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The equations governing atmospheric flow imply transfers of energy and potential
enstrophy between scales. Accurate simulation of turbulent flow requires that numerical
models, which have finite resolution and truncation errors, adequately capture these
interscale transfers, particularly between resolved and unresolved scales. It is therefore
important to understand how accurately these transfers are modelled in the presence of
scale-selective dissipation or other forms of subgrid model. Here, the energy and enstrophy
cascades in numerical models of two-dimensional turbulence are investigated using the
barotropic vorticity equation.

Energy and enstrophy transfers in spectral space due to truncated scales are calculated
for a high-resolution reference solution and for several explicit and implicit subgrid models
at coarser resolution. The reference solution shows that enstrophy and energy are removed
from scales very close to the truncation scale and energy is transferred (backscattered) into
the large scales. Some subgrid models are able to capture the removal of enstrophy from
small scales, though none are scale-selective enough; however, none are able to capture
accurately the energy backscatter.

We propose a scheme that perturbs the vorticity field at each time step by the
addition of a particular vorticity pattern derived by filtering the predicted vorticity field.
Although originally conceived as a parametrization of energy backscatter, this scheme is
best interpreted as an energy ‘fixer’ that attempts to repair the damage to the energy
spectrum caused by numerical truncation error and an imperfect subgrid model. The
proposed scheme improves the energy and enstrophy behaviour of the solution and, in
most cases, slightly reduces the root mean square vorticity errors.
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1. Introduction

The adiabatic frictionless governing equations of atmosphere and
ocean dynamics conserve both energy and potential enstrophy.
However, the nonlinearity of the governing equations leads
to systematic transfers between scales and therefore transfers
between scales that are resolvable and those that are unresolvable
for any given finite-resolution numerical model. Failure to model
these transfers correctly could lead to numerical solutions that
are excessively active and noisy or excessively damped at certain
scales. It is therefore important to determine how well these
interscale transfers are handled in weather forecast and climate
models, and to develop improved representations of them.
For quasi-geostrophic turbulence, energy is transferred mainly
upscale and potential enstrophy is transferred mainly downscale
(e.g. see Salmon, 1998). This means that numerical methods
that can dissipate potential enstrophy while conserving energy
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are desirable for atmospheric models, at least in those regions
and on those scales for which quasi-geostrophic dynamics are
qualitatively correct.

Typically in atmospheric models, the numerical representation
of energy and potential enstrophy transfers is achieved either
by conservative numerics supplemented with some form of
explicit scale-selective dissipation or by the use of inherently
dissipative numerics such as semi-Lagrangian or non-oscillatory
finite volume schemes (such as Lin, 2004 ). If a numerical model
captures the downscale cascade but conserves potential enstrophy,
then potential enstrophy will accumulate near the truncation scale
leading to a noisy solution. This is known as ‘spectral blocking’.
Spectral blocking clearly points to the need for models to remove
potential enstrophy near the truncation scale. In practice, all
models include some form of explicit or implicit scale-selective
dissipation (Jablonowski and Williamson, 2011). This dissipation
is applied for many reasons, both physical and numerical, one of
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which is to remove potential enstrophy and model the cascade to
unresolved scales.

However, a side-effect of potential enstrophy dissipation is that
energy is dissipated too. For the barotropic vorticity equation (see
section 2), removal of enstrophy at wave number kg, say, at a
rate Z implies that energy is also removed, at a rate E=2Zz/ Kiiss-
This energy removal rate must be at least Z/ kfmx, where kpax
is the maximum resolvable wave number. In practical weather
and climate models, energy and enstrophy are removed over a
wide range of wave numbers, so the ratio £/Z is significantly
greater than 1/k% . Enstrophy and available energy budgets
estimated for the troposphere (Koshyk and Boer, 1994; Thuburn,
2008, and references therein) suggest an enstrophy throughput
Z of order 107 s> and an energy throughput E of order
107> m~2s2 associated with nonlinear downscale cascades in
the free atmosphere. (A much larger energy sink of order
10~* m~2s™¥ isassociated with boundary layer dissipation.) These
numbers suggest an estimate for the average dissipation scale:
kdiss ~ 107> m~!. There is evidence in the literature (e.g. Shutts,
2005; Bowler et al., 2009), as well as much anecdotal evidence
(e.g. WGNE, 2003) that, at current climate resolutions and even
resolutions used for ensemble weather prediction, state-of-the-art
models dissipate too much energy in the free atmosphere, perhaps
an order of magnitude too much. This excessive dissipation can
result in insufficient variability and underdispersive ensembles.

One solution to the problem of excessive energy dissipation
is the use of energy fixers. These can be in the form of a
frictional heating term or an a posteriori fixer to ensure that
energy is conserved (Williamson, 2007; see Neale et al., 2010, for
an example). These fixers must be designed so that they do not
introduce large errors into the solution, for example by adding
energy at an inappropriate location (see Williamson ef al., 2009,
for an example). However, such fixers may still allow the available
energy associated with the active dynamics to decrease even if they
conserve the total energy. An alternative approach, designed to
help maintain variability and eddy activity at realistic amplitudes,
is to directly increase the kinetic energy of the flow by perturbing
the velocity field. This approach is often viewed as modelling the
upscale transfer of kinetic energy from unresolved to resolved
scales, and so is termed ‘backscatter’. Backscatter models have
been developed for three-dimensional large eddy simulations
(see Mason and Thomson, 1992; Domaradski and Saiki, 1997) to
model the upscale energy transfer near boundaries. Backscatter
models have also been developed for large-scale atmospheric
models (see Bowler et al., 2009; Berner et al., 2009), where energy
that has been dissipated is added back to the solution as kinetic
energy, usually as random perturbations.

The barotropic vorticity equation is the simplest relevant fluid
system in which to study this problem. In this paper we use a high-
resolution reference solution of the barotropic vorticity equation
to determine the effect of scales smaller than some specified
truncation on the spectral tendencies of energy and enstrophy.
This provides a quantitative measure of both downscale cascades
and backscatter, and their spectral dependence, which we compare
with a variety of explicit and implicit subgrid models (section 3).
(A similar approach has been proposed very recently by Pietarila
Graham and Ringler, 2013, but with the emphasis on spectral
energy and enstrophy fluxes rather than tendencies.)

