample period 1987-2008.
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CSI returns measure nominal price changes of individual single-family
residences in the U.S. over time.5 S&P/Case-Shiller collects data on all
properties that have been traded more than once in each of those metropolitan
areas from local deed recording offices. All resulting price changes between
two arms-length sales of the same single-family home are then filtered and
weighted to reflect the average change in market prices for constant-quality
homes in a geographic market. For instance, CSIs do not include sales of
properties that may have undergone substantial physical changes in proximity
of the recorded transaction and/or underweight (but do not eliminate) extreme
price changes. S&P/Case-Shiller also employs an interval weighting procedure
to account for the greater relevance of idiosyncratic factors (e.g., physical
changes, local neighborhood effects) for price changes over longer time
intervals. Since their inception, CSIs have become the most closely watched
measure of U.S. home prices. Nonetheless, in unreported analysis we find
the inference that follows to be robust to replacing CSI returns with monthly
returns of regional House Price Indexes (HPIs) from the Office of Federal
Housing Enterprising Oversight (OFHEO), available only from January 1991.

Table 1 presents summary statistics for each of the 14 metropolitan indices rkt,
as well as for a market capitalization-weighted composite index, rmt , based on
ten of them.6 Not surprisingly—given the growth experienced by the U.S. real
estate market in the past two decades (despite its considerable downturn in the
latter part of the sample)—all mean monthly returns are positive, statistically
significant, and greater than the average monthly nationwide inflation (0.23%,
based on the CPI, all items excluding shelter). CSI returns display little or no
skewness and some leptokurtosis, but they are positively autocorrelated: the
estimated first-order autocorrelation coefficients ρ̂1 are significantly different
from zero for each of the individual and the composite indices, and the corre-
sponding values for the Ljung-Box portmanteau test for up to the fifth-order
serial correlation, L B(5), reject the null hypothesis that those rkt are white noise.

Fundamental Comovement

The starting point of the methodology in Kallberg and Pasquariello (2008)
is the specification of a multi-factor model of the above real assets’ returns

5The properties of CSI returns have been extensively described in the literature on
the dynamics of U.S. residential real estate prices (e.g., Case and Shiller 1989,
Goetzmann 1992, Shiller 1993a, 1993b, Goetzmann and Peng 2002). Further details
on the construction of CSIs and their properties can also be found on S&P’s website, at
http://www.standardandpoors.com/indices/main/en.us.
6The S&P/CSI Composite-10 includes the metropolitan areas of Los Angeles, San
Diego, San Francisco, Denver, Washington, Miami, Chicago, Boston, Las Vegas and
New York.
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Table 1 � Descriptive statistics.

Index μ σ Skew Kurt ρ̂1 L B(5)
Composite 0.359%† 0.79% −0.99† 1.48† 1.030† 323.82†

Metropolitan Markets

Los Angeles 0.403%† 1.20% −0.60† 0.94† 0.825† 215.02†

San Diego 0.391%† 1.15% −0.37• 1.66† 0.432† 94.15†

San Francisco 0.390%† 1.23% −1.03† 2.88† 0.915† 263.55†

Denver 0.350%† 0.53% −0.42† 0.75• 0.617† 170.71†

Washington 0.383%† 0.89% −0.50† 0.74• 0.718† 160.86†

Miami 0.333%† 1.10% −1.30† 3.67† 0.617† 202.86†

Tampa 0.265%† 0.93% −0.75† 2.89† 0.638† 193.72†

Chicago 0.353%† 0.65% −1.13† 5.09† 0.574† 156.64†

Boston 0.299%† 0.67% −0.36• 0.13 0.664† 216.36†

Charlotte 0.252%† 0.41% −1.16† 4.95† 0.430† 146.94†

Las Vegas 0.260%† 1.29% −0.28∗ 5.05† 0.627† 127.17†

New York 0.341%† 0.67% −0.20 −0.27 0.745† 209.92†

Cleveland 0.254%† 0.48% −1.21† 6.22† 0.230† 79.46†

Portland 0.513%† 0.65% −0.31• 2.22† 0.519† 148.78†

This table reports summary statistics for the time series of monthly returns for the
composite home price index (rmt ) and the 14 individual metropolitan market indices (rkt)
over the interval February 1987 - December 2008 (263 observations). μ is the mean and σ
is the standard deviation of each series. Skew is the coefficient of skewness, while K urt
is the excess kurtosis; their standard errors, in their asymptotic normal distributions,
are computed as ( 6

T )
1
2 and ( 24

T )
1
2 , respectively. ρ̂1 is the first-order autocorrelation.

L B(5) is the Ljung-Box test of randomness for up to the fifth-order autocorrelation,
asymptotically distributed as χ 2[5] under the null hypothesis that the series is white
noise. ∗, • or † indicate significance at the 10%, 5% or 1% level, respectively.

with time-varying sensitivities. Let rkt be a N × 1 vector of returns for real
asset k over the interval [t − N + 1, t]. In the spirit of Bekaert, Hodrick and
Zhang (2009), we assume that, for each real asset k = 1, . . . , K , the return rkt

is characterized by the following linear factor structure:

rkt = αkt + ftβkt + ekt, (1)

where ft is a N × N f matrix of systematic factors fi t affecting all real assets
and βkt is a (N f × 1) vector of factor loadings. In this setting, comovement
between any pairs of returns rkt and rnt is deemed excessive if, even after
controlling for ft , those returns are still correlated.

The selection of the appropriate set of systematic sources of risk for hous-
ing returns is a crucial step in our analysis. Any subsequent test for excess
comovement is unavoidably also a test of the validity of the specification we
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use to control for fundamental comovement in metropolitan housing prices at
each point in time t . The challenge is therefore to design a model that is both
comprehensive in its scope and general in its structure. To that purpose, we
propose the following specification of Equation (1):

rkt = αkt + βk
mtrmt + βk

SPtrSPt + βk
CPItCPIt + βk

MTGtMTGt + βk
SL Pt SLPt

+βk
UNEtUNEt + βk

P O Pt POPt + βk
I NCt INCt + βk

GDPtGDPt + ekt, (2)

for each k = 1, . . . , K .

This specification is based on the insights from a well-established literature
evaluating the role of economic fundamentals in U.S. local housing markets
(e.g., among several others, see Jud and Winkler 2002, Hwang and Quigley
2006, Miles 2009, Lai and Van Order 2010, and references therein). Of course,
the model of Equation (2)—like any explicit attempt to explain the commonality
among residential real estate returns rkt—may omit additional factors affecting
all metropolitan areas in our sample, and therefore be misspecified. However,
its estimation helps us to interpret our evidence, discussed in the third section on
the level and dynamics of CSI return comovement. Its estimation also indicates
that the chosen specification, albeit parsimonious, performs very satisfactorily
in the data.

Housing price changes in individual metropolitan areas may be affected by
nationwide fluctuations in real estate, financial and real markets. We employ
the time series of returns for the composite CSI (rmt ) and S&P500 index (rSPt)
to proxy for systematic real estate and stock market risks, respectively. As
is conventional in the aforementioned contagion literature (since the seminal
contribution of Pindyck and Rotemberg (1993), broad aggregate indexes based
on market prices are meant to capture not only current and observable but also
expected and unobservable systematic forces of fundamental nature behind as-
set returns.7 MTGt is the 30-year conventional mortgage rate, from the Federal
Home Loan Mortgage Corporation (e.g., Painter and Redfearn 2002) and ref-
erences therein). SLPt , the slope of the U.S. Treasury yield curve—computed
as the monthly difference between ten-year and three-month U.S. Treasury
constant-maturity rates (from the Federal Reserve Board of Governors)—is a
proxy for the real-time, marketwide perception of the current and future state
of the economy (and its inflation risk). We also control for the (possibly het-
erogeneous) response of metropolitan housing prices to nationwide monthly

7Interestingly, the average correlation between each of the 14 residential real estate
return series in our sample (rkt) and the composite CSI index (rmt ) is very similar to the
average correlation between each of the 10 Fama-French U.S. industry portfolios and
the broad U.S. stock market (from French’s website) over the sample period 1987-2008
(0.69 versus 0.74, respectively).
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percentage changes in seasonally adjusted CPI excluding shelter (i.e., without
the housing component), CPIt . Alternatively, we find the inference that follows
to be virtually unaffected by deflating all CSI returns and nominal regressors
in our study by the nationwide ex-shelter inflation CPIt .

