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ABSTRACT: Pelvic bone segmentation is a vital step in analyzing pel-
vic CT images, which assists physicians with diagnostic decision
making in cases of traumatic pelvic injuries. Due to the limited resolu-

tion of the original CT images and the complexity of pelvic structures
and their possible fractures, automatic pelvic bone segmentation in

multiple CT slices is very difficult. In this study, an automatic pelvic
bone segmentation approach is proposed using the combination of
anatomical knowledge and computational techniques. It is developed

for solving the problem of accurate and efficient bone segmentation
using multiple consecutive pelvic CT slices obtained from each

patient. Our proposed segmentation method is able to handle varia-
tion of bone shapes between slices there by making it less suscepti-
ble to inter-personal variability between different patients’ data.

Moreover, the designed training models are validated using a cross-
validation process to demonstrate the effectiveness. The algorithm’s

capability is tested on a set of 20 CT data sets. Successful segmen-
tation results and quantitative evaluations are present to demonstrate
the effectiveness and robustness of proposed algorithm, well suited

for pelvic bone segmentation purposes. VC 2014 Wiley Periodicals,

Inc. Int J Imaging Syst Technol, 24, 29–38, 2014; Published online in Wiley

Online Library (wileyonlinelibrary.com). DOI: 10.1002/ima.22076

Key words: traumatic pelvic injury; bone segmentation; 3D visualiza-
tion; registered active shape model

I. INTRODUCTION

Traumatic pelvic injuries are often high energy injuries that consti-

tute a major cause of death in trauma patients. Every year, traumatic

pelvic injuries contribute to cases of death and permanent disability.

According to the centers for disease control and prevention (CDC),

trauma injury kills more people between the ages of 1 and 44 than

any other disease or illness (CDC Report, 2009). On average, 15

U.S. workers die each day from traumatic injuries; simultaneously,

thousands of U.S. workers visit emergency rooms for treatment of

work-related traumatic injuries every day (Bureau of Labor Statis-

tics, 2012). More than 300 patients with pelvic fractures were seen in

less than 3 years at the University of Maryland Shock Trauma Center

(Young et al., 1986), and patients with pelvic bone fractures who are

present in shock have a mortality of 30–50% (http://www.trau-

ma.org/index.php/main/article/668/). When combined with injuries

in other body regions, for example, the abdomen, the chance of mor-

tality rises even higher, approaching 100% in some cases (http://

www.trauma.org/index.php/main/article/668/). Among different

types of trauma with a high impact on the lives of Americans, trau-

matic pelvic injuries, caused mainly by sports, falls and motor vehi-

cle accidents contribute to a large number of mortalities every year

(Ali et al., 2008; Schiff et al., 2008). Traumatic pelvic injuries and

associated complications, such as severe hemorrhage, multiple organ

dysfunction syndrome (MODS), and blood clots traveling to the

brain or lungs, result in the mortality rate from 8.6 to 50% (UMD,

2005).
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Physicians treating traumatic pelvic injuries, especially pelvic

bone fractures, utilize pelvic computed tomography (CT) images as

an important resource for assessing the severity and developing prog-

nosis of such injuries (Ji et al., 2009). For analysis the of pelvic CT

images of injured patients, segmentation of the pelvic bone from the

CT image is a vital step. It can be used to assess and evaluate ail-

ments, measure how severe the injury is, provide quantitative mea-

surement of bone fracture and detect the hemorrhage position around

the fractured bones.

Image segmentation is an active research topic in the field of

medical image processing. Various approaches such as thresholding,

region growing, atlas guided, etc. are some of the examples of exist-

ing segmentations methods. In recent years, new variations of these

segmentation methods have been proposed and utilized (Gerig et al.,

2001; Li et al., 2008; Vicente et al., 2008; Chen et al., 2009; Ladicky�
et al., 2009; Vasilache et al., 2009; Chen et al. 2013). Nevertheless,

each of these segmentation techniques has various drawbacks, for

example, the shortcoming of thresholding technique is that it cannot

be directly applied to multi-channel images (Sahoo et al., 1988).

