
Journal of Geophysical Research: Space Physics

RESEARCH ARTICLE
10.1002/2013JA019477

Key Points:
• Flapping modes may be separated by

the analysis of plasma velocity
• The velocity vector rotates different

for the kink and sausage modes
• The mode’s separation strongly

depends on noise and multiple
sources existence

Correspondence to:
D. I. Kubyshkina,
kubyshkina.darya@gmail.com

Citation:
Kubyshkina, D. I., D. A. Sormakov, V. A.
Sergeev, V. S. Semenov, N. V. Erkaev, I.
V. Kubyshkin, N. Y. Ganushkina, and S.
V. Dubyagin (2014), How to distinguish
between kink and sausage modes
in flapping oscillations?, J. Geophys.
Res. Space Physics, 119, 3002–3015,
doi:10.1002/2013JA019477.

Received 24 SEP 2013

Accepted 7 APR 2014

Accepted article online 9 APR 2014

Published online 29 APR 2014

How to distinguish between kink and sausage modes
in flapping oscillations?
D. I. Kubyshkina1, D. A. Sormakov2, V. A. Sergeev1, V. S. Semenov1, N. V. Erkaev3,4, I. V. Kubyshkin1,
N. Yu. Ganushkina5,6, and S. V. Dubyagin5

1Faculty of Physics, Earth Physics Department, Saint Petersburg State University, Saint Petersburg, Russia, 2Arctic and
Antarctic Research Institute, Saint Petersburg, Russia, 3Institute of Computational Modelling SB RAS, Krasnoyarsk, Russia,
4Department of Applied Mechanics, Polytechnic Institute, Siberian Federal University, Krasnoyarsk, Russia, 5Finnish
Meteorological Institute, Helsinki, Finland, 6Department of Atmospheric, Oceanic and Space Sciences, University of
Michigan, Ann Arbor, Michigan, USA

Abstract Flapping waves are most noticeable large-scale perturbations of the magnetotail current
sheet, whose nature is still under discussion. They represent rather slow (an order of magnitude less than
typical Alfven speed) waves propagating from the center of the sheet to its flanks with a typical speed of
20–60 km/s, amplitude of 1–2 Re and quasiperiod of 2–10 min. The double-gradient MHD model, which
was elaborated in Erkaev et al. (2007) predicts two (kink and sausage) modes of the flapping waves with
differences in their geometry and propagation velocity, but the mode structure is hard to resolve
observationally. We investigate the possibility of mode identification by observing the rotation of magnetic
field and plasma velocity vectors from a single spacecraft. We test theoretical results by analyzing the
flapping oscillations observed by Time History of Events and Macroscale Interactions during Substorms
spacecraft and confirm that character of observed rotation is consistent with kink mode determination
made by using multispacecraft methods. Also, we checked how the existence of some obstructive
conditions, such as noise, combined modes, and multiple sources of the flapping oscillations, can affect on
the possibility of the modes separation with suggested method.

1. Introduction
Flapping oscillations, the fast vertical motions of the Earth’s magnetotail plasma sheet, were observed since
long time ago [e.g., Ness, 1965], but only Cluster mission was able to fully reveal the main signatures of this
phenomenon [e.g., Zhang et al., 2002; Sergeev et al., 2003, 2004, 2006a; Runov et al., 2005, 2006; Petrukovich
et al., 2006; Shen et al., 2003]. According to these observations, flapping oscillations represent waves,
observed more frequently in the central part of the tail than near the flanks, which propagate from the mid-
night meridian to the flanks with the speed of 20–60 km/s (an order of magnitude less than a typical Alfvén
velocity), amplitude of 1–2 Re and quasiperiod of 2–10 min. These flapping motions are probably caused by
some transient process localized in the magnetotail center. They were also founded in the magnetospheres
of Jupiter and Saturn [Volwerk et al., 2013].

There exist several theoretical explanations of the flapping oscillations in the Earth’s magnetotail. The
Drift-Kink Instability (DKI) [Daughton, 1998, 1999; Zelenyi et al., 2009] considers the relative drift of ions and
electrons which is proposed to be the main driver of the flapping waves. Similar kink mode can be driven by
the relative streaming between two populations of ion species (the cold lobe ions and the current-carrying
hot plasma sheet ions) [Daughton, 1999], which provide an effective shear into the ion velocity profile. This
instability is defined as ion-ion kink mode [Karimabadi et al., 2003; Sitnov et al., 2004] and grows faster than
DKI. A similar approach is described in Ricci et al. [2004]: background ions create velocity shear, which in turn
introduces Kelvin-Helmholtz instability and result in current sheet flapping motions. All this models belong
to the drift modes, where oscillations propagate along the electric current. However, it should be noted, that
the real flapping wave propagates both along and opposite the current.

