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ABSTRACT

The use of diurnal water-table fluctuation methods to calculate evapotranspiration (ET) and groundwater flow is of increasing interest in
ecohydrological studies. Most studies of this type, however, have been located in riparian wetlands of semi-arid regions where
groundwater levels are consistently below topographic surface elevations and precipitation events are infrequent. Current methodologies
preclude application to a wider variety of wetland systems. In this study, we extended a method for estimating sub-daily ET and
groundwater flow rates from water-level fluctuations to fit highly dynamic, non-riparian wetland scenarios. Modifications included (1)
varying the specific yield to account for periodic flooded conditions and (2) relating empirically derived ET to estimated potential ET for
days when precipitation events masked the diurnal signal. To demonstrate the utility of this method, we estimated ET and groundwater
fluxes over two growing seasons (2006–2007) in 15 wetlands within a ridge-and-swale wetland complex of the Laurentian Great Lakes
underflooded and non-flooded conditions.Mean dailyET rates for the sites ranged from4.0mmd�1 to 6.6mmd�1. Shallowgroundwater
discharge rates resulting from evaporative demand ranged from 2.5mmd�1 to 4.3mmd�1. This study helps to expand our understanding
of the evapotranspirative demand of plants under various hydrologic and climate conditions. Published 2013. This article is a U.S.
Government work and is in the public domain in the USA.
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INTRODUCTION

Estimation of evapotranspiration (ET) andgroundwater-flux rate
is of fundamental importance inwetland ecohydrological studies
(e.g. Williams et al., 2006; Hill and Neary, 2007; Drexler et al.,
2008; Sanderson and Cooper, 2008; Nagler et al., 2009). ET
represents the principal, and often dominant, mechanism for
water loss in many wetland settings (Priban and Ondok, 1985;
Wessel andRouse, 1994; Drexler et al., 2004), and groundwater
loading is known to play a key role in structuring certainwetland
types (e.g. Boomer andBedford, 2008; Loheide et al., 2009; van
der Kamp and Hayashi, 2009). Understanding plant community
responses to climate change requires sound hydrologic data
(Burkett et al., 2005), and accurate methods for obtaining
estimates of ET losses over the growing season are needed
increasingly to understand the implications of climate change for
water resource management and adaptation.
Obtaining accurate estimates, however, is particularly

difficult inwetlands because of variability in local atmospheric
conditions, changing water levels and spatially heterogenous
plant community assemblages. Potential (PET) or actual ET
(AET) calculated from Penman-type equations utilizing
radiation and aerodynamic measurements above the plant
canopy (e.g. Penman, 1948;Monteith, 1965;Allen et al., 2005)
are often applied in wetland studies, but the resulting estimates
are subject to uncertainties in aerodynamic and surface
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resistance as well as variability in wetland surface character-
istics (Drexler et al., 2004). Eddy covariance methods (e.g.
Acreman et al., 2003) are particularly accurate but costly to
install and maintain (Drexler et al., 2004). Relatively
inexpensive and easy to implement, water-level fluctuation
(WLF)methods (Lott and Hunt, 2001;Mould et al., 2010) can
be useful in wetland situations for estimating AET and
groundwater flow because WLFs reflect changes in plant life
stage, community composition and antecedent soil moisture
conditions that micrometeorological methods do not (Lautz,
2008). These methods utilize diurnal fluctuations in wetland
water levels, which reflect direct uptake of groundwater by
plants (Loheide et al., 2009). Plants draw down water levels
during daylight hours, and groundwater flows continuously,
but water-table elevation rebound is most apparent at night, as
groundwater flux replenishes the water extracted by ET
(Figure 1). The classic work by White (1932) long has been
used to estimate groundwater and ET rates empirically in
semi-arid riparian areas on a daily scale (e.g. Troxell, 1936;
Gatewood et al., 1950; Meyboom, 1967; Gerla, 1992;
Laczniak et al., 1999). An added benefit to WLF methods,
groundwater flux rates associated with evaporative demand by
plants, which are needed in water-balance analyses and
wetland hydrogeology studies, can be estimated concurrently
with ET from continuous water-level records (Gerla, 1992;
Loheide et al., 2005; Butler et al., 2007; Hill and Neary, 2007;
Gribovszki et al., 2008; Loheide, 2008). In semi-arid riparian
wetlands where water levels are below ground for most of the
growing season and precipitation events are infrequent, the
c domain in the USA.
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Figure 1. Hydrograph of Swale 55 from 4–6 August 2007 showing the White
(1932) method for empirically calculating daily ET. Grec represents the net
groundwaterflowover a 24-h period as extrapolated from the slope of thewater-
level curve frommidnight (0000 h) to 0400 h. Change in storage is depicted by