Region growing is sensitive to the choice of the initial seed (Haralick

and Shapiro, 1985; Haralick and Shapiro, 1985). Some commonly

used methods are clustering techniques such as K-means (Dunn,

1973; Coleman and Andrews, 1979; Yao et al., 2004), the fuzzy c-

mean algorithm (Lei and Sewchand, 1992), and the expectation-

maximization algorithm (Liang et al., 1994; Rajapakse et al., 1997).

However, clustering algorithms do not directly incorporate spatial

modeling and can be sensitive to noise and intensity in homogene-

ities. In addition, the shape of the pelvic bones are quite complex.

Typical CT scans obtained from each patient contain more than one

hundred consecutive CT slices. Each CT slice includes several differ-

ent bones with complicated and un-regular contours. In order to

assist the radiologist diagnosing pelvic trauma, multiple pelvic bone

structures need to be accurately segmented for each patient’s data.

Moreover, there are some other difficulties such as limited resolution

of the original CT images and possible fractures of pelvic structures.

CT images are also susceptible to noise, partial volume effects, and

in-homogeneities. These make the segmentation process much more

challenging and time-consuming. Furthermore, due to factors such as

variations in bone tissues, complexity of pelvic structures, and signif-

icantly different geometrical characteristics of fractures, automatic

segmentation of pelvic bone in CT scan remains as challenging tasks.

Currently, there are no existing technologies with versatile capabil-

ities to extract pelvic bone structure and provide satisfactory results.

Hence developing an automated, efficient segmentation algorithm

for the assessment of pelvic injuries can be a vital tool.

In this study, a new cross validation based segmentation algo-

rithm is proposed to automatically extract multiple-level bone struc-

tures using a combination of anatomical knowledge and

computational techniques. In order to test the accuracy of perform-

ance of the training models, a cross-validation process has been

designed to indentify how segmentation can be affected by variations

in training sets. In order to quantify the segmentation accuracy, two

suitable measures are defined to evaluate the results: “mean distance”

and “mis-segmented area.” The results are promising, indicating that

the proposed method can successfully detect the ilium, ischium,

pubis and femur bones; also the quantitative measurements demon-

strate the effectiveness and robustness of the proposed algorithm.

The rest of this study is organized as follows. Proposed method

for bone segmentation is explained in section II, results are presented

in section III followed by section IV, which presents conclusions and

finally section V lists the future work.

II. METHODS

A. 2D Pelvic Bone Segmentation. Bone tissue segmentation

by automated CT image processing can significantly reduce the time

needed to examine medical images and to improve the accuracy of

medical decision-making. However, automatic bone tissue segmenta-

tion from each CT image is very challenging due to the complexity

of pelvic structures, and variation in bone structure from person to

person. In addition, CT images are susceptible to noise, partial vol-

ume effects, and in-homogeneities. These make the bone segmenta-

tion more challenging and time-consuming.

This study describes a new cross validation based segmentation

algorithm in multi-level pelvic CT scans, which can segment the pel-

vic bones from CT images automatically and accurately, as illus-

trated in Figure 1. The proposed method consists of five parts:

preprocessing, edge detection, the best matching template detection,

cross validation based registered active shape model (RASM) with

automatic initialization and 3D pelvic model reconstruction.

Some of the prior work related to this study focuses on the seg-

mentation and fracture detection of pelvic bones in CT scans (Smith

and Najarian, 2009; Vasilache et al., 2009). As shown in Figure 1,

the first step of segmentation is preprocessing. A multi-stage prepro-

cessing technique is introduced, which includes surrounding artifacts

filtering, morphological operations, and image enhancement. This

step first removes the surrounding artifacts present in the original

image, such as CT table, cables, hands, and lower extremities. High

frequency speckle noise is also removed from the images using a

median filter. Next, the image is enhanced to emphasize the features

of interest—for example, the pelvic bone is enhanced to higher inten-

sity while less emphasis is placed on soft tissues and other organs.