In the magnetohydrodynamic (MHD) approach two models were elaborated. First, the ballooning-type
mode in curvilinear magnetic field in the magnetotail current sheet was proposed by Golovchanskaya
and Maltsev [2005]; for more details, see, e.g., Mazur et al. [2012]. They considered the wavelengths of
the ballooning perturbations much less than curvature radius of magnetic field line in magnetotail. How-
ever, experimental data indicate that the wavelength of flapping oscillations is bigger than this curvature
radius. (Thus, the frequency obtained in frame of ballooning model is different to the experimental one.)
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The double-gradient (DG) model, which was elaborated by Erkaev et al. [2007, 2008, 2009a, 2009b, 2010];
Artemyev and Zimovets [2012], takes into account this fact. It was shown that frequency and wavelength
of oscillations depend on the double gradient of magnetic field (gradient of Bx component on z and Bz

component on x in GSM coordinate system). Relations between ballooning mode and DG mode was con-
templated in detail in Korovinskiy et al. [2013]. Summarize, the double-gradient mode is a particular branch
of a ballooning mode, when wavelength is bigger than curvature radius. Also, DG model was compared to
the experimental data, and it was found that it is in a better accordance with experimental data than other
models [see Forsyth et al., 2009].

Two principal modes of the flapping motion exist in the double-gradient model. The kink mode is described
by the even function for the z component of the displacement vector 𝜉z with respect to Z, and the sausage
mode is described by the odd function. If the satellite is located near the neutral plane then we can distin-
guish between these modes: Bx component changes its sign (then satellite crosses the neutral plane) for the
kink mode, while for the sausage mode Bx preserve its sign and still close to zero value.

Most of the observed events were identified as the kink mode events [Sergeev et al., 2006b] based on Bx

sign change signature. At the same time the sausage mode can also exist. For instance, Panov et al. [2012]
presented the event in which one of the Time History of Events and Macroscale Interactions during Sub-
storms (THEMIS) probes was located in the central plasma sheet and observed Bx∼0, when two other probes
located at the current sheet periphery observed Bx oscillations with amplitudes exceeding 20 nT.

Previous attempts of mode determination strongly depended on the chance to have two probes in the cur-
rent sheet both below and above of its center or to have the probe located right at the center of the current
sheet. However, this is problematic in case of having the single spacecraft, or in the case of mixed modes.

In this paper we investigate the possibilities to distinguish between the modes (including the case of mixed
modes) based on single point observations.

We review the double-gradient model of the flapping oscillations and propose the possible mechanism
for the modes determination in section 2. Next, in section 3 we present the analysis of THEMIS probes
observations for events on 5 March 2008 and 20 December 2007. Experimental data are compared with
the theoretical predictions. In sections 4 and 5 we investigate the influence of the mixed modes and the
noise, respectively. In the section 6 we present the modeling of the inverse gradient. The fast growth of
small fluctuations corresponds to this case, and we propose the possible mechanism of the flapping waves
appearance by means of short-duration intervals of inverse gradient.

2. Double-Gradient Model of the Flapping Oscillations

Flapping oscillations are a particular mode of the MHD waves in the magnetotail propagating across the
magnetic field lines, which are much slower than the magnetosonic modes. As it was shown in [Erkaev et al.,
2009a] the incompressible approximation is appropriate in this case, and we can use the simplest system of
incompressible ideal magnetohydrodynamic (MHD) equations

𝜌(𝜕𝐯
𝜕t

+ (𝐯 ⋅ ∇)𝐯) = −∇Π + 1
4π

(𝐁 ⋅ ∇)𝐁; (1)

𝜕𝐁
𝜕t

+ (𝐯 ⋅ ∇)𝐁 = (𝐁 ⋅ ∇)𝐯; (2)

∇ ⋅ 𝐯 = 0; (3)

∇ ⋅ 𝐁 = 0. (4)

Here 𝐯,𝐁, 𝜌, and Π = p + B2

8π
are the velocity, magnetic field, density, and total (plasma + magnetic) pres-

sure, respectively. We concentrate our analysis on very slow wave modes existing only in the presence of
magnetic field gradients. So we introduce the weak gradient 𝜕Bz

𝜕x
and suppose that gradient 𝜕Bx

𝜕z
exists but

constant. All another derivations 𝜕

𝜕x
are supposed to be zero, because magnetotail is the region with mag-

netic field much elongated in X direction. The configuration of the background magnetic field as well as the
coordinate system is shown in Figure 1.

Following the standard procedure, we linearized the set of MHD equations (2)–(4). Since we are looking
for the waves propagating in the Y direction, the perturbations are assumed to have the form
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Figure 1. Schematic showing geometrical situation of the
current sheet.

𝛿A(z)exp(−i(𝜔t − ky)) where 𝛿A(z) is the ampli-
tude of a perturbation. Using the relation
vz = −i𝜔𝜉z we obtain one differential equation
with the plasma displacement 𝜉z as the variable

𝜕2𝜉z

𝜕z2
+ k2

(
U2(z)
𝜔2

− 1

)
𝜉z = 0, (5)

where k is the wave number in the Y direction,
and U2(z) is equal to

U2(z) = 1
4π𝜌

𝜕Bz

𝜕x

𝜕Bx(z)
𝜕z

. (6)

Here the gradient 𝜕Bz

𝜕x
is supposed to be constant and 𝜕Bx (z)

𝜕z
defines the structure of the current sheet. The

function 𝜉z(z) has to vanish at large distances from the current sheet.

