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Abstract Using measurements from the Wind spacecraft at 1 AU, the heating of protons in the solar wind
at locations of intense velocity shear is examined. The 4321 sites of intense shear in fast coronal hole origin
plasma are analyzed. The proton temperature, the proton specific entropy, and the proton number density at
the locations of the shears are compared with the same quantities in the plasmas adjacent to the shears. A
very slight but statistically significant enhancement of the proton temperature is seen at the sites of the
shears, but it is accompanied by a larger enhancement of the proton number density at the sites of the
shears. Consequently, there is no enhancement of the proton specific entropy at the shear sites, indicating no
production of entropy; hence, no evidence for plasma heating is found at the sites of the velocity shears.
Since the shearing velocities have appreciable Mach numbers, the authors suggest that there can be a slight
adiabatic compression of the plasma at the shear zones.

1. Introduction

Abrupt velocity shears (vorticity layers) are ubiquitous in the solar wind plasma [Burlaga, 1968; Neugebauer et al.,
1984; Borovsky, 2008, particularly in the fast wind of coronal hole origin [Borovsky, 2012]. As it passes a spacecraft,
a velocity shear layer appears as a large sudden jump Av in the vector flow velocity v of the solar wind plasma.
The strength of the velocity shear is measured by the magnitude of the jump Av=|Av| in the vector flow velocity.
A statistical analysis of flow shear in the solar wind found two populations with a transition in the vicinity of
Av~30km/s [cf. Borovsky, 2012, Figure 11: a population of weak shears that may be owed to MHD turbulence in
the solar wind plasma and a population of strong shear events. In Figure 1 of Borovsky [2012], shears with

Av =60km/s are clearly in the population of strong shear events. For those shears with Av > 60 km/s, the
statistical analysis of Borovsky [2012] found that the mean value of the velocity jump over the local Alfven speed
Av/v, is 1.03, and the mean value of the velocity jump over the local magnetosonic speed Av/C; is 0.77.

In general, the sudden large vector velocity changes are colocated with sudden large changes in the
direction of the interplanetary magnetic field (directional discontinuities): multispacecraft analysis confirms
that those directional discontinuities are planar current sheets with normals to the plane that are
perpendicular to the magnetic field [Horbury et al., 2001; Knetter et al., 2004]. The velocity change vector is
parallel or antiparallel to the magnetic field change vector, which is perpendicular or normal to the plane.
Hence, the velocity changes across these directional discontinuities are shears [Denskat and Burlaga, 1977;
Neugebauer, 1985; De Keyser et al., 1998; Borovsky, 2012]. It has been argued [Neugebauer et al., 1986] that the
magnetic shear of these layers may stabilize the velocity shears to Kelvin-Helmholtz disruption.

