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OBJECTIVE: Head and neck squamous cell carcinoma
(HNSCC) progression and metastasis have previously
been associated with the activation of phosphatidylinosi-
tol 3-kinase-protein kinase B (PI3K-Akt) and Wnt signal-
ling pathways, which lead to the activation of pro-
proliferative genes, such as cyclin DI. The current study
aims to investigate whether there is a crosstalk between
these pathways in HNSCC and which pathway is more
likely to regulate cyclin DI.

MATERIAL AND METHODS: Two HNSCC and a
control keratinocyte cell lines were treated with EGF and
wortmannin to respectively activate and block the PI3K-
Akt and Wnt pathways. Partial and total levels of cyclin
DI, beta-catenin and Akt were evaluated by Western
blotting and immunofluorescence. Twenty-four paraffin-
embedded samples of human HNSCC, as well as normal
oral mucosa biopsies, were also immunohistochemically
evaluated for beta-catenin and cyclin D1 expression.
RESULTS: Following both treatments, change in cyclin
DI protein was correlated with Akt levels only. Cyto-
plasmic staining for beta-catenin and loss of its mem-
branous expression in the HNSCC invasive areas were
found in 92% of the HNSCC biopsies.

CONCLUSION: Taken together, we show that the
change in cyclin DI levels is more likely to be due to
the EGFR-Akt pathway activation than due to beta-
catenin nuclear translocation.
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Introduction

Head and neck squamous cell carcinoma (HNSCC) ranks
sixth among cancers worldwide and around 500 000 new
cases are expected yearly (Molinolo et al, 2009). Most of
HNSCC malignancies occurs in the oral cavity, pharynx
and larynx; and they represent 40%, 15% and 25% of all
HNSCC, respectively (Dobrossy, 2005). Many of the
molecular mechanisms involved in the formation of
HNSCC are unclear, thus creating a barrier for improving
the treatment for this disease.

Cloning of the Akt oncogene pioneered the studies that
found cell survival and proliferation to be regulated by the
PI3K/Akt signalling pathway (Staal, 1987; Franke et al,
1995). Protein kinase B (PKB/Akt), a downstream target
of the PI3K signalling, is also known to be involved in
HNSCC and its inhibition with rapamycin prevents
tumour progression in an oral-specific chemical carcino-
genesis model (Czerninski er al, 2009). Moreover, it is
known that the PI3K pathway is one of the most common
altered pathways in human cancers. Once phosphorylated
by 3-phosphoinositide dependent kinase (PDKI1), Akt
phosphorylates GSK-3 beta, which in turn destabilizes the
beta-catenin/APC complex (Cully et al, 2006).

Despite being involved in the progression of various can-
cer types (Polakis, 2000), the role of Wnt/beta-catenin path-
way in HNSCC remains unclear (Molinolo et al, 2009).
Besides being required for the formation of the adherents
junctions, thus involved in the maintenance of cell shape
and motility; beta-catenin is also a key player of the Wnt
signalling pathway, which promotes to malignant transfor-
mation (Jamora and Fuchs, 2002; Kam and Quaranta,
2009). Wnt signalling deregulation results in free cytoplas-
mic beta-catenin, which induces proliferation by interacting
with LEF/TCF factors and their target genes, such as cyclin
D1 (Lo Muzio, 2001). However, when in the cytosol, beta-
catenin is usually phosphorylated by glycogen synthase
kinase-3beta (GSK-3 beta), when in complex with the
adenoma polyposis coli (APC) and axin; which creates a
signal for the rapid ubiquitin-dependent degradation of



f-catenin by proteosomes (Lo Muzio, 2001). Finally, beta-
catenin may also interact with epidermal growth factor
receptor (EGFR), independently of Wnt pathway activation
(Hoschuetzky et al, 1994).

Previous work has shown that the absence of beta-catenin
mutations in HNSCC was accompanied by beta-catenin
expression mostly in the plasma membrane; however, beta-
catenin protein levels were inversely correlated with cyclin
D1 protein levels (Yu et al, 2005). Here, we further investi-
gate whether cyclin D1 overexpression in HNSCC is mostly
modulated by the phosphorylation of Akt or the change in
beta-catenin cellular localization, using both in vitro and in
vivo approaches.