Solving the spectral equation (5) we can obtain eigenfrequency 𝜔 as a function of wave number k. In general
case we have to solve the flapping boundary value problem numerically, but there exist several cases when
it is still possible to obtain an analytical solution. One of them is the simplest configuration value problem
of the current sheet with constant current density in the finite layer with thickness 2Δ [Erkaev et al., 2007].
In spite of the fact, that this is a simplification of the real current sheet, the frequency, phase, and group
velocities turn out to be close to those obtained from more realistic models. In this case, the equation (5) has
a simple solution 𝜉z = D1cos(𝜆z) + D2sin(𝜆z) (where 𝜆 = k2( U2

𝜔2 − 1), U = const) for |z| < Δ and 𝜉z = Ce−k|z|
for |z| > Δ. Choice of sinus or cosines in this solution is specified by the mode of flapping oscillations (even
cosines corresponds to the kink mode, and odd sinus corresponds to the sausage mode). Since 𝜉z and 𝜕𝜉z

𝜕z
are continuous across the structure we can find the following transcendental equations for the kink and
sausage modes, respectively:

tan(𝜆) = k
𝜆
, tan(𝜆) = −𝜆

k
. (7)

These equations have the discrete sequence of roots, the main root is the minimal 𝜆 which corresponds to
the maximal frequency. Solving equations (7) numerically, we can obtain the dispersion relations, which
are shown in Figure 2. It is convenient to approximate the dispersion relations with the following simple
expressions for kink and sausage modes, respectively:

𝜔k(k) = 2𝜔f
kΔ + 0.15

√
kΔ

1 + 2kΔ
; (8)

Figure 2. Dispersion curves for the kink and sausage wave
modes and their approximations.

𝜔s(k) = 𝜔f
kΔ(1 + kΔ)

2.14 + 1.7kΔ + (kΔ)2
. (9)

Here 𝜔f is the, so called, double-gradient
frequency at z=0

𝜔f =

√
1

4π𝜌

(
𝜕Bz

𝜕x

𝜕Bx

𝜕z

)
z=0

. (10)

Harris current sheet is another example provid-
ing the analytical solution [Erkaev et al., 2009a,
2009b]. For this case the dispersion relations
are

𝜔k(k) = 𝜔f

√
kΔ

kΔ + 1
; (11)

𝜔s(k) = 𝜔f
kΔ√

(kΔ)2 + 3kΔ + 2
. (12)
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As can be seen from Figure 2 both dispersion curves, kink, and sausage, asymptotically tend to the same
limit which is double-gradient frequency (10). To illustrate the role of this frequency we consider the z
component of the linearized equation of motion (2) and x component of the frozen-in equation (3)

𝜌
𝜕vz

𝜕t
= −𝜕𝛿Π

𝜕z
+ 1

4π
𝛿Bx

𝜕Bz

𝜕x
; (13)

𝜕𝛿Bx

𝜕t
+ vz

𝜕Bx

𝜕z
= Bz

𝜕𝛿vx

𝜕z
. (14)

The term −𝜕𝛿Π∕𝜕z is responsible for the flux tube interaction and dispersion. In the limit k → ∞ (thin flux
tube approximation) this term becomes small. It was shown in Erkaev et al. [2009a, 2009b] that vx ∼ Bz and
right-hand side of the equation (14) is the term of the second order in Bz , and therefore, it can be neglected.
Then the equations (13) and (14) lead to the equation for vz

𝜕2vz

𝜕t2
= − 1

4π𝜌
𝜕Bz

𝜕x

𝜕Bx

𝜕z
⋅ vz. (15)

We can see that if 𝜕Bx

𝜕z
⋅ 𝜕Bz

𝜕x
> 0 the thin flux tube would oscillate up and down with the double-gradient

frequency 𝜔f . In another case of inverse gradient 𝜕Bx

𝜕z
⋅ 𝜕Bz

𝜕x
< 0 there is an instability. This double-gradient

instability has been investigated numerically in [Korovinskyi et al., 2013] for the compressible set of MHD
equations and it was shown that the dispersion curve obtained from simulations agrees with the theoretical
dispersion curve within 10%.

Now we consider again the general case. To return from Fourier space to the real space we perform the
inverse Fourier transformation with obtained dispersion relations. The Z component of the displacement
vector is written as

𝜉z(t, y, z) =
Re

2π ∫
∞

−∞
𝜉0

z (k)cos(𝜆(k)z)ei(𝜔(k)t−ky)dk, (16)

where 𝜆(k) = k
√

U2

𝜔2 − 1 and 𝜉0
z (k) is the Fourier transformation of the initial disturbance 𝜉0

z (y). We used the
symmetric (𝜉0

z (y) = 𝜉0
z (−y)) and antisymmetric (𝜉0

z (y) = −𝜉0
z (−y)) initial disturbances in form

𝜉0
z (y) = exp(−y2), 𝜉0

z (y) = sin(y)exp(−y2) (17)

to model the perturbations for cases with different symmetries. From obtained 𝜉z we can determine other
parameters of the current sheet (components of the displacement vector, velocity, and magnetic field) using
MHD equations:

− ik𝜉y +
𝜕𝜉z

𝜕z
= 0 ; 𝐯 = 𝜕𝜉

𝜕t
; 𝛿𝐁 = curl[𝜉 × 𝐁0] , (18)

where 𝐁𝟎 is the background magnetic field.

