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Abstract Working toward a physical understanding of how solar wind/magnetosphere coupling works,
four arguments are presented indicating that the solar wind electric field vsw � Bsw does not control the
rate of reconnection between the solar wind and the magnetosphere. Those four arguments are (1) that the
derived rate of dayside reconnection is not equal to solar wind electric field, (2) that electric field driver
functions can be improved by a simple modification that disallows their interpretation as the solar wind
electric field, (3) that the electric field in the magnetosheath is not equal to the electric field in the solar wind,
and (4) that the magnetosphere can mass load and reduce the dayside reconnection rate without regard for
the solar wind electric field. The data are more consistent with a coupling function based on local control of
the reconnection rate than the Axford conjecture that reconnection is controlled by boundary conditions
irrespective of local parameters. Physical arguments that the solar wind electric field controls dayside
reconnection are absent; it is speculated that it is a coincidence that the electric field does so well at
correlations with geomagnetic indices.

1. Introduction

It is commonly assumed that the value of the solar wind motional electric field Esw =�vsw � Bsw determines
the rate of reconnection between the solar wind and the magnetosphere at the dayside magnetopause. It is
argued that this solar wind electric field is applied at the dayside magnetopause and that the reconnection
electric field on the magnetopause is equal to the applied solar wind electric field. The rate of reconnection is
the reconnection electric field. Arguments that Esw can be equated with the dayside reconnection rate
appeared in Gonzalez and Mozer [1974], Kan and Lee [1979], Gonzalez and Gonzalez [1981], and Sergeev and
Kuznetsov [1981], and this concept persists through the decades up to the present time [e.g., Reiff and
Luhmann, 1986; Baumjohann and Paschmann, 1987; Goertz et al., 1993; Vassiliadis et al., 1999; Pulkkinen et al.,
2007; Rothwell and Jasperse, 2007; Kan et al., 2010; Milan et al., 2012].

Taking vsw to be the speed of the solar wind plasma (in the Earth’s reference frame) and B? to be the
transverse-to-radial strength of the interplanetary magnetic field (IMF), solar wind electric field driver
functions are written in various forms as vswB? times a clock angle function [Wygant et al., 1983; Gonzalez,
1990]. When the solar wind electric field driver functions are cross-correlated with geomagnetic indices,
the correlation coefficients are not bad (cf. Wygant et al. [1983, Table 2], Newell et al. [2007, Table 3],
or Table 1).

Contrary to this electric field picture, recent papers have argued that dayside reconnection is controlled by a
local picture wherein the local reconnection rate is governed by the local plasma parameters near the
reconnection site [Borovsky et al., 2008; Borovsky, 2008, 2013a, 2013b].

These two pictures (driven by Esw versus controlled by local plasma parameters) are related to the “Axford
conjecture” [Axford, 1984; Buchner, 2007] which posed that reconnection is driven by an electric field
boundary condition and is not controlled by local parameters. In the driven picture the reconnection rate is
thought to adjust to the electric field on a boundary condition remote from the reconnection site. This view
appears to be consistent with 2-D steady models of reconnection, in which the electric field is uniform, such
that the reconnection rate is the same as the electric field at the boundary, presumed to be imposed.
Contrary to this conjecture, computer simulations of driven reconnection in two dimensions by Birn and
Hesse [2007] find that the reconnection rate does not in general match the electric field at the boundary
condition. The main reason is that the imposed electric field does not stay uniform within the simulation box
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but gets modified from spatial and temporal variations, such that the field parameters right at the inflow into
the reconnection site may differ significantly from the parameters far away.

