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SUMMARY

Control forces in semi-active control systems are constrained by the dynamics of actuators that regulate
energy transmission through variable damping and/or stiffness mechanisms. The potential benefit of the
development and implementation of new semi-active control devices and applications can be determined
by optimizing the controlled performance subject to the constraints of the dynamics of the system being controlled
(given by the state equations), the constraints associated with the dynamics of the semi-active device, and the expected
external forcing.

Performance optimization of semi-active control systems is a constrained two-point boundary value problem.
This paper shows how this constrained problem can be transformed into an unconstrained problem, and how to
easily solve the related unconstrained problem with MATLAB. The method is illustrated on the performance
optimization of a simple semi-active tuned-mass-damper for a structure subjected to ground accelerations. Several
possible extensions of this method and application are offered. Copyright © 2013 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Over the last several decades, a large number of semi-active control devices have been developed for a broad
range of applications. Since the publication of review articles on semi-active control [1,2], research has
progressed on semi-active stiffness devices [3–7], semi-active damping devices [8–10], and semi-active
friction devices [11,12]. Models for these devices involve constraints, either directly on the device forces
or indirectly on an internal variable such as a valve position, a solenoid voltage, or an electrical resistance.

There are two principle advantages of implementing semi-active control. The first is that the power
that a semi-active device is able to regulate within the structure can be orders of magnitude greater
than the power required to regulate the device properties (e.g., damping and/or stiffness). The second
is that the controlled system is unconditionally stable in a bounded-input, bounded-output sense
regardless of the feedback law implemented. A potential disadvantage of semi-active control
systems is that, for some applications, closed-loop semi-active performance may be only marginally
better than that of simpler passive control systems [1]. Additionally, actuation constraints of semi-
active control systems render the system nonlinear and performance can be assessed and optimized
only through transient response simulations. It is therefore common practice to evaluate the perfor-
mance of semi-actively controlled systems for a particular feedback law and compare the result with a
passively controlled system. This method of performance evaluation may be used to assess the potential
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performance of a semi-active control system subject to the constraint of the feedback control rule,
which can be overly restrictive.

A more complete evaluation of the potential benefit of a semi-active control system eliminates the
restriction of the feedback control rule. Methods of trajectory optimization may be used to determine
the best possible performance, as defined by a particular objective function, while strictly adhering
to the constraints of a particular semi-active device, the structural system into which it is applied,
and the external forcing. This optimization enables a rigorous evaluation of new semi-active devices
and a meaningful comparison with existing semi-active devices and passive devices. Semi-active devices
that can achieve performance levels sufficiently better than those of existing passive devices or
alternative semi-active devices merit the development of control hardware and feedback control rules.

The correct formulation, and importance, of constrained control problems have been known for
decades. Kirk emphasizes that ‘the optimal [constrained] control history … cannot be determined, in
general, by calculating the optimal [unconstrained] control history and allowing it to saturate whenever
the stipulated boundaries are violated’ [13] (p. 236). Further, Tseng and Hedrick prove that ‘clipped-
optimal is sub-optimal in the sense that it minimizes only the instantaneous performance index differ-
ence [and] does not guarantee optimality in minimizing [an integral] performance index’ [14] (p. 556).

We note here that in a dynamical control system, ẋ¼ f x; u; tð Þ, changing the controls u at time t
changes ẋ (but not x) at time t. So any state-dependent performance index cannot be instantaneously
improved by changing the controls at time t. It is therefore rational to minimize integral cost functions.
The choice of the objective function is subjective, and reflects the control engineer’s best judgment
regarding the purpose of the control system.

Following the work of Tseng and Hedrick [14], this short paper states the semi-active control
optimization problem as a constrained two-point boundary value problem (TPBVP), and gives a
solution procedure by which the constraints are eliminated, reducing the problem to an unconstrained
TPBVP. The method is illustrated on a simplified tuned-mass-damper (TMD) with a supplemental
semi-active damper in which the dynamics are linear (except for the actuation constraints) and the
Lagrangian of the cost function is quadratic. The purpose of this paper is to provide a concise tutorial
on semi-active performance optimization that illustrates, in detail, just how easy it is to setup and solve
such problems.