ΔS. ET is the sum of Grec and ΔS multiplied by the specific yield, Sy.
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regular step-down pattern in the water table allows for
systematic calculation of ET and groundwater flow.
Application to a more general wetland scenario that

includes non-riparian, flooded wetlands, however, is needed.
The primary limitations to the WLF method include an
inability to apply the method during rain events, under
flooded conditions or when water levels drop below the
rooting zone (Mould et al., 2010). An additional complicating
factor influencing the accuracy of ET estimation by traditional
WLF methods involves the inherent assumption that
groundwater recovery rate is constant even though we know
that it changes over the course of the day with evapotran-
spirative demand (Troxell, 1936). More recently, researchers
have begun examining high-resolution wetland hydrographs
on a sub-daily basis to understand nutrient cycling (Schilling,
2007; Schilling and Kiniry, 2007), groundwater consumption
(Loheide, 2008) and ET effects on river baseflow (Gribovszki
et al., 2008). Gribovszki et al. (2008) and Loheide (2008)
extended White’s (1932) concept to resolve the recovery-rate
problem by calculating ET as a function of time, which
increases the accuracy of the ET estimate by addressing
variability in groundwater recovery rates. Because of the
aforementioned limitations, a sub-daily approach and a
combination of PET and WLF methods may be useful.
In this study, we asked: can WLF methods be applied to a

more general wetland scenario where flooded conditions and
rain events are prevalent? Using bothWLF and PET estimates,
we developed modifications to the sub-daily method of
Loheide (2008) that extend its utility to a wide variety of
wetland systems. Applying the method to sub-daily hydro-
graphs from a structurally and vegetatively complex ridge-and-
swale wetland system in the Great Lakes region, we were able
to estimate ET and shallow groundwater fluxes over two
annual growing seasons for 15 swales in the wetland system.
METHODS

Water-level fluctuation theory

Water-level fluctuation methods allow for the concurrent
calculation of groundwater inflow and ET rates. In the
Published 2013. This article is a U.S. Government work and is in the public
sub-daily WLF methods that account for changes in ground-
water rates over the course of the day (Gribovszki et al., 2008;
Loheide, 2008), groundwater inflow rate, Grec (mmh�1),
is calculated during times of negligible ET as follows:

Grec ¼ Sy dh=dtð Þ (1)

where Sy is the readily available specific yield (sensu
Meyboom, 1967), and dh/dt represents the change in water-
table elevation, h (mm), over time, t (h). The Loheide (2008)
method assumes that a groundwater recovery source, located an
arbitrary distance away, supplies water to the unconfined
aquifer at the observation well. The methodology is summar-
ized here, but the reader is referred to Loheide (2008) for
further details. The rate of change in head at the recovery
source is assumed equal to the overall water-table rate of
change at the well. If this assumption is accurate, the net
inflow rate, Grec (mm h�1), can be estimated by detrending
the water-level curve by subtracting the trend slope and
intercept from the linear regression of the water-table trend
for each day. The detrended water-level curve is then
regressed against the rate of change in detrended water-
table elevation for the pre-dawn hours of two consecutive
nights. The regression is extended to predict the rate of
change in detrended water-table elevation over the day,
which is retrended andmultiplied by specific yield to obtain
the hourly inflow rate, Grec. Once the inflow rate is known,
ET, ETG (mmh�1), is calculated as follows:

ETG ¼ Grec � Sy dh=dtð Þ (2)

For application to a more general wetland scenario (e.g.
seasonally flooded flow-through wetlands in humid climates),
we used sub-dailymethods for calculatingET and groundwater
recovery rates while applying several modifications. First, we
accounted for perennial flooding using a weighted specific-
yield correction. Second, we used micrometeorological
methods (e.g. Penman–Monteith) in regression analyses to
predict ETG when precipitation events precluded the use of
hydrologic methods. Finally, we allowed a flexible window
(from midnight to a time between 0400 h and 0600 h) for
defining the pre-dawn hours when ET is assumed to be
negligible to ensure the method was more likely to succeed for
any given day.

Correcting for above-ground storage

When a wetland site is flooded, water-table head elevation
shows a reduced response per unit change in storage even
though the volumetric change is the same. This must occur
because the above-ground void volume must equal the
storage volume. For perennially flooded wetland scenarios,
we adjusted the specific yield (Sy) for each time step to
resolve the discrepancy between flooded and non-flooded
conditions. Whereas the readily available specific yield
(0< Sy< 1) is appropriate when working with below-
ground-surface (BGS) water levels (Loheide et al., 2005),
a specific yield of 1.0 instead is used for the portion of water
that is above-ground surface (AGS) (Mitsch and Gosselink,
2000; Hill and Neary, 2007). This means that under flooded
conditions, all standing water will drain under the force of
domain in the USA. Ecohydrol. 7, 378–390 (2014)



380 M. L. CARLSON MAZUR, M. J. WILEY AND D. A. WILCOX
gravity. Similar to the composite specific yield of Hill and
Neary (2007), we used a weighted specific yield (Syc) value
to account for the respective portions of the water column
that are AGS and BGS. Whereas they assessed actual
wetland geometry, we used a rectangular wetland geometry,
which is appropriate if ET and groundwater fluxes are
calculated as depths (rather than volumes) across a 1-m2

cross section of wetland and the slope of the bottom is
minimal in relation to the side slopes (Figure 2A). Adopting
a similar specific-yield notation, we then calculated a
composite specific yield (Syc) by Equation (3).

Syc ¼ Syw
Dw

Dw þ Ds

� �
þ Sys

Ds

Dw þ Ds

� �
(3)

where Syw is the specific yield of standing water of 1.0, Sys is
the specific yield of sediments, Dw is the water depth, Ds is
the depth from soil surface to a less permeable surface
representing the base of the unconfined aquifer (e.g. bedrock or
glacial till) and Dw+Ds is the total depth over which the
specific yield is estimated (Figure 2).
By convention, the naming scheme ‘ETG’ usually refers

to direct groundwater withdrawal by phreatophytes. When
considering water levels above or near land surface, some of
the ET is also due to free-water-surface evaporation. In this
paper, we maintain the ETG notation to indicate calculation
fromWLFs even thoughwe recognize implicitly that all ET is
not due to direct groundwater withdrawal by plants.

Precipitation events and other decoupling from the
recovery source

The Loheide (2008) method assumes that the head at the
groundwater recovery source fluctuates at a similar rate as
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Figure 2. Variouswetlandgeometries in cross section (rectangular,A; conic,B; trap
when thewater-level gage is placed at two positions. Position 1 represents the location
Position 2 is an alternate location for comparison. The shape of C is most similar to
water and is assigned a value of 1.0;Sys is the soil and sediment specific yield for below