Supporting this contradiction to the Axford conjecture is the derivation of the Cassak-Shay equation for the
local rate of reconnection between asymmetric plasmas written in terms of local plasma parameters [Cassak
and Shay, 2007; Birn et al., 2012]. The Cassak-Shay equation for the reconnection rate R has been tested for
magnetic clock angles of 180° in a variety of computer simulations of reconnection with wide ranges of
densities and magnetic field strengths [e.g., Borovsky and Hesse, 2007; Borovsky et al., 2008; Birn et al., 2008,
2010; Malakit et al., 2010; Donato et al., 2012]: For varying clock angles, simulations [Hesse et al., 2013]
question the clock angle dependence of asymmetric reconnection (cf. section 2.1). The Cassak-Shay formu-
lation has been successfully used to predict the measured reconnection outflow speeds at the magneto-
pause for a wide range of densities and magnetic field strengths in the magnetosheath and magnetosphere
[Walsh et al., 2013a, 2013b] at various IMF clock angles. In the symmetric-plasma limit, the Cassak-Shay
equation reduces to the familiar Petschek formula for the fast reconnection rate R~ 0.1vAB that has been
successfully tested in a variety of computer simulations in the Geospace Environmental Modeling (GEM)
reconnection challenge [Birn et al., 2001; Otto, 2001; Shay et al., 2001; Birn and Hesse, 2001] and tested against
dayside reconnection measurements [Fuselier et al., 2010], magnetosheath reconnection measurements
[Phan et al., 2007], and collisionless plasma laboratory experiments [Yamada et al., 2006; Ren et al., 2008].

In section 2 this report presents four pieces of evidence that indicate that the solar wind electric field Esw does
not control the dayside reconnection rate between the solar wind and the magnetosphere. Those are (1) that
the derived local rate of reconnection is not equal to solar wind electric field and the data are more consistent
with the derived rate than with the solar wind electric field, (2) that electric field driver functions can be
improved with a modification that disallows their interpretation as the solar wind electric field, (3) that the
electric field in the magnetosheath is not equal to the electric field in the solar wind, and (4) that the mag-
netosphere can mass load the dayside reconnection rate without regard to the solar wind electric field. The
report is summarized in section 3, which also contains discussions about dayside reconnection and the solar
wind electric field.

2. Indications That the Solar Wind Electric Field Esw Does not Control the Dayside
Reconnection Rate

Four indications that the solar wind electric field is not the controller of the dayside reconnection rate
between the solar wind and the magnetosphere are given below.

2.1. The Derived Rate of Reconnection is not the Solar Wind Electric Field

In this subsection the dayside local reconnection rate between the solar wind and the magnetosphere will be
derived from the well-tested Cassak-Shay equation for the rate of reconnection R between two plasmas with
asymmetric properties. Labeling these two plasmas with subscripts “1” and “2,” the Cassak-Shay equation is

R ¼ 0:2=μo
1=2

� �
sin2 θ=2ð ÞB13=2B23=2= B1ρ2 þ B2ρ1ð Þ1=2 B1 þ B2ð Þ1=2

n o
(1)

[Cassak and Shay, 2007; Birn et al., 2008, 2010], where B1 and B2 are the magnetic field strengths in plasmas 1
and 2, and ρ1 and ρ2 are the mass densities of plasmas 1 and 2. In expression (1) the Sonnerup [1974] sin2(θ/2)

Table 1. The Linear Correlation Coefficients Between Various Solar Wind Driver Functions and Eight Geomagnetic Indicesa

AE1 AU1 �AL1 PCI0 MBI1 KP1 ap1 �Dst2 8-Index Average

sin
2
(θ/2) 0.510 0.439 0.493 0.499 0.458 0.333 0.242 0.279 0.407

vB? 0.434 0.404 0.404 0.432 0.462 0.530 0.583 0.450 0.462
vBz 0.575 0.451 0.578 0.580 0.470 0.346 0.391 0.384 0.472
vBsouth 0.688 0.543 0.689 0.656 0.606 0.534 0.629 0.558 0.613
vB?sin