These results are used to inspire the development of a
backscatter model or energy fixer for two-dimensional turbulence
that will ensure conservation of energy and dissipation of
enstrophy (section 4). The idea is not to use random perturbations
but to add energy in patterns that are based on the resolved scale
structures, with a sound rationale for the spectral distribution of
energy sources and sinks. The proposed scheme is tested on the
barotropic vorticity equation and shown to give a reduction in
vorticity errors in some cases, as well as improvements in total
energy and enstrophy (section 5).
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2. Governing equations and numerical schemes
The barotropic vorticity equation is given as
0 ou av
L, M
at ax ay

where ¢ = vy — u, is the vorticity, and u and v are the velocity
components in the x and y directions respectively. The flow is
incompressible, u, + v, = 0, and the vorticity can be inverted to
calculate the stream function () and the velocity components:

Vi =g, ()
u= _wy) (3)
v =Y. (4)

We consider the problem in a doubly periodic square domain of
unit size.
The continuous equations conserve both energy

1
p=—; [veaey ©)
and enstrophy
! 2
Z=E ¢*dxdy. (6)

However, the nonlinear effects of unresolved scales on resolved
scales may be non-negligible, and therefore numerical methods
must be able to represent these effects. Formally this may be
expressed using a filtered form of the governing equations. For
the barotropic vorticity equation, the filtered form is

at - ox oy
where
0 (= — 0 = —
SG = o (u{ . u{) +3 (v; - vg) )

is the subgrid term and an overbar represents a filter that removes
scales smaller than the model resolution. (Note that other forms
of filtered equations are often used.) As energy and enstrophy
transfers between the resolved scales and unresolved scales are
mediated by the unresolved scales, the representation of these
transfers is intimately related to the representation of the subgrid
term SG.

Broadly, there are two approaches for representing the subgrid
terms in numerical models: explicit subgrid models and implicit
subgrid models. Explicit subgrid models construct a mathematical
model for SG in terms of the resolved variables, and add this
(or a discretization of it) to the right hand side of the discretized
equations. The simplest example is a scale-selective hyperdiffusion
of the form K'V2", where K is a tunable parameter and 72 an integer,
but a range of more sophisticated schemes have been proposed,
such as those by Smagorinsky (1963), Sadourny and Basdevant
(1985) and Frederiksen and Kepert (2006).

Implicit subgrid models (also known as implicit large-eddy
simulation — ILES) use a discretization of the governing equations
whose truncation errors are intended to play the role of a subgrid
model. This approach often makes use of finite-volume methods
and flux limiters. High-order upwind schemes with flux limiters
often have truncation errors that take the form of a nonlinear
scale-selective dissipation. The strength of this dissipation adapts
to the strain rate of the resolved flow and therefore resembles
many physically based explicit subgrid models (Grinstein et al,
2007).

Q. J. R. Meteorol. Soc. 140: 626—638 (2014)

Quarterly Journal of the Royal Meteorological Society (C) 2013 Royal Meteorological Society



628

ILES has been examined in detail for three-dimensional
turbulence (e.g. Margolin and Rider, 2002, 2007; Grinstein et al.,
2007) and some success has been claimed, although it appears
less successful when upscale effects are important, for example
near walls (Brown et al., 2000). The application of ILES to two-
dimensional flow was examined by Kent ef al. (2012), and it was
found that several schemes were able to capture the leading order
effects of the subgrid term when those effects were dissipative, for
example when vorticity filaments were stretched and thinned to
the resolution limit. However, none of the schemes was successful
when the subgrid term involved upscale effects such as vortex
merger or roll-up of thin vorticity filaments: each of the schemes
tested dissipated energy.

In this paper we make use of several numerical methods,
with both explicit and implicit subgrid models, in our numerical
testing. The first is the spectral transform method (see, for
example, Durran, 1999) and the second is the Arakawa Jacobian
(Arakawa, 1966). Both use aleapfrog time integration scheme with
a weak Robert—Asselin time filter (Robert, 1966; Asselin, 1972).
Both schemes conserve energy and enstrophy in the absence of
forcing and dissipation terms (apart from a very weak dissipation
by the time filter), and so are supplemented with explicit V*
or V® hyperdiffusion terms, handled with a forward time step
for stability. Unless otherwise stated, the dissipation coefficient is
chosen to make the dissipation time-scale equal to one time unit at
the smallest resolved scale. (This choice of dissipation time-scale
is justified as follows. In all of the experiments discussed below the
eddy turnover time, and hence the enstrophy cascade time-scale,
are around one time unit. In order to prevent the build-up of
grid scale noise, the dissipation time-scale at the smallest resolved
scale must be comparable to the enstrophy cascade time-scale.)

The next scheme is a version of the UTOPIA scheme (Leonard
etal., 1993), which is a quasi-third-order upwind flux-form
advection scheme. It may be used with a multidimensional flux
limiter (Thuburn, 1996) to prevent overshoots and undershoots.
The UTOPIA scheme with and without flux limiting has been
shown to perform satisfactorily for the barotropic vorticity
equation, and to remove enstrophy from small scales, giving an
implicit representation of the cascade of enstrophy to unresolved
scales (Kent et al., 2012). Its behaviour is expected to be typical of
many upwind finite volume schemes.