Once image enhancement is conducted using brightness contrast

stretching, a series of steps are applied for preliminary bone tissue

segmentation, including Canny edge detection technique to detect

the edges of bone tissue, morphological operations to remove spuri-

ous edges and sub-edge connections and removal. The obtained pre-

liminary segmented results are then used for detecting the best

matching template. To design the segmentation process in an auto-

mated fashion, it is performed by a template-based best shape match-

ing algorithm (Belongie et al., 2002). For this technique, 100 bone

templates are created through manual selection from the visible

human project dataset (http://www.nlm.nih.gov/research/visible/visi-

ble_human.html), and these templates are compared to each CT slice

in order to determine the best matched template, which allows the

corresponding training shape models of each best matched template

to be applied to the detected edge for bone segmentation. One impor-

tant consideration is that the pelvic bones in each of the original

training images have different sizes, rotation angles and locations

that may lead to unstable and unreliable shape models for inaccurate

bone segmentation. Hence to overcome this, a method called

Figure 1. Schematic diagram of pelvic bone segmentation.
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registered active shape model (RASM) is used for the final bone seg-

mentation (Wu et al., 2011). By using this method to extract pelvic

bone tissues, a more robust training model is developed as compared

to models developed using standard active shape model (ASM)

algorithms.

ASM (Cootes et al., 1995) is a supervised learning technique that

requires a set of labeled training images. The structure of interest in

these images is represented by a series of landmarks manually placed

along its boundaries. The statistical model of the desired structure is

formed by extracting the shape and intensity information across the

training set. This model is used to evaluate the possible deformation

of each structure as the algorithm searches for the same structure in

the test new images. The first step in constructing the shape model is

to determine a set of n landmarks, which describe the structure of

interest in every training image. A given object can be represented as

a 2n element vector x given by x 5 [x1,. . .,xn,y1,. . .yn], where (xi, yi)

provides the coordinates of landmark x. ASM uses an iterative

approach that sets the model parameters b to the mean shape of x,

that is, x. Principle component analysis (PCA) is used to reduce the

dimensionality of the dataset. xi can be approximated by:

xi � x1Pb

where, P contains the eigenvectors of the PCA covariance matrix.

Shape in this frame is defined by b; x is aligned with a new set of

image points Y (representing the shape in a new image). The image

points are then projected into the model space so that the parameters

in b can be updated to match them. The process is repeated until

there is no significant change in b between iterations.

The entire RASM algorithm includes two stages: training stage in

which registered training models are created, and the testing stage

that includes automatic initialization. During the training stage of

segmentation, for each diverse shape of the pelvic bones in different

slices, distinct numbers of landmarks are placed on those boundaries.

Here shows different numbers of landmarks for each pelvic bone:

lumbar (23–27), ilium (30–40), sacrum (8–10), femur (20–22), pubis

(20–24), ischium. The numbers of the landmarks vary depending on

the size of each bone structure in different training sample set. The

structure of interest in these images is represented by a series of land-

marks manually placed along its boundaries by the expert. The statis-

tical model of the desired structure is formed by extracting the shape

and intensity information across the training set. This model is used

to evaluate the possible deformation of each structure as the algo-

rithm searches for the same structure in the new test images. During

the test stage, the landmarks will move towards the target position so

that the parameters of the algorithm will be optimized and updated

until there is no significant change between iterations.

ASM takes a statistical approach that requires a set of labeled

training images to determine variations of the desired shape in testing

the new images. The standard ASM has been widely used in the

recent years, but this method is highly sensitive to initialization. It

requires that the initial position be correctly assigned to the training

model in order to detect a target object in the image. Then the algo-

rithm can attempt to fit the shape model to the object. If the shape

model is not accurately placed, the standard ASM method often fails

to detect the target object.

This study addresses this shortcoming using a hierarchical initiali-

zation process that composes image registration, extracted bone fea-

tures as well as prior edge detection results to sequentially place the

training models for each individual object. This process avoids the

need for manually indicating the initial positions. This will avoid

human interference and reduce human-caused errors. The algorithm

in detail is described in (Wu et al., 2011). In short, the method makes

use of the sorted centroids of mean shapes in training models and

testing images, produce the paired up training model and testing

bone shapes, then assigns the initial position of the mean shapes to

the uppermost position of the testing bone.

B. Considerations During Training. As ASM (Cootes et al.,

1995) is a supervised learning method, we are required to test the

reliability of the performance of training models. A cross-validation

based method is designed to test how much different training data

can affect the segmentation results.