The method for optimizing semi-active control trajectories illustrated in this paper is fundamentally
distinct from feedback control methods such as clipped optimal or Lyapunov-based controls. The
motivation for the use of such techniques is for the design of real-time feedback laws that are
straight-forward to compute in closed form, easy to implement, and feasible under semi-active
constraints. However, such approaches are always suboptimal; that is, they leave open the possibility
that there may be some other feedback law that, if implemented, could have led to a much more
favorable dynamic response. Indeed, irrespective of the measure of optimality chosen, the optimal
feedback problem for semi-actively constrained systems remains an open problem.

By contrast, techniques exist for the rigorous computation of the optimal physically-achievable
performance of a semi-actively constrained system, given precise models of the system and distur-
bance. Such techniques do not result in an optimal feedback law, and the optimized control inputs
are anticipatory; that is, they presume knowledge of the entire disturbance trajectory. These solutions
are highly valuable in the context of semi-active control system analysis, for several reasons:

• First, they can be used to assess the ultimate viability of semi-active control for a given application.
More specifically, they determine whether a given semi-active device, embedded within a given
structure and subjected to a given disturbance, can possibly achieve a level of performance the de-
signer requires. This effectively enables the hardware of an application to be assessed prior to the
design of a feedback law. This observationwas a significant motivation for investigations in this area
in automotive suspensions applications, by Hrovat et al. [15], as well as, Tseng and Hedrick [14].

• Second, the nature of the optimized trajectory for the control input can be used to gain significant
intuition regarding the mathematical structure a semi-active feedback law should have. For
example, in [16], Leavitt et al. used optimal control techniques to infer heuristic switching rules
for a semi-active variable-stiffness device under harmonic excitation. Likewise, in [17], Harvey
et al. examined optimal control trajectories for a semi-actively controlled isolation system
Copyright © 2013 John Wiley & Sons, Ltd. Struct. Control Health Monit. 2014; 21: 803–816
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subjected to a near-field earthquake pulse record and showed that the qualitative nature of the
optimized semi-active force depends on the specific parameters of the pulse record as well as
the performance measure. For certain parameter combinations, it resembles a ‘pseudo-negative
stiffness’ damping force. For others, it is more reminiscent of nonlinear viscous damping.

• Third, the optimal control techniques discussed in this paper are directly applicable to model
predictive control synthesis [18]. This is a feedback control technique in which the optimal
control trajectory is periodically solved in real time from the present time over a receding
horizon, using an iteratively–updated forecast of the future disturbance trajectory. Such techniques
have recently been investigated for semi-active applications by Giorgetti et al. [19].

Section 2 of this paper rigorously defines semi-active optimization as a constrained TPBVP,
provides optimality conditions, and presents a solution methodology for this class of problems. In
section 3, the performance of an optimal semi-active control system is illustrated in the context of
a semi-active TMD application, and is compared with performance achieved via clipped linear-
quadratic regulator (LQR).

The primary objective of this paper is to provide a tutorial on how to solve the optimal semi-active
control problem and to illustrate the method with a simple example. As such, emphasis is placed on the
application to a relatively simple system and on providing detailed information on how the method can
be implemented. MATLAB [20] code is provided in the Appendix.
2. PROBLEM STATEMENT

An admissible scalar control trajectory u(t) is to be applied to a non-autonomous system

ẋ tð Þ ¼ Ax tð Þ þ Bu tð Þ þ Bww tð Þ; x 0ð Þ ¼ x0; x tð Þ∈Rn (1)

in order to minimize the following cost functional of the states x(t) and control input u(t):

J ¼ ∫
tf

0L x; u; tð Þdt≡∫
tf

0
1
2

x tð Þ
u tð Þ

� �⊺ Q S

S⊺ R

� �
x tð Þ
u tð Þ

� �
dt: (2)

The linear, time-invariant plant (1) is parameterized as follows: A∈Rn�n is the dynamics matrix,
B∈Rn is the control input matrix, and Bw∈Rn is the input matrix associated with the known, determin-
istic exogenous disturbance w(t). The Lagrangian L(�) is quadratic with state weighting matrixQ∈Rn�n,
control weighting scalar R, and bilinear state-control weighting matrix S∈Rn.