The origin of these velocity shears remains a controversy [Bruno et al., 2001; Neugebauer and Giacalone,
2010; Owens et al., 2011; Malaspina and Gosling, 2012]: among the possibilities are (1) steepened Alfvén
waves [Vasquez and Hollweg, 1999; Tsurutani and Ho, 1999], (2) fossil shears from plumes and jets in the
chromosphere [Feldman et al., 1993; Yamauchi et al., 2003; Neugebauer, 2012], (3) high Mach number
vorticity sheets generated by MHD turbulence [Greco et al., 2009; Zhdankin et al., 2012], and (4) the Alfvénic
wiggling of fossil flux tubes [Borovsky, 2008; Bruno and Carbone, 2013] excited by reconnections in the
chromosphere [Shibata et al., 2007; Pariat et al., 2009] or by flow-driven instabilities [Mann et al., 1992; Parhi
et al., 1999]. Often the velocity shears occur in matching pairs of adjacent shear and antishear separated by
tens of seconds [Gosling et al., 2011; Arnold et al., 2013]; most of these paired shears are undetectable in a
data set that is not of high resolution. The solar wind velocity shears have been visualized in the kinking of
comet plasma tails [Buffington et al., 2008; Jackson et al.,, 2013].
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Adiabatic expansion of the solar wind
would conserve the proton specific
entropy S, = Tp/n4/ 3 [Schindler and Birn,
1978; Goertz and Baumjohann, 1991];
with a density falling off with distance r
from the Sun as n < r~2, specific entropy
conservation would have the proton
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protons increases with distance from the
Sun [Marsch et al., 1983; Schwartz and
Marsch, 1983; Whang et al., 1989]. This
nonadiabatic heating of the solar wind
protons is particularly prevalent in the
fast solar wind [Eyni and Steinitz, 1981; Freeman, 1988]; the fast wind is also where velocity shears are
prevalent [Borovsky, 2012]. The kinetic energy associated with differential flows has been suspected as a
possible energy source for the observed in situ heating of the solar wind [Coleman, 1968; Parker, 1969].
Potential mechanisms for solar wind heating associated with velocity shears are the phase mixing of Alfvén
waves [Ruderman et al., 1999; Kaghashvili, 19991, damping of MHD surface waves [Hollweg et al., 1990; Yang
and Hollweg, 1991], damping of shear-driven plasma waves [Migliuolo, 1984; Markovskii et al., 2006], the
excitation and dissipation of MHD turbulence [Roberts et al., 1992; Ghosh et al., 1998], excitation and
dissipation of Kelvin-Helmholtz waves [Korzhov et al., 1985; Neugebauer et al., 1986], and Landau damping of
the shear structure itself [Borovsky and Gary, 2009, 2011]. A second possible source for the proton heating of
the solar wind is the kinetic energy of the field-aligned differential drift between protons and alpha particles
in the solar wind plasma [cf. Safranknova et al., 2013]. A third possible source for the proton heating is the
electron heat flux from the Sun. These nonshear sources of heating will not be considered in the

present study.

Ratio

Figure 1. The strong shear occurrence distributions of Tin/Tout Sin/Souts
and njn/neyt for protons are plotted from the ACE and Wind data sets.

Borovsky and Denton [2010] looked for evidence of the production of MHD turbulence at the long-lived
strong velocity shears at 27 corotating interaction region (CIR) stream interfaces and found no evidence of
localized turbulence production. Using 64 s ACE data binned into 30 min intervals, they also found no
evidence for plasma heating at those stream interface velocity shears. Borovsky and Denton [2011] looked for
proton and electron heating at 194,070 strong current sheets in the solar wind, which are often the sites of
strong velocity shear; using ACE 64 s measurements, they found proton temperatures elevated by 1-2% at
the sites of the current sheets, but the proton specific entropies were elevated by 1% or less at the sites of the
current sheets [cf. Borovsky and Denton, 2011, Table 1]. They concluded that there is no significant localized
heating of the solar wind protons or electrons at strong current sheets. Osman et al. [2012], using ACE 64 s
measurements, compared the proton temperature at the sites of intermittent magnetic structures in the solar
wind with the proton temperature of the plasma surrounding the structures; for the strongest intermittent
structures, they found the proton temperature to be 2-3% higher at the sites of intermittency [cf. Osman
et al., 2012, top trace of Figure 1a].

In Appendix A, an estimate is made of the expected specific entropy signature at the sites of velocity
shears. If the well-established bulk heating of the solar wind protons with distance from the Sun is
occurring at shear sites, the increase of the proton specific entropy at the shear sites will be large and
easily detected.