The final scheme is the anticipated potential vorticity method
(APVM) of Sadourny and Basdevant (1985), which conserves
energy while dissipating enstrophy. The scheme is derived by
writing the Euler equations in vector-invariant form:

du a (1 ,

ou A P) =o,

” O—i—ax(z(u +v) + ) 0 9)
W cut (Lt 4p) =0 (10)
at cu ay 2u Y -

where P is the pressure. The vorticity ¢ in the second term of
(9) and (10) is replaced by ¢ — D so that the vorticity equation,
obtained by taking d/9x(10) —d/3dy(9), is

0¢ | Bu(c—D) ¢ —D) _
T P W

0. (11)

Replacing ¢ in the advection terms of Eq. (1) by ¢ — D, giving
Eq. (11), will have no impact on energy conservation in the
continuous equations. Consequently, energy will be conserved
if an energy-conserving scheme is used for the { — D advection
terms in Eq. (11). At the same time, D may be chosen to ensure
that enstrophy is dissipated. The two choices of D that will be
considered in this paper are

ac  ac
Dz =0 <ua + Va—y) > (12)
) ¢ %
Dy, =-V |:9<uax+vay):|, (13)
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where 6 is a tunable parameter (Sadourny and Basdevant, 1985).
The second form Dy involves higher derivatives of ¢ and so is
expected to provide more scale-selective dissipation of enstrophy.
For stability, the D terms are evaluated using a forward time step,
while the other terms are evaluated using a leapfrog time step
supplemented by a weak Robert—Asselin filter. In the experiments
presented below, a spectral method was used to compute the
Jacobian terms in the APVM. We have also experimented with
using the Arakawa Jacobian, with similar results (not shown).

For the spectral method and the spectral APVM, v is calculated
from ¢ in Eq. (2) exactly using the spectral method. For the other
schemes a finite difference discretization of the Laplacian is
used. For all results presented below, the time step is given by
At = 5.0/N when runningonan N x N grid; this is comfortably
within the stability limit in all cases.

Several of these schemes were tested in Kent et al.(2012) and
were shown to dissipate both enstrophy and energy. Here we assess
each scheme’s (explicit or implicit) subgrid model in terms of its
spectral energy and enstrophy transfers. We evaluate the effects
of different backscatter models/energy fixers on these transfers,
on the accuracy of the vorticity field and on the long-term energy
and enstrophy behaviour.

3. Spectral energy and enstrophy transfers

We use a high-resolution numerical solution of the barotropic
vorticity equation to diagnose the effects on the energy and
enstrophy tendency, as a function of wave number, of scales
smaller than some specified truncation scale. These results provide
reference values determining the ideal effects of the subgrid model
(whether it be explicit or implicit) for a numerical model whose
resolution is that truncation scale. We also diagnose the actual
effects of the explicit or implicit subgrid models for the numerical
schemes discussed in section 2 and compare these with the
reference values.

3.1.  Spin-up

The case analysed here is one of fully developed forced, dissipative,
two-dimensional turbulence. The governing vorticity equation
becomes

0 d 0
or ow v oo )
ot 0x ay T
where F is a fixed forcing given by
F = 0.1sin(32mx), (15)

and T = 100 is a large-scale dissipation time-scale (roughly 100
eddy turnover times). The spin up integration, as well as the
reference calculation described below, used a spectral transform
method, with alias-free calculation of quadratic terms, to integrate
the governing equations. A V? dissipation was applied to the
vorticity field with a time scale of 1 at the shortest retained scales.
To allow the turbulence to come close to a statistical equilibrium,
the solution was initialized with the vorticity field

¢ = sin(8mx) sin(8my)
+ 0.4 cos(61x) cos(67y)
+ 0.3 cos(10mr x) cos(4my)

+ 0.02sin(27y) 4 0.02 sin(27wx) (16)

and integrated for 180 time units ona 512 x 512 grid (maximum
retained wave number 170), followed by 20 time units on a
2048 x 2048 grid (maximum retained wave number 682). The
resulting spun-up vorticity field is shown in Figure 1. The figure

gives an impression of the typical scales of motion, as well as a
qualitative picture of the turbulent dynamics, showing merger
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Vorticity: step 0

01 02 03 04

Figure 1. High-resolution vorticity field at the end of the spin-up integration.
Red indicates positive vorticity; blue indicates negative vorticity.

of like-signed vortices, propagation of pairs of opposite-signed
vortices, and stripping of vorticity filaments from vortices and
their elongation and thinning in the turbulent strain field. The
spun-up state was spectrally truncated to a range of different
resolutions and used as the initial condition for the calculations
described below.

3.2.  Reference calculation

Retaining the forcing and dissipation terms in Eq. (14), the
solution was integrated from the spun-up state for a further
10 time units at 2048 x 2048 resolution. For this reference
integration, the spectral energy and enstrophy tendencies due to
small scales are calculated as follows. At each time step we know the
Fourier transforms of the vorticity { (k) and the stream function
¥ (k) = — (k)/|k|?, where k is the wave number. First the energy
and enstrophy tendency at every wave number are calculated for
the full-resolution data. This is done by transforming ¢ and ¥
and their spatial derivatives to grid space, calculating the Jacobian

dp Iy ac

J(x) =V.(v¢) = (17)

on the transform grid and transforming back to spectral space
to obtain J(k), (J is truncated to the maximum retained wave
number, 682 X 682 in our example, to avoid aliasing), then
computing

: U (k)] (k)

E(k) =RC{W}, (18)
: ¢ (k)f (k)

Z(k) = —Re {W} > (19)

and finally integrating over angle in spectral space to obtain E(k)
and Z(k). Here the superscript * indicates a complex conjugate,
k = |k|, N is the grid resolution (2048 in our example), Ak is
the wave number interval in spectral space, and the factor Ak*N*
arises from the normalization of the Fourier transforms. The
integral over angle in wave number space is carried out by dividing
k-space into a number of bins of interval size Ak, assigning each
discrete value of k to the appropriate k-bin and summing the
values of E(k) and Z(k) in each bin, and multiplying the sum
by Ak to obtain the correct normalization. Second, the £ and
data are truncated to retain only those spectral components with
k < kg for some truncation wave number k7, and the calculation
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of the spectral energy and enstrophy tendencies is repeated to
give Er(k) and Zr (k). Finally, the contribution mediated by wave
numbers greater than or equal to kr is given by

Esg(k) = E(k) — Er(k),
Zsg(k) = Z(k) — Zr(k).

(20)
(21)

These contributions are averaged over the 10 time units of the
reference integration.

Figure 2 shows the results of this calculation for three different
truncation wave numbers: kr = 42, 85, 170. The three Zsg plots
show that the truncated scales remove enstrophy from wave
numbers k smaller than but very close to kr. The magnitude of
the signal decreases as kr increases, but the qualitative picture
remains unchanged.