Typically, controllable dampers have performance limitations described by a maximum achievable
control force amplitude umax, a maximum achievable damping coefficient cmax, and a dissipative
force-velocity relation. So, for semi-active damping, feasible control forces are bounded by
Figure 1. Sector-bound constraint for semi-active damping device. v(t) is the velocity across the actuator.
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sectors shown in Figure 1, where v(t) is the velocity across the actuator. The former limitation
implies |u(t)|< umax and the latter implies |u(t)| ∈ [0, cmax|v(t)|]; such constraints may be expressed
by the following nonlinear inequality constraint equations:

g x; u; tð Þ ¼ u2 tð Þ � u2max

u tð Þ u tð Þ � cmaxT⊺x tð Þð Þ

" #
⩽0 (3)

where the transformation vector T∈Rn extracts the velocity across the actuator, v(t) =T⊺x(t). For
other semi-active device models, the feasible region may take other forms, as described in
Section 5.

The minimization of J is subject to the equality constraint (1) and the inequality constraint (3). The
Hamiltonian is therefore defined as

H x; u; p; λ; tð Þ≡L x; u; tð Þ þ p⊺ tð Þ Ax tð Þ þ Bu tð Þ þ Bww tð Þ½ � þ λ⊺ tð Þg x; u; tð Þ (4)

where p tð Þ∈Rn is a Lagrange multiplier vector (or costate) for the dynamic constraint (1), and λ tð Þ∈R2

are the Lagrange multipliers for the inequality constraint (3). Note that all λi(t)⩾ 0. In the usual way
[13], adjoining the constraints with multipliers to the performance index J, we have

JA ¼ ∫
tf

0 H x; u; p; λ; tð Þ � p⊺ tð Þ ẋ tð Þ� �
dt: (5)

Following the calculus of variations, the first-order necessary conditions for optimality are [13]

ẋ tð Þ ¼ ∂H
∂p

¼ Ax tð Þ þ Bu tð Þ þ Bww tð Þ; x 0ð Þ ¼ x0 (6a)

ṗ tð Þ ¼ �∂H
∂x

¼ �Qx tð Þ � Su tð Þ � A⊺p tð Þ þ cmaxu tð Þλ2 tð ÞT; p tfð Þ ¼ 0 (6b)

0 ¼ ∂H
∂u

¼ S⊺x tð Þ þ Ru tð Þ þ B⊺p tð Þ þ 2u tð Þλ1 tð Þ þ 2u tð Þ � cmaxT
⊺x tð Þ� �

λ2 tð Þ (6c)

0⩾ ∂H
∂λ

¼ g x; u; tð Þ: (6d)

Equation (6) constitutes a differential-algebraic TPBVP. The following section gives the solution
procedure proposed by Harvey et al. [17], which is an extension of the work of Tseng and Hedrick [14].

2.1. Solution procedure

To solve the necessary conditions (6), the following quadratic program is solved at each time t:

min
u tð Þ

max
λ tð Þ⩾0

H x; u; p; λ; tð Þ: (7)

The unconstrained optimal control is given by the stationarity condition (6c) for λ = 0.

uactive tð Þ ¼ �R�1 S⊺x tð Þ þ B⊺p tð Þ� �
: (8)

The subscript ‘active’ is used here to represent the finite-horizon unconstrained optimal control input,
not an LQR or linear-quadratic-Gaussian feedback controller. Then, using the following saturation
function to ensure feasibility,

usat tð Þ ¼ sat x; uactive; tð Þ ¼ uactive : g x; uactive; tð Þ⩽0

argu tð Þ gj x; u; tð Þ ¼ 0
� 	

: gj x; uactive; tð Þ > 0

(
(9)