Material and Methods

Tissue specimens

Twenty-four formalin-fixed and paraffin-embedded samples
of human HNSCC and three histologically normal oral
mucosa biopsies were retrieved from the archives of the
Department of Oral Pathology, School of Dentistry, Uni-
versity of Sao Paulo, Brazil. The experiments were under-
taken following the approval by the Ethical Committee of
the University of Sao Paulo School of Dentistry protocol #
123/04. The slides were analysed and photographed under
transmitted light microscopy using a Zeiss Axiophot II
microscope (Carl Zeiss, Oberkochen, Germany).

Immunohistochemistry
Of 3 uM sections were deparaffinized in xylene, and rehy-
drated in decreasing ethanol series. One slide from each case
was stained with haematoxylin-eosin (HE), as previously
described (Suzuki et al, 2008). Antigen retrieval was per-
formed for 20 min with 1M-citrate buffer, pH 6.0 in a
microwave oven. Endogenous peroxidase activity was inhib-
ited by 20 min incubation in 3% hydrogen peroxide in meth-
anol for 20 min. After blocking with 5% BSA for 45 min at
room temperature, samples were incubated with beta-catenin
0.5 ug rnlfl; BD Transduction, San Jose, CA, USA) or
cyclin D1 (2 ug ml™!; Santa Cruz, Santa Cruz, CA, USA)
antibodies. Sections were then exposed to the avidin-biotin
complex (DAKO Auto Staining System, Carpinteria, CA,
USA) and to the LSAB peroxidase kit (Dako Corporation,
Carpinteria, CA, USA), according to the manufacturer’s
instructions. After development in 0.03% of diaminobenzi-
dine (DAB) with hydrogen peroxide, slides were counter-
stained with Mayer’s haematoxylin. Negative control, by
omitting primary antibody, was included in all reactions.
Immunohistochemistry slides were analysed under light
microscopy. Beta-catenin expression was evaluated
according to its membranous, cytoplasmic or nuclear stain-
ing. Cyclin D1 scoring was conducted according to a
study by Miyamoto et al (2003). Briefly, cyclin D1 posi-
tivity was considered when 10% of the cells exhibited
nuclear staining. Cyclin D1 was considered overexpressed
when 40-80% of the cells exhibited nuclear staining.

Cell culture
The HNSCC cell lines HN6 and HN31 (Cardinali et al,
1995) and an immortalized keratinocyte cell line (HaCat)
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were grown at 37°C and a humidified 5% CO, atmo-
sphere in Dulbecco’s modified Eagle’s medium (DMEM;
Sigma, Chemical Co., St. Louis, MO, USA) with 10%
foetal bovine serum (Cultilab Ltd, Campinas, SP, Brazil)
and 1% antibiotic—antimycotic solution (Sigma).

Immunofluorescence

Cells plated on poly-l-lysine (Sigma)-coated coverslips were
treated with 50 nM wortmannin for 10 min and 10 ng ml "
EGF for 18 h at 37°C after serum deprivation for 24 h in
the incubator. The control group was treated with a vehicle,
DMSO. Cells were fixed in methanol at —20° for 6 min and
incubated with beta-catenin (1:750; BD Transduction), cy-
clin D (1:100; Santa Cruz) or PTEN (1:150; Cell Signaling,
Boston, MA, USA) for 1 h at room temperature. FITC-con-
jugated anti-mouse or anti-rabbit antibodies (Amersham
Co., Arlington Heights, IL, USA) were used for detection of
primary antibodies. Slides were mounted with Fluormaount
G (Southern Biotech, Birmingham, AL, USA) and observed
under a Zeiss Axiophot fluorescence microscope with a
63X Plan Neofluor NA1.4 objective.

Western blotting

Treated and control cells were washed twice in cold phos-
phate-buffered saline (PBS) and lysed in ice-cold RIPA
buffer (50 mM Tris Hcl, 150 mM NaCl, 0.1% SDS, 0.5%
Sodium Deoxycolate, 1% Triton 100X, 1 mM PMSF), for
the whole lysates. Cytoplasmic and nuclear fractions were
obtained with Ne-Per Nuclear and Cytoplasmic Reagent
Extraction Kit (Pierce, West Palm Beach, FL, USA),
according to the manufacturer’s instructions.