The three Esg plots show that the truncated scales also remove
energy from wave numbers close to, but smaller than, kr.
However, they also transfer energy to large scales, to those wave
numbers that are already most energetic. This is the signal of
energy backscatter. Again, the magnitude of the signal decreases
as kr increases, but the qualitative picture remains unchanged. We
have found this signal to be very robust. Repeating the calculation
for a single time step produces very similar plots to those shown. A
qualitatively similar picture is seen even for rather idealized flows
that are far from fully developed turbulence, and for unforced
freely decaying turbulent flow.

These results are consistent with, and can be understood
in terms of, current understanding of the mechanisms for the
downscale enstrophy transfer and upscale energy transfer in
two-dimensional turbulence (e.g. Batchelor, 1969; Kraichnan,
1975, 1976; Rhines, 1979; Salmon, 1998; Chen et al., 2003, 2006).
Downscale enstrophy transfer across some wave number kr is
associated with straining and thinning of eddies with wave number
k ~ kr (in this sense the transfer is local in wave number space) by
the large-scale strain field, which is dominated by the largest flow
scales, and occurs predominantly in the strain-dominated, rather
than vorticity-dominated, regions of the flow. On the other hand,
upscale energy transfer across wave number k7 is associated with
thinning and tilting of eddies of smaller-scale, predominantly
(but not exclusively) 4kp—8kr (in this sense the transfer is only
weakly local in wave number space), by eddies of wave number
comparable to kr. This effect is stronger for smaller kr simply
because the larger scales are more energetic; hence the strongest
energy input Es in Figure 2 is to the largest, most energetic,
scales.

The results in Figure 2 provide a reference solution against
which to compare explicit or implicit subgrid models. Ideally, the
subgrid model for a numerical solution with maximum resolved
wave number kr should be able to reproduce Esg and Zsg for the
same kr.

3.3.  Subgrid models

In this section we compare several of the explicit and implicit
subgrid models outlined in section 2 against the reference solution
found above in terms of their spectral energy and enstrophy
transfers. The final state of the spin-up integration is spectrally
truncated to wave number k7 before integrating for a further 10
time units with the chosen scheme on a corresponding N x N
coarse grid, where N = 3k + 1 or 3ky + 2. As for the reference
integration, the forcing and dissipation terms in Eq. (14) are
included. We present results for kr = 85; other values of k7 (not
shown) lead to the same conclusions.

The spectral energy and enstrophy tendencies due to the explicit
or implicit subgrid model of the chosen scheme are diagnosed as
follows. At each time step, the vorticity tendency ¢ (x) is computed
using the chosen scheme including any explicit subgrid model.
The vorticity tendency is also calculated using a spectral method
(with no explicit dissipation term) at the same resolution: ésp(x).
Since the spectral method is an exact spatial discretization on
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Figure 2. Spectral tendencies of energy Esg (k) (left) and enstrophy Zsa (k) (right) mediated by wave numbers greater than or equal to k. Top: ky = 42; middle
kr = 85; bottom: k7 = 170. Note the different axis scales for the different values of k7.

the retained scales, the difference é‘sg(x) = § (x) — ésp(x) gives
the vorticity tendency associated with the spatial truncation
errors of the scheme plus any explicit subgrid model. Then
Jso(x) = —§.5G(x) is the contribution to the Jacobian from the
effective subgrid model. Jsg(x) is transformed to spectral space
to give Jso(k), and J(k) is replaced by Jso(k) in Egs (18) and
(19) to give spectral energy and enstrophy tendencies due to the
effective subgrid model. Finally, these tendencies are integrated
over angle in wave number space to obtain Esg (k) and Zgg (k).
These diagnostics are averaged over the 10 time units of the
integration.

Figure 3 shows the spectral energy and enstrophy tendencies
due to the simple, explicit V* and V?® hyperdiffusion subgrid
models in the spectral method. A V* subgrid model removes
enstrophy predominantly from large wave numbers, but is much
less scale-selective than the reference solution. The magnitude of
the spectral energy tendency actually increases towards smaller
wave numbers until the forcing scale (k= 16) is reached.
Importantly, energy is removed at all wave numbers; there is
no representation of the backscatter. A V¥ subgrid model is more
scale-selective, but still significantly less so than the reference
solution. Again, there is no representation of backscatter.

The above results suggest that an even more scale-selective
hyperdiffusion (V?" with n > 4) might give spectral energy
and enstrophy sink profiles even closer to the reference values.
However, if we retain a dissipation time-scale of one time unit at
the shortest resolved scale then the shortest scales are so strongly
damped that further enstrophy transfer to those scales is inhibited,
with the result that enstrophy builds up at slightly larger scales
and the dissipation moves to those larger scales. If, on the other
hand, we increase the dissipation time-scale significantly (say by
a factor 10), then we do indeed see dissipation concentrated at
a much sharper range of wave numbers, more like the reference
results; however, the enstrophy dissipation is then insufficient
and the vorticity field becomes noisy. Careful tuning is needed
to find the optimal compromise between these cases. The fact
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that the optimal tuning will be flow dependent is a well-known
limitation of tunable dissipation schemes.

Figure 4 shows the spectral energy and enstrophy tendencies
for the effective subgrid model of the Arakawa Jacobian combined
with an explicit V4 or V® hyperdiffusion term. The most striking
feature is an energy and enstrophy source at the forcing wave
number. (A similar feature is found for other centred second
order schemes, such as the individual Jacobians from which the
Arakawa Jacobian is built — not shown). Examination of E(k)
and Esp(k) shows that both have a sink of around 0.15 x 107° at
the forcing wave number, needed to balance the energy input
by the forcing. The spike seen in Figure 4 shows that the
Arakawa Jacobian underestimates this sink by about 3%. The
figure also shows that the Arakawa Jacobian’s effective subgrid
model removes energy from scales larger than the forcing scale.
Again, examination of E(k) and Esp(k) shows that this really
indicates a slight underestimation of the upscale energy transfer
by the Arakawa Jacobian compared with the reference spectral
method. Both of these features become much smaller at higher
resolution (by roughly a factor 1/4 when the spatial resolution is
doubled), confirming that they are associated with the truncation
errors of the Arakawa Jacobian. The effect of the V* and V8
hyperdiffusion terms on the medium and small scales are similar
to the spectral case shown in Figure 3.