2
(θ/2) 0.708 0.600 0.688 0.712 0.657 0.618 0.687 0.587 0.657

vB?sin
4
(θ/2) 0.718 0.584 0.709 0.703 0.646 0.585 0.670 0.586 0.650

v
4/3

B?
2/3

sin
8/3

(θ/2) 0.775 0.645 0.759 0.757 0.710 0.649 0.669 0.596 0.695
Rquick 0.761 0.660 0.732 0.749 0.723 0.692 0.708 0.594 0.702

aHourly averaged values from 1963 to 2012 for all quantities are used. The subscript in the name of the index indicates the number of
hours of time lag between the value of the index and the time of evaluation of the solar wind parameters going into the driver function.
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clock angle dependence of the reconnection rate has been included, where θ is the angle between the
magnetic field direction in plasma 1 and the magnetic field direction in plasma 2. There is controversy as
to the actual physical form of the clock angle dependence of the asymmetric-plasma reconnection rate
[cf. Swisdak and Drake, 2007; Borovsky, 2013a; Hesse et al., 2013], but all forms are close to sin2(θ/2).

If plasmas 1 and 2 are symmetric (with B1 = B2 and ρ1 = ρ2) then expression (1) simplifies to the familiar R= 0.1
sin2(θ/2) vAB, where vA= B/(μoρ)

1/2 is the Alfvén speed in either plasma and B is the magnetic field strength in
either plasma. If plasmas 1 and 2 are very asymmetric, then expression (1) simplifies to

R ¼ 0:2 sin2 θ=2ð Þ vA slow Bfast Bslowð Þ1=2 (2)

where the subscripts “fast” and “slow” refer to the plasma with the faster Alfvén speed and the plasma with
the slower Alfvén speed, respectively. For the magnetosheath and the dayside magnetosphere, the magne-
tosphere almost always has the faster Alfvén speed. For a “quick” derivation of the local dayside reconnection
rate R at the nose of the magnetosphere, expression (2) will be used and the fast plasma will be taken to be
the magnetosphere with subscript “m” and the slow plasma will be taken to be the magnetosheath with sub-
script “s”. Expression (2) then becomes

R ¼ 0:2 μomp
� ��1=2

sin2 θ=2ð ÞBs3=2Bm1=2ns
�1=2 (3)

The methodology of Borovsky [2008, 2013a] can be used to express Bs, Bm, and ns in terms of upstream solar
wind parameters. Pressure balance between the magnetosphere and the solar wind gives [cf. Borovsky, 2008,
equation (4)]

Bm ¼ 2μ
o
mp

� �1=2
nsw

1=2vsw (4)

pressure balance between the magnetosheath and the magnetosphere gives [cf. Borovsky, 2008, equation (5)]

Bs ¼ Bm 1þ βsð Þ�1=2 ¼ 2μomp
� �1=2

nsw
1=2vsw 1þ βsð Þ�1=2 (5)

where βs= 2μonskBTs /Bs
2 is the plasma beta of the magnetosheath. Two parameterizations obtained from

multiple MHD simulations are [cf. Borovsky, 2008, equations (9) and (7)]

ns ¼ C nsw (6a)

βs ¼ MA=6ð Þ1:92 (6b)

where C is the compression ratio of the bow shock and MA= vsw(μompnsw)
1/2/Bsw is the Alfvén Mach number

of the upstream solar wind. The compression ratio C can be expressed as [cf. Borovsky, 2008, equation (10)]

C ¼ 2:44� 10�4 þ 1þ 1:38 loge MAð Þ½ ��6
n o�1=6

(7)

Using expressions (4)–(7), expression (3) becomes the quick derivation

Rquick ¼ 0:4μo
1=2mp

1=2 sin2 θ=2ð Þ C�1=2nsw
1=2vsw

2 1þ βsð Þ�3=4 (8)

for the dayside reconnection rate at the nose of the magnetosphere. In expression (8) C and βs are functions
of the Alfvén Mach number, which has the dependence MA / vswnsw

1/2Bsw
�1. Hence, Rquick is a function of

four upstream-solar wind parameters: θ, nsw, vsw, and Bsw (where Bsw = (Bx
2 + By

2 + Bz
2)1/2 is the magnitude

of the field in the solar wind).