At times where the active control input is infeasible, we saturate u(t) to the constraint boundary,
gj(x,u;t) = 0, and the jth Lagrange multiplier λj(t) is determined from (6c) such that the Hamiltonian
Copyright © 2013 John Wiley & Sons, Ltd. Struct. Control Health Monit. 2014; 21: 803–816
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has a saddle point at the constraint boundary. If two or more constraints are violated, we saturate to
the most restrictive constraint.
2.2. Saturation function for semi-active damper

For the semi-active damper constraint (3), the saturation function (9) can be implemented numerically
as follows [17]:

1. Calculate g(x,uactive;t) and the velocity across the actuator v(t) =T⊺x(t).
2. Perform the following checks:

(a) if g(x,uactive;t)⩽ 0, set usat(t) = uactive(t), λ1(t) = 0, λ2(t) = 0, and break;
(b) if uactive(t) v(t)< 0, set usat(t) = 0, λ1(t) = 0,

λ2 tð Þ ¼ S⊺x tð Þ þ B⊺p tð Þ� �
= cmaxv tð Þð Þ; (10)

and break;
(c) if |v(t)|> umax/cmax, set usat(t) = umax sign(uactive(t)) where sign(�) is the signum function,

λ1 tð Þ ¼ � S⊺x tð Þ þ Rusat tð Þ þ B⊺p tð Þ� �
= 2usat tð Þð Þ; (11)

λ2(t) = 0, and break;
(d) if v(t) = 0, set usat(t) = 0, λ1(t) = 0, λ2(t) = 0, and break;
(e) otherwise, set usat(t) = cmaxv(t), λ1(t) = 0,

λ2 tð Þ ¼ � S⊺x tð Þ þ Rusat tð Þ þ B⊺p tð Þ� �
= cmaxv tð Þð Þ; (12)

and break.

Note that step 2(d) is in place to handle the singularity in (6c) at v(t) = 0; that is, for v(t) = 0, the
equality constraint u(t) = 0 must be satisfied, thus making λ2(t) arbitrary, for which we have
chosen λ2(t) = 0. In MATLAB, the saturation function can be implemented by calling a function
such as sat(x,uactive,p) given in Appendix A.

In solving for usat(t) and λ(t) and substituting them into equations (6a) and (6b), the TPBVP is now
unconstrained, as given by

d

dt

x tð Þ
p tð Þ

� �
¼ A 0

�Q �A⊺

� �
x tð Þ
p tð Þ

� �
þ B

�Sþ cmaxλ2 tð ÞT

� �
usat tð Þ þ

Bw

0

� �
w tð Þ (13)

with boundary conditions

x 0ð Þ
p tfð Þ

� �
¼ x0

0

� �
: (14)

To ensure that the necessary conditions (6) are satisfied, the states x(t) and costates p(t) must be
determined by numerically solving (13). Numerical methods to solve unconstrained TPBVPs are well
established, for example, shooting methods, finite differences, and finite elements. In this study, the
unconstrained TPBVP is solved with the MATLAB function bvp4c.m, which implements a collocation
method with piecewise cubic interpolation satisfying the boundary conditions over each time step [21].
The following section gives a numerical demonstration of how to implement bvp4c to solve (13) and
determine optimal control trajectories that adhere to semi-active constraints.
Copyright © 2013 John Wiley & Sons, Ltd. Struct. Control Health Monit. 2014; 21: 803–816
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3. NUMERICAL EXAMPLE

3.1. Tuned-mass-damper system

To illustrate the performance optimization of a semi-active system, the semi-active performance of a
simple semi-active TMD model is optimized to suppress seismic responses. The model is very similar
to the system studied by Hrovat et al. [22], except that in this study, the system is subjected to base
acceleration ẍg , as shown in Figure 2. The mass-normalized equations of motion, which model the
vibration of the system, are