Figure 5 shows the effect of truncation errors on the spectral
energy and enstrophy tendencies when UTOPIA is used for
advection of vorticity. For a constant advecting velocity, UTOPIA
is third-order accurate (Leonard et al., 1993), so its truncation
errors involve fourth spatial derivatives. Therefore, its implicit
subgrid model is expected to behave in a qualitatively similar
way to an explicit V* hyperdiffusion. The results show that
UTOPIA’s truncation errors remove enstrophy at a similar rate
across a broad range of scales. Its implied subgrid model appears
to be even less selective of small scales than an explicit V*
hyperdiffusion. UTOPIA’s truncation errors lead to an upscale
energy transfer from around the forcing scale (k & 16) to larger

Q. J. R. Meteorol. Soc. 140: 626—638 (2014)
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scales (k &~ 5). These spectral energy sources and sinks are an
order of magnitude larger than the reference solution backscatter
signal. The inclusion of a flux limiter makes a negligible difference
to the results.

Figure 6 shows the spectral energy and enstrophy tendencies
due to the two versions of the APVM subgrid model. For the D,
version of the scheme, there is indeed a net removal of enstrophy
while the total energy is conserved. Consistent with this, there is a
net upscale transfer of energy; however, this transfer is fairly local
in wave number space, in contrast to the reference solution, in
which the energy transfer is very nonlocal. Although there is some
preference for enstrophy removal to occur at the smallest scales,
it is significant across most of the spectrum. Moreover, when the
coefficient 6 is tuned so that the peak energy source is comparable
to the reference solution (as here), the enstrophy removal is an
order of magnitude smaller than for the reference solution. As a
result, vorticity maps show the emergence of grid-scale noise.

The patterns of spectral energy and enstrophy transfers for the
D, version of APVM show a striking resemblance to those for
UTOPIA. A possible explanation for this is that the D, version
of APVM can be interpreted in terms of an upwind scheme for
the advection of vorticity. Further investigation of this similarity
might provide valuable insight.

The D, version of the scheme gives a more scale-selective
enstrophy sink, though still not as scale-selective as the reference
solution, while conserving energy. The energy transfers are more
non-local than for the D, version and more similar to the reference
values. However, the size of the enstrophy sink remains an order
of magnitude too small.

The diagnostics presented above were also calculated for a single
time step. The single-step diagnostics typically showed more
dissipation at small scales than the time-averaged diagnostics.
Kent et al. (2012) showed that when a coarse-resolution model is
restarted from coarse-grained higher-resolution data, as here,
there is a short adjustment period of a few eddy turnover
times during which enstrophy is rapidly removed and the energy
spectrum adjusts to the new scheme and/or resolution. Therefore,

(© 2013 Royal Meteorological Society and Crown Copyright, the Met Office

the time-averaged diagnostics presented above are expected to
be more representative of the long-term behaviour of the chosen
schemes.

4. Energy conservation and backscatter

Figures 3—6 show two features of the spectral energy budget
of typical schemes and their subgrid models that could be
improved. One is the failure to represent correctly the true
energy backscatter to large scales; the other is excessive energy
and enstrophy dissipation over the middle range of the spectrum.
Here we propose a simple and computationally cheap scheme that
can potentially address both of these issues, based on amplifying
chosen scales in the existing vorticity field. We show below that
the proposed scheme gives energy conservation without adversely
affecting enstrophy dissipation, and in some cases leads to a small
improvement in the accuracy of the vorticity field. Any more
elaborate scheme would need to be justified by a firm theoreti-
cal basis or by a demonstration that it is more accurate in practice.

4.1.  Backscatter/energy fixer scheme

The backscatter/energy fixer scheme works as follows. At each
time step a preliminary solution is calculated using the chosen
numerical method and its subgrid model (but without the
inclusion of any large-scale forcing or dissipation), which should
be enstrophy-dissipating. The preliminary solution will then
almost certainly have less energy than the solution at the previous
time step. The lost energy is restored by adding a suitable vorticity
perturbation to the preliminary vorticity field.

We choose a vorticity pattern that is based on a filtered form
of the predicted vorticity field, which we justify as follows. To
a first approximation, the true backscatter tends to amplify
the existing large-scale vorticity pattern, consistent with the
diagnostics presented in section 3.3 and the current understanding
of two-dimensional turbulence discussed at the end of section
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Figure 6. Top: Esg (k) and Zsc,(k) for kr = 85 (same as the middle row of Figure 2). Middle: Esg (k) and Zsc(k) for the D, APVM. Bottom: Eg; (k) and Zsc(k) for the

Dy APVM.

3.2. At the same time, imperfect subgrid models, such as low-
order hyperdiffusion, tend to damp excessively the small and
intermediate scales of the existing vorticity pattern. Finally,
advection schemes considered suitable for ILES are those whose
dominant truncation errors are associated with damping of the
advected field on small and intermediate scales (rather than
dispersion errors). In all cases the argument implies that it should
be possible to improve the solution by amplifying a suitable range
of scales in the vorticity spectrum. It is notable that the proposed
scheme is completely deterministic.

The general form of the backscatter/energy fixer scheme is

¢ =t ad, (22)
where ¢? is the preliminary solution for step n + 1, 8¢ is the
vorticity pattern to be added and « is the amplitude of the
vorticity pattern to be added.

Although the true backscatter need not exactly conserve the
energy on scales k < kr (e.g. see Figure 9), it very nearly does so.
For simplicity, and to avoid the potential for instability if we allow
the resolved energy to grow, the proposed scheme is designed to
conserve energy almost exactly as a first approximation to the
true behaviour. To ensure energy conservation, o must be chosen
such that the energy at the new time step equals the energy at the
current time step (denoted Ey). Equating the desired energy to
the energy associated with the modified vorticity gives

Eo=—%/<¢P+asc)(wP+a6w>dA (23)

Integrating by parts twice and assuming that « is small gives

1
Ey = -3 / Py 4 2a8cyt dA. (24)
The energy calculated from the preliminary solution is
1
Ep=—2 f ¢PyP da, (25)
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and therefore Eq. (24) can be rearranged to give
Ep — E,
o= .
[ 8¢y dA

Therefore, for a given §¢ we can calculate the value of o needed
to give energy conservation. (Because 8¢ is derived from a filtered
form of the preliminary ¢ field, there is no danger that the
denominator in Eq. (26) will vanish.) It should be noted that the
proposed scheme will have no effect on the APVM (or any other
energy conserving method) because Eq. (26) will imply & = 0.