In traditional K-fold cross-validation, the original sample dataset

is randomly divided into K groups. A single group is retained as the

testing data for validating the performance of the training model, and

the remaining K21 groups of data are used to create the training

model. The cross-validation process is then repeated until each of the

K subsamples are used once as the validation data. Finally, the K
results can be averaged or combined to produce a single estimation

as the final result. Figure 2 shows the mechanism of how traditional

cross-validation works.

In our designed cross-validation method for pelvic bone models,

the entire dataset (20 patients) are randomly assigned to four distinct

groups. These groups are not representative of anything in specific;

rather it is merely a mechanism to perform the leave one group out

cross validation process. Since there are 20 subjects’ datasets, each

of the four groups contains five datasets. Different from traditional

cross-validation method, within the each group of data, for each

round, one subject is selected from a particular group for testing. The

remaining subjects in the other three groups are used for creating

three different training models, which apply to each selected testing

subject. This process is designed to avoid choosing overlapping data

for creating different training models and thus making them inde-

pendent of each other. Figure 3 shows the mechanism of how our

designed cross-validation method works. Different key pelvic bone

structures, including right ilium, left ilium, right femur, left femur,

right pubis and left pubis are segmented to demonstrate and compare

the performance of training models.

Figure 2. Flowchart of Traditional cross-validation.

Figure 3. Flowchart of Designed cross-validation.
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C. Evaluation Measures. These results were evaluated by

expert radiologist as ground truth for assessment. Visual inspection

is also used for evaluating the performance of pelvic bone segmenta-

tion. The segmented bones are classified into three categories: accu-

rate, fair, and unacceptable. These categories were determined via

consultation with a trauma physician, who identified actual bone con-

tour as the ground truth.

The computed value of mean distance can be used to classify the

results in one of three classes. The shapes represented with mean dis-

tances of less than 1.660.2 mm are classified as “accurate,” the

shapes represented with mean distances between 1.660.2 mm and

2.260.2 mm are classified as “fair,” the shapes represented with

mean distances more than 2.260.2 mm are classified as

“unacceptable.” The segmentation result can also be classified into

one of the three classes using the computed mis-segmented area

value. The shapes represented with mis-segmented areas of less than

10% are classified as “accurate,” the shapes represented with mis-

segmented areas between 10 and 20% are classified as “fair,” the

shapes represented with mis-segmented areas more than 20% are

classified as “unacceptable.”

In order to quantify the segmentation accuracy, suitable measure

is required to evaluate the segmentation results. Hence specific for

this study, precise definitions for evaluation criteria have been devel-

oped those are useful and intuitive for evaluation purposes.

Mean Distance. Given two surfaces S1 and S2, in this study, S1

is the ground truth of the pelvic bone surface as per consultation with

a trauma physician; S2 is the detected pelvic bone surface from our

algorithm.

The distance dðpn; S2Þ between two point on surfaces S1 and S2

are defined as:

dðpn; S2Þ5 min
pm2S2

jjpn2pmjj2

The mean distance between surface S1 and the surface S2 as:

dðmeanÞ5

XL

n51

d pn; S2ð Þ

L

where pn denotes each landmark/location on surface S1 and pm

denotes each landmark on surface S2, L denotes the total number of

landmarks on the surface. During the evaluation stage, the ideal posi-

tions of landmarks on the gold standard surface of pelvic bone are

determined by the expert to measure the accuracy of the segmenta-

tion. The landmarks are placed using the expert knowledge as the

ground truth. Then, the suitable measures are made between the land-

marks in test images and expected positions of the ground truth.