Finally, Equation (2) allows for nationwide economic and demographic fluc-
tuations to impact the transaction prices of individual single-family residences
(e.g., Potepan 1996, Glaeser, Gyourko and Saks 2005, Glaeser and Gyourko
2006, Miller and Peng 2006, Saks 2008, Yunus and Swanson 2013, Zhu, Füss
and Rottke 2013): UNEt , the monthly percentage change in the civilian unem-
ployment rate (seasonally adjusted, from the Bureau of Labor Statistics); POPt ,
the monthly percentage change in total U.S. population; INCt , the monthly per-
centage change in seasonally adjusted disposable personal income; and GDPt ,
the interpolated monthly percentage change in nominal Gross Domestic Prod-
uct (GDP, seasonally adjusted), all from the U.S. Department of Commerce.
Plots of each of these variables over our sample period (on the left axis in
Figures 1a to 1i) display some of the familiar trends for the U.S. economy over
the last two decades: For instance, the longest period of economic expansion
in U.S. history (from 1991 to 2001, e.g., see rSPt, INCt , and GDPt in Figures
1b, 1h and 1i) is accompanied by declining mortgage rates (MTGt in Figure
1d), a significant increase in prices of single-family residences nationwide (rmt

in Figure 1a), yet only moderate expected and realized inflation (e.g., see SLPt

and CPIt in Figures 1e and 1c).

Latent Comovement

The next step in our methodology to measure fundamental and excess co-
movement among housing price changes is the estimation of the parameters in
Equation (1), using sample data for the period [0, T ] and the selected set of
systematic factors described above. The resulting N × 1 vector of estimated
residuals êkt, where

êkt = rkt − α̂kt − ft β̂kt, (3)

are in fact meant to capture the dynamics of individual CSIs that cannot be
explained by those common factors.

To that purpose, we specify the following stacked version of the model of
Equation (1) over the interval [t − N + 1, t]:⎡
⎢⎢⎢⎣

r1t

r2t
...

rKt

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

�t O · · · O
O �t · · · O

...
O O · · · �t

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

B1t

B2t
...

BKt

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣

e1t

e2t
...

eKt

⎤
⎥⎥⎥⎦ = Ft Bt + et , (4)
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Figure 1 � Systematic sources of risk in the U.S. economy.
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Figures 1a to 1i plot (on the left axis) the time series of rmt (the monthly return for the composite
home price index), rSPt (the monthly return for the S&P500 index), CPIt (the monthly percentage
change in the CPI index, all items excluding shelter), MTGt (the 30-year conventional mortgage
rate), SLPt (the monthly difference between ten-year and three-month U.S. Treasury constant-
maturity rates), UNEt (the monthly change in the civilian unemployment rate), POPt (the monthly
percentage change in total U.S. population), INCt (the monthly percentage change in disposable
personal income) and GDPt (the interpolated monthly percentage change in GDP). These figures
also display (on the right axis) both r2

fi t
, the average of the square partial correlations r2

rkt , fi t
(where

fi t is the corresponding systematic source of risk), and R
2
fi t , the average of the R2 of the regression

of exclusively factor fi t (and a constant term) on each CSI return series rkt separately over the
interval [t − N + 1, t].



80 Kallberg, Liu and Pasquariello

Figure 1 � Continued
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where �t = [ι, ft ] is a N × M matrix of systematic factors affecting rkt (in
which ι is a N × 1 unit vector and M = N f + 1), Bkt = [αkt, β

′
kt]

′ is a M × 1
vector of factor loadings, and O is a zero matrix. We further assume that the
N × 1 vectors of disturbances ekt are uncorrelated across observations, i.e.,
that E[ekte′

ns] = σknt IN (where IN is a N × N identity matrix) if t = s and
E[ekte′

ns] = O otherwise. This implies that

E[et e
′
t ] = Vt =

⎡
⎢⎢⎢⎣

σ11t σ12t · · · σ1K t

σ21t σ22t · · · σ2K t
...

σK 1t σK 2t · · · σKKt

⎤
⎥⎥⎥⎦⊗ I = �t ⊗ I . (5)

The seemingly unrelated regressions model of Equations (4) and (5) allows for
the parameters controlling for fundamental comovement across assets to vary
over time. It can be efficiently estimated via either ordinary least squares—
OLS, i.e., separately, under the null hypothesis that the returns rkt, after con-
trolling for systematic sources of risk, are independent—or feasible generalized
least squares—FGLS, i.e., jointly, under the alternative hypothesis that return
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residuals do comove beyond what is justified by common economic
fundamentals—since the K stacked regressions in Equation (4) have identi-
cal explanatory variables �t (see Greene 1997, p. 676). The efficient estimator
of Bt is then given by

B̂OLS
t = (F ′

t Ft )
−1 F ′

t rt , (6)

where rt = [r1t , r2t , . . . , rKt]′.

Excess and Raw Comovement

Lastly, and consistently with the above discussion, we define comovement
between any pairs of returns rkt and rnt as excessive if the corresponding
return residuals from the OLS estimation of Equations (4) and (5), êOLS

kt =
rkt − Ft B̂OLS

kt and êOLS
nt = rnt − Ft B̂OLS

nt , are correlated. Specifically, we use
these residuals to produce a consistent estimate of the unknown matrix �t ,
�̂OLS

t , whose individual elements are (e.g., Greene 1997, p. 676)

σ̂ OLS
knt =

(
êOLS

kt

)′
êOLS

nt

N
, (7)

and those individual elements to compute, for each k �= n, excess correlation
coefficients

ρ̂OLS
knt = σ̂ OLS

knt[
σ̂ OLS

kkt σ̂ OLS
nnt

] 1
2

. (8)

Several studies show that these correlation coefficients are conditional on return
volatility; thus, in the presence of heteroskedasticity, contagion tests based
on them may be biased toward rejection of the null hypothesis of no excess
comovement (e.g., Boyer, Gibson and Loretan 1999, Loretan and English 2000,
Forbes and Rigobon 2002). Yet, these studies also argue that this bias can be
corrected by computing an unconditional correlation measure for any pair
of returns under the assumption of no omitted variables or endogeneity. The
measure of excess comovement between any two CSI returns rkt and rnt that
we ultimately adopt in this paper is based on their proposed adjustment and is
given by

ρ̂OLS∗
knt = ρ̂OLS

knt{
1 + δ̂OLS

kt

[
1 − (

ρ̂OLS
knt

)2]} 1
2

, (9)

where the ratio δ̂OLS
kt = σ̂OLS

kkt

(σ̂OLS
kkt )LT

− 1, when different from zero, corrects the

conditional correlation ρ̂knt of Equation (8) for the relative difference between
short-term volatility (σ̂ OLS

kkt ) and long-term volatility of rkt ((σ̂ OLS
kkt )LT ), for any
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n �= k. When computing Equation (9), we alternatively assume that the source
of volatility shocks is either metropolitan market k (in ρ̂∗

knt) or market n (in
ρ̂∗

nkt ). This implies that ρ̂OLS∗
knt may be different from ρ̂OLS∗

nkt .

We then compute arithmetic means of pairwise adjusted correlation coefficients
for each market k, along the lines of King, Sentana and Wadhwani (1994). Much
of the literature on financial contagion explores the circumstances in which
correlation among asset prices becomes more positive (or less negative) during
crisis periods. However, as is clear from Equations (1) to (3), there is no reason
to restrict the concept of excess comovement to a specific directional move in the
correlation coefficients. In other words, both ρ̂OLS∗

knt �= 0 and ρ̂OLS∗
nkt �= 0 represent

evidence of comovement between metropolitan markets k and n beyond what
is implied by their fundamentals, regardless of their sign. Thus, we need a
contagion measure that prevents such coefficients, if of different sign, from
cancelling each other out in the aggregation. This measure needs to control for
sample variation as well. Because of sample variation in the estimators B̂OLS

kt ,
residuals’ correlations ρ̂knt are in fact estimated with error over N observations.
Failure to account for statistically insignificant ρ̂knt may bias our analysis of
the significance and extent of excess CSI return comovement.