In this report, we examine strong velocity shears in the fast solar wind for evidence of localized heating of the
solar wind protons.
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Table 1. Properties of the Occurrence Distributions of Inside-To-Outside Ratios for the Wind Collection of Av > 60 km/s
Shears in Fast Solar Wind

Number of Mean Value Median Logarithmic
Ratio Values Standard Deviation (%) Value Mean Value
Tp in/Tp outt3s 4321 1.002+£0.058 1.001 1.000
Tp in/Tp outt6s 4223 1.008 £0.062 1.006 1.006
Tp in/Tp out =30 4200 1.021+£0.070 1.016 1.018
Tp in/Tp out£60s 4175 1.025+£0.075 1.018 1.022
Sp in/Sp out£3s 4321 0.986 +0.075 0.989 0.983
Sp in/Sp out 65 4223 0.983+£0.077 0.986 0.986
SP m/Sp out£30s 4200 0.999+0.083 0.994 0.996
Sp in/Sp out£60's 4175 1.004 +0.086 0.997 0.997
Ny in/Np out£3s 4321 1.029 +0.090 1.022 1.025
np in/np outt6s 4223 1.034+£0.092 1.031 1.030
Np in/Np out£30s 4200 1.036 +0.091 1.029 1.032
Np in/Np out£60's 4175 1.037 £0.091 1.031 1.033

2. The Data Analysis

From a collection of long (multiday) intervals of fast solar wind occurring in January-July 2003, 35 days of fast
coronal hole origin wind is analyzed using Wind 3DP 3 s solar wind proton measurements [Lin et al., 1995].

Following Borovsky [2012] [cf. Borovsky, 2008, Figure 1], for the present study, we define a shear event in the
3's Wind data set to be |Av| > 60 km/s in 6 s. With this definition, 4321 abrupt shear events are collected.
Strong velocity shear layers, like many other boundaries in the solar wind plasma (i.e., proton density jumps,
magnetic field strength jumps, specific entropy jumps, and plasma beta jumps), are about 10 s wide in the
Wind data set. (An exception is the alpha particle density jumps, which are sometimes narrower than the 3's
resolution of the data set; abrupt transitions in the helium density are being reported with higher-resolution
measurements [Zastenker et al., 2013; Safranknova et al., 2013].) At 3 s time resolution, the strong velocity
shears are typically 2 or 3 data points wide. If the condition |Av| > 60 km/s is met for two adjacent data points
within a single shear zone (as it is 33% of the time for the 4321 events), the location of the shear is taken to be
the data point with the larger value of |Av|.

To measure the localized heating of the solar wind plasma at sites of strong shear, the plasma temperature
at the site of the shear is compared to the temperature in the two plasmas adjacent to the shear. If the time
at which the shear is observed is tsnean, to make a comparison of the temperature at the shear to the
temperatures +3 s before and after the shear, the ratio Tin/Toy is defined as 2 T(tsnear)/[T(tshear +35) + T
(tshear — 3 5)1. Likewise, for a 6 s comparison, the ratio Ti/Toy: is defined as 2 T(tshear)/[(T(tshear+65) + T
(tshear — 6 S)1. Similarly, the ratios are calculated for +30s and £60s.

For detecting the signatures of heating (entropy production), the specific entropy S = 7/n*3 [cf. Marsch et al,,

1983; Schwartz and Marsch, 1983; Whang et al., 1989; Borovsky and Cayton, 2011] is superior to the
temperature since it does not respond to adiabatic fluctuations (i.e.,, compressions and rarefactions), which
produce temporary temperature perturbations. Similar to the temperature ratios, the ratios S;,/Soyt are
defined for £3s, +6s, 305, and +60s.

In the 35 day, the Wind data set, the mean speed of the solar wind at the velocity shear sites, is v=739 km/s: at
that speed, £3 s corresponds to about +2200 km along the solar wind flow streamline away from the center of
the shear zone, and £60 s corresponds to about +44,000 km away from the shear zone. With the thickness of
velocity shears being typically ~8 s (see Appendix A), the denominator measurements for the ratios taken at
+3sand +65s are often not fully outside of the abrupt shear zone. For the ratios taken at £30s and +60's, the
measurements in the denominators are truly outside of the shear zone.