To evaluate the function Rquick for the dayside local reconnection rate, geomagnetic indices are used.
Geomagnetic indices are measures of various forms of geomagnetic activity (magnetospheric convection,
strengths of current systems, and plasma diamagnetism), which are responding to the total rate of dayside
reconnection but are not direct measures of the reconnection rate. (In Borovsky [2013b] a line of research to
derive a solar wind driver function for the total dayside reconnection rate is described: Similar correlations
with geomagnetic indices are obtained for local drivers and total drivers.) A more direct measure of the local
reconnection rate would be the ionospheric electric field along the dayside open-closed boundary [Baker
et al., 1997; Chisham et al., 2004, 2008], and a more direct measure of the total reconnection rate would be the
dayside contribution to the cross-polar cap potential [Lockwood et al., 1990, 2005;Milan et al., 2012]. However,
large databases of such direct measurements are not available.
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The Pearson linear correlation coefficients
[Bevington and Robinson, 1992, equation
(11.17)] between Rquick evaluated with
hourly averaged solar wind parameters θ,
nsw, vsw, and Bsw from OMNI2 [King and
Papitashvili, 2005] and hourly values of
eight geomagnetic indices are listed in
Table 1. Also listed are the linear correla-
tion coefficients for several solar wind
electric field driver functions. The OMNI2
data from 1963 to 2012 is used, compris-
ing 288,040 h of plasma and magnetic
field measurements. Uncertainties in the
correlation coefficients are in the third
decimal place. As can be seen in Table 1,
the quick derivation Rquick for the local
reconnection rate does a very good job of
correlating with geomagnetic indices; for

the 8-index average of the correlation coefficients it does better than all of the various electric
field functions.

In Figure 1 the Alfvén Mach number dependence of C�1/2(1 + βs)
�3/4 in expression (8) is plotted. As can be

seen, there is a transition in the Mach number dependence at aboutMA~ 6: This is the division between low-
beta magnetosheath flow for MA< 6 and high-beta magnetosheath flow for MA> 6 (cf. expression (6b)). As
indicated in red in Figure 1, the Mach number dependence of C�1/2(1 + βs)

�3/4 can be fit at low Mach number
as C�1/2(1 + βs)

�3/4/MA
�0.51/ vsw

�0.51nsw
�0.26Bsw

0.51 and the Mach number dependence of C�1/2(1 + βs)
�3/4

can be fit at high Mach number as C�1/2(1 + βs)
�3/4 / MA

�1.38 / vsw
�1.38nsw

�0.69Bsw
1.38. Using these scalings

for C�1/2(1 + βs)
�3/4 in expression (8) at low and high Mach numbers, the functional form of Rquick is

Rquick ∞ sin2 θ=2ð Þ nsw0:24vsw
1:49Bsw

0:51 at low MA (9a)

Rquick ∞ sin2 θ=2ð Þ nsw�0:19vsw
0:62Bsw

1:38 at high MA (9b)

Although the functional form of Rquick in expressions (9a) and (9b) resembles the functional form of the solar
wind’s motional electric field Esw ~ vB?, Rquick is not the electric field. In the derivation the vsw in expressions
(8) and (9) comes from (1) the ram pressure of the solar wind which determines the magnetic field strength at
the nose of the magnetosphere, (2) the Alfvén Mach number of the solar wind determining the plasma beta
of the magnetosheath which in turn determines the magnetic field strength in the magnetosheath, and (3)
the Alfvén Mach number of the solar wind determining the compression ratio of the bow shock which
in turn determines the density of the magnetosheath plasma. Further, in expressions (9a) and (9b) Bsw is
Bmag = (Bx

2 + By
2 + Bz

2)1/2, not the B? = (By
2 + Bz

2)1/2 of the solar wind electric field.