The choice of §¢ determines the pattern of vorticity that
will be added to the solution. It is important in ensuring that
energy is added to an appropriate place in physical space, and an
appropriate wave number in spectral space. The optimal choice
of vorticity pattern will depend on the preliminary scheme used.
We have not rigorously optimized 8¢ (which would involve a
complicated optimization problem), but we have experimented
with several vorticity patterns of the form

(26)

8¢ =V, (27)
with n = —1,0, 1,2 and of the form
6 =17" (28)
and
6 =0-1, (29)

where an overline indicates a two-dimensional uniform spatial
averageoveran L x Lregionwith L = 2Axor4Ax. The proposed
scheme was originally conceived as a representation of the missing
energy backscatter to large scales, for which a large scale §¢
pattern would be appropriate, given by Eq. (28) or by Eq. (27)
withn = —1orn = 0. However, for many schemes, energy errors
in the mid to high wave number range are more significant than
the missing backscatter, and fixing these requires a smaller-scale
8¢ pattern given by Eq. (29) or by Eq. (27) withn = 1orn = 2.
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Figure 7. Spectral energy transfers Es(k) (left) and enstrophy transfers Zs (k) (right) for the effective subgrid models of several schemes with example
backscatter/energy fixer models for k = 85. Row 1: spectral method with V* hyperdiffusion and §¢ = V2¢. Row 2: spectral method with V® hyperdiffusion and

8¢ = E4AX. Row 3: Arakawa Jacobian with V* hyperdiffusion and §¢ = EMX

with 8¢ = V2¢.

5. Numerical results

In this section the effects of the proposed backscatter
model/energy fixer are investigated using a variety of numerical
experiments and diagnostics.

5.1.  Spectral energy and enstrophy transfers

For each preliminary scheme and choice of §¢, the spectral energy
and enstrophy transfers associated with the effective subgrid
model were computed, as in section 3.3. Figure 7 shows results

for a selection of schemes. For each preliminary scheme, results
are shown for the choice of §¢ that gave the smallest I, vorticity

(© 2013 Royal Meteorological Society and Crown Copyright, the Met Office

. Row 4: Arakawa Jacobian with V# hyperdiffusion and §¢ = V~2¢; Row 5: UTOPIA

error for the test described in section 5.2. These results should be
compared with those in the absence of a backscatter model/energy
fixer, and the reference solutions, shown in section 3.3.

5.2.  Vorticity errors

By improving the representation of spectral energy and enstrophy
transfers we might hope to improve the accuracy of the solution
for vorticity itself, or at least not make it less accurate. The
effect on accuracy was assessed by solving a freely decaying
turbulence initial value problem. The initial condition was the
same as that used for the reference integration in section 3.2
and the experiments described in sections 3.3 and 5.1. However,
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Table 1. I, vorticity errors for the freely decaying turbulence test at time 10. Jgz indicates the Arakawa energy and enstrophy-conserving Jacobian; the other notation
is defined in the main text.

Preliminary scheme None 8¢ =V sc=¢ 8¢ =Vt 8¢ = Vi
Spectral V* 0.2634 0.2815 0.2636 0.2532 0.4593*
Spectral V& 0.2398 0.2416 0.2403 0.2429 0.2717
Spectral V2 0.2337 0.2351 0.2341 0.2361 0.2506
Jez + V* 0.3885 0.3854 0.3832 0.3960 3.5687"*
Jez + V8 0.4339 0.4315 0.4327 0.4412 0.4702
UTOPIA 0.2788 0.2940 0.2785 0.2678 0.4148**
UTOPIA-+limiter 0.2855 0.3173 0.2846 0.2685 0.6071**
APVM D, 0.3571

APVM D, 0.3285

Table 2. I, vorticity errors for the freely decaying turbulence test at time 10. Jgz indicates the Arakawa energy and enstrophy-conserving Jacobian; the other notation
is defined in the main text.

Preliminary scheme 8¢ = EZAX 8¢ = wa 8¢ =¢— EZM 8¢ =¢— wa
Spectral V* 0.2638 0.2641 0.2541 0.2557
Spectral V3 0.2403 0.2402 0.2425 0.2420
Spectral V12 0.2341 0.2340 0.2359 0.2356
Jez + V* 0.3830 0.3828 0.3951 0.3936
Jez + V8 0.4326 0.4324 0.4404 0.4392
UTOPIA 0.2787 0.2790 0.2686 0.2699
UTOPIA+limiter 0.2848 0.2853 0.2693 0.2713

the subsequent evolution was computed with the forcing and
large-scale dissipation terms switched off by setting F = 0 and
1/t = 0. (This makes it easier to investigate the behaviour of
the maximum vorticity, section 5.3, and to check conservation of
energy.) A high-resolution spectral solution (2048 x 2048) with
V8 hyperdiffusion was used to compute a reference solution at
time ¢ = 10, which was then spectrally truncated to 256 x 256
resolution. The initial data were then truncated to 256 x 256
resolution and integrated to ¢ = 10 using a variety of preliminary
schemes and §¢ patterns. The I, (root mean square) vorticity
errors were calculated relative to the truncated reference solution.
(Visual comparison of the vorticity solutions from all of the
integrations confirmed that the solution is predictable, rather
than chaotic, out to at least + = 10, and therefore the I, vorticity
errors are meaningful.) The results are shown in Tables 1 and 2.
For each preliminary scheme, the §¢ pattern (or patterns) giving
the smallest error are indicated in bold. For comparison, the I,
errors for the two versions of the APVM are also included; for
these tests the coefficient 6 was 10 times the value used in section
3.3 to provide better control of small-scale noise.