In Figure 1, the distributions of the proton temperature ratios 7,, in/T,, out (green) and the proton specific entropy
ratios Sy, in/Sp out (red) for £305s are binned for the 4321 strong velocity shears in the Wind data set. The
distribution of temperature ratios are centered close to unity, indicating no strong localized enhancement of
the temperature at the location of the shears. The distribution of specific entropy ratios is also centered close to
unity, indicating no strong heating of the solar wind protons at the locations of the strong shears.
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Figure 2. The mean values of Ti/To ¢ (green), Sin/Sout (red), and njn/nqy: (blue) for protons at strong shears are indicated as
vertical bars. For the 50 sets of 4200 random locations in the solar wind, the 50 mean values of Tin/Tout: Sin/Sout: @nd Nin/Nout
for protons at the random locations are binned as the green, red, and blue curves, respectively.

For £3s,+65s,+30s,and £ 60 s, the mean value, median value, and logarithmic mean value for each set of the
ratios are collected in Table 1. (The logarithmic mean, which is 10 to the power of the mean of the base-10
logarithms of the ratios 10<Le900> i pertinent to ratioed quantities since it prevents greater-than-unity
values from dominating less-than-unity values in the averaging.) In Table 1, the mean value of temperature
ratios Ty, in/Tp out for £30's and £60 s are about 2% above unity. There is no such offset from unity for the
specific entropy ratios Sy, in/Sp out- Hence, we see an ~2% enhancement of the proton temperature T, at the
shear sites, but not an enhancement of the proton specific entropy S, = Tp/npm.

Figure 2 demonstrates that this ~2% enhancement of the temperature at the shear sites is statistically
significant. When the temperature ratio T;,,/Tou: for £305s is calculated at the locations of 4200 strong shears in
the Wind data set, the mean value of the 4200 ratios is 1.021. This value of 1.021 is indicated as the dark green
vertical bar in Figure 2. If the 4200 locations in the solar wind where the ratios are calculated are randomly
relocated, the mean value of the 4200 calculated T;,,/Toy ratios comes out very close to 1.000. To demonstrate
this, 50 sets of 4200 random locations in the solar wind are created, and for each of the 50 sets, the 4200 T;,,/Tout
ratios are calculated, and for each set, the mean of the 4200 ratios is calculated. The 50 mean values that result
as the light green distribution in Figure 2 are binned. Note that the mean values in the random distributions are
typically slightly above unity. (That is, because ratios above 1.0 dominate over ratios below 1.0 in the averaging:
i.e,, the average of 9/10 and 10/9 is 1.0056.) The green T;,/Toy: distribution is narrow near unity, and the value
1.021 is not consistent with a random occurrence of the mean owed to noise in the data set, etc. Hence, the
value obtained of 1.021 is statistically significant: there is about a 2.1% enhancement of the proton temperature
of the solar wind plasma at the sites of the strong shears relative to the plasmas on either side of the shears.

In Figure 1, the distributions of the proton number-density ratios nj./no.: (blue) are also binned for the strong
velocity shears in the Wind data set. The distribution of density ratios are centered close to unity, indicating
no strong localized enhancement of the density at the location of the shears. For +3s, +65, +30s, and £60s,
the mean value, median value, and logarithmic mean value of the density ratios n;,/ne: for the strong shears
are listed in Table 1. Here it is seen that the mean value of the density ratio is about 3-4% above unity.

Looking again at Figure 2, the mean value of the density ratio n;,/no,: for +30's calculated at the locations of
4200 strong shears in the Wind data set is 1.036, which is marked as the dark blue vertical bar. For an
ensemble of 50 sets of 4200 random locations in the solar wind, the 50 mean values of n;,/ngy: (for £305s)
calculated for each set of the 4200 locations are binned as the blue curve in Figure 2. Again, the value of 1.036
for nj,/ngy: is Not consistent with a random occurrence. The value of 1.036 is statistically significant: there is
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about a 3.6% enhancement of the solar wind proton number density at the locations of the strong shears
relative to the density in the plasmas on either side of the shears.