Mis-Segmented Area. The idea is to have a measure that repre-

sents the uncommon area of the segmented surface and gold standard

surface of pelvic bone. After the bone structures have been seg-

mented, the original images are set to the binary version. The areas

of the objects can be determined in the binary image. The area here

is defined as a value corresponding to the total number of pixels

located within bone regions. Given two surfaces S1 and S2, we define

the areas as A1 and A2, Ai is the area for each bone surface Si.the

Mis-segmented Area MA of two surfaces S1 and S2 can be defined as:

jGj
jA1j � 100

where G5fpixels : pjp 2 A1[A2 ; p =2 A1\A2g

D. 3D Pelvic Bone Visualization. Since 2D pelvic CT images

provide limited and local information in each slice, 3D pelvic bone

models are very often required to present a full range of the entire

bone structure in clinical diagnosis. The radiologists usually observe

and analyze the patients’ data with the combination of both 2D

images and 3D models to make accurate diagnostic decisions in clin-

ical diagnosis, which is highly important for assessing the injury

severity. After the pelvic bone from each continuous 2D pelvic CT

image is successfully segmented, the 3D model is reconstructed uti-

lizing these extracted 2D bone structures. In our work, the pelvic

model can be rotated to any angle, which will help the physician

comprehensively observe the entire pelvic bone structure and detect

any abnormality of the patient, such as bone fractures. Detecting the

presence and extent of the fracture is an important step in assessing

Figure 4. Pelvic bone segmentation results.
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the severity of a pelvic injury. There might be subtle fractures, as

fractures of the acetabulum, hip displacement or presence of hemor-

rhage. In addition, 3D visualization may be used for further validat-

ing the 2D segmentation results. Here the isosurface method is

applied to form the 3D pelvic bone models utilizing the segmented

pelvic bones from 2D CT slices. In medical imaging area, isosurfaces

is typically used to demonstrate regions of a specific density in a

three-dimensional CT scan. This method allows the visualization of

organs, bones, or other structures. An isosurface is a 3D surface that

represents points of an equal constant value within a volume of

space-3D data distribution. Isosurfaces are often used as data visual-

ization methods and can be drawn on the screen very quickly.

After the 2D bone structures are extracted from continuous CT

slices, a sphere in 3D domain is set asfx21y21z25R2g. A threshold

is set to 0.5 in order to create a binary version of the images. The 3D

pelvic models can later be built based on the binary version of all CT

slices. The pixel value of all the nonbone regions including the back-

ground, soft-tissue and all other organs represented in CT images are

set to 0, and the bone regions are set to 1. An isofurface is therefore

formed based on the threshold value to separate the bone region in

each layer from the background. The isosurface connects the points

that have the equal pixel value and represent a 3D model of pelvic

bone structure.

E. Snake Method. In this section, we compare the segmenta-

tion performance using the proposed method and an automated

seeding based Snake method (Kass et al., 1988). In Snake based

methods, a deformable model is matched to a target in the image

by means of energy minimization. A snake is initialized firstly

near the target and the snake gets refined iteratively and moves

Figure 5. Segmentation accuracy results using proposed method of different pelvic bone structures. [Color figure can be viewed in the online
issue, which is available at wileyonlinelibrary.com.]

Figure 6. Segmentation accuracy including both accurate and fair results of different pelvic bones using proposed method, standard ASM

with manual initialization and standard ASM without initialization. [Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]
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towards the salient contour (Kass et al., 1988). The Snake method

is often used in image segmentation. In snakes, a deformable

model is matched to a target in the image by means of energy

minimization. A snake is initialized firstly near the target and the

snake gets refined iteratively and moves towards the salient

contour.

The algorithm for the original Snake model was introduced by

Kass et al. in 1988 (Kass et al., 1988). The optimal snake shape and

position were defined based on the solution of minimizing the sum

of the internal and external energies defined along the snake. The

snake S sð Þ is defined as a parameterized curve:

S sð Þ5ðx sð Þ; yðsÞÞ

The curve is evolved such that it minimizes the energy

functional:

Figure 7. Compared results of pelvic bone segmentation via RASM and Snake methods.

Figure 8. Example results of 3D pelvic bone structure.
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E5

ð1

0

a

2
jS0ðsÞj2ds1

ð1

0

b

2
jS00ðsÞj2ds1

ð1

0

FðsÞds

F sð Þ is the external energy which is derived from the given image

in such a way that it takes smaller values around boundaries. a and b
are the parameters that control the curve’s tension and rigidity,

respectively.

Table 1. Performance of three training models B–D for five testing subjects in A.