from the soil surface to the predepositional surface of the beach-ridge complex
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the water-table head at the well. The practical implication
of this is that a regression of rate-of-change in detrended
water table against the detrended water-table values in the
pre-dawn hours of two sequential days should be
significant. Lack of significance, signalling inapplicability
of the general method, occurs when fluctuations are erratic
or during rain events that cause a rapid water-table rise at
the surface but a muted and lagged rise at the recovery
source. Therefore, a second modification was needed to
estimate ETG and Grec for days when the general method
could not be applied; we predicted ETG from hourly PET
using the Penman–Monteith equation and related it to Grec

on a daily basis.
Hourly ETG can be predicted using an appropriate linear

or nonlinear regression relating ETG to PET. The resulting
time series, a composite of estimated ETG from WLFs
and ET values predicted from PET, is referred to
henceforth as ETC.

The Penman–Monteith equation for hourly reference
ET (PETPM) (Monteith, 1965; Shuttleworth, 1993; Souch
et al., 1996, 1998; Allen et al., 2006) is

PETPM ¼ 1000
lrw

Δ Rn � Hsð Þ þ racp es � eað Þ=ra
Δþ g 1þ rs=rað Þ

� �
(4)

where l (MJ kg�1) is the latent heat of vapourization, rw is
the density of liquid water (kgm�3), Δ (kPa �C�1) is the
slope of the saturation vapour pressure curve at air
temperature Ta (�C), g (kPa �C�1) is the psychometric
constant, Rn (MJm�2 h�1) is the net radiation, Hs is the soil
heat flux (MJm�2 h�1), (es� ea) is the vapour pressure
deficit of the air (kPa), ra is the density of air (kgm

�3), cp is
the specific heat of air at constant pressure (MJ kg�1 �C�1),
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381ESTIMATING ET AND GROUNDWATER FLOW FROM WATER-TABLE FLUCTUATIONS IN WETLANDS
ra is the aerodynamic resistance (hm�1) and rs is the surface
resistance (hm�1). The value 1000 converts PET units from
mh�1 to mmh�1.
We estimated daily groundwater net inflow rate (Grec) by

linear regression of dailyGrec and dailyETG for dayswhen the
general method could not be applied. The validity of this
relationship is based on the assumption that ET provides a
void by which groundwater can flow to the swale, thereby
relating ET and groundwater fluxes on a daily scale. We then
applied the regression equation for known ETG and Grec

values to compute unknown Grec values from predicted ETG
values for gaps in the time series resulting from rain events.
We then used the composite ETG and Grec data sets,
henceforth ETC and GC, containing both directly estimated
WLF values and WLF values predicted from PET for
subsequent water-balance analyses.

Accounting for daily and seasonal variability

The time of day when ET is negligible generally is
assumed to be from midnight to 0400 h or 0600 h (White,
1932; Gerla, 1992; Gribovszki et al., 2008; Loheide, 2008).
For the general method to work for a given day, the
incremental water-table slopes for corresponding time steps
on the night before and the night after must overlap. When
applying this method to more variable wetlands, it was
necessary to capture the portion of the groundwater inflow
curve from midnight to sometime between 0400 h and
0600 h when the water-table elevation for that day peaked
(Figure 1). Therefore, the pre-dawn hours for each day
were defined individually. Doing so accounted for seasonal
changes in daylight as well.
In what follows, to illustrate these three modifications

(weighting the specific yield, predicting ETG from PET and
allowing a flexible nighttime window of negligible ET), we
Figure 3. Location (inset) and air photo of the ridge-and-swale system at Neg
features in the photo represent the ridge

Published 2013. This article is a U.S. Government work and is in the public
apply this method and modifications in a non-riparian
wetland system in the Laurentian Great Lakes.
EXAMPLE APPLICATION

Site description

A 560-ha, undisturbed ridge-and-swale wetland system
consisting of nearly 40 minerotrophic wetlands is located
along the west shore of Lake Huron (44.86007�N,
�83.33288�W) in northeast Michigan, USA, within the
boundaries of Negwegon State Park (Figure 3). Over the last
3500 years at this site, coastal processes in an embayment
with high sediment supply have led to the preservation of
approximately 90 former beach ridges and intervening
swales comprising a progradational beach-ridge complex
that sits atop a leaky confining layer (T. Thompson, personal
communication, 30 May 2005). Sediments are homogeneous
fine-to-medium-grained sands with some gravel and very
little silt or clay fraction capped by mucky hydric soils in the
swales and sandy soils atop ridges (Tawas-Au Gres complex;
USDA, NRCS, 2008).