The slight temperature enhancement and the slightly larger-density enhancement are consistent with
entropy conservation. This can be seen with the £30 s mean values of Figure 2. If the specific entropy outside
the shear is Sou= Tour/Nout> > and the specific entropy inside the shear is S;, = o/ Min?3, where T, = 102170
and ni, = 10360y, then Sin = (Tou/Nout™>)(1.021/1.036%/%) = 0.99725 ¢ = Sour/1.0028. The measured fractional
change S is an order of magnitude less than the measured fractional changes in Tand n.

3. Summary

At the sites of intense velocity shear in the solar wind, a slight enhancement (~2%) of the proton temperature
is seen, and a slight enhancement (~3.6%) of the proton number density is seen. The locally enhanced proton
temperature T, and the locally enhanced proton number density n, are consistent with an adiabatic behavior
of the protons in the plasma that conserves the proton specific entropy S, = Tp/np2/3, with no evidence for
localized proton heating at the shear, i.e., no evidence for localized entropy production.

In summary, no statistical evidence is found for localized heating of the solar wind protons at abrupt
velocity shears.

There is a well-established bulk heating of the protons of the solar wind with distance from the Sun. If that
bulk heating was occurring at the sites of velocity shear, the calculations in Appendix A indicate that the
increase of the proton specific entropy at the shear sites would have to be much larger than the values
obtained in the Wind spacecraft analysis of section 2.

The results of the present study are in agreement with the results of Borovsky and Denton [2010], which found
no heating at CIR stream interfaces and are in agreement with the results of Borovsky and Denton [2011],
which found no localized heating at the sites of strong current sheets in the solar wind. The present study is
performed at much higher time resolution than those two previous studies. Using Wind 3 s measurements,
Wang et al.[2013] examined 20,578 discontinuities in the fast solar wind at 1 AU. In general, they found slight
(~19%) increases in the temperature and densities of the protons inside the discontinuities relative to the
plasma outside the discontinuities. Wang et al. [2013] identified a class of discontinuities with larger
temperature and density increases: this class is composed of 1.8% of the 20578 discontinuities and were
classified as tangential discontinuities in the fast wind. On average, one of these tangential discontinuities
passes the spacecraft every 1.5 h. The present study of velocity shears is in basic agreement with the Wang
et al's [2013] discontinuity examination: no strong heating at discontinuities.

Finding no localized heating at the sites of the velocity shears does not mean that the kinetic energy of
differential flows in the solar wind is not the energy source for solar wind heating in the inner heliosphere.
However, the heating does not occur at the sites of intense velocity shear and the velocity shear mechanisms
discussed above (e.g., phase mixing of Alfvén waves, damping of MHD surface waves, damping of shear-driven
plasma waves, the excitation and dissipation of MHD turbulence, excitation and dissipation of Kelvin-Helmholtz
waves, and Landau damping of the shear structure itself) are not producing nonadiabatic heating of the
protons at the sites of the shears.

We suggest that the origin of the density and temperature enhancements at the sites of the strong velocity
shears might be associated with the order unity Mach numbers of the shearing flow. If the shear layer is not
strictly planar, one can imagine some compressional effects in the plasma flow with n and T increasing

in concert.

Appendix A: How Much Heating is Needed

If the observed proton heating of the solar wind from 0.29 to 1 AU occurs in the small-scale velocity shears in
the solar wind plasma, we can estimate the amount of specific entropy change that should be seen at the
locations of the shears. This estimate will depend on the thicknesses of the shear zones and on the amount of
time that plasma spends in the shear zones getting heated.