After analyzing the plasma and magnetic field variations for different initial disturbances and at different
observation points, we found out that the initial perturbation (localized somewhere in the center of the
current sheet, here at Z = 0, Y = 0) generates the localized propagating waves. These waves move from
the center to the flanks of the current sheet with geometry depending on the mode: in the kink (sausage)
mode the plasma vertical displacements change antisymmetrically (symmetrically) relative to Z = 0. Also,
the propagation (group) velocity will be different for each mode, its magnitude is approximately twice as
large for the kink mode.

In addition to vertical motion of the current sheet, the plasma elements participate in quasi-circular motions
in the Z-Y plane during the wave propagation. In other words the plasma elements make smoothly damping
oscillations near the equilibrium state, like in the usual wave at the surface of water. We are interested in this
motions because the direction of the rotation is opposite for the kink and sausage modes; therefore, it can
be used for distinguishing the modes.

According to computations made for the localized source (at Y = 0, Z = 0), the plasma rotation pattern is
different in four quadrants (behavior is conserved in each quadrant), relative to the neutral sheet and the
source location (see Figure 3). The patterns for kink and sausage modes in this figure differ by the opposite

KUBYSHKINA ET AL. ©2014. American Geophysical Union. All Rights Reserved. 3005



Journal of Geophysical Research: Space Physics 10.1002/2013JA019477

Figure 3. Schematic showing transversal rotation of plasma elements in the flapping wave above and below of the
neutral sheet. Left and right parts correspond to the kink and sausage modes, respectively. The middle row shows the
schematic representation of the situation. Curved current sheet shape is shown in gray, source location is shown by the
red star, and the wave propagation directions are shown by blue arrows. Circles with arrows show how the elements of
plasma move in specific quadrant for presented configuration. Top and bottom rows show the periodograms (azimuthal
angle in radians versus time) for corresponding four quadrants of YZ plane.

direction of rotation. The modeling shows that rotation of the vectors does not depend on the type of initial
disturbance, presented by equations (17).

For convenience we can plot the phase angle of the velocity vector Vyz or magnetic field vector Byz (vectors
in YZ plane) as a function of time. Such plot shows the family of the tilted lines, each line corresponds to
one period of the Vyz rotation, as presented in Figure 3. In this case the tilt sign indicates the direction of the
plasma element rotation: the lines will be inclined to the right in case of clockwise rotation and vice versa
in case of counterclockwise rotation. So these lines will be inclined in opposite sides for kink and sausage
modes in each point. Such data presentation facilitates the detection of periodicity in the experimental
data. The line slope characterizes the fundamental parameters of the model, including the double-gradient
frequency and corresponding quasiperiod.

3. Observations

Here we show the fortunate event when the configuration of THEMIS probes was optimal for the identifi-
cation of the flapping mode and investigation of the transversal plasma motions. It occurred on 5 March
2008 in the middle of continuously disturbed time period (AL ∼ 300–500 nT). Three THEMIS probes P1
(at [−16.2, 2.6,−1.6]Re GSM, taken at 1000 UT), P2 (at [−13.5, 2.2,−2.3]Re) and P4 (at [−10.9, 2.2,−2.2]Re)
stayed near the tail axis in nearly radially aligned configuration. Between 0930 and 1100 UT they observed
nearly synchronous large Bx variations (Figure 4, first row) resembling the flapping waves. They cannot be
reliably identified as kink waves without more analysis, because Bx was predominantly negative and the
THEMIS probes did not cross often the neutral sheet.

Although being so close to P4, the probes P3 (at [−10.4, 1.1,−1.9]Re) and P5 (at [−9.0, 3.6,−2.3]Re) show
no synchronous Bx variations (Figure 4, second row). However, as shown by the arrows on this plot, some
similarity between time shifted wave forms can be noticed at P5, P4, and P3, suggesting a dawnward prop-
agation of these features in the plasma sheet. In summary, in this fortuitous geometry the THEMIS probes
observed a riffle-like perturbation (long in the radial direction and short in cross-tail direction), propagated
dawnward, which resembles much the well-known properties of the flapping waves. This configuration
allows to investigate further the mode properties.

The choice of proper coordinate system is essential, it can been obtained using Minimal Variance Analysis
(MVA) [Paschmann et al., 1986]. The new X axis has to lie in the plane of magnetic field lines (this plane is
inclined to the XZ GSM plane because of flaring etc.). We choose one of the maximum variability direction of
the magnetic field (calculated for time interval 1010 ∶ 17–1023 ∶ 26 UT from P2 data) as the Xm1 axis, and
set the normal to Xm1 and ZGSM vector plane as the Ym1 axis. We checked that the maximum variability direc-
tions at all probes are close to the average direction Xm1. At the same time this axis is considerably inclined
relative to standard X (Sun-Earth) line.

KUBYSHKINA ET AL. ©2014. American Geophysical Union. All Rights Reserved. 3006
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Figure 4. Observations of THEMIS probes on 5 March 2008. (first row) Bx component variations from three radially sep-
arated probes P1, P2, P4; (second row) Bx component variations from the azimuthally separated probes P3 and P5; (third
row) Bz ; and (fourth row) ion velocity Vx variations from the probes P1, P2, P4.