Approximately half of the swales support wetland plant
communities varying from sedge meadow or emergent marsh
to shrub-scrub or forested wetland. Dominant vegetation
types differ among swales but often consist of green and black
ash (Fraxinus pennsylvanica Marsh. and Fraxinus nigra
Marsh.) in the overstory; the shrubs gray alder [Alnus incana
(L.) Moench ] and common winterberry [Ilex verticillata (L.)
A. Gray]; and herbaceous vegetation, including sedges (e.g.
Northwest Territory sedge,Carex utriculataBoott), bluejoint
grass [Calamagrostis canadensis (Michx.) P. Beauv.] and
sensitive fern [Onoclea sensibilis L.]. Nomenclature follows
the USDA plants database (USDA, NRCS, 2011).
wegon State Park showing the hydrologic sampling sites. The lighter linear
s, and darker features are the swales.

domain in the USA. Ecohydrol. 7, 378–390 (2014)



Table I. Specific yield estimates for the 15 swales.

Swale Sy (–) Precipitation events

8 0.124 (0.03) 18
14 0.150 (0.05) 29
17 0.119 (0.06) 16
26 0.120 (0.07) 19
28 0.100 (0.04) 19
29 0.124 (0.06) 20
30 0.108 (0.06) 20
32 0.127 (0.05) 26
37 0.153 (0.05) 25
38 0.121 (0.05) 12
55 0.120 (0.06) 27
73 0.156 (0.06) 31
78 0.113 (0.05) 23
81 0.136 (0.06) 30
82 0.116 (0.06) 26

Specific yield (Sy) calculated as the ratio of precipitation to water-table rise
was estimated for the number of precipitation events listed for each swale,
and the arithmetic mean was used in Equations (2) and (3). Values in
parentheses represent standard deviation.
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Characterized by warm summers and cold winters, the
climate for most of Lake Huron is described as humid
continental in the Köppen–Geiger climate classification
(Peel et al., 2007). The 20-year (1987–2007) mean annual
precipitation is 721mm at the Alpena, MI station 25 km to
the north (NOAA, 2008).

Monitoring wells and sensors

Fifteen swales were selected for monitoring using a random
sample stratified by dominant vegetation class: forested,
shrub or herbaceous. In each swale, we installed pressure
transducers (Solinst LT Levelogger Model 3001) in
slotted wells located on the lakeward side of the swale.
We also installed barometric pressure transducers in
Swales 29 and 87 (Figure 3). With the exception of the
first month of the record in 2006 (ordinal dates 154–183),
our barometric pressure sensor was located in a dry well to
reduce the thermal effects noted by Cuevas et al. (2010)
and McLaughlin and Cohen (2011). To supplement the
centrally located weather station (Davis Instruments Cabled
Vantage Pro2 Plus), additional sensors in each swale
recorded relative humidity and air and soil temperature
(Onset HOBO H8 Family). Data were recorded at 5-min
intervals (15min for the weather station) from 20 May to
27 October in 2006 and 14 April to 12 October in 2007.