There is a systematic increase in the proton specific entropy S, with increasing distance from the Sun. This is
seen in the Helios data set from 0.29-1 AU [Marsch et al., 1983; Schwartz and Marsch, 1983; Whang et al., 1989],
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Figure A1. The distribution of temporal widths of the strong shear zones in
the high-speed solar wind. When a shear zone is found (with Av > 60 km/s
over 6 ), the duration of the zone is measured as the region, wherein the 3 s
changes in the velocity vector have magnitudes >20 km/s.

and it is seen beyond 1 AU in the Ulysses
data set [Liu et al., 1995; Goldstein et al.,
1996]. Using the data set of hourly
averages of the measurements from the
plasma instruments on Helios 1+ 2
[Rosenbauer et al., 1977], the change in
the proton specific entropy is quantified
for the fast solar wind plasma. For fast
solar wind (600 km/s < v < 850 km/s),
the mean proton specific entropy in the
distance range 0.3-0.4 AU is
<S,>=4.76eVcm? in the distance
range 0.9-1 AU, itis <S, >=8.13eVcm®.
The ratio of these two values is 1.71.
Hence, in going from 0.35 AU to 0.95 AU,
the proton specific entropy of the fast
solar wind increases by 71%.

In the Wind data set analyzed in
section 2 above, 4231 abrupt velocity
shear events were found in 35 days of
data. The distribution of temporal
thicknesses of the shear zones is plotted

in Figure A1. The mean thickness is 7.7 s.
With each shear zone lasting on average 7.7 s, that is 3.26 x 10* s of shear zones in 3.02 x 10% s of data. Hence,
the shear zones have a filling factor of 3.26 x 10%3.02x 10°=1.08 x 1072=1/93 in the solar wind plasma. The
average speed of the solar wind in the 35 day Wind data set is 739 km/s; at that speed, the distance from
0.35 AU to 0.95 AU is traversed in 1.2x 10° s (33.8 h). If the fast solar wind has an proton specific entropy
increase of 71% going from 0.35 AU to 0.95 AU, then that is a temporal rate of increase of 5.9 x 10~%%/s for
the proton specific entropy of the bulk plasma. If that heating is occurring inside of the small-scale shear
zones with a filling factor of 1/93, then the rate of increase of the proton specific entropy in the shear zones is
5.5x 1072%/s. Hence, in 7.7 s of time, the proton specific entropy needs to increase by 0.55% in the
shear zone.

It is relevant to ask how long a time an element of plasma remains inside of a shear zone. At an advection
speed of 739 km/s, the shear zone takes about 7.7 s to cross the Wind spacecraft; hence, a shear zone is about
5.7 x 10° km wide along the path of the spacecraft through the shear zone. The planes of the shear zones
tend to be aligned with the Parker spiral direction [cf. Borovsky, 2012, Figure 4], so they are inclined at about
45° to the path of the spacecraft. Hence, their thicknesses are about 0.707 x 5.7 X 10% km, which is

4.0 x 10% km. Indications are that these shear planes are aligned with the magnetic field of the solar wind [cf.
Horbury et al., 2001; Knetter et al., 2004]; i.e., the normals to the planes are oriented at 90° to the magnetic field.
In that case, they are like a plasma boundary, not propagating through the solar wind plasma, and the plasma
that is in the shear zone spends a long time there. In that case, if the proton heating of the solar wind was
occurring in the shear zones, the shear zones with an entropy increase rate of 5.5 x 10~2%/s would have
much higher entropy than the surrounding plasma.

Even if the shears were to propagate through the plasma at the Alfvén speed v4, forn=3.3cm > and B=5nT,
v,=60km/s and an element of plasma spend 4.0 x 10> km/60 km/s =67 s inside of the shear layer. At a
heating rate of 5.5 x 10729%/s for 67 s, the proton specific entropy of each element of plasma would need to
increase by 3.7% as the shear zone crossed in order to account for the observed bulk heating of the solar
wind plasma. (And with filling factors of 1/93, shear zone propagating at the Alfvén speed would propagate
over a given element of solar wind plasma every 104 min, which is 19.3 passovers in the 33.8 h advection time
from 0.35 AU to 0.95 AU; in each passover heating, the plasma would need to increases by 3.7% to give a total
heating of 71% for the 19.3 passes.)

Increases in the proton specific entropy of 0.55% and 3.7% would be easily detectable, but are not seen.
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