1þ μð Þ ẍs tð Þ þ μẍt tð Þ þ 2ζ sωs ẋs tð Þ þ ω2
s xs tð Þ ¼ � 1þ μð Þ ẍg tð Þ (15a)

ẍs tð Þ þẍt tð Þ þ 2ζ tωt ẋt tð Þ þ ω2
t xt tð Þ þ u tð Þ=mt ¼ � ẍg tð Þ (15b)

with the following parameters defined [22]:

μ ¼ mt=ms; ωs ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
ks=ms

p
; ωt ¼

ffiffiffiffiffiffiffiffiffiffiffi
kt=mt

p
; ζ s ¼ cs= 2msωsð Þ; ζ t ¼ ct= 2mtωtð Þ : (16)

Equation (15) can be represented in state-space form (1) where x tð Þ ¼ xs tð Þ; xt tð Þ; ẋs tð Þ; ẋt tð Þ½ �⊺∈R4 ,
w tð Þ ¼ ẍg tð Þ,

A ¼

0 0 1 0

0 0 0 1

�ω2
s μω2

t �2ζ sωs μ2ζ tωt

ω2
s � 1þ μð Þω2

t 2ζ sωs � 1þ μð Þ2ζ tωt

2
6664

3
7775;B ¼

0

0

μ=mt

� 1þ μð Þ=mt

2
6664

3
7775;Bw ¼

0

0

�1

0

2
6664

3
7775: (17)

The mass ratio μ =0.10 and the TMD natural frequencyωt is the optimum tuning frequencyω�
t discussed

in Section 3.1.1. Table I gives numerical values for the system parameters. As a benchmark for compar-
ison, the optimal performance will be compared with the following three cases.
Figure 2. Structural model of a single-degree-of-freedom structure with tuned-mass-damper (TMD).

Table I. Parameter values used in simulation.

Building data Semi-active TMD data Passive TMD data [22

ms = 1� 106 kg mt = 1� 105 kg mt = 1� 105 kg
ks = 1� 106N/m k�t = 8.26� 104N/m k�t = 8.26� 104N/m
cs = 2� 104N s/m ct = 1.82� 103N s/m c�t = 3.36� 104N s/m
ζ s = 0.01 ζ t = 0.01 ζ �t = 0.185
ωs = 1.0 rad/s ω�

t = 0.909 rad/s ω�
t = 0.909 rad/s

Copyright © 2013 John Wiley & Sons, Ltd. Struct. Control Health Monit. 2014; 21: 803–816
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3.1.1. Optimized passive tuned-mass-damper. A passive TMD with optimized parameters is used as
the first benchmark for comparison. Parameter optimization of the passive TMD results in the
following expressions for ω�

t and ζ �t [23]:

optimum tuning frequency : ω�
t ¼

ωs

1þ μ ; (18a)

optimum passive damping ratio : ζ �t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3μ
8 1þ μð Þ

r
: (18b)

Table I gives numerical values for the passive TMD system parameters. Note the passive damping
force, c�t T

⊺x tð Þ , is to be clipped at the same level umax as the semi-active device to ensure a fair
comparison.

3.1.2. Clipped linear-quadratic regulator. The second control scheme—clipped LQR—is a somewhat
ad hoc yet prevalent suboptimal scheme, based on LQR theory. Define the linear feedback control
uLQR =�R� 1(PB+ S)⊺x, where P is found by solving the algebraic Riccati equation

0 ¼ A⊺Pþ PA� PBþ Sð ÞR�1 PBþ Sð Þ⊺ þ Q: (19)

In order to directly implement uLQR in the compliant damper model, the feedback controls are clipped
when the prescribed forces is infeasible.

3.1.3. Uncontrolled. Finally, the performance of the optimal control trajectory is juxtaposed against an
uncontrolled structure with no TMD, which is essentially the response of a single-degree-of-freedom
system with parameters given in the first column of Table I.