Before considering the effects of the backscatter model/energy
fixer, the following point is noteworthy. For the spectral method, a
V8 hyperdiffusion is more accurate than a V* hyperdiffusion (and
a V2 hyperdiffusion is more accurate again). This is consistent
with the fact that the spectral method is very accurate for the
resolved scales (spatial derivatives are calculated exactly), while
the more scale-selective hyperdiffusion better mimics the true
effects of subgrid scales (Figure 3). On the other hand, for the
Arakawa Jacobian, a V* hyperdiffusion is more accurate than
a V?® hyperdiffusion. A plausible explanation is the following.
The Arakawa Jabobian’s truncation errors are second order, so
that, when weighting by the shape of the spectrum is taken into
account, they can be significant even at large and intermediate
scales. Moreover, the errors are dispersive, and it is generally
better to damp a feature than to represent it with the wrong
phase. The less scale-selective V* hyperdiffusion is better able
to control the intermediate scale dispersion errors than the V#
hyperdiffusion.

We now turn our attention to the effects of the backscatter
model/energy fixer. The most noticeable result is that the accuracy
of the vorticity is dominated by the choice of preliminary scheme;
in most cases the inclusion of a backscatter model/energy fixer has
a relatively minor impact on the errors. Nevertheless, some clear
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signals emerge, and in most cases the inclusion of an appropriate
backscatter model/energy fixer is able to reduce the errors.

For a preliminary scheme that is relatively accurate butlacking a
representation of backscatter, such as the spectral method with V3
or higher-order hyperdiffusion (see Figure 3), the most accurate
results are obtained by using a large-scale §¢ pattern. The effect
of the proposed scheme is to inject energy at scales similar to
those at which the true backscatter injects energy (Figure 7, row
2). In this case it is legitimate to consider the proposed scheme to
be a parametrization of backscatter. The I, errors are, however,
marginally worse than the case without backscatter.

For the Arakawa Jacobian, with either V* or V3 hyperdiffusion,
again the best results are obtained with a large-scale §¢ pattern.
However, in this case the proposed scheme is fixing errors in
the energy spectrum at large scales associated with the truncation
errors of the Arakawa Jacobian (compare Figure 7, rows 3 and 4
with Figure 4), rather than parametrizing the true backscatter.

For the spectral method with a V* hyperdiffusion, the excessive
dissipation at intermediate scales (Figure 3) is a bigger source of
error than the lack of a representation of backscatter. Hence
the biggest gains in accuracy come from the choice of a pattern
such as §¢ = V?2¢ that projects strongly onto intermediate scales
(Figure 7 row 1).

The UTOPIA scheme (with or without a flux limiter) has
significant spectral energy errors at both large and intermediate
scales, with a spurious energy source at wave numbers smaller than
about 10 and excessive dissipation at larger scales (Figure 5). The
use of an energy fixer with an intermediate scale pattern such as
8¢ = V?¢ isableto compensate much of the excessive dissipation,
and thereby significantly reduce vorticity errors, though a net
upscale energy transfer, much larger than the true backscatter
signal, remains (Figure 7).

Among all the schemes tested, the biggest reductions in I,
vorticity error obtained through the energy fixer come from
using a 8¢ = V?¢ pattern with the spectral plus V* scheme and
with the UTOPIA schemes. Even in these cases the reduction
in error is only in the region of 5%. Two factors help explain
why the reduction in error is not larger. First, the errors are
dominated by the marginally resolved scales, which are retained
at full amplitude in the spectrally truncated reference solution,
but are necessarily somewhat damped in all of the 256 x 256
resolution integrations. It appears unlikely that anything can
be done to reduce this contribution to the error. Second, both
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Figure 8. Time series of maximum vorticity for the experiments of section
5.2. Top: UTOPIA with flux limiter. Bottom: UTOPIA with flux limiter plus
backscatter/fixer scheme with §¢ = V2¢.

amplitude errors and position or dispersion errors contribute to
the overall error. The proposed scheme can only be expected to
reduce some of the amplitude errors.

Finally, note that it is important not to attempt to feed energy
into scales smaller than or comparable to those at which it is
removed by the preliminary scheme by choosing a §¢ that is too
small scale. When using 8¢ = V*¢, the cases marked with “+” in
Table 1 were somewhat noisy at small scales, while those marked
with “#*” acquired unphysical large-amplitude grid scale features.
For the other cases in the tables, the backscatter/fixer scheme
feeds energy into scales larger than those at which it is removed
by the preliminary scheme; for these cases we have checked that
the backscatter/fixer scheme does not introduce any unphysical
flattening or upturn in the high wave number tail of the energy
or enstrophy spectrum.

5.3.  Boundedness errors

In the absence of forcing, local extrema in the vorticity field should
not grow with time. A discrete analogue of this property is that
the ¢ value at any grid point should be bounded by the ¢ values
in some neighbourhood at the previous time step. However, the
proposed backscatter/fixer scheme is not guaranteed to respect
this boundedness property. It is therefore important to assess the
size of any boundedness violations.

Of the preliminary schemes tested, only the UTOPIA scheme
with limiter has this boundedness property. Figure 8 shows time
series of the maximum vorticity in the domain for two of the
experiments described in section 5.2: UTOPIA with limiter, and
UTOPIA with limiter plus the §¢ = V2¢ fixer. Without the fixer,
the maximum vorticity decreases monotonically with time, as it
should. The decrease is somewhat episodic. The effect of the fixer
is to superpose a small, fairly steady, increasing trend on this
episodic decrease. The net effect remains an overall decrease, and
the boundedness violations are rather small. Whether these are
important enough to invalidate the use of the proposed scheme
will depend on the intended application.

The other preliminary schemes tested do not guarantee bound-
edness. (Indeed, hyperviscosity itself can create overshoots.) For
these preliminary schemes, the effect of the backscatter/fixer
scheme on the maximum vorticity was found to be small
compared to the boundedness violations introduced by the pre-
liminary scheme itself (not shown).