After quantification with BCA Protein Assay Reagent
(Pierce), 25 pg of protein was separated in a 4-12%
gradient acrylamide gel (4-12%; Invitrogen, Grand Island,
NY, USA) then transferred onto a PVDF membrane (Invi-
trogen). The membrane was blocked for 1 h in 5% nonfat
milk, followed by overnight incubation with anti-beta-cate-
nin (1:1500; BD Transduction), anti-cyclin D1 (1:1000;
Santa Cruz), PTEN (1:1000; Cell Signaling), anti-Akt 1, 2
and 3 (1:1000; Cell Signaling) or anti-phospho-Akt ser-
473 (1:1000; Cell Signaling), in 5% nonfat milk. Anti-tata-
binding protein (TBP) (1:1000; Abcam, Cambridge, UK)
and anti-HSP90 (1:1000; Cell Signaling) monoclonal anti-
bodies were used as nuclear and cytosolic controls. HSP90
was used also as a loading control. The membranes were
then incubated with an HRP-tagged secondary antibody
and developed using an enhanced chemiluminescence
development system (Super Signal West Dura Substrate -
Pierce), according to the manufacturer’s instructions.

Results

PI3K signalling pathway inhibition translocates nuclear
cyclin D1 to the cytoplasm

Beta-catenin, once in the nucleus and in complex with
transcription factors, is known to activate genes involved
in cell proliferation such as cyclin DI (Lo Muzio, 2001;
Liu and Millar, 2010). To investigate whether cyclin D1
nuclear overexpression was dependent on beta-catenin in
HNSCC, an immortalized keratinocyte cell line (HaCat)
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and two HNSCC cell lines (HN6 and HN31) were treated
with EGF, because 80-90% of the HNSCC have overex-
pression of EGFR (Molinolo et al, 2009) or wortmannin,
a pharmacological inhibitor of PI3K.

Cyclin D1 remained localized in the nucleus, following
the EGF treatment of HaCat, HN6 and HN31 cell lines
(Figure la—f, arrowheads). However, the levels of the cy-
clin D1 were increased in all cell lines after EGF treat-
ment (Figure 1j, lane 3). Once the PI3K pathway was
inhibited by wortmannin, the majority of the cyclin DI
was found in the cytoplasm in all cell lines (Figures la,c,
d.f, and 2g,i, arrowheads); yet, its protein levels remained
unchanged (Figure 1j, lane 2).

We next performed beta-catenin Western blotting to
evaluate whether the changes in cyclin D1 correlate with
the beta-catenin localization, when activating the EGFR
pathway or inhibiting the PI3K pathway, because both sig-
nalling pathways have been described as interfering with
the beta-catenin translocation to the nucleus (Vivanco and
Sawyers, 2002). The levels of beta-catenin in whole-cell
lysates did not change in any of the studied cell lines,

Control

10 ng mL-1 EGF
(b)

HN31

(i) Cyclin D1

Wortmannin = + = -k -
EGF - - % - -+
Hacat 36koa (RN 92K0e feme—e—
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following the EGFR pathway activation or PI3K pathway
inhibition (Figure 1k, lane 4, 5 and 6). Indeed, cytoplas-
mic and nuclear beta-catenin also did not change upon the
treatment with EGF and wortmannin in all of the tested
cell lines (Figure 2a). In summary, the changes in cyclin
D1 levels and localization seem to be beta-catenin-inde-
pendent in the cell lines studied, when activating EGFR
pathway or inhibiting PI3K pathway.

HSP90 was used as a loading control for the whole-cell
(Figure 11) and cytoplasmic (Figure 2b) proteins, while
tata-binding protein, a transcription factor that binds
specifically to the tata box DNA sequence, was used as
the loading control for the nuclear fraction (Figure 2c).
The absence of tata-binding protein in the cytoplasmic
lysate assures the correct separation of cytoplasmic and
nuclear lysates (Figure 2c, asterisk).

Increased levels of Cyclin DI were not beta-catenin-
dependent, following EGFR signalling pathway activation
Akt, the downstream target of PI3K, has also been
reported to be required for cyclin D1 activation (Vivanco

50nM Wortmannin

Figure 1 Cyclin DI translocation to the
cytoplasm, upon PI3K pathway inhibition, is
not followed by changes in cellular levels of
cyclin D1 or beta-catenin. Cyclin D1
immunofluorescence of HaCat, HN6 and HN31
cell lines with no treatment (a, d and g), treated
with EGF (b, e and h) or treated with
wortmannin (c, f and i). No changes in cyclin
D1 localization upon EGF treatment (compare
a, d and g with, respectively, b, e and h).
However, strong cyclin D1 translocation to the
cytoplasm is observed when cells are treated
with wortmannin (compare a, d and g with ¢, f

HSPI90 and i, arrowheads). Bars: 20 um. Cyclin D1
Western blot using the whole-cell lysate after
- + : cells were treated with EGF or wortmannin (j,

lanes 1-3). Beta-catenin Western blot using the
whole-cell lysates after cells were treated with
EGF or wortmannin (k, lanes 1-3). Cyclin D1
and beta-catenin cellular levels remain
unchanged upon treatment with EGF or
wortmannin. HSP90 was used as loading
control




Figure 2 Cytosolic and nuclear beta-catenin
levels remain unchanged upon cell treatment
with EGF or wortmannin. Beta-catenin Western
blot using cytosolic and nuclear lysates (a)
following cell treatment with EGF or
wortmannin. No difference in cytosolic or
nuclear beta-catenin levels was observed. HSP
90 was used as loading control for cytosolic Wortmannin
proteins (b), and tata-binding protein was used EGF
as a loading control for nuclear proteins (¢) as
well as to assure that the cytoplasmic and

nuclear fractions were correctly separated (no HNE 92kDa M P—-— -—

HN31 92kDa - N = i e | 38KkDa -

TBP expression was found in any of the
cytosolic lysates, ¢)

and Sawyers, 2002). Therefore, whole-cell and partial
lysates (cytoplasmic and nuclear) were extracted from Ha-
Cat, HN6 and HN31 cell lines, following the EGF or
wortmannin treatment, and the levels of phospho-Akt were
evaluated.

Interestingly, the whole-cell and the cytoplasmic levels
of phospho-Akt were strongly suppressed in all cell lines
after PI3K inhibition by wortmannin (Figure 3a, lane 1
and Figure 3a, lane 2; Figure 3b, lane 1 and Figure 3b,
lane 2). Moreover, following EGFR pathway activation,
the levels of total phospho-Akt were increased in all cell
lines but not in the HaCat (Figure 3a, lane 1 and
Figure 3a, lane 3). However, following the EGF treat-
ment, only HaCat showed an increase of the cytosolic
phospho-Akt levels (Figure 3b, lane 1 and Figure 3b,
lane 3). The amount of Akt did not differ between the
different treatments and cell lines, as expected (Fig-
ure 3d—f).

HSP90 and TBP were again used as loading controls as
described in 3.1, and also to assure that the nuclear frac-
tion was correctly separated, as showed before.

Loss of beta-catenin expression is correlated with cyclin
D1 nuclear overexpression in HNSCC

When human biopsies of malignant and normal epithelia
were examined by immunohistochemistry, beta-catenin
showed membranous staining in the basal, supra basal and
lower spinous layers of all the normal epithelia samples
(Figure 4a,b, arrowheads). However, 91.6% of the exam-
ined HNSCC cases exhibited cytoplasmic staining for
beta-catenin and loss of its membranous expression in the
HNSCC invasive areas (Table 1, Figure 4d,e insert, and
Figure 4f, arrows). All biopsies selected presented areas of
malignant invasion.

In addition, beta-catenin cytoplasmic expression was
correlated with cyclin D1 overexpression in 54.1% of the
cases (Table 1, Figure 4g,h, asterisks). In addition, 29.5%
of the cases also showed cyclin DI in the cytosol (Fig-
ure 4h). No cyclin D1 staining was found in the normal
epithelial cells (Figure 4c).
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Figure 3 Cellular levels of phosphorylated Akt are increased in the head
and neck squamous cell carcinoma (HNSCC) cell lines (HN6 and HN31)
but not in the normal keratinocyte cell line (HaCat), following the EGF
treatment. Cellular (a), cytosolic (b) and nuclear (¢) levels of phosphory-
lated Akt measured through Western blot, after cells were treated with
EGF or wortmannin. Cellular (d), cytosolic (e) and nuclear (f) levels of
Akt measured by Western blot, after cells were treated with EGF or wort-
mannin. Cellular levels of phosphorylated Akt (active form) were
increased in the HNSCC cell lines HN6 and HN31 but not in the kerati-
nocyte cell line HaCat, following the EGF treatment (a, lanes 1 and 3).
However, following the same treatment, there was no increase in active
Akt in the cytosol of the HNSCC cell lines, while the cytosolic levels of
phospho-Akt increased in the HaCat cell line (b, lanes 1 and 3). This
finding shows that most of the phospho-Akt in the HNSCC cell lines is
anchored to the plasma membrane and that, following EGF treatment, in
the HaCat cell line, the active form of Akt might be degraded. Phospho-
Akt levels decreased in the whole-cell and cytosolic lysates after the cells
were treated with wortmannin (a, compare lanes 1 and 2; b, compare
lanes 1 and 2). No nuclear phospho-Akt was detectable by Western blot
(c). The Akt levels in the whole-cell, cytosolic and nuclear lysates
remained unchanged, following EGF or wortmannin treatments, as
expected
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Table 1 Cyclin D1 and beta-catenin expression pattern in head and neck
squamous cell carcinoma biopsies

Expression Overexpression

13 cases (54,16%)"
Nucleus (40-80% of the
cells exhibited nuclear

staining)

Cyclin D1 11 cases (45.8%)"
Nucleus (up to 10%
of the cells exhibited
nuclear staining)
22 cases (91.6%) -
Cytoplasm and/loss of

membranous expression

beta-catenin

#7 cases showed concomitant cyclin D1 cytosolic staining.
PAll cases also showed cytosolic beta-catenin expression, and 4 cases
showed concomitant cyclin D1 cytosolic staining.

Discussion

Crosstalk between EGFR and Wnt signalling pathways
has been reported in the literature, where beta-catenin is
transactivated by the EGFR-ERK-CK2-mediated phos-
phorylation in gliomas with different grades of malignancy
(Ji et al, 2009). Our data, however, show that in HNSCC,
this event does not seem to take place. Here, we activated
EGFR signalling in HaCat and HNSCC cell lines (HN6
and HN30) and measured the levels of beta-catenin pro-
tein in the whole-cell, only cytoplasmic and only nuclear
lysates. Surprisingly, beta-catenin expression remained
unchanged, following the EGF stimulation in all of the
cell fractions and studied cell lines, and therefore, showing
no crosstalk between Wnt and EGFR signalling pathways.
Cyclin D1 whole-cell levels, however, were increased in
all cell lines following EGF treatment, as expected. In
contrast, we found that the increased levels of cyclin D1
in the EGF-treated cells were correlated with higher phos-
phorylation of the Akt protein, rather than due to translo-
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Figure 4 Loss of beta-catenin in the plasma
membrane and nuclear overexpression of cyclin
D1 during head and neck squamous cell
carcinoma (HNSCC) invasion. Normal oral
epithelia (a—¢) and HNSCC biopsies (d-h).
H&E staining of, respectively, normal oral
epithelia and HNSCC tissues (a and d). Beta-
catenin immunostaining of normal epithelia (b)
showing the membranous beta-catenin staining
in the basal and lower spinous layers of the
epithelia (arrowheads in b). No cyclin D1
immunostaining was observed in normal
epithelia (¢). Beta-catenin immunostaining of
HNSCC tissues (e—f) shows loss of beta-catenin
in the plasma membrane and its accumulation
in the cytosol in the invasive front of the
tumour (arrows in e and in f). Cyclin D1
immunostaining of HNSCC tissues (g, h)
shows nuclear overexpression of cyclin D1, as
well as its expression in the cytoplasm
(asterisks in h). Bars: 40 ym

EGFR Pathway Wnt Pathway
| )
PIBK/AKL |
i . Cell Detachment
Cyclin D1

Proliferation

Beta-catenin

‘*‘_{:::_—:—_—!—__/ H’“‘M—r-“"f--!“?__f’

T=——__ HNSCC Formation and Metastasis _

Figure 5 Cyclin D1 modulation is independent of beta-catenin in head
and neck squamous cell carcinoma. Expression of beta-catenin and cyclin
D1 occurs upon a combination of independent events: (i) the overexpres-
sion of cyclin D1 leads to proliferation increase, probably orchestrated by
the Akt phosphorylation and (ii) the cytoplasmic translocation of beta-
catenin in the invasion front does result in cell detachment and tumour
invasion

cation of beta-catenin to the nucleus (Segrelles et al,
2002; Dajani et al, 2008). Here, we show that the Akt
phosphorylation event that takes place in the plasma mem-
brane was increased in the HNSCC cell lines only.
Instead, in the immortalized keratinocyte cell line (HaCat),
following the treatment with EGF, there was an increase
in cytoplasmic levels of phospho-Akt only (Filippa et al,
2000). These findings confirm that the activity of phos-
pho-Akt is predominantly associated with the plasma



membrane, while the degradation of the active form of
Akt (phospho-Akt) occurs in the cytosol (Figure 5).

To confirm that the increase of cyclin D1 was due to
Akt activation and that there was a crosstalk between
PI3K and EGFR pathways, we first inhibited the PI3K
signalling pathway, using the PI3K pharmacological inhib-
itor wortmannin, and then evaluated the levels of cyclin
D1, phospho-Akt and beta-catenin. Following wortmannin
treatment, most of the nuclear cyclin D1 was found in the
cytoplasm. Cyclin D1 goes through ubiquitination and
proteasomal degradation in the cytosol, which is positively
regulated by GSK-3 beta through cyclin D1 phosphoryla-
tion on threonine-286 (Diehl er al, 1997, 1998). Cyclin
DI cytoplasmic translocation correlated with the decrease
in phospho-Akt levels, confirming our findings that cyclin
D1 overexpression is probably due to EGFR-Akt activa-
tion and beta-catenin-independent as there was no alter-
ation in levels or localization of beta-catenin following
wortmannin treatment.

Finally, in accordance with previous and pioneering
studies (Bagutti ef al, 1998; Miyamoto et al, 2003; Aa-
modt et al, 2010; Iwai et al, 2010; Richter et al, 2011),
we showed that the loss of membranous beta-catenin and
its accumulation in the cytoplasm was found in 92% of
the human HNSCC biopsies and that nuclear Cyclin D1, a
proliferation marker, was overexpressed in HNSCC, as
well. The beta-catenin cytoplasmic translocation took
place in the invasive areas of the tumour, where the cells
detach from the neighbouring cells to metastasize. This
finding is in accordance with the literature, because the
loss of beta-catenin membranous expression and other
adhesion molecules, such as E-cadherin and beta-1 inte-
grin, is related to poor prognosis and cancer invasion
(Bagutti et al, 1998; Aamodt et al, 2010; Iwai et al, 2010;
Richter et al, 2011). In our study, none of the evaluated
HNSCC biopsies showed the presence of nuclear beta-
catenin in the invasion areas of the tumour, differing from
other malignancies reports, that is, uterine carcinoma,
colon carcinoma and glioma (Suzuki ef al, 2008; Liu
et al, 2011; Nishimura et al, 2011). Our data show that
beta-catenin, without being able to translocate to the
nuclear compartment in HNSCC, is probably not involved
in activating nuclear transcription factors such as LEF/
TCF, and therefore, not acting towards cell proliferation.
Cyclin D1 was markedly overexpressed in the nucleus of
the HNSCC samples, when compared to normal oral epi-
thelia. Interestingly, the enhanced cytoplasmic transloca-
tion of cyclin D1 (29.5% of the HNSCC biopsies) showed
that still, during malignancies of head and neck, GSK3 is
able to degrade cyclin D1, due to the ubiquitination and
proteasomal degradation, in the cytoplasm (Diehl ef al,
1997, 1998). No cytoplasmic cyclin D1 was found in nor-
mal epithelia.

Tumour markers are always under investigation to more
precisely predict the clinical outcome and the biological
behaviour of neoplasms. In summary, here, we show that
the overexpression of nuclear cyclin D1 in the studied
HNSCC cell lines is due to the EGFR-Akt pathway activa-
tion and is not beta-catenin-dependent; and that in HNSCC,
the expression of beta-catenin and cyclin D1 occurs upon a
combination of independent events: 1) the overexpression
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of cyclin D1 leads to proliferation increase, probably
orchestrated by the Akt phosphorylation and 2) the cyto-
plasmic translocation of beta-catenin in the invasion front
does result in cell detachment and tumour invasion.
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