3.2. Pulse-like disturbance model

Two types of ground motions are considered in this study: an idealized pulse and a historical ground
motion record. Analytical pulse models are useful in the systematic design and assessment of seismic
protective systems. Furthermore, because of the smooth nature of the disturbance and responses,
simulations are less computationally expensive, which can accelerate parameter tuning, for example,
determining weighting matrices Q, R (or R for multiple control inputs), and S.

The pulse acceleration in this study is given by [17]

ẍg tð Þ ¼ t � t0
τ

� �η
exp � t � t0

τ

� �
cos ωp t � t0ð Þ � φ

� �
: (20)

Accelerations are zero for t< t0 and have a predominant period Tp = 2π/ωp. In order for the record to
contain N cycles of strong motion, the decay time constant τ is set to NTp/4. Ground acceleration
records should have negligibly small velocity and small displacement at the end of the record. For a
zero terminal velocity, the phase constant φ should be [17]

tanφ ¼ 3 τωp
� �2 � 1

3 τωp
� �� τωp

� �3 : (21)

To enforce small residual displacements, the second derivative of a scaled logistic is iteratively
subtracted from the acceleration record until the displacement at the end of the record is close to zero.
The associated fixed-point map is

ẍg tð Þ← ẍg tð Þ � xg tfð Þ exp �sð Þ 1þ exp �sð Þ½ �3 exp �sð Þ � 1½ �= τ=2ð Þ2; (22)

where xg(tf) is the displacement at the end of the record, and s is a scaled time variable equal to
(t� t0� ητ)/(τ/2). In applying the fixed-point-map of equation (22), accelerations should not be
Copyright © 2013 John Wiley & Sons, Ltd. Struct. Control Health Monit. 2014; 21: 803–816
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810 P. S. HARVEY JR. ET AL.
reset to zero for t< t0. For η= 2, 1<N< 5, and 0.5<Tp< 4 s, peak velocities scale with Tp and
are approximately given by

ẋmax
g ¼ max 4:063N�2:165 exp �4:403=Nð Þ; 2:329N�1:336 exp �5:693=Nð Þ� �

Tp±0:5%: (23)

He and Agrawal [24] validated a similar pulse model through comparison with numerous
ground motions, corresponding response spectra, and the performance of passive energy dissipa-
tion systems. The pulse model used in the present work has a terminal velocity of zero (from
equation (21)) and a terminal displacement of zero (from equation (22)). In this study, disturbance
waveforms were scaled to match prescribed peak velocity values Vp by scaling accelerations by a
factor of Vp= ẋmax

g . Figure 3(a) illustrates a sample disturbance record using the following disturbance
parameters: ωp = 1.0 rad/s, Vp = 0.8m/s, t0 = 2.0 s, η =2, and N=2.

3.3. Performance index and numerical values

In this example, the Lagrangian L(�) is selected as the square of the total acceleration of the primary
structure:

L x; u; tð Þ ¼ 1
2

ẍg tð Þ þ ẍs tð Þ
� �2≡ 1

2
A 3;:ð Þx tð Þ þ B 3ð Þu tð Þ� �2

(24)

where A(3,:) is the third row of the dynamics matrix, and B(3) is the third entry of the control input
vector. The state, control input, and cross weighting matrices are thus Q ¼ A⊺

3;:ð ÞA 3;:ð Þ , R=B(3)
⊺ B(3),

and S ¼ A⊺
3;:ð ÞB 3ð Þ.

We consider only adjustable control forces u(t) that are constrained by (3). For the constraint
g1(x,u;t), the maximum semi-active force umax = 5� 104N is used in simulation. For the maximum
dissipating constraint g2(x,u;t), the velocity across the actuator is ẋt ¼ T⊺x for which T⊺= [0 0 0 1].
The maximum damping coefficient is taken to be cmax = 2ζmaxωtmt, with ζmax = 18%.