Hence, we conservatively set to zero all statistically insignificant condi-
tional correlations for each market k = 1, . . . , K (according to the t-ratio

test t̂OLS
knt = ρ̂OLS

knt [ 1−(ρ̂OLS
knt )2

N−2 ]−
1
2 ∼ t[N − 2]) among the K − 1 possible ρ̂knt, and

measure excess comovement by computing the following means of excess
square unconditional correlations:

ρ̂OLS∗
kt = 1

K − 1

K∑
n = 1
n �= k

(
ρ̂OLS∗

knt

)2
I OLS
knt , (10)

where I OLS
knt = 1 if 2[1 − Pr{|t̂OLS

knt | ≤ t α
2
[N − 2]}] ≤ α and I OLS

knt = 0 otherwise.
Equation (10) implies that there is statistically significant excess comovement
for metropolitan market k at time t if ρ̂OLS∗

kt is different from zero.8

We follow the same procedure to obtain benchmark measures of raw comove-
ment for each market k (labeled ρ̂BASE∗

kt ) as means of square unconditional corre-
lations between any two raw CSI return series rkt and rnt (labeled ρ̂BASE∗

knt )—i.e.,

8This paper’s third section analyzes the robustness of our inference to this and other
features of our empirical specification.
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by replacing the corresponding OLS residuals êOLS
kt and êOLS

nt with rkt and rnt in
Equations (7) to (10) to obtain:

ρ̂BASE∗
kt = 1

K − 1

K∑
n = 1
n �= k

(
ρ̂BASE∗

knt

)2
I BASE
knt . (11)

Notably, each pairwise CSI return correlation ρ̂BASE∗
knt in Equation (11)

is computed under the assumption that both E(rkt) = 0 and E(rnt ) = 0.
Specifically, this assumption implies that ρ̂BASE∗

knt = ρ̂BASE
knt

{1+δ̂BASE
kt [1−(ρ̂BASE

knt )2]}
1
2

, ρ̂BASE
knt =

σ̂BASE
knt

[σ̂BASE
kkt σ̂BASE

nnt ]
1
2

, δ̂BASE
kt = σ̂BASE

kkt
(σ̂BASE

kkt )LT
−1, σ̂ BASE

knt = (rkt )′rnt
N in �̂BASE

t for rkt, I BASE
knt = 1 if

2[1 − Pr{|t̂ BASE
knt | ≤ t α

2
[N − 2]}] ≤ α and I BASE

knt = 0 otherwise, and t̂ BASE
knt =

ρ̂BASE
knt [ 1−(ρ̂BASE

knt )2

N−2 ]−
1
2 ∼ t[N − 2]. While rejected in the data (e.g., see Table 1),

this assumption allows us to capture gross comovement among CSI returns,
i.e., without first subtracting any statistical or economic model-based estimate
for their (possibly time-varying) trends. As discussed earlier, those trends may
be driven by common fundamental and non-fundamental sources of risk. De-
meaning the raw CSI return series first may implicitly remove (at least partly)
the effect of both sets of forces on return levels and dynamics. Hence, the cor-
relation among demeaned CSI return series may be a less than ideal benchmark
against which to compare the excess correlation measures of Equations (9) and
(10)—that are instead computed relative to an explicit model for fundamen-
tal comovement (Equation (2). Nonetheless, first adjusting the CSI returns by
their sample-wide, short- and long-term means, a monthly risk-free rate (from
French’s website), or the monthly ex-shelter inflation (CPIt ) before computing
ρ̂BASE∗

knt yields qualitatively similar inference.

We also compute nationwide measures of excess and raw comovement among
housing price changes as means of means of the aforementioned excess and
raw square unconditional correlation coefficients, respectively, across all of the
14 metropolitan areas, i.e.,

ρ̂OLS∗
t = 1

K

K∑
k=1

ρ̂OLS∗
kt (12)

and

ρ̂BASE∗
t = 1

K

K∑
k=1

ρ̂BASE∗
kt . (13)
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We are further interested in the evolution of these measures over time while
accounting for the dynamics of both the fundamental interdependence among
CSI returns and their moments. Ignoring time-varying factor loadings and non-
stationarity in Equation (4) may bias the inference on non-fundamental and
raw comovement from Equations (10) to (13). Parametric ARCH and stochas-
tic volatility models, as well as their generalizations to multivariate settings, are
frequently employed to describe such dynamics.9 Nonetheless, these models
are in general very difficult to estimate and do not offer a clear advantage over
simpler, nonparametric approaches, especially when used to measure covari-
ance rather than forecast it (e.g., Campbell, Lettau, Malkiel and Xu 2001,
Goetzmann, Li and Rouwenhorst 2005). In addition, Campbell, Lo and
MacKinley (1997) observe that rolling filters, like the rolling standard deviation
measure used by Officer (1973), usually provide very accurate descriptions of
historical variation (or comovement), in particular (as shown in Nelson 1992)
when volatility (or covariance) changes are not too gradual.

In light of these considerations, we construct time series of rolling realized raw
and excess square correlations for each metropolitan market k by treating the
covariance matrix of returns and return residuals as observable. To that purpose,
we estimate êOLS

kt , δ̂OLS
kt , ρ̂OLS∗

knt , δ̂BASE
kt and ρ̂BASE∗

knt over rolling short- and long-
term intervals of the data of fixed-length N and gN (with g > 1 ), respectively,
according to the following scheme, in the spirit of Campbell, Lettau, Malkiel
and Xu (2001) and Kallberg and Pasquariello (2008):

ê OLS
kt , σ̂ OLS

kkt , σ̂ BASE
kkt︷ ︸︸ ︷

| | |
t − gN + 1 t − N + 1 |︸ ︷︷ ︸(

êOLS
kt

)
LT

,
(
σ̂ OLS

kkt

)
LT

,
(
σ̂ BASE

kkt

)
LT

(14)

Specifically, at each point in time t and for each CSI k, the model of Equa-
tion (4) is estimated twice, once over the short-term interval [t − N + 1, t] to
compute ρ̂OLS

knt as in Equation (8)—as well as ρ̂BASE
knt for the raw CSI returns—

and once over the long-term interval [t − gN + 1, t] to compute (σ̂ OLS
kkt )LT —as

well as (σ̂ BASE
knt )LT for the raw CSI returns—thus yielding the adjustment ratios

δ̂OLS
kt and δ̂BASE

kt , and eventually ρ̂OLS∗
knt and ρ̂BASE∗

knt for each n �= k. This rolling
procedure generates time series of metropolitan and nationwide excess—
{ρ̂OLS∗

kt }T
t=gN and {ρ̂OLS∗

t }T
t=gN —and raw comovement measures—{ρ̂BASE∗

kt }T
t=gN

9For example, see Campbell, Lo and MacKinley (1997) for a review of the literature on
parametric models of changing volatility.
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and {ρ̂BASE∗
t }T

t=gN —which we use in our analysis, without resorting to paramet-
ric specifications for the intertemporal dynamics of the covariance matrix of
CSI returns.

Empirical Analysis

CSI Comovement

We determine the extent and dynamics of fundamental and excess comovement
among the housing price data according to the procedure outlined in the pre-
vious sections We begin by estimating the fundamental model of Equation (2)
for each metropolitan market in our database over rolling intervals of two and
a half years (N = 30) within the sample interval January 1987 to December
2008. We use the resulting estimated residuals and corresponding raw returns
to compute conditional measures of excess and raw CSI return comovement
(ρ̂OLS

knt of Equation (8) and ρ̂BASE
knt ) for each pair of metropolitan markets k and

n; yet, in each month t we retain only the ρ̂OLS
knt and ρ̂BASE

knt that are statistically
significant at the 10% level (e.g., α = 0.10 in Iknt of Equation (10)). We then
correct those correlations for shifts in conditional volatility (see Equation (9))
by estimating long-term variances of CSI returns and return residuals over a
five-year interval (i.e., g = 2 in Equation (14)). Therefore, the initial t = gN
corresponds to January 1992.