To summarize this subsection, the data are more consistent with a coupling function based on local control of
the reconnection rate than the Axford conjecture.

2.2. Electric Field Driver Functions can be Improved by Replacing B? With Bmag

The functional forms of Rquick in expressions (9a) and (9b) resemble the functional form of the solar wind electric
field which goes as vswB?, but with Bmag = (Bx

2 + By
2 + Bz

2)1/2 of the upstream solar wind instead of B? =
(By

2 + Bz
2)1/2 of the upstream solar wind. In fact, for traditional electric field driver functions, replacing B? by Bmag

in general improves their correlations with geomagnetic indices. This is demonstrated in Table 2 where the
driver functions vswB? (which is the solar wind electric field E?), vswB?sin

2(θ/2) [Kan and Lee, 1979], vswB?sin
4(θ/2)

[Wygant et al., 1983], and vsw
4/3B?

2/3sin8/3(θ/2) [Newell et al., 2007] are each modified by replacing B? by Bmag

and then the correlations with geomagnetic indices are compared for the original and the modified functions.
In the second column of Table 2 the functional forms of the original and modified functions are listed. In the
third column the average of the Pearson linear correlation coefficient of the function with eight geomagnetic
indices (cf. Table 1) is listed. In the final column of Table 2 the “improvement factor” obtained by modifying the
original function is listed, where the improvement factor is the 8-index-average correlation coefficient for the

Figure 1. The Alfvén Mach number dependence of the quantity C
�1/2

(1+ βs)
�3/4

in Rquick (expression (8)) is plotted. The functional forms of fits to C
�1/2

(1+ βs)
�3/4

at low and high Mach number are indicated by the red dashed curves.
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modified function divided by the 8-index-average correlation coefficient for the original electric field func-
tion. Except for the Newell function, replacing B? by Bmag in the electric field function improves its perfor-
mance. The Newell function shows a slight (1%) decrease in performance against the geomagnetic indices;
however, if the modified function vsw

4/3B?
1/3Bmag

1/3sin8/3(θ/2) is used, a 1% improvement over the original
Newell function is obtained.

It can be conjectured that is a matter of luck that the solar wind electric field correlates so well with geo-
magnetic indices. This improvement of the electric field driver functions by replacing B? with Bmag indicates
that better luck would have been obtained by guessing vswBmag rather than vswB?.

2.3. The Motional Electric Field is Modified in the Magnetosheath Flow Pattern

As noted in section 1, it has been argued in the literature that the solar wind electric field applied at the
magnetopause determines the reconnection (merging) electric field. However, owing to the compression
and deflection of the plasma flow across the bow shock and to the divergence and shear of the flow in the
magnetosheath, the electric field in the magnetosheath is not equal to the electric field Esw in the upstream
solar wind: At some locations in the magnetosheath it is weaker than Esw, and at other locations in the
magnetosheath it is stronger than Esw.

The electric field pattern in the magnetosheath depends on the Mach number of the solar wind flow past the
Earth. This is demonstrated in Figure 2 (left and right) where the dawn-dusk component of the electric field Ey is
plotted in color in the equatorial plane for two global-MHD simulations of the solar wind flow past the Earth,
one for higher Alfvén Mach number (Figure 2, left) and one for lower Alfvén Mach number (Figure 2, right).

Figure 2. Equatorial-plane cuts from two global-MHD simulations of the flow of the solar wind past the Earth performed with the BATSRUS sim-
ulation code are displayed. (left) The runs are “Joe_Borovsky_040207_1f” with a Mach number MA=8.2 and (right) “Joe_Borovsky_050807_4”
with a Mach number MA=1.95. In Figure 2 (left and right) the electric field Ey is plotted in color with total current density j= (jx

2
+ jy

2
+ jz

2
)
1/2

plotted as the black contours to highlight the bow shock and magnetopause.