3.4. MATLAB procedure

Appendix A gives sample code for this example. The procedure involves first initializing the
model parameters (line 2-3). The variables dt and nT are the time step and length of the time vector
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Figure 3. Acceleration, velocity, and displacement time histories of a pulse-like ground motion and a recorded
ground motion. (a) Pulse-like ground motion for parameter values given in Section 3.2 and (b) 1979 Imperial

Valley earthquake, El Centro Array #6-230°.
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t, respectively, used to linearly interpolate the disturbance history w at intermediate times. The initial
states x0 and terminal costates pf must also be specified. Concatenating the state and costate into a
single vector, define z =[x;p]. Specify global variables (line 1), which are accessed by the
ordinary differential equation (ODE) function zdot(t,z,w), the boundary condition (BC) function
bcfun(z0,zf,x0,pf), and the saturation function sat(x,uactive,p).

In line 6, the options are specified using bvpset. The maximum mesh discretization (the
maximum number of time steps) NMax is increased to avoid premature termination of bvp4c; because
bvp4c uses an adaptive mesh, with NMax too small the evaluation may be terminated before
convergence is met. By setting Stats to on, the simulation results are displayed, for example, the
number of ODE calls and the number of BC calls.

The function bvp4c requires an initial guess for the trajectories, for which a constant initializa-
tion of 5�eps is selected for this example using the function bvpinit. An initial guess of zero
is not permitted because the BCs would be automatically satisfied and bvp4c would fail to run.

In line 8, bvp4c is called. The four arguments to bvp4c are the ODE function zdot(t,z,w)
given in Appendix A, which represents (13); the BC function (14), given in Appendix A by the
function bcfun(z0,zf,z0,pf); the initial guess for the solution solinit; and the previ-
ously defined options. The output sol of bvp4c must then be evaluated using the command
z =deval(sol,t) for the time series t. Finally, the state and costate histories may be
extracted from z.
3.5. Optimized semi-active control trajectories

The proposed method is now applied to the previously described TMD model under two load-
ing scenarios. First, a pulse-like disturbance is used to validate that the optimized trajectories
satisfy the necessary conditions. Then, optimal semi-active trajectories are computed for a
recorded earthquake ground motion. In both cases, a comparison is made between the optimal
semi-active controller, the optimized passive TMD, the clipped LQR controller, and the
uncontrolled system.

3.5.1. Pulse-like ground motion. The converged optimal semi-active trajectory, the passive trajectory,
the clipped LQR trajectory, and uncontrolled trajectory are given in Figure 4, along with the primary
structure total acceleration ðẍg þ ẍsÞ history and the cumulative objective function J. The control force
u(t) versus the velocity across the actuator v(t) shows that the semi-active constraint is strictly satisfied.
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Figure 4. Responses to a pulse-like disturbance: comparison of optimal (thick) with passive (dashed), clipped
linear-quadratic regulator (gray), and uncontrolled (dotted).
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As evident from the control force history, the optimal trajectory requires less energy than the clipped
LQR and passive controllers (in an L1 sense). As observed from Figure 4, the optimal control
significantly reduces the mean-square acceleration (i.e., J), as compared with the passive, clipped
LQR, and uncontrolled systems—approximately 33, 47, and 89%, respectively.

Figure 5 shows the constraint time histories and the corresponding Lagrange multiplier. We see that
the complementary slackness condition

λi tð Þ
¼ 0 : gi x; u; tð Þ < 0

≥0 : gi x; u; tð Þ ¼ 0



(25)

is strictly satisfied by the optimal trajectory. That is to say, the Lagrange multiplier is turned on when
the control input desires to be infeasible, pinning the trajectory to the associated constraint boundary. It
is clear that the term λ⊺(t)g(x,u;t)≡ 0, ∀ t.

Figure 6 shows converged control histories from three initial guesses: constant at
5*eps*ones(2*n,1), constant at 10*ones(2*n,1), and the active solution. The number of
ODE calls to reach convergence varies: approximately 5.4� 105, 3.6� 105, and 5.5� 105 ODE calls,
respectively. The speed of convergence is dependent on the initial guess; with a bad initial guess
convergence may be very slow. Nonetheless, for all three initial guesses, the method converges to
the same optimal trajectories.