We plot the resulting time series of nationwide excess and raw unconditional
CSI return comovement—{ρ̂OLS∗

t }T
t=gN and {ρ̂BASE∗

t }T
t=gN of Equation (12) and

(13), respectively—in Figure 2 a between January 1992 and December 2008,
as well as their conditional equivalents {ρ̂OLS

t }T
t=gN and {ρ̂BASE

t }T
t=gN computed

using conditional correlations among those returns (i.e., ρ̂BASE
knt and ρ̂OLS

knt of
Equation (8)). Figure 2a reveals that the adjustment of Equation (9) for condi-
tional variance essentially rescales the conditional correlations while preserving
their intertemporal dynamics. By construction, both ρ̂BASE∗

t and ρ̂BASE
t account

for possibly nonstationary CSI return means and variances but not for the extent
and dynamics of returns’ fundamental interdependence. As such, both these
benchmarks allow us to gauge the economic significance of levels and fluc-
tuations of ρ̂OLS∗

t . We also plot our measures of excess and raw comovement
across each of the 14 U.S. metropolitan markets listed in Table 1 (i.e., ρ̂OLS∗

kt
of Equation (10) and ρ̂BASE∗

kt ) in Figures 3a to 3j (left axis). Table 2 reports
summary statistics for each of these measures.

According to Figures 2 and 3, raw comovement among price changes of single-
family homes traded in different geographical markets is high—e.g., the aver-
age ρ̂BASE∗

t = 0.417 in Table 2—increases substantially in the late 1990s—i.e.,
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Figure 2 � Mean raw and excess correlation: OLS procedure.
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t , and ρOLS∗
t (left axis), composite CSI index (right axis)
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Figure 2a plots (on the left axis) the time series of mean excess square unconditional correlations
ρ̂OLS∗

t of Equation (12), a benchmark measure of square unconditional correlation, ρ̂BASE∗
t of

Equation (11), computed using raw CSI returns rkt (instead of estimated residuals êOLS
kt ) in Equa-

tions (5) to (10), their equivalents, ρ̂OLS
t and ρ̂BASE

t , from their square conditional correlations.
Figure 2b plots (in percentage terms) the ratio between ρ̂OLS∗

t and ρ̂BASE∗
t (defined in Table 2

as Rρ) and R
2
at , the mean adjusted R2 across all metropolitan markets from the OLS estimation

of Equation (2). Both figures plot (on the right axis) the composite CSI index with base 100 in
December 1991.
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Figure 3 � Mean raw and excess correlation for metropolitan markets: OLS
procedure.
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(a) Los Angeles (b) San Diego

(c) San Francisco (d) Denver

(e) Washington (f) Miami

(g) Tampa (h) Chicago

Figures 3a to 3n plot (on the left axis) the time series of mean excess square correlation ρ̂OLS∗
kt

of Equation (10) for each of the 14 metropolitan markets listed in Table 1, a benchmark measure
of square correlation, ρ̂BASE∗

kt , computed using raw CSI returns rkt (instead of estimated residuals

êOLS
kt ) in Equations (5) to (10) and (on the right axis) the corresponding CSI index with base 100

in December 1991.
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Figure 3 � Continued
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(k) Las Vegas (l) New York

(m) Cleveland (n) Portland

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

Jan-92 Jan-94 Jan-96 Jan-98 Jan-00 Jan-02 Jan-04 Jan-06 Mar-08
Time

M
ea

n_
rh

o*

0

50

100

150

200

250

300

350

Pr
ic

e 
Le

ve
l

OLS

BASE

PRICE

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

Jan-92 Jan-94 Jan-96 Jan-98 Jan-00 Jan-02 Jan-04 Jan-06 Mar-08
Time

M
ea

n_
rh

o*
0

50

100

150

200

250

300

350

Pr
ic

e 
Le

ve
l

OLS

BASE

PRICE

(i) Boston (j) Charlotte

almost simultaneously with the increase in residential real estate prices nation-
wide (e.g., see the CSI composite index, with base 100 in December 1991, on
the right axis of Figure 2a)—and stays high afterwards, both nationally and
locally. For example, ρ̂BASE∗

t in Figure 2a more than doubles in the second
half of the sample period (0.530 on average for the interval 1998-2008) as
compared to its mean in 1997 (0.197). Urban areas in both the West and the
East Coasts where prices of single-family homes increase the most appear to
experience the most dramatic increases in price comovement with the rest of
the country (e.g., San Diego in Figure 3b and New York in Figure 3l); yet, this
pattern is common to most of the U.S. metropolitan markets in our dataset.
Similarly, square correlation of raw CSI returns ρ̂BASE∗

kt is generally decreasing
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Table 2 � Descriptive statistics: BASE and OLS comovement.

ρ̂BASE∗
t ρ̂OLS∗

t

Index μ σ Tρ Fρ∗2 μ σ Bρ Rρ Tρ Fρ∗2

Nationwide 0.417† 0.167 81% 83% 0.107† 0.024 0.140 26% 29% 40%

Metropolitan Markets

Los Angeles 0.507† 0.181 87% 90% 0.133† 0.063 0.288 26% 35% 49%
San Diego 0.466† 0.217 81% 86% 0.104† 0.064 0.148 22% 32% 46%
San Francisco 0.403† 0.229 77% 81% 0.124† 0.083 0.523 31% 31% 47%
Denver 0.459† 0.201 86% 86% 0.104† 0.073 0.128 23% 30% 40%
Washington 0.424† 0.250 74% 79% 0.104† 0.077 0.052 25% 28% 42%
Miami 0.429† 0.225 78% 81% 0.107† 0.072 −0.015 25% 31% 42%
Tampa 0.408† 0.212 74% 74% 0.100† 0.077 0.058 24% 25% 33%
Chicago 0.451† 0.207 83% 87% 0.103† 0.074 0.116 23% 27% 39%
Boston 0.452† 0.214 84% 86% 0.112† 0.088 −0.098 25% 28% 38%
Charlotte 0.266† 0.151 75% 75% 0.077† 0.040 0.099 29% 31% 36%
Las Vegas 0.330† 0.228 73% 77% 0.148† 0.117 0.309 45% 28% 43%
New York 0.497† 0.222 85% 88% 0.108† 0.061 0.116 22% 30% 43%
Cleveland 0.357† 0.130 87% 87% 0.077† 0.069 −0.065 22% 25% 32%
Portland 0.391† 0.134 85% 86% 0.089† 0.085 0.299 23% 25% 36%

This table reports summary statistics for the monthly time series of both benchmark
square correlations of raw CSI returns (ρ̂BASE∗

knt ) and excess square correlations of OLS
residuals (ρ̂OLS∗

knt of Equation (12)). In particular, the table reports their nationwide
averages (ρ̂BASE∗

t and ρ̂OLS∗
t of Equations (13) and (12)), respectively) as well as their

averages for each of the 14 individual metropolitan market indices (ρ̂BASE∗
kt and ρ̂OLS∗

kt of
Equations (11) and (10), respectively), over the interval January 1992–December 2008
(204 observations). OLS residuals are estimated according to the procedure described
in this paper third section from the fundamental model of Equation (2). Bρ is the
correlation between each pair ρ̂OLS∗

t and ρ̂BASE∗
t , while Rρ is the mean ratio between

each pair ρ̂OLS∗
t and ρ̂BASE∗

t . Tρ is the mean percentage of the corresponding conditional
correlations ρ̂knt significant at the 10% level using the t-ratio test. Fρ∗2 is the mean
percentage of the corresponding square unconditional correlations (ρ̂∗

knt)
2 significant at

the 10% level using the t-square ratio test. ∗, • or † indicates significance at the 10%, 5%
or 1% level, respectively, using the t-square test.

during both the period of stable or protractedly declining housing prices that
followed the brief recession of 1990–1991 (e.g., Los Angeles in Figure 3a) and
the continued slump in the U.S. real estate market between 2005 and 2008 (e.g.,
Boston in Figure 3i).