Hereafter, we analyzed the time delays dT between the Bx variations using the cross-correlation proce-
dure. For this purpose, we used the oscillations #3∕4 which are the most distinct at all probes. Together
with spacecraft separation distances dYm1 across the magnetic field planes obtained in the new coordinate
system, this allows us to estimate the propagation velocity of the flapping wave phase front.

As we can see from the Table 1, the flapping wave velocity is directed toward the dawn flank and is rather
small in amplitude (a few tens km/s, as typical for the cross-tail velocities of the flapping waves [e.g., Runov et
al., 2005]). One also may notice that the wave velocity decreases when the wave propagates to the morning
sector, i.e., opposite to the current (average velocities P5 → P1, P5 → P2, and P5 → P4 are higher comparing
to the velocities between P1 → P3, P2 → P3, P3 → P4).

Now we can analyze the behavior of the azimuthal (Vy) and normal (Vz) components of the plasma veloc-
ity. Using the average magnetic field coordinate system we can look into the transversal (perpendicular
to average 𝐁 direction) magnetic field and plasma flow variations obtained by identical instruments at all
THEMIS probes. Here we used the ion plasma moments obtained by combining data from electrostatic
analyzer (ESA) and solid state telescope spectrometers [see Angelopoulos et al., 2008]. The velocity val-
ues are typically low and noisy, so we use the comparison of observations made by three probes (P1, P2,

Table 1. Time Delays and Cross-Tail Propagation Velocity Obtained From
Cross-Correlation Analysis of the THEMIS Probes P1...P5

P5P1 P5P2 P5P4 P5P3 P1P3 P2P3 P4P3

dYm1, Re −2.27 −2.67 −2.01 −2.97 −0.7 −0.3 −0.96

dT , s 426 453 417 945 519 492 528

Vm1
y , km∕s −34 −38 −30 −20 −28 −4 −12

KUBYSHKINA ET AL. ©2014. American Geophysical Union. All Rights Reserved. 3007
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Figure 5. Time variations of the ion velocity azimuthal angle (Ang = atan(Vy∕Vz)) compared to the magnetic Bx com-
ponent, magnitude of transversal velocity (Vyz), and Vx component variations for THEMIS probes P1, P2, and P4 on
5 March 2008.

and P4 seeing simultaneously the large-scale flapping-like Bx variation) to ensure that we really detect the
large-scale flapping-related transversal plasma tube motions. The observed variations can be compared to
the theoretical expectations which are schematically presented in Figure 3.

The parameter of primary interest in Figure 5 is the angle (Ang) between the transverse velocity vector
and Z GSM axis, plotted at 3 s spin resolution. It is plotted in the upper panel for each P1, P2, and P4 probe
(only points with Vyz > 15 km/s were included), with Bx variations is overlapped for comparison. The indi-
vidual points show clear grouping into the tilted lines (marked by yellow hatching) for the time intervals
0956–1004, 1022–1032, and 1032–1045 UT, manifesting three consecutive periods of steady rotation dis-
tinctly observed for P1 and P2 probes. The Vyz magnitudes are shown on the bottom panel (for each of P1, P2
and P4). It can be seen that P4 velocities are generally smaller compared to those at P1, P2 (therefore fewer
data points are available), which may partly be responsible for the absence of large-scale rotations seen in
P4 data. Briefly summarizing, during this event of flapping wave observations, we were able to detect for the
first time three consecutive periods of transverse large-scale plasma rotations in the flapping wave. The rota-
tion period for 1004–1022 UT time interval is estimated to be ∼12 min as it was described in section 2. The
character of rotation corresponds to the theoretical expectations for the kink mode in the case of the tail
probe being in the dawn quadrant below the neutral sheet, as consistent with the observations (dawnward
propagation and Bx < 0).

Similar transverse plasma motions were observed also in the event on 20 December 2007 published by
Runov et al. [2009]. This event is interesting because the THEMIS probes were located far from midnight
(source) unlike in event on 5 March 2008. Runov et al. [2009] confirmed the geometry of the flapping waves
by using MVA and estimated the average cross-tail velocity of the structure to be − 13–−32 km/s.

Results of the P1, P2 data analysis similar to that described above but for event on 5 March 2008 are shown
in Figure 6. Time axes are shifted by 8 min relative to each other to take into account the propagation effects
and facilitate the identification of simultaneous transverse motions (yellow strips). In spite of the noisy pat-
tern, two complete large-scale rotations of plasma elements can be discerned, both are in the clockwise

KUBYSHKINA ET AL. ©2014. American Geophysical Union. All Rights Reserved. 3008
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Figure 6. Same as in Figure 4 but for 3 May 2009.

sense, like in the previous case. The marked inclined lines correspond to the quasiperiods of the Bx varia-
tions, the long line between 0600 and 0640 UT corresponds to the period of 40 min, the short line between

Figure 7. Numerical simulation results for the mixed modes. Periodograms
(azimuthal flow angle versus time) are shown in (Y, Z)=(2,0.5) for the dif-
ferent the proportion of the kink mode in the observed wave (10%, 30%,
and 70%).