Testing Subjects/Training Model Training Model B Training Model C Training Model D

First testing subject in A Accurate Accurate Accurate

MD: 0.6 6 0.2mm MD: 1.0 6 0.2 mm MD: 1.5 6 0.1 mm

Second testing subject in A Accurate Accurate Accurate

MD: 1.1 6 0.2 mm MD: 1.2 6 0.3 mm MD: 1.0 6 0.2 mm

Third testing subject in A Accurate Accurate Accurate

MD: 0.8 6 0.4 mm MD: 1.0 6 0.5 mm MD: 0.9 6 0.2 mm

Fourth testing subject in A Fair Accurate Accurate

MD: 1.7 6 0.6 mm MD: 1.5 6 0.2 mm MD: 1.3 6 0.3 mm

Fifth testing subject in A Accurate Accurate Accurate

MD: 0.8 6 0.2 mm MD: 0.8 6 0.2 mm MD: 0.9 6 0.4 mm

Table II. Performance of three training models A, C, and D for five testing subjects in B.

Testing Subjects/Training Model Training Model A Training Model C Training Model D

First testing subject in B Accurate Accurate Accurate

MD: 1.5 6 0.2 mm MD: 1.6 6 0.3 mm MD: 1.3 6 0.4 mm

Second testing subject in B Accurate Accurate Fair

MD: 0.6 6 0.2 mm MD: 0.7 6 0.4 mm MD: 2.2 6 0.8 mm

Third testing subject in B Accurate Accurate Accurate

MD: 1.6 6 0.3 mm MD: 0.9 6 0.2 mm MD: 1.2 6 0.2 mm

Fourth testing subject in B Accurate Fair Accurate

MD: 1.6 6 0.2 mm MD: 2.1 6 0.7 mm MD: 1.0 6 0.2 mm

Fifth testing subject in B Accurate Accurate Accurate

MD: 1.1 6 0.4 mm MD: 0.8 6 0.2 mm MD: 1.0 6 0.2 mm

Table III. Performance of three training models A, B, and D for five testing subjects in C.

Testing Subjects/Training Model Training Model A Training Model B Training Model D

First testing subject in C Accurate Accurate Accurate

MD: 1.2 6 0.4 mm MD: 1.0 6 0.2 mm MD: 1.3 6 0.3 mm

Second testing subject in C Accurate Accurate Accurate

MD: 0.8 6 0.2 mm MD: 0.6 6 0.2 mm MD: 0.6 6 0.2 mm

Third testing subject in C Fair Fair Accurate

MD: 2.2 6 0.5 mm MD: 1.9 6 0.3 mm MD: 1.6 6 0.3 mm

Fourth testing subject in C Accurate Accurate Accurate

MA: 1.6 6 0.3 mm MA: 1.5 6 0.2 mm MD: 1.3 6 0.4 mm

Fifth testing subject in C Accurate Accurate Accurate

MD: 0.7 6 0.2 mm MD: 0.6 6 0.2 mm MD: 1.0 6 0.1 mm

Table IV. Performance of three training models A–C for five testing subjects in D.

Testing Subjects/Training Model Training Model A Training Model B Training Model C

First testing subject in D Accurate Accurate Accurate

MD: 1.1 6 0.4 mm MD: 1.1 6 0.2 mm MD: 1.2 6 0.3 mm

Second testing subject in D Accurate Accurate Accurate

MD: 1.0 6 0.2 mm MD: 1.5 6 0.2 mm MD: 1.4 6 0.4 mm

Third testing subject in D Accurate Accurate Accurate

MD: 0.8 6 0.2 mm MD: 1.3 6 0.3 mm MD: 0.9 6 0.4 mm

Fourth testing subject in D Accurate Accurate Fair

MD: 1.5 6 0.4mm MD: 1.6 6 0.2 mm MD: 2.1 6 0.6 mm

Fifth testing subject in D Accurate Accurate Accurate

MD: 0.6 6 0.2 mm MD: 0.7 6 0.3 mm MD: 1.0 6 0.3 mm
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Selecting appropriate seeds is very important for obtaining satis-

factory segmentation result. This study presents a method of auto-

matic initial seeds creation that is suitable for pelvic CT

segmentation. Firstly initial bone mask is established using prepro-

cessing, wavelet analysis and a suitable threshold. Next, refined bone

mask is obtained using binary multiplication of the initial bone mask

and the filtered image after applying Gaussian filtering. In order to

form seeds that are close to the contour, Canny edge detection is uti-

lized based on the refined mask and seeds are most likely located on

the edge of the identified regions of interest.