Further analysis reveals that an economically significant portion of the observed
raw housing price comovement within the U.S. (i.e., of ρ̂BASE∗

t and ρ̂BASE∗
kt ) is
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explained by common fundamentals, although excess comovement does play
a role. First, the fundamental OLS regression model of Equation (2) performs
quite successfully. For instance, the mean conventional adjusted R2 across all

metropolitan markets (R
2
at in Figure 2b) averages about 37% over our sample

period and is never lower than 32% in its latter part, between 2002 and 2008.10

More interestingly, the average explanatory power of the systematic factors
listed earlier in this paper nearly steadily increases toward 80% since 1997,
i.e., almost simultaneously with the nationwide and local increase in raw CSI
return comovement reported in Figures 2a and 3.

To assess the relative contribution of each of those factors fi t to the increasing
explanatory power of the multiple regression model of Equation (2) for CSI
returns, we compute two measures of their impact on that model’s overall

fit. The first one, R
2
fi t

, is the nationwide average of the R2 of the regression
of exclusively factor fi t (and a constant term) on each CSI return series rkt

separately over each rolling interval of length N in Equation (14). The second

one, r2
fi t

, addresses possible multicollinearity bias in R
2
fi t

: It is the nationwide

average of factor fi t ’s square partial correlation r2
rkt, fi t

= t2
rkt , fi t

t2
rkt , fi t

+N−K
—where

t2
rkt, fi t

is the square of the t-ratio for testing the hypothesis that the coefficient
on fi t is zero in Equation (2)—over the same interval [t − N + 1, t].11

The extent and dynamics of both measures, on the right axis of Figures 1a
to 1i, suggest that the simultaneous increase in raw CSI return comovement

nationwide (ρ̂BASE∗
t in Figure 2a) and Equation (2)’s overall fit (R

2
at in Figure

2b) since 1997 may be attributed to the increasing importance of common real
estate fluctuations (rmt in Figure 1a) and fluctuations in realized inflation ( CPIt

in Figure 2c), lending terms (MTGt in Figure 1d), the slope of the U.S. Treasury
yield curve (SLPt in Figure 1e), and the growth of both the U.S. population and
GDP (POPt and GDPt , in Figures 1g and 1i) for the price changes of individual
single-family residences in the U.S.12

10In addition, the mean overall goodness-of-fit measure of McElroy (1977) for the model
of Equation (4)—computed as R2

∗t = 1 − K {tr [(�̂OLS
t )−1 St ]}−1, where St is a K × K

matrix in which Sknt = N−1r ′
ktrnt − rktr nt —averages 95% and is always greater than

79% over the entire sample, while the standard F test always strongly rejects the null
hypothesis that all the slopes in that model (Bt in Equation (4)) are zero.
11Thus, the ensuing r 2

fi t
can be interpreted as the average percentage of the unique

variance in CSI returns that is uniquely accounted for by the common factor fi t after
both the CSI returns and fi t have been controlled by all of the other common factors in
Equation (2).
12Consistently, Zhu, Füss and Rottke (2013) provide evidence of a significant relation-
ship between U.S. residential housing returns and both population growth and (lagged)
lagged personal income.
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Nevertheless, our evidence also suggests that in the U.S. real estate markets
there is comovement beyond what can be explained by the fundamental model
offered in this paper. In particular, nationwide excess square correlation ρ̂OLS∗

t
averages about 0.107—equivalent to an average absolute return residual corre-
lation of |

√
ρ̂OLS∗

t | = 0.328—and is statistically different from zero (according
to either the t-square ratio test t̂2

t = ρ̂∗
t [1 − ρ̂∗

t ]−1 ∼ F[1, N − 2] in Table 2 or
a standard t-test for means not reported here) over the entire sample and across
all metropolitan markets in each month t . Excess unconditional comovement
is economically significant as well, for it constitutes around 26% of the bench-
mark raw square correlation of CSI returns, ρ̂BASE∗

t (column Rρ in Table 2).
Equivalently, the model of Equation (4) can explain much—i.e., about
1 − Rρ ≈ 74%—but not all of the observed raw CSI return comovement.

The correlation between ρ̂BASE∗
t and ρ̂OLS∗

t (column βρ in Table 2) is low
both nationwide and in most metropolitan markets. Yet, the extent and relative
importance of excess comovement of single-family housing prices in the U.S.
fluctuates considerably over time. For example, ρ̂OLS∗

t in Figure 2a is high
in the early to mid-1990s, when it accounts for between 30% and 80% of
the raw comovement measure ρ̂BASE∗

t (the ratio ρ̂OLS∗
t /ρ̂BASE∗

t in Figure 2b).
Subsequently, ρ̂OLS∗

t decouples from ρ̂BASE∗
t : ρ̂BASE∗

t increases and stays high
in correspondence with the “real estate bubble” of the late 1990s-early 2000s,
while excess square correlations drop to near-historical lows before slowly
increasing again by the end of the sample period, accompanying the sharp
nationwide decline of residential housing prices between 2006 and 2008.

Similar conclusions are reached when examining the level and dynamics of raw
and excess comovement for each of the metropolitan markets listed in Table 1,
i.e., of ρ̂BASE∗

kt and ρ̂OLS∗
kt , respectively. However, these measures display sig-

nificant cross-market variability. For instance, the observed raw comovement
in housing price changes in Las Vegas with the rest of the U.S. is among the
lowest (0.330 in Table 2), but the corresponding ratio between ρ̂OLS∗

kt and ρ̂BASE∗
kt

is the highest (Rρ = 45% in Table 2). Both raw and excess price comovement
are high in California, Denver, Miami, Boston and New York, but each cor-
responding ρ̂OLS∗

kt appears to be only weakly related to its benchmark ρ̂BASE∗
kt

(column βρ in Table 2).

A notable exception is San Francisco (Figure 3c), arguably the urban area hit
the hardest by the implosion of the “internet bubble” in early 2000s: During
that time, observed single-home price changes briefly decline and comove
significantly less with the rest of the country than in the 1990s; those prices’
subsequent increase (then decrease) is instead accompanied by sharply higher
(then lower) raw and excess comovement of their dynamics with those observed
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nationwide. Consistently, βρ for San Francisco is the highest (0.523) in Table 2.
We observe a similar trend in both ρ̂BASE∗

kt and ρ̂OLS∗
kt in proximity to the sharp

increase in residential housing prices in Las Vegas, between 2003 and 2005,
and of their ensuing collapse, between 2005 and 2008 (Figure 3k). We explore
in greater depth the dichotomy in the dynamics of raw and excess comovement
among U.S. residential real estate prices later in this section

Robustness Tests

In this subsection we discuss whether altering any of the main features of our
methodology to measure observed raw and excess comovement among U.S.
residential housing prices may bias the above inference significantly. We do
not report most of these additional results for economy of space; yet, they are
available on request.

Absolute Correlation. We begin by computing an alternative proxy for raw
and excess comovement based on means of absolute (rather than square)
CSI return and return residual correlations. Specifically, we redefine ρ̂OLS∗

kt =
1

K−1

∑K
n=1
n �=k

|ρ̂OLS∗
knt |I OLS

knt and ρ̂BASE∗
kt = 1

K−1

∑K
n=1
n �=k

|ρ̂BASE∗
knt |I BASE

knt and perform all

subsequent steps listed in this paper’s second section accordingly. This defi-
nition is as effective as that of Equation (10) or (11) at preventing excess or
raw return correlation coefficients of opposite signs from canceling out when
averaged across metropolitan markets, although its statistical properties are less
well-known. Our main results nonetheless remain.

Sample Variation. Next, we consider whether sample variation in the estimated
correlations of CSI returns and return residuals, ρ̂BASE

knt and ρ̂OLS
knt , may bias our

empirical tests. We preliminarily addressed this issue previously by impos-
ing that all statistically insignificant conditional correlation coefficients (at the
10% level, α = 0.10) be equal to zero when computing each aggregate measure
ρ̂BASE∗

kt and ρ̂OLS∗
kt . The resulting percentages of statistically significant condi-

tional correlations from either �̂BASE
t or �̂OLS

t (in columns Tρ of Table 2) are
relatively high—averaging either 81% or 29%—and fluctuate either between
40% and 90% or between 20% and 40% for most of the sample period. As
importantly, the ensuing unconditional coefficients of determinations (ρ̂BASE∗

knt )2

and (ρ̂OLS∗
knt )2, in columns Fρ∗2 of Table 2, are also statistically significant (ac-

cording to the t-square ratio test t̂2
knt) and with almost identical frequencies

across metropolitan areas and over time.