0657 and 0723 corresponds to T = 26
min. These periods are longer than
in the previous event. Transverse
motions for the P3, P4 satellites were
not clearly identified. In total, there
are some indications of long-period
transverse large-scale plasma oscil-
lations, although the data for this
event are more noisy compared to the
previous event.

We found the agreement between
the model and experimental data,
such as similar rotational motion of
plasma in the model and the exper-
imental data, with the quasiperiod
(in the event on 20 December 2007)
being close to the theoretical one (12
and 8.5 min, respectively). Also the
tilt of the lines corresponds to the
case of the kink mode according to
the theoretical prediction. However, it
should be noticed that in the model
the magnetic field vector shows the
similar behavior as the velocity and
displacement vectors, particularly
the Byz vector hodogram represents
the spiral, and the rotation direction
changes in different quadrants and
for the different modes. By
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Figure 8. Dependence of the angle of inclination of the velocity vector on
time in presence of noise with different amplitudes (30, 60, and 95 % of the
signal’s amplitude) z = 0.5z0, y = 2z0.

considering this Byz vector hodogram
in the experimental data we were
not able to discern clear rotation pat-
terns. At the glance it looks strange,
because usually the magnetic field
can be obtained with better qual-
ity and resolution than velocity data.
The answer can be connected
with the fact that in the flapping wave
the variations of the plasma velocity
are proportional to one fluctuating
parameter, whereas the magnetic
field variations are proportional to
the multiple of two fluctuating vari-
ables. This implies that for example
variations of the velocity Y compo-
nent (𝜌

𝜕vy

𝜕t
= − 𝜕Π

𝜕y
) are proportional

to the variations of the total pressure,
which is a most stable parameter in
the magnetotail. At the same time the
magnetic field By component varia-

tions are
𝜕By

𝜕t
= Bz

𝜕vy

𝜕z
. Though in our

linear theory parameter Bz is close
to the constant, real Bz is fluctuated
and thus By proportional to the prod-
uct of two fluctuated variables. The
same can be written for other veloc-
ity and magnetic field components.
Specifically, the detecting of the peri-

odograms in the velocity data for the flapping oscillations becomes more conveniently than in the magnetic
field data.

In the next section we investigate the robustness of the method in case of some interferences, such as mixed
modes and presence of the noise or subsources.

4. Mixed Modes

We suppose that oscillations consist of a mixture of linear kink and sausage waves in certain proportion.
Time evolution of the parameters (including angles Angv and AngB) of the mixed mode which are presented
in Figure 7 for few different proportions of the modes in the wave.

For 10% of the kink mode and 90% of the sausage mode in the wave the observed parameters behave like
in the sausage case for six wave periods, but after some transitional time interval, it turns to kink-like behav-
ior. With 30% of the kink contribution we can see sausage-like behavior only for first three periods, then it
behaves like the kink mode. After the percentage of the kink reaches and exceeds 70% we do not see the
sausage signatures at all.

Thus, the kink-like behavior can be detected even in presence of small part of the kink mode in the wave,
while the sausage mode could be seen clearly only for >50% sausage contribution. The difference is
explained by faster propagation (whenever except short initial time interval) of the kink mode as well as by
its slower damping rate, so eventually the kink mode dominates over the sausage mode. Such difference
may explain why in the most observational studies the flapping oscillations are identified predominantly as
the kink mode.

However, we do not have any clear signatures of the mixed modes observation except the changing of the
direction of the velocity vector rotation to the opposite. We usually can observe only few periods of the
flapping oscillations and thus cannot detect this changing. So if we propose the existence of such mixed
oscillations, then the modes determination become ambiguous.
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Figure 9. Dependence of the angle of inclination of the magnetic field’s
vector on time in presence of noise with different amplitudes (30, 60, and
95 % of the signal’s amplitude) z = 0.5z0, y = 2z0.

Thus, the answer to the question:
Can we explain the difference in the
behavior of magnetic field and veloc-
ity vectors in the satellite’s data by the
existence of the mixed modes? is no.
Theoretical time variation of the Byz

vector is similar to the Vyz variation.

5. Separation of the Modes in
Presence of Noise

In this section we check how noise
affects on the modes identification
mechanism. For the beginning we
proposed that we observe the oscil-
lations against the background noise
with uniform arrangement and some
fixed amplitude. We use the ran-
dom function to set the noise. The
final signal is the linear sum of the
pure oscillations with the amplitude
A(t) and the noise with the ampli-
tude A′ = m ⋅ At=0 (we assume that
the amplitude of the noise signal is
constant for all time interval).

With this noise (permanent for the
whole time interval) inclinations cor-
responded to more belated periods
will be broken at less values of coef-

ficient m because of the signal’s amplitude decreasing with time. As we can see from Figures 8 and 9 the
dependence of vector’s v and B angles of inclination on time breaks at large noise amplitude comparable
to the signal’s one. On the other hand, developments for speed and magnetic field ruins with one level of
the noise.