Table 2. For Four Solar Wind Electric Field Functions, the Functions Are Modified by Replacing B? With Bmag (of the Solar Wind) and Then
the Linear Correlation Coefficients Between Geomagnetic Indices and the Original and Modified Functions Are Compareda

Electric Field Function Functional Form 8-Index Average Improvement Factor

E? vB? 0.462 1.15
vBmag 0.533

Kan + Lee vB?sin
2
(θ/2) 0.657 1.06

vBmagsin
2
(θ/2) 0.694

Wygant vB?sin
4
(θ/2) 0.650 1.02

vBmagsin
4
(θ/2) 0.664

Newell v
4/3

B?
2/3

sin
8/3

(θ/2) 0.695 0.99
v
4/3

Bmag
2/3

sin
8/3

(θ/2) 0.686

aMeasurements from 1963 to 2012 are utilized.
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The simulations were performed with the Block-Adaptive-Tree-Solarwind-Roe-Upwind-Scheme (BATSRUS)
simulation code [De Zeeuw et al., 2000; Gombosi et al., 2000] at the Community Coordinated Modeling Center
[Rastatter et al., 2012]. The Sun is off to the right in Figure 2 (left and right), and the color scales are adjusted
so that Ey of the unshocked solar wind is orange. The black contours highlight the bow shock and the
magnetopause. In both simulations the IMF clock angle is θ =180° (purely southward IMF), and dayside
reconnection is ongoing. The resistive-spot method [cf. Borovsky et al., 2008, Appendix A; Birn et al., 2008] is
utilized in both simulations to ensure that the reconnection rate in the MHD simulations correctly emulates
the collisionless plasma Petschek fast rate [Borovsky et al., 2008, 2009] obtained in Hall-MHD, hybrid, and
full-particle simulations as part of the GEM reconnection challenge study [Birn et al., 2001]. Note in Figure 2
(left) at high Mach number (where the shock standoff distance is at x~12 RE) that themagnetosheath is narrow
and in Figure 2 (right) at low Mach number (where the shock standoff distance is at x~23 RE) that the
magnetosheath is wide. Note in Figure 2 (left and right) that Ey decreases along the Sun-Earth line in going from
the unshocked solar wind through the magnetosheath toward the magnetopause. In Figure 2 (left and right) it
can be seen that the spatial pattern in the magnetosheath of reduction and enhancement of the electric field
depends on theMach number of the solar wind flow. The electric field in themagnetosheath is not equal to the
electric field in the solar wind (see also Borovsky et al. [2008, Figure 6]).

It is instructive to identify the physical signatures of the regions where the electric field becomes modified. In
general, any vector field can be inferred from its sources of curl and divergence. (This is a consistency analysis
and not an assignment of cause and effect.) In a steady state flow around the magnetosphere, ∂/∂t=0, so
Faraday’s law yields ∇ � E=0. In that case modifications of the electric field in the flowing plasma are de-
termined by Coulomb’s law ∇ · E= ρq/εo where ρq is the net charge density in the plasma. For frozen-in flow
with E=�v � B, Coulomb’s law ∇ · (�v � B) = ρq/εo becomes

�
¯
B · ∇�

¯
v

� �
þ
¯
v · ∇�

¯
B

� �
¼ ρq=εo (10)

Using the definition of vorticity ω � ∇ � v and using Ampere’s law (with zero displacement current)
∇ � B=μo j , expression (10) becomes