Furthermore, the Lagrange multiplier (LM) statistic of Breusch and Pa-
gan (1980)—λ̂t = N

∑K
k=2

∑k−1
n=1(ρ̂knt)2 ∼ χ2[ K (K−1)

2 ]—leads us to reject the
null hypothesis that either �̂BASE

t or �̂OLS
t is diagonal (at any conventional
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significance level) in each month t . Finally, we find our inference to be qual-
itatively unaffected by employing either a more restrictive (α = 0.05) or no
significance threshold (α = 1) for the inclusion of pairwise conditional cor-
relations ρ̂OLS

knt and ρ̂BASE
knt in the excess and raw comovement measures ρ̂OLS∗

kt
(Equation (10)) and ρ̂BASE∗

kt (Equation (11)), respectively.

Conditional Comovement. Our inference earlier in this section is also insensi-
tive to employing unadjusted (i.e., conditional) correlations (ρ̂OLS

knt of Equation
(8) and the corresponding ρ̂BASE

knt ) or computing the adjustment ratio for condi-
tional correlations (δ̂kt in Equation (9)) over several alternative rolling intervals
(N and g) for short- and long-term CSI return volatility. In the latter case, the
resulting adjustment for heteroskedasticity may be incorrect—and the corre-
sponding estimates for unconditional correlation inaccurate—in the presence
of omitted variables or endogeneity between assets, unless when assets are
“closely connected” (Forbes and Rigobon 2002, p. 2255). This appears to be
the case in our sample since the aforementioned evidence about ρ̂BASE∗

knt in Table
2 suggests that unconditional correlations of raw CSI returns rkt are large and
statistically significant.13

Alternative Distributional Assumptions. Lastly, we find our inference to be
robust to plausible distributional assumptions of the elliptical class for CSI
return residuals ekt. Specifically, 10, 000 Monte Carlo simulations of K = 14
independent vectors of residuals ekt with N = 30 observations each indicate
that our selection procedure based on pairwise t-ratio tests (Equation (10))
does not reject the null hypothesis of no excess comovement “too often” (for
the chosen α = 0.10) either under the assumption of i.i.d. normality or under
the multivariate t distribution with no dependence—a popular alternative (e.g.,
Zhou 1993) when returns are leptokurtic (see Table 1). For instance, we find
that Tρ = 10.0131% when the vector ekt ∼ N (0, I ) and 0 is a zero vector,
while Tρ = 10.0052% when ekt = Z ( xkk

v
)−

1
2 , Z ∼ N (0, I ), xkk ∼ χ2[v], and

v = 7 degrees of freedom.14

13In addition, according to Forbes and Rigobon (2002), unaccounted feedback from
asset n to asset k may lead ρ̂OLS∗

knt to underestimate the true unconditional correlation
of CSI return residuals, i.e., may bias our inference toward acceptance, rather than
rejection, of the null hypothesis of no excess comovement.
14Our inference is also unlikely to be affected by bias in the t -ratio test t̂knt in Equation
(10) under the null hypothesis that CSI return residuals are uncorrelated yet dependent.
For example, Monte Carlo analysis of uncorrelated residuals ekt = Z ( x

v )−
1
2 sharing a

common shock x ∼ χ 2[v] shows that Tρ = 16.4712% of the resulting correlations
are rejected as being non-zero at the α = 0.10 confidence level for t̂knt, i.e., too often
but much less than the average number of non-zero correlations entering either the
nationwide excess comovement measure ρ̂OLS∗

t or each metropolitan-wide measure
ρ̂OLS∗

kt (between 25% and 35%, in column Tρ of Table 2).
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Regime Shifts in CSI Comovement

Casual observation of Figures 1 and 2 suggests not only that comovement
among U.S. metropolitan real estate markets for single-family residences has
increased dramatically in the late 1990s (ρ̂BASE∗

t in Figure 2a), but also that prima
facie this increase has not been accompanied by greater excess comovement in
housing price changes (ρ̂OLS∗

t in Figures 1a and 2 and the ratio ρ̂OLS∗
t /ρ̂BASE∗

t in
Figure 2b). In this section, we conduct a more rigorous analysis of the relation-
ship between raw and residual comovement in our sample. Specifically, we test
whether this relationship has experienced a regime shift over our sample period.

To that purpose, we first specify the following reduced-form model for the ex-
tent and dynamics of nationwide comovement among real estate price changes,

ρ̂BASE∗
t = a + bρ̂OLS∗

t + εt , (15)

as well as for each metropolitan market k,

ρ̂BASE∗
kt = ak + bk ρ̂

OLS∗
kt + εkt, (16)

where k = 1, . . . , 14. We then test for breaks in the parameters of Equation
(15) and (16). We do so by means of the statistical methodology of Bai,
Lumsdaine and Stock (1998), which allows statistical inference about structural
breaks with minimal restrictions on the underlying data generation process. Bai,
Lumsdaine and Stock (1998) non-parametric technique searches for the single
most significant break in univariate or multivariate time-series models (with or
without stationary regressors) and generates asymptotic confidence intervals
around their estimated break dates.

We start by amending the linear models of Equation (15) and (16) to allow for
the possibility of a structural regime shift. If τ is a potential break date, Xt is a
1 × 2 vector of nationwide (1, ρ̂OLS∗

t ) or market-specific (1, ρ̂OLS∗
kt ) regressors,

and φ and �φ are 2 × 1 vectors of nationwide (a, b) or market-specific (ak, bk)
factor loadings, we specify the relation

yt = X ′
tφ + dt (τ )X ′

t S′S�φ + εt , (17)

where yt = ρ̂BASE∗
t or ρ̂BASE∗

kt , dt (τ ) = 1 if t ≥ τ and zero otherwise, and S
is a binary selection matrix with unit diagonal elements corresponding to the
coefficients in φ that are allowed to change. Hence, Equation (17) is a model
of full structural change if S is equal to the 2 × 2 identity matrix I2. The
vector S�φ can be interpreted as the change in the corresponding subset of
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coefficients after a break occurred. In more compact form, the above equation
is equivalent to

yt = Zt (τ )′�(τ ) + εt , (18)

where Zt (τ )′ = (X ′
t , dt (τ )X ′

t S′) and �(τ ) = (φ, S�φ).

We are interested in testing the null hypothesis that S�φ = 0 for each potential
break date τ . Bai, Lumsdaine and Stock’s (1998) Wald test for structural breaks
to Equation (17) is based on the maximum of the following F process:

F(τ ) = T [R�̂(τ )]′

⎧⎨
⎩R

[
T −1

T∑
t=1

Zt (τ )σ̂ 2 Zt (τ )′
]−1

R′

⎫⎬
⎭

−1

[R�̂(τ )], (19)

where R = [0, S] implies that R�(τ ) = S�φ, and �̂(τ ) and σ̂ 2 are OLS es-
timators for �(τ ) and var (ε), respectively, under the alternative hypothesis of
one break at date τ . The estimated break date, τ̂ = arg max F(τ ), is statisti-
cally significant if F(τ̂ ) is greater than its critical value at the chosen level of
significance.15

If τ̂ is statistically significant, a confidence interval around it is typically ob-
tained by assuming that residuals in Equation (17) are normally distributed.16

Bai, Lumsdaine and Stock (1998) propose an alternative estimator only requir-
ing these disturbances to form a sequence of martingale differences with some
moment conditions. This milder restriction is sufficient to specify the following
asymptotic 100(1 − π ) confidence interval [τ̂−, τ̂+] for the true break date:

τ̂± = τ̂ ± c 1
2 π

{
(S�φ)′S

[(
σ̂ 2T

)−1
T∑

t=1

Xt X ′
t

]
S′(S�φ)

}−1

, (20)

where c 1
2 π is the 100(1 − π

2 )-th quantile of the Picard (1985) distribution.