Seed growing step consists of growing each seed from the refined

mask in its own neighborhood. The established growing criterion is

based on neighborhood grey level statistics and gradient values. A

curve is initialized based on the initial seeds. Such initial curve

evolves and moves through the image according to a solution that

attempts to minimize the energy function (Vasilache and Najarian,

2009).

III. RESULTS

A. Dataset. The dataset has been obtained from the Virginia

Commonwealth University Medical Center. Data has been collected

from 20 patients with traumatic pelvic injuries. Anywhere between

45 and 129 images are collected for each patient, representing a vari-

ety of anatomical structures within the pelvic CT scans, especially

those that display similar structures within the group of patients.

Axial CT images with 1–5 mm slice thickness are used for the study.

Scans collected from five patients are used for training while scans

from the other fifteen patients are used for testing. In order to build

appropriate training models for each bone structures, the expert’s

knowledge and experience is utilized to manually choose every land-

mark in each training image. In this study, it was found five different

training images have been sufficient to express the variation of the

couture for each bone structure. Also by adding more than five train-

ing images it was found that the performance of the algorithm

became more time-consuming while not adding much to the segmen-

tation accuracy. However, in our work, the number of the landmarks

placed into the five training images is more than 30,000. Since all

these landmarks are placed manually by the expert, if more training

images were to be added then it would take the experts/physicians

more time to insert thousands more landmarks into the training set,

while not adding much to the overall segmentation performance.

Hence, in order to achieve a suitable balance between the running

speed and accuracy, five training images have been used in this

work.

B. Results for Image Segmentation. Figure 4 shows the seg-

mentation results based on RASM with the automatic initialization

processing. The results show that the proposed method accurately

segments the pelvic bones (lumbar, ilium, sacrum, femur, pubis,

ischium).

Among all the segmentation results of 886 testing images across

fifteen patients, 83.07% of them are classified as “accurate,” and

13.54% of them are “fair” and 3.39% of them are detected to be

“unacceptable.” The total segmentation accuracy for both accurate

and fair classes is 96.61%

For different pelvic bone structures, the segmentation accuracy

results are shown in Figure 5. The ilium, ischium, pubis and femur

are almost always detected to be at least “fair”; however, the sacrum

and lumbar show a number of unacceptable results. This may be

because of the variation in bone shapes, blurred edge of the bones,

poor quality of the original image, etc. The unacceptable results may

be improved by further training of models across a wider dataset or

using more landmarks for training the model. Segmentation accu-

racy, including both “accurate” and “fair” results of different pelvic

bones using the proposed method, the Standard ASM with manual

initialization and the Standard ASM without initialization, are shown

Figure 9. Results of pelvic ilium bone segmentation using three dif-

ferent training models for a testing subject. [Color figure can be
viewed in the online issue, which is available at
wileyonlinelibrary.com.]

Figure 10. Results of pelvic ilium bone segmentation using three

different training models for a testing subject. [Color figure can be
viewed in the online issue, which is available at
wileyonlinelibrary.com.]

Figure 11. Results of pelvic ilium bone segmentation using three

different training models for a testing subject. [Color figure can be
viewed in the online issue, which is available at
wileyonlinelibrary.com.]

Figure 12. Results of pelvic ilium bone segmentation using three
different training models for the second testing subject. [Color figure

can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]
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in Figure 6. The results show the superiority of the proposed method

on all types of pelvic bones.

C. Results Compare with Snake Method. Figure 7 shows

the compared results using the proposed method—RASM and the

Snake method. The segmentation results using RASM are shown in

the left side, the results using snake based method are shown in the

right side. From the results, it can be seen that the Snake method

detect two separated bones as one object. There are often pelvic bone

structures which may be close to each other, for example, femoral

head and ilium, where Snake method may fail to detect the separa-

tion between the bones. Also as can be seen in the third group results,

the nonbone region is wrongly detected as bone structure using

Snake.