3.5.2. Earthquake ground motion. Now, we consider a recorded earthquake ground motion. The
recorded ground motion is the E06230 component of the 1979 Imperial Valley earthquake [25].
Figure 3(b) illustrates the disturbance record. The optimal control force trajectory is illustrated
in Figure 7, along with the structure’s total acceleration and the performance history. Once
again, the optimal control significantly outperforms the uncontrolled system (68%) and
marginally outperforms the passive and clipped LQR controllers (15 and 21%, respectively).
The proposed method is robust enough to handle non-smooth ground motions such as recorded
earthquake records. However, convergence required approximately 1.4� 106 ODE evaluations.
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Figure 7. Responses to a recorded earthquake ground motion: comparison of optimal (thick) with passive
(dashed), clipped linear-quadratic regulator (gray), and uncontrolled (dotted).
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4. CONCLUSIONS

The ability to answer the question ‘How much could semi-active control improve performance in this
application?’ can be powerful in establishing the potential for a new semi-active control device or a
new semi-active control application. Methods of constrained optimal control, as outlined in this short
tutorial paper, provide an easy and ready means to generate such answers. The illustrative example
presented is meant to serve only as a guide in solving a rigorously-formulated semi-active control
optimization problem, and is therefore, intentionally simple.
5. FUTURE WORK

As a tutorial, this paper is intended to encourage the application of optimal semi-active control to
answer many important questions. The list of topics in the succeeding text are a sample of studies that
could be performed with the methods outlined in this paper.

• Time lag in semi-active control systems can certainly affect the best achievable performance.
Applying optimal semi-active control analysis to systems with a time lag will show how
important the time lag effects can be. Incorporating time lag into the semi-active damper, where
the semi-active damping force is given by ḟ tð Þ ¼ ½u tð Þ � f tð Þ�=T lag, and Tlag is the time lag, typically
0.02–0.10 s, would add realism to the simulation results. The state equations would remain linear.

• Different semi-active devices have different behavior. By applying optimal semi-active control
analysis to systems controlled by different semi-active devices, the relative potential of different
devices can be assessed.

• Semi-active control may potentially provide greater performance for linear structural systems
than for nonlinear or hysteretic structural systems. Application of optimal semi-active control
analysis to structures with different nonlinearities would show how semi-active control would
benefit the behavior of one type of structure as compared with another.

• This study addresses a system with a single semi-active device. Extension to systems with
multiple semi-active devices may be studied. In doing so, care must be taken in the saturation
function so that coupling between devices is properly accounted for.

• The constraints imposed upon the optimization in this study pertain only to the semi-active
device. The constrained optimization methods described in this paper can also be applied to
constrain peak responses. For example, in earthquake engineering, peak responses are typically
Copyright © 2013 John Wiley & Sons, Ltd. Struct. Control Health Monit. 2014; 21: 803–816
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of greater interest than mean squared responses [25]. Extending this method to suppress peak
response is a matter of removing the quadratic state cost, so that

J ¼ ∫
tf

0
1
2
Ru2 tð Þdt;

and adding a constraint on the peak response, for example,

gx ¼ maxt xs tð Þj j � xallow≤0:

The method here would be to iteratively reduce xallow until no feasible solution can be found.

• The methodology presented in this paper can be extended to minimizing peak responses by
changing the quadratic integrand to a fourth or higher (even) order and by reducing the time
horizon to the first few large cycles of response. Doing so would result in nonlinear costate
dynamics.

• Optimal control trajectories could be investigated and parameterized in order to develop a class
of nonlinear feedback control rules inspired by these optimal performance studies.

Appendix A: MATLAB functions

The full MATLAB code used to generate the figures in this paper may be found at http://www.duke.edu/
~hpgavin/osc. The essentials are given in the succeeding text.

Sample code to run bvp4c.m:

Unconstrained boundary value problem function:

Boundary condition function:
Copyright © 2013 John Wiley & Sons, Ltd. Struct. Control Health Monit. 2014; 21: 803–816
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Saturation function:
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