15To compute these critical values, Bai, Lumsdaine and Stock (1998) suggest approxi-
mating the limiting distribution of F(τ̂ ) with partial sums of normal random variables
for each possible rank of the selection matrix S in Equation (17). Bekaert, Harvey and
Lumsdaine (2002) report a table with critical values for up to 68 parameters allowed to
break. Any of the time-series models in Equation (15) and (16) may experience more
than one structural break over the sample period (i.e., the corresponding Wald statistics
F(τ ) may display local maximums above the chosen critical value). In the analysis
that follows, this is rarely the case within our sample. In those circumstances, Bai,
Lumsdaine and Stock’s (1998) test is designed to identify the most (economically and
statistically) significant of these breaks. The objective of this section is to determine
whether any such break did occur in the late 1990s, as Figures 1 and 2 seem to suggest,
and to investigate their impact on the comovement among U.S. residential real estate
returns.
16Bai, Lumsdaine and Stock (1998) review the available literature on the topic.
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While only asymptotically valid, the Wald statistic of Equation (19) and its
associated confidence interval around τ̂ (Equation (20)) display satisfactory
finite-sample properties. In particular, according to Bai, Lumsdaine and Stock
(1998) and Bekaert, Harvey and Lumsdaine (2002), these tests perform ade-
quately, in terms of both size and power, under the null hypothesis of no break
and the alternative hypothesis either of a single break in the mean of yt or
of structural breaks in all coefficients φ for Xt , as in the general model of
Equation (17).

The ensuing evidence in Table 3 is striking: The structural relationship between
raw and excess comovement among real estate price changes experiences a
statistically significant break both nationwide (Equation (15)) and for each
metropolitan market in our sample (Equation (16)). All of the estimated break
dates cluster in the late 1990s and in no circumstance (with the sole exception
of Cleveland) is the corresponding estimated confidence interval wider than
one month. The estimated breaks are economically significant as well: most
absolute shifts in either â, âk , b̂ or b̂k are for more than 40% of their pre-break
date levels. According to column �â of Table 3, in all cases the estimated
regime shift is accompanied by an increase in mean correlation among the raw
CSI return series rkt. For instance, the average nationwide index ρ̂BASE∗

t is 231%
higher between September 1998 and December 2008 (â + �â = 0.542) than
in the previous six years (â = 0.235); among the metropolitan markets in our
sample, nominal price changes of individual single-family residences in San
Diego, San Francisco, Miami, Las Vegas, Boston and New York experience
the greatest percentage increase in raw comovement with the rest of the U.S.,
consistent with Figure 3.

Excess comovement plays no role in the dynamics of raw CSI return comove-
ment nationwide over the sample period: b̂ ≈ 0 and �b̂ ≈ 0 in Table 3 for the
model for ρ̂BASE∗

t (Equation (15), consistent with column βρ in Table 2). How-
ever, the estimated shift in the impact of excess comovement on metropolitan
raw CSI return correlations is more heterogeneous. Specifically, Table 3 reports
that only for Chicago, Tampa and Charlotte does excess comovement play a
more important role for the dynamics of ρ̂BASE∗

kt following their corresponding
estimated break dates (b̂k ≈ 0 and �b̂k > 0). Vice versa, the observed increase
in raw CSI return correlations in Boston, New York and Cleveland cannot be
attributed to ρ̂OLS∗

kt (b̂k ≈ 0 and �b̂k � 0).

Interestingly, excess comovement—albeit being positively related to ρ̂BASE∗
kt

during the 1990s—does not appear to explain the subsequent significant
increase in CSI return correlations in the Western United States, i.e., the
metropolitan areas where residential real estate prices increased the most over
the latter part of the sample period (see Table 1): b̂k > 0 and �b̂k � 0 in
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California (Los Angeles, San Diego, San Francisco), Colorado (Denver),
Nevada (Las Vegas) and Oregon (Portland). Excess unconditional correlation
ρ̂OLS∗

kt instead either remains or becomes more relevant for ρ̂BASE∗
kt in the Mid-

Atlantic and South-East: b̂k � 0 and/or b̂k + �b̂k � 0 for the comovement of
CSI price changes in Washington, Miami, Tampa and Charlotte with the rest of
the U.S. Overall, the evidence in Table 3 indicates that the observed increase in
the raw correlation among the price changes of single-family residences traded
in different U.S. metropolitan real estate markets since the late 1990s can be
only partially attributed to excess comovement.

Further Properties of CSI Comovement

The evidence presented so far indicates that (i) observed raw comovement
among prices of single-family homes traded in different U.S. urban areas
(ρ̂BASE∗

t ) is both statistically and economically significant; (ii) observed raw
CSI comovement experienced a sharp increase over the last two decades; (iii)
the extent and dynamics of observed raw CSI comovement appear to be primar-
ily related to common fundamental sources of risk in U.S. real estate, financial,
and real markets, especially to mortgage rates, realized and expected inflation
as well as GDP growth; (iv) comovement in excess of those systematic factors
(ρ̂OLS∗

t ) is nonetheless non-trivial; (v) there is economically significant hetero-
geneity in the extent and dynamics of raw and excess comovement across U.S.
metropolitan markets (ρ̂BASE∗

kt and ρ̂OLS∗
kt ); and (vi) the dynamics of the former

are only weakly related to those of the latter.

In this section, we describe and investigate further properties of these phenom-
ena. In particular, we explore whether the time-series behavior of both ρ̂BASE∗

t
(and ρ̂BASE∗

kt ) and ρ̂OLS∗
t (and ρ̂OLS∗

kt ), as well as the inference on their dichotomy,
presented earlier in this section, is sensitive to the state of the U.S. economy,
nationwide and local trends in real estate prices and also the performance of
the U.S. stock market.

Pavlova and Rigobon (2007) argue that output or productivity shocks can
increase price comovement, even among fundamentally unrelated traded assets,
by altering consumers’ relative demands for these assets, hence their relative
prices. This effect may be more intense in circumstances when those shocks are
more likely to occur, i.e., during either recessions or expansions. We define U.S.
economic conditions using the business cycle dates provided by the National
Bureau of Economic Research (NBER).17 NBER expansions (recessions) begin
at the trough (peak) of the cycles and end at the peak (trough). We then construct

17These dates are reported in the NBER’s website (www.nber.org/cycles.html).
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a dummy variable d R
t equal to one if the U.S. economy is in a NBER recession in

month t and zero otherwise. However, only one such event takes place over our
sample, between March and October 2001. We therefore employ an additional
set of discrete proxies for significant trends in the health of the U.S. economy,
based on the performance of the U.S. stock market. Specifically, we define
two dummy variables d+

SPt (d−
SPt), equal to one if sign(rSPt) = sign(rS Pt−1) =

sign(rS Pt−2) = + (−) and zero otherwise. In other words, these dummies are
positive when the S&P500 index is experiencing a positive or negative run of
length of (at least) three months, respectively.

Trends in raw and excess comovement in real estate prices may also be re-
lated to momentum trading. De Bondt and Thaler (1985, 1987), Jegadeesh
and Titman (1993), Wermers (1999) and Sias (2004), among others, examine
the extent of such activity in the U.S. stock markets. Generalized purchases
or sales of single-family homes across different metropolitan markets, mo-
tivated either by herding, imitation, the activity of momentum speculators
or rational or irrational bubbles, may indeed link prices of real estate assets
in markets otherwise sharing very little in common. We proxy for the ex-
tent of nationwide and local momentum of either sign in the U.S. residential
housing market with two sets of dummy variables: d+

t (d−
t ), equal to one if

sign(rmt ) = sign(rmt−1) = sign(rmt−2) = + (−), and d+
kt (d−

kt ), equal to one if
sign(rkt) = sign(rkt−1) = sign(rkt−2) = + (−), i.e., when either the composite
CSI index or the corresponding metropolitan index is experiencing a positive
or negative run of length of (at least) three months, and zero otherwise.