5.4. Long-term energy and enstrophy conservation

The effect of the proposed backscatter/fixer scheme on the long-
term energy and enstrophy behaviour was examined using a
freely decaying turbulence test case. The initial condition was
the same as that used for the previous tests. As in section 5.2,
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we set F =0 and 1/t = 0. Time series of total energy and total
enstrophy were computed up to ¢+ = 100 for a number of schemes
at 256 X 256 resolution without the backscatter/fixer scheme,
and also with the backscatter/fixer scheme that gave the lowest I,
vorticity errors in section 5.2. For comparison, a high-resolution
2048 x 2048 reference run was also carried out, again using a
spectral method with V® hyperdiffusion, and the energy and
enstrophy at wave numbers k < k; = 85 diagnosed. The results
are shown in Figure 9.

Although the total energy of the reference run decreases slightly
over time (not shown), the top panel in Figure 9 shows that the
energy at wave numbers k < kr = 85 actually increases after an
initial dip, though only by about 0.1%. This is a manifestation of
the expected upscale energy transfer or backscatter.

The middle row of panels in Figure 9 show that, with
both the spectral method and the Arakawa Jacobian, a \i
hyperdiffusion leads to significantly more energy dissipation
(about 7%) than a V3 hyperdiffusion (about 2%). The UTOPIA
scheme is intermediate, giving about 5% total energy loss, while
the UTOPIA scheme with flux limiter is most dissipative (about
9% total energy loss). Interestingly, for the UTOPIA scheme the
total energy increases slightly during the last third of the run.
In all cases the inclusion of the backscatter/fixer scheme leads to
exact conservation of total energy, as designed.

The bottom row of panels in Figure 9 shows that the enstrophy
at wave numbers k < kr = 85 in the reference run decreases
throughout the run, consistent with the expected downscale
cascade. For all of the coarse resolution runs there is a qualitatively
similar but greater enstrophy decrease. Schemes that dissipate
most energy also dissipate most enstrophy. The inclusion of
the backscatter/fixer scheme partly offsets the dissipation of
enstrophy, though the effect is barely noticeable for the spectral
V8 and Arakawa Jacobian V® schemes. Even with the inclusion
of the backscatter/fixer scheme, all of the coarse-resolution runs
dissipate more enstrophy than the reference solution.

6. Conclusions

We have used a high-resolution turbulent solution of the
barotropic vorticity equation to investigate the spectral energy
and enstrophy transfers mediated by wave numbers greater than
some truncation wave number k7. Enstrophy is removed from
a narrow range of wave numbers close to but smaller than k7.
Energy is also removed from these wave numbers but is fed back
in at the scales that are already most energetic (backscatter).
This signal is very robust for different kr, different flow regimes,
and even for single-step diagnostics. These diagnostics define the
spectral energy and enstrophy tendencies required of an ideal
subgrid model for a numerical solution with maximum resolved
wave number ky.x = k.

For a selection of typical numerical schemes, the spectral energy
and enstrophy transfers due to their effective subgrid model (i.e.
the combined effects of numerical truncation errors and any
explicit subgrid model) were diagnosed and compared with the
ideal. The typical schemes are able to remove enstrophy and
energy at small scales, but tend to do so over too wide a range
of scales, resulting in excessive energy dissipation. Numerical
truncation errors can lead to significant energy transfer errors
at large scales. None of the schemes realistically represents the
backscatter.

We propose a backscatter/energy fixer scheme that adds
a vorticity perturbation to the solution at each time step.
The pattern of the vorticity perturbation is defined to be
a filtered version of the actual vorticity pattern, and its
amplitude is determined to ensure energy conservation. Among
the perturbation patterns tested, the best choice is found to
depend strongly on the numerical scheme used. For an accurate
numerical scheme, such as the spectral method with high-
order hyperdiffusion, a large-scale vorticity perturbation leads
to a realistic parametrization of energy backscatter, though the
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Figure 9. Energy and enstrophy time series for the freely decaying turbulence test. Top: energy at wave numbers k < k1 = 85 for the reference solution. Middle row:
energy time series. Left: spectral V* (black, dashed), spectral V* plus fixer (black), spectral V¥ (blue, dashed), spectral V¥ plus backscatter (blue). Centre: Jgz V*
(black, dashed), Jzz V* plus fixer (black), Jz V® (blue, dashed), Jg; V?® plus fixer (blue). Right: UTOPIA (black, dashed), UTOPIA plus fixer (black), UTOPIA with
limiter (blue, dashed), UTOPIA with limiter plus fixer (blue). Bottom row: enstrophy time series; in all three panels the enstrophy for wave numbers k < kr = 85 for
the reference solution is shown as the heavy black line. Left: spectral V* (black, dashed), spectral V* plus fixer (black), spectral V¥ (blue, dashed), spectral V® plus
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plus fixer (black), UTOPIA with limiter (blue, dashed), UTOPIA with limiter plus fixer (blue).

impact on [, vorticity errors is marginal. For other schemes an
intermediate-scale vorticity perturbation was found to be most
effective. In this case the primary effect of the scheme is to repair
the damage to the energy spectrum caused by truncation errors
and excessive dissipation, and it leads to a modest reduction in /,
vorticity errors. The scheme improves the long-term energy and
enstrophy behaviour of the solution.

The results found here are suggestive of how to approach the
problem in more complex equation sets and three-dimensional
atmospheric models. Nevertheless, there are some caveats. As a
practical matter, the evaluation of a suitable o (see Eq. (26))
will be less straightforward because the energy will no longer
be a quadratic functional of the prognostic fields. At a more
fundamental level, the dynamics may be sufficiently different to
qualitatively alter the spectral transfers of energy and potential
enstrophy: for three-dimensional compressible flow the influence
of a potential vorticity anomaly on the balanced flow falls off
exponentially with horizontal distance, rather than inversely
with distance as it does in the barotropic vorticity equation;
qualitatively different types of dynamics are possible, such as
frontal formation or gravity wave generation and propagation;
and there is significant forcing at small scales, e.g. from orography
and convection. It would be valuable to extend the methodology
described here to more complex and realistic flows to improve
our understanding of the spectral transfers. Despite these caveats,
given the results found here, it seems likely that schemes developed
as backscatter models for weather and climate applications achieve
their positive results, at least in part, by repairing damage to

(© 2013 Royal Meteorological Society and Crown Copyright, the Met Office

the energy spectrum caused by truncation errors and excessive
dissipation rather than by modelling realistic backscatter.
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