ρq=εo ¼ �
¯
ω ·
¯
Bþ μo¯

v ·
¯
j (11)

for the source of electric field ρq/εo in Coulomb’s law. In the plasma flow, charge density is associated with
vorticity ω [cf. Seyler et al., 1975; Borovsky and Hansen, 1998], where ω · B is a gradient of the flow across the
magnetic field. The term μov · j , which is a gradient of the magnetic field across the flow, is the nonrelativistic
motional transformation of current density into charge density [cf. Podolsky, 1947] that goes with the mo-
tional transformation of magnetic field into electric field (E=�v � B). Hence, the electric field in the
magnetosheath MHD flow is modified at the locations where ω · B ≠ 0 and where v · j ≠ 0. For ω · B, these
locations are the abrupt vorticity layers of the bow shock and the magnetopause and the large-scale velocity
shear in the magnetosheath flow pattern. For v · j , these locations are the oblique portions of the bow shock
and the bulk flow of the compressed magnetosheath. The magnetosheath electric field with its source ∇ · E in
these regions can be seen in the three panels of Figure 3. In Figure 3 (left) the total electric field strength is
plotted in color along with the electric field vectors in black for the flow of the solar wind through the bow
shock and around the magnetosphere from the same simulation as Figure 2 (left). The location of the bow
shock and the magnetopause are highlighted in Figure 3 (left) by the black contours of constant current
density | j |. The electric field vectors in Figure 3 (left) indicate the nonzero divergence of E at the bow
shock, at the magnetopause, and within the sheared magnetosheath. In Figure 3 (middle) the value of v · j
calculated in the MHD simulation is plotted in color; as can be seen, v · j , which is a location of nonzero charge
density in the plasma, is strong at the magnetopause and at the bow shock. In Figure 3 (right) the value ofω · B
calculated in the MHD simulation is plotted in color; as can be seen,ω · B, which is a location of nonzero charge
density in the plasma, is strong at the magnetopause.

As depicted in Figures 2 and 3, the flow-controlled electric field in the plasma around the Earth is greatly
modified from the upstream solar wind value by the Mach number dependent locations of the bow shock
and the Mach number dependent shear pattern of the magnetosheath flow between the magnetopause and
the bow shock.
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2.4. Magnetospheric Mass Loading Changes the Reconnection Rate Without Regard to Esw

The Cassak-Shay equation predicts, and global-MHD simulations show, that mass loading by dense magneto-
spheric plasma can reduce the dayside reconnection rate. This reduction in the reconnection rate is indepen-
dent of the value of Esw. In a global-MHD simulation with a purely southward IMF, the local reconnection rate
across the dayside magnetosphere is plotted as a function of distance from the Sun-Earth line (y=0) in Figure 4.
To ensure that the MHD simulations emulate reconnection in a collisionless plasma, the resistive-spot method
[cf. Borovsky et al., 2008, Appendix A] is again used in the BATSRUS code. The resistive spot in the 3-D BATSRUS
simulation domain is really a resistive cord that temporally flexes to remain along the magnetopause
reconnection X line across the dayside magnetosphere. In Figure 4 the electric field EX line along the
reconnection X line is normalized to the electric field Ey in the solar wind: Esw = vswBz. The blue curve is the local
reconnection rate at a time in the simulation when the magnetospheric plasma near the magnetopause has a

mass density much lower than the mass
density of the magnetosheath plasma near
the magnetopause. The reconnection rate
profile is maximum at the nose of the mag-
netosphere (y=0) and falls off away from
the nose. The red curve in Figure 4 is the
local reconnection rate at a time when a
high-density plume of magnetospheric
plasma is flowing into the reconnection X
line at the nose. As can be seen, the
reconnection rate is locally reduced by this
dense plume at the nose: The rate is not
maintained by Esw. In Borovsky et al. [2008]
the Cassak-Shay equation (expression (1))
was evaluated for the properties of the
magnetosheath plasma and magneto-
spheric plasma at the nose, and agreement
was found with the measured reconnection
rate in the simulation. This is a success for
the local-control picture of reconnection
and a contradiction for the solar wind elec-
tric field-driven reconnection picture.

Figure 4. The reconnection rate across the dayside magnetosphere is plotted as
a function of the dawn-dusk coordinated at two instants of time in a purely
southward IMF BATSRUS global-MHD simulation (run “Joe_Borovsky_040207_1f”
at the CCMC). The reconnection rate in the simulation is measured as ηj, where
η is the resistivity of the resistive cord along the X line and j is the current along
the X line.

Figure 3. Three equatorial-plane cuts from the global-MHD simulation “Joe_Borovsky_040207_1f” with a Mach number MA= 8.2. (left) The magnitude of the electric field E is plotted in
color, the electric field vectors are plotted as the black arrows, and the total current density j= (jx

2
+ jy

2
+ jz

2
)
1/2

plotted as the black contours to highlight the bow shock and magneto-
pause. (middle) The quantity v · j in the flow is plotted, and (right) the quantity ω · B in the flow is plotted.
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3. Summary and Discussion

To summarize, four arguments were presented in section 2 indicating that the solar wind motional electric
field vswB? does not control the rate of reconnection between the solar wind and the magnetosphere at the
dayside magnetopause. The author knows of no physical argument or calculation indicating that the solar
wind electric field does determine the reconnection rate.

On the contrary, the local reconnection rate R controls the tangential electric field in the magnetosheath near
the magnetopause. In the flow of the solar wind plasma around the magnetosphere, the reconnection rate R
sets the flow boundary condition for the solar wind plasma at the magnetopause. The tangential electric field
along the magnetopause is controlled by whether or not there is flow into the magnetopause. If there is no
reconnection (i.e., northward IMF), there is no flow into the magnetopause, and there is no magnetopause
tangential electric field. If there is reconnection, then the tangential electric field at the magnetopause is
determined by the inflow rate into the reconnection site; in the Petschek dynamical picture of fast
reconnection [Parker, 1979; Liu et al., 2012], the reconnection flow is driven by the magnetic tension released
by reconnection, which drives the reconnection outflow jet, which by mass conservation drives the
reconnection inflow rate. (Indeed, if the reconnection outflow jet is impeded, the reconnection inflow and
the reconnection rate are reduced [Birn et al., 2009].) The velocity of the reconnection outflow jet is deter-
mined by the magnetic field strength in the two reconnecting plasmas and by the mass densities of the two
reconnecting plasmas.

The solar wind electric field is the rate at whichmagnetic flux is carried in the solar wind toward the Earth. The
reconnection rate at the magnetopause is not forced by the rate of flow of magnetic flux in the solar wind
toward the magnetosphere: The plasma (and the magnetic flux it carries) is free to flow around the mag-
netosphere, as it does under northward IMF when there is no reconnection.

The solar wind electric field is not the physical driver of dayside reconnection. There is a degree of luck in the
fact that solar wind electric field functions vswB? (times a clock angle function) perform so well in correlating
with geomagnetic indices. The derivation in section 2.1 implies that it is more or less coincidental that vswB?
works. A better job of correlating is done if a derived reconnection driver function is used in the place of electric
field functions (cf. Table 1). And, as shown in Table 2, electric field functions can be improved simply by replacing
B? with Bmag for the upstream solar wind (cf. section 2.2), destroying their electric field interpretation.

For Earth’s magnetosphere, the method to determine the dayside reconnection rate R from upstream solar
wind parameters is to solve the supersonic flow problem of the solar wind around the Earth to determine
plasma parameters near magnetopause: Those parameters control the reconnection rate (cf. the Cassak-
Shay equation).

Note that in the full solar wind/magnetosphere coupling problem, the solar wind electric field Esw = vswB?
may enter post reconnection: The penetration of the solar wind electric field along the magnetic field lines
after the solar wind field lines become connected to the Earth’s polar cap may be an important aspect of
driving geomagnetic currents [e.g., Goertz et al., 1993; Kelley et al., 2003; Ridley, 2007; Borovsky, 2013b]. Hence,
Esw may be a measure of the strength of the MHD generator after it becomes coupled to the Earth (rather
than a controller of the dayside reconnection rate).
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