We regress our measures of nationwide and local raw and excess square correla-
tion on all of the above proxies jointly in Panel A (ρ̂BASE∗

t and ρ̂BASE∗
kt ) and Panel

B (ρ̂OLS∗
t and ρ̂OLS∗

kt ) of Table 4, respectively. Regressions are estimated via
OLS, but we evaluate the statistical significance of the coefficients’ estimates
with Newey-West standard errors to correct for heteroskedasticity and autocor-
relation.18 According to Papke and Wooldridge (1996), inference from these
regressions may be biased since our comovement measures are between zero
and one by construction. However, the estimation of either OLS regressions
of logit transformations mapping the corresponding dependent variable to the

real line—e.g., ln( ρ̂BASE∗
t

1−ρ̂BASE∗
t

), as in Greene (1997, pp. 894-896)—or generalized

linear models via quasi-maximum likelihood—as in Papke and Wooldridge
(1996)—leads to virtually identical inference.

18King, Sentana and Wadhwarn (1994) and Carrieri, Errunza and Sarkissian (2006),
among others, estimate linear regressions whose dependent variables are correlation
coefficients.
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In general, the proxies devised above perform well in explaining the dynamics
of square correlations of raw CSI returns within the U.S. over the sample period
1992–2008 (Panel A of Table 4). For instance, the adjusted R2 is about 18%
for ρ̂BASE∗

t and between 12% (San Francisco) and 56% (Denver) for ρ̂BASE∗
kt .

A clear pattern also emerges from the analysis of the estimated coefficients
of these regressions. Comovement among unadjusted, unconditional single-
family housing price changes, either at the aggregate or local level, is greater
during periods of weaker U.S. economic and financial conditions—i.e., during
both NBER recessions and prolonged stock market declines.

These effects are both statistically and economically significant For example,
ceteris paribus, ρ̂BASE∗

t is 47% higher than its conditional mean ( 0.134
0.284 ) when

d R
t = 1 and 23% higher when d−

SPt = 1 ( 0.066
0.284 ) at the 1% significance level.

Among the metropolitan areas in our sample, raw comovement of CSI returns
for Las Vegas, Tampa and Washington is the most sensitive to fluctuations
in the U.S. business cycle and stock market downturns. Vice versa, raw co-
movement of residential real estate prices with the rest of the U.S. is unrelated
to prolonged stock market increases (d+

SPt = 1). Furthermore, both ρ̂BASE∗
t and

ρ̂BASE∗
kt are almost uniformly positively related to upward momentum in either

the composite (d+
t = 1) or the corresponding CSI price indices (d+

kt = 1) In
those circumstances, prolonged upswings in rmt can add about 56% to nation-
wide raw comovement ( 0.160

0.284 ), and between 25% ( 0.038
0.153 for Washington) and as

much as 105% ( 0.274
0.262 for Boston) to raw metropolitan comovement. According

to Panel A of Table 4, square correlation of raw CSI returns is positively, al-
beit more weakly, related to downward momentum in rmt as well, especially
in California, Miami, Tampa and Las Vegas and especially in the latter part
of the sample (e.g., see Figures 3a, 3c, 3f, 3g and 3k). The estimated impact
of prolonged upswings and downswings in rkt on the corresponding measure
ρ̂BASE∗

kt is of similar significance and absolute and relative magnitude.

A less clear, more heterogeneous picture emerges from the analysis of excess
CSI return comovement conditional upon the state of the U.S. economy, in
Panel B of Table 4. For example, the corresponding adjusted R2 (column R2

a)
are lower than those reported in Panel A and vary considerably across the 14
urban areas in our sample. In addition, and contrary to the evidence above for
raw CSI return comovement, real estate and stock market momentum play a
more limited role in explaining ρ̂OLS∗

t and ρ̂OLS∗
kt . Aggregate excess square cor-

relation ρ̂OLS∗
t tends to be lower in correspondence with prolonged upswings in

residential housing prices nationwide—on average by about 17% (−0.016
0.117 when

d+
t = 1); yet, the local excess comovement measures ρ̂OLS∗

kt are generally in-
sensitive to fluctuations in both rmt and rkt. Lastly, and again contrary to what is
reported in Panel A of Table 4 for ρ̂BASE∗

t and ρ̂BASE∗
kt , excess comovement among
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single-family housing price changes decreases during NBER recessions—
between 21% (−0.027

0.126 for Cleveland) and 107% (−0.059
0.055 for San Francisco) when

d R
t = 1—but is generally insensitive to stock market fluctuations, especially

for some urban areas in the West (Los Angeles, San Francisco and Denver) and
the East Coast (Boston, New York, Miami and Tampa).

In short, the evidence in Table 4 suggests that both raw and excess square CSI
return correlation between 1992 and 2008 vary with various proxies for the state
of the U.S. economy, although mostly in a dichotomous fashion, consistent with
our earlier inference. We conclude that the observed comovement of prices of
single-home residences in the U.S. is to a large extent, yet not exclusively,
driven by underlying systematic sources of risk in real, financial and real estate
markets.

Conclusions

This paper studies the process of price co-formation in the U.S. residential
real estate market over the last two decades. Using housing price index data
for 14 of the largest U.S. metropolitan areas, we find that observed price
comovement among these markets increased between 1992 and 2008, and that
this increase stems mostly from fluctuations in fundamental factors driving real
estate returns. In essence, we find that domestic residential real estate markets
within the U.S. have become more fundamentally integrated, in a manner
parallel to the increasing convergence of international financial markets (e.g.,
Bekaert, Harvey and Lumsdaine 2002, Bekaert, Harvey and Ng 2005, Bekaert,
Hodrick and Zhang 2009).

Our empirical conclusions arise from a distinct, novel approach to analyzing
these data. We first specify a comprehensive linear, dynamic, common-factor
model (rooted in the literature) that describes residential real estate returns
while (importantly) also accounting for both their time-varying factor loadings
and nonstationarity. We find that this model performs well over the time frame
of our study, especially over the latter part of our sample. We then use this
model to decompose the observed raw comovement among these 14 indices into
fundamental covariation (arising from our return generating process) and excess
covariation (the observed comovement net of this fundamental covariation).
We find that raw unconditional comovement among regional residential real
estate markets increases significantly over our sample period, but so does
the explanatory power of the common factors driving residential real estate
prices. Thus, our evidence indicates that (contrary to commonly held notions)
contagion may explain only a relatively small and declining portion of the
observed comovement of those prices over the 1992-2008 interval.
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We also analyze the possible determinants of the extent and dynamics of raw
and excess comovement among U.S. metropolitan real estate markets. First, a
structural break analysis indicates that raw comovement among price changes
of single-home residences in all but one of the 14 metropolitan areas in our
sample experiences a (statistically and economically) significant upward regime
shift in the late 1990s; yet none of these breaks can be attributed to an increase
in excess comovement. Second, we show that both raw and excess comovement
are sensitive to systematic real and financial shocks—e.g., NBER recessions or
prolonged stock and real estate market declines—albeit often heterogeneously
so in sign and magnitude.

In summary, the evidence reported in this study contributes to the debate about
the recent U.S. residential real estate crisis. It shows that a parsimonious funda-
mental model of residential real estate returns can explain much of the comove-
ment of prices of single-home residences among different U.S. metropolitan
areas over the past two decades and, perhaps more strikingly, that it in fact
performs better—and excess covariation matters less—over the latter part of
our sample, the period most commonly associated with the crisis. Thus, our
evidence of increasing integration of regional residential real estate markets
in the U.S. may help interpret the poor performance of diversified mortgage
lenders in the U.S. (especially relative to more concentrated ones) over that
same period (e.g., Loutskina and Strahan 2011, Purnanandam 2011). Recent
theoretical studies of contagion (e.g., Kodres and Pritsker 2002, Yuan 2005,
Pasquariello 2007) argue that greater economic and/or financial integration may
facilitate the propagation of idiosyncratic (i.e., local) shocks across markets.
Accordingly, our evidence may also suggest that future shocks to any of those
regional markets are more likely to have nationwide, prolonged effects than
they did in the past.

We benefited from the comments of Ed Coulson (the editor), two anonymous
referees, Sreedhar Bharath, Michael Bordo, Pierre Siklos, Eugene White and
seminar participants at the Norges Bank Workshop on Fundamental and Non-
Fundamental Asset Price Dynamics and the 2009 AREUEA meetings in San
Francisco. We are grateful to Ryan Polansky for able research assistance. The
usual disclaimer applies.
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