Sediments

We collected sand samples from the C soil horizon of the
15 instrumented wetlands and analysed for texture. Thickness
of the beach-ridge complex was determined individually for
each swale from core logs collected and described by
T. Thompson of the Indiana Geological Survey.
We estimated specific yield (Sy) as the ratio of infiltrated

precipitation to recorded water-table rise (Gerla, 1992).
Several researchers have supported the validity of thismethod
in wetlands (Gerla, 1992; Rosenberry and Winter, 1997;
Loheide et al., 2005). We approximated Sy for each swale in
the study using 2006 and 2007 precipitation events totalling
more than 5mm per event. Although we recognize implicitly
that precipitation that infiltrates to the water table does
not include interception by plants and soil, we assumed that
infiltrated precipitation equalled recorded precipitation
because infiltration was negligible compared with the total
precipitation during each storm event greater than 5mm per
event. Specific-yield values calculated from multiple rain
events when the water table was below ground were
arithmetically averaged to obtain a single value for each
swale (Table I).

Water-level data processing

Smoothing was required to filter sensor noise from the
data that occurred because of the 0.3-cm accuracy of the
instrument. Water-level and barometric-pressure data
were smoothed using locally weighted, second-order
polynomial regression that assigned lower weight to outliers
(span = 0.004) (Cleveland, 1979; Cleveland et al., 1988).
Through an iterative process for testing the optimal smooth-
ing, caution was taken to avoid over-smoothing the data
Published 2013. This article is a U.S. Government work and is in the publi
because this can artificially inflate ET and groundwater values
by increasing the time base (sensu Snyder, 1938) of the daily
fluctuations. Minor gaps in the data (<0.5 h) occurred when
pressure transducers were downloaded; missing values were
estimated by spline interpolation prior to smoothing.

We accounted for barometric-pressure effects on the water
table and assumed zero barometric efficiency, meaning an
instantaneous and direct transmission of barometric pressure
on thewater table. The results of slope (Ferris et al., 1962) and
graphical tests (Gonthier, 2007) supported this assumption, as
well as the observation that rain events produced a nearly
instantaneous rise in the water table, indicating minimal
barometric-pressure lag (T. Rasmussen, personal communi-
cation, 18 May 2009). We then used rating curves relating
swale water depth to corresponding compensated pressure-
transducer data at the time of measurement to convert
pressure-transducer data to water depths.

PET parameterization

Parameterization of the PETPM equation (Equation (4))
followed recommended methods in the literature (e.g.
Shuttleworth, 1993, Allen et al., 1998), including the air
and surface resistance values (ra, rs) given by Souch et al.
(1998) for a similar ridge-swale wetland system. For wind
speeds below detection, we assigned a value of half the
detection limit of the anemometer (0.22m s�1). We used a
daily mean short-wave solar radiation reflection coefficient
(albedo, a) of 0.11, estimated from Shuttleworth (1993) for
tall forest. We followed Shuttleworth’s (1993) equation for
saturation vapour pressure, es (kPa). The actual vapour
pressure, ea (kPa), was calculated from the measured relative
humidity, RH (%), and the saturated vapour pressure, es at
air temperature T (�C), following Allen et al. (1998).
The variables l, Δ and g were calculated using methods
outlined in Shuttleworth (1993). Rn is the difference between
incoming net shortwave radiation, Rns (MJm�2 h�1), and
outgoing net longwave radiation, Rnl (MJm�2 h�1). After
c domain in the USA. Ecohydrol. 7, 378–390 (2014)
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Allen et al. (1998), we used the following components
to calculate Rns and Rnl: measured incoming shortwave
radiation, Rs (MJm�2 h�1); their Equation (28) for extrater-
restrial radiation, Ra (MJm�2 h�1); their Equation (37)
for clear-sky solar radiation, Rso (MJm2 h�1; and their
Equation (39) for Rnl (MJm2 h�1). We used the relative solar
radiation ratio of actual solar radiation, Rs, to Rso that was
calculated 2–3 h prior to sunset to estimate the ratio for
nighttime hours (Allen et al., 1998). Equations (45) and
(46) of Allen et al. (1998) were used to determine the soil
heat flux, Gs. We used a value of 0 s m�1 for the bulk
surface resistance, rs, for standing water levels and 5 s m