D. Results for 3D Pelvic Bone Visualization. As shown in

Figure 8, the 3D structure of the pelvic bone is clearly presented

from different points of view. The left image on Figure 6 clearly

shows a cavity in the bone structure, where the detected fracture

exists in the pelvic region. In this work the developed 3D pelvic

model can be rotated to any angle which helps the physician compre-

hensively observe the entire pelvic bone structure and detect any

abnormality of the patient. In addition, 3D visualization may be used

for further validating the 2D segmentation results. However, for the

specific measure of fracture or hemorrhage severity, 2D images

should be utilized to provide more details.

E. Results from One Group Based Cross
Validation. Table 1 shows the average segmentation performance

for the testing subjects in A using three training models created from

B to D. Table II presents the average segmentation performance for

the testing subjects in B using three training models created from A,

C, and D. Table III shows the average segmentation performance for

the testing subjects in C using three training models created from A,

B, and D. Table IV presents the average segmentation performance

for the testing subjects in D using three training models created from

A to C. In the tables, MD denotes Mean Distance between the seg-

mented surface and ground truth surface.

Figures 9 and 10 show the example results of left pelvic ilium

bone segmentation using three different training models for two test-

ing subjects. Figures 11 and 12 present the example results of left

pelvic ilium bone segmentation using three different training models

for two testing subjects. Figure 13 shows the example results of right

pelvic femur bone segmentation using three different training models

for a testing subject. Figure 14 shows the example results of left pel-

vic femur bone segmentation using three different training models

for a testing subject. Figure 15 shows the example results of right

pelvic pubic bone segmentation using three different training models

for a testing subject. Figure 16 shows the results of left pelvic pubic

bone segmentation using three different training models for a testing

subject.

For the segmentation performance, 90% of the total testing sub-

jects are classified as accurate and there is slight difference among

the segmentation results using different training models. Based on

the entire performance of three different training models on key pel-

vic bone structures across testing subjects, we can conclude that the

selection of training data to form training models has slight influence

to the final segmentation results. Also, each training model performs

well on different testing subjects and most of the segmentation

results are classified as the accurate. The created training models in

this study for pelvic bone segmentation are effective and reliable.

IV. CONCLUSIONS

This study provides a framework for the pelvic bone segmentation

and 3D pelvic bone visualization. Pelvic CT scans of 20 patients are

processed and bone structures from fifteen patients are accurately

and automatically segmented using the proposed hierarchical

Figure 13. Results of pelvic femur bone segmentation using three

different training models for a testing subject. [Color figure can be
viewed in the online issue, which is available at

wileyonlinelibrary.com.]

Figure 14. Results of pelvic femur bone segmentation using three
different training models for a testing subject. [Color figure can be
viewed in the online issue, which is available at

wileyonlinelibrary.com.]

Figure 15. Results of pelvic pubic bone segmentation using three

different training models for a testing subject. [Color figure can be
viewed in the online issue, which is available at

wileyonlinelibrary.com.]

Figure 16. Results of pelvic pubic bone segmentation using three

different training models for a testing subject. [Color figure can be
viewed in the online issue, which is available at
wileyonlinelibrary.com.]
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approach which incorporates preprocessing, edge detection, shape

matching, homogeneity based image registration and RASM with

novel initialization. Segmentation results are evaluated using two

quantitative measures and the compared results show that the pro-

posed method performs better with higher segmentation accuracy

than the standard ASM. Also, compared results indicate that the pro-

posed method performs better than Snake algorithm. Additionally,

computation time taken by this method is less than the manual seg-

mentation, making it practically applicable in automated processing

of medical images. Different training models are created to segment

key pelvic bone structures and the results show that the selection of

training data does not have a large affect on the final segmentation

performance. 3D pelvic bone models are built based on 2D segmen-

tation results.

V. FUTURE WORK

Future work includes the following items: Process a larger database,

with higher resolution CT images to improve the performance of the

algorithm in segmenting the bones and detecting the bone fracture.

Explore 3D bone segmentation algorithms based on pelvic CT

images with higher resolution. Apply an appropriate rule-based

methodology to generate rules for outcome prediction. This will

form a decision-making system to provide physicians with reliable

recommendations on diagnosis as well as treatment planning.
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