Another way to take into account the noise is to introduce it into the source term. Noise will be assigned for
the displacement at the moment of initiation of the flapping wave. In case of Gaussian initial disturbance
(for 𝜉z), the signal’s amplitude is equal to one half of the current sheet thickness (1 in dimensionless values).
So the noise amplitude will be m1⋅rand[0, 1], where [0, 1] are the limits of the function “rand” and m1 defines
the noise’s amplitude. Values of the speed’s and magnetic field’s noise amplitudes are related in this case
and the initial disturbance looks like

𝜉0 = Ce−a2y2 + m1 ⋅ rand[0, 1] (19)

Using the initial disturbance (19) we can get the parameters of the flapping oscillations from the usual pro-
cedure which was described in section 3. If we slowly change the noise’s amplitude from 0 to maximum we
can notice that the dependence for the magnetic field breaks earlier than for the velocity. Destruction occurs
in the presence of noise with the order about 15 % of signal’s amplitude (Figures 10 and 11).

It is evident that, in reality, both methods of the noise assigning should be used. If we add the noise from
the first case to the noise from the second case, then destruction of the dependence will accelerate, but
inclinations for magnetic field will still ruin faster.

To find out how the influence of the noise changes in response to location of the point of observation, we
propose that noise’s level stay about similar in rather wide region in YZ plane. In our model the disturbances
damp fast in Z direction in distances ∼2–3 Re from the current sheet. Apparently, in regions close to the
sheet the noise magnitude consist smaller part of the amplitude of the signal than in distant regions. So
the Ang(t) dependence could be found in the limited distance from the sheet which could be calculated
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Figure 10. Dependence of the angle of inclination of the velocity’s vector
on time in presence of noise with different amplitudes (15, 20, and 30 %
of the signal’s amplitude), second method of the noise’s introducing, z =
0.5z0, y = 2z0.

using signal’s amplitude at the center
of the current sheet and the noise’s
amplitude. Along the Y axis (across
the magnetic field lines) disturbance
expands with slowly changing ampli-
tude, thus inclinations should be
observed in the large distance from
the source. In numerical model with
the noise’s amplitude about 20 %
of the signal the inclinations are seen
at distances as large as about 8 Re.

6. Implications of
Short-Duration Appearance
of Inverse Gradient

As we noticed in section 2 there are
two possible regimes of the pertur-
bations in the current sheet [Erkaev
et al., 2007, 2008]. In the first case
(positive double gradient) the wave
propagates in the plasma sheet, and
our previous discussion concerned
this regime which is commonly
realized in the real magnetotail.
The second case (negative double
gradient) corresponds to the insta-
bility. In this regime “fingers” grow
from the small fluctuations and do
not propagate.

Recently Petrukovich et al. [2013] analyzed simultaneous observations of radially separated Cluster probes
and found that, whereas the positive 𝜕Bz

𝜕x
⋅ 𝜕Bx

𝜕z
> 0 gradient is a norm, short intervals (1–10 min) of

inverse negative gradients 𝜕Bz

𝜕x
⋅ 𝜕Bx

𝜕z
< 0 are sometimes observed in the magnetotail. This can have some

important consequences.

Based on short-lived nature of inverse gradient events we can propose the following scheme for the gen-
eration of the flapping oscillations in the magnetotail. When the inverse gradient appears, always existing
small fluctuations grow up due to double-gradient instability. After short time (about few minutes), they
grow large enough to produce observable finger-like perturbations. If the magnetic field gradient suddenly
changes the sign, these perturbations stop to grow and give rise to the propagating flapping waves.

For illustration we use a simplification. We set the gradients as constant for whole instability and wave
intervals. In the first short period of the inverse gradient the initial fluctuations grow up with the instability
mechanism. Then we change the gradient to the positive value abruptly and use the wave mechanism at a
later stage.

We suppose that initially the biggest disturbances to be localized near the tail center (Y = 0) and additional
smaller ones to be near the flanks (to mimic the multiple sources or noise). Here we consider just a couple
of additional non-overlapping fluctuations (at the Y = 9 and at the Y = −8) and propose that oscillations
belong to the kink mode. In Figure 12 (top) we show the time-evolving shape of the current sheet 𝜉z(y) in
case of three sources during the instability stage. Equations for the displacement and velocity components
in case of instability were obtained by changing of the real frequency 𝜔(k) to the pure imaginary frequency
or increment 𝛾(k) in the solution of the flapping equation

𝜉z(t, y, z) =
Re

2π ∫
∞

−∞
𝜉0

z (k)cos(𝜆(k)z)e𝛾(k)t−ikydk (20)
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Figure 11. Dependence of the angle of inclination of the magnetic field’s
vector on time in presence of noise with different amplitudes (15, 20, and
30 % of the signal’s amplitude), second method of the noise’s introducing,
z = 0.5z0, y = 2z0.

The dependence of this increment
𝛾(k) on k is the same as for the dis-
persion 𝜔(k), thus we can just change
the harmonic oscillations to the
exponential growth [Erkaev et al.,
2007, 2008].