�1

for below-ground water levels, following Souch et al. (1998)
for similar ridge-swale wetlands. We used a plant height of
0.12m and the standard FAO method for aerodynamic
resistance, ra (Allen et al., 1998).
To relate hourly ETG to PET, we used nonlinear regression

analysis, which minimized the root-mean-square error
(RMSE) better than linear regression. A power function was
fit by least squares (Seber andWild, 2003). Negative and zero
values were removed prior to analysis. A theoretical power
relationship may exist between AET and PET. As
temperature and radiation increase, PET continues to
increase. Actual ET, however, may decrease at midday
because of photoinhibition, heat stress or water limitation,
resulting in an asymptotic relationship between AET and
PET.When this is the case, a nonlinear PET–ETG relationship
may be more appropriate than a linear one.

Composite ET and groundwater

We calculated ET (ETG) and shallow groundwater recovery
(Grec) at 15-min intervals using the Loheide (2008) method.
We used modifications to this method to calculate the
composite sub-daily ET (ETC) and daily groundwater (GC)
time series as described earlier. Programming was performed
in MATLAB R2007a v.7.4 (Mathworks, 2007).

Addressing the rain dilemma

The days when rain events occur pose a particularly
challenging problem for estimating ET. Sensors tend to
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experience large errors during rainstorms, which affects the
accuracy of micrometerological methods. WLF methods
are also problematic because of a rapid rise in water-table
elevation and subsequent percolation losses. As such, the
accuracy of relationships between PET and ETG during
periods of rain also may be questionable. Many
researchers (e.g. Wilson et al., 2001; Mould et al.,
2010) have chosen to omit calculations on such days
altogether. If annual water budgets are desired, however,
estimates for ET on rainy days are important. An
alternative is to assume that no ET directly from the
water table occurs on days with rain events and that any
ET that occurs is a result of evaporation of intercepted
rain. Diurnal losses are apparent in the hydrograph
following rain events, however, suggesting that a zero
ET assumption is also empirically inaccurate. Using
single-factor analysis of variance (ANOVA), we compared
ET estimates derived from the PET-ETG relationship and
estimates that assume a zero ET value for rainy days to
ascertain the potential effects of such uncertainties.
RESULTS

Water levels

Because of water extraction by ET, the potential existed for
water to flow toward the swale, as evidenced by the time lag
between ET and groundwater peaks (Figure 4). Although
precipitation events (Figure 5A) offset evapotranspirative
losses, water supply to the swales was not sufficient to offset
ET demand, resulting in water-level decline over the summer
(Figure 5B). The additive effect of groundwater and
precipitation, however, helped tomaintain water levels within
the rooting zone, as evidenced by diurnal fluctuations in the
water table even when at its lowest elevation. In 2006, rain
events periodically raised the water table. In 2007, standing
water levels were maintained until mid-summer by
multiple small rain events and colder temperatures; the long
period without a major rain event led to a significant
drawdown in July and August of 2007 (Figure 5B). Whereas
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September and October rain in 2006 resulted in water-level
recovery to land surface, no such recovery occurred in 2007
prior to the end of the study.
Stage responses of the water table to precipitation varied

depending on whether the water table was AGS or BGS.
Precipitation events (Figure 5A) resulted in a rapid rise in
BGSwater levels but had a muted effect when standing water
was present (Figure 5B). For example, the ratio of water-table
rise to precipitation (1/Sy) during flooded conditions in Swale
28 was 3.8 compared with 8.1 when the water table was
below ground. The composite specific yield accounted for
the differing response of the water table during flooded and
non-flooded conditions. Considering the potential for a high
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degree of variability in ET that exists inwetland systems, ETG
corresponded favourably with PETPM when applied to AGS
and BGS water levels simultaneously (Figures 6 and 7).

Specific yield

The composite specific yield methodology used to provide an
estimate under flooded conditions compared well with
observed specific yield values (Figure 8). The modelled trend
matched the observed slope and slightly underestimated the
intercept. At greater water depths, the specific