At t = 1 we change the sign of the
gradient (turn to the stable case) so
these previously increased fluctua-
tions became the initial disturbances
of the propagating wave. During the
second time interval we calculate
parameters of the current sheet by
the wave case procedure (t = 8, 16
in Figure 12, bottom). Initially, we
see some interference between the
sources and primary motion from
the center of the sheet to the flanks,
and after some time interval we see
only the wave propagated from the
main source.

At the next step we investigate
how does the inclusion of a few
sources influence the possibil-
ity of mode determination by
analyzing the behavior of the
velocity vector azimuthal angle
(periodogram)(Figure 13). While the

Figure 12. Simulation of the fluctuations evolution: shape of the current
sheet in the different times (𝜉z(y)). The main source with amplitude A0
located at Y = 0 and subsources located at Y = 9 (amplitude A = −0.75A0)
and at Y = −8 (A = 0.5A0). The point of observation is at (Y, Z) = (2, 0.5).
(top) The instability stage (starts in t = 0 and continue to t = 4, time unit is
T = (𝜔f )−1) and (bottom) the next wave stage (from t = 4 to t = 64).

displacement amplitudes of the addi-
tional sources stay small (less than
a half ) compared to the amplitude
of the main source, dependence of
the velocity vector on time remains
nearly unchanged. If we increase
the initial amplitudes then the
separation of the modes become
troublesome (dependent on the
observation point).

For the amplitudes about 0.5A0

to 0.8A0 and point of observation
located between the sources, we
can determine just few lines (like in
experimental data) and for the big-
ger amplitude we cannot determine
them at all. Mechanism of the modes
separation will be crashed in the
same way if the distance between
sources decreases. This statement
is illustrated in Figure 13. If we shift
the point of observation out from
the region between the sources then
Ang(t) dependence will be similar to
the one of the one source case.
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Figure 13. Periodograms for the case of three sources. (top) Corresponds
to the case similar to illustrated in Figure 12. The main source with ampli-
tude A0 is located at Y = 0. Subsources amplitudes equal −0.75A0 for
the fluctuation at Y = 7 and 0.5A0 for the fluctuation at Y = −6. (mid-
dle) Subsources are located at the same places, but amplitudes are bigger,
A = −0.95A0 for the fluctuation at Y = 7 and A = 0.95A0 for the fluctua-
tion at Y = −6. (bottom)We illustrate the case of the distance decreasing.
Subsources have the amplitudes equal to the ones from Figure 13 (top),
but moved from Y = −6 to Y = −3 and from Y = 7 to Y = 5. The point of
observation is located at (Y, Z) = (4.0, 0.5).

To conclude the instability play the
ambiguous role in the current sheet
dynamics. On the one hand, existence
of the inverse gradient produces a
lot of problems for the detection
and analysis of the flapping waves
and makes the modes separation
mechanism hard to apply. This was
shown in the present paper for the
simplified model with few initial
disturbances and the picture sup-
posed to be even more complex for
the real current sheet. Thus, we can
conclude that probably the main dif-
ficulty in mode’s separation is not
the noise but the existence of the
multiple sources of the oscillations.
From the other hand, this inverse
gradient mechanism as well as recon-
nection proposed by Sergeev et al.
[2003] can be the powerful source of
the flapping wave appearance.

7. Conclusions

In this paper we investigated the
possibility of the flapping modes
separation based on the analysis of
the azimuthal (Vy) and normal (Vz)
components of plasma velocity. The
velocity vector rotates clockwise or
counterclockwise and direction of this
rotation is different for the kink and

sausage modes at the all points of space. We used the dependence of the angle of inclination (atan(Vy∕Vz))
on time, which represents the series of the lines inclined differently for the different modes. From the angle
of inclination of these lines we obtain the double-gradient frequency. The relevant model was based on
double gradient of magnetic field.

We shown the fortunate event (it occurred on 5 March 2008) in which the configuration of THEMIS probes
constellation was optimal for the identification and investigation of the flapping-like waves. During this
event of flapping wave observations, we were able to detect for the first time three consecutive periods of
transverse large-scale plasma rotations in the flapping wave. The rotation period for 1004–1022 UT time
interval was estimated to be ∼12 min. The character of rotation corresponded to the theoretical expecta-
tions for the kink mode in the case of the tail probe being in the dawn quadrant below the neutral sheet, as
consistent with the observations (dawnward propagation and Bx < 0).

It was found out that the tilt of the lines corresponds to the case of the kink mode according to the the-
oretical model as it was expected. However, it should be noticed that in the model, the magnetic field
vector shows the similar behavior as the velocity and displacement vectors, but the tilted lines in the angle
between B and ZGSM dependence on time was not found out in the experimental data. For this purpose we
investigated the robustness of the method in case of the mixed modes, in the presence of noise and also we
analyzed the case of instability.

We found out that the modes separation mechanism can be crashed by the presence of the enough strong
noise. Moreover, the behavior of the velocity vector is more stable than the behavior of the magnetic field
vector. Even more than noise, the existence of the multiple sources of the oscillations could be the main

KUBYSHKINA ET AL. ©2014. American Geophysical Union. All Rights Reserved. 3014



Journal of Geophysical Research: Space Physics 10.1002/2013JA019477

difficulty in mode’s separation. This multiple sources supposed to appear in many events because of inverse
gradients (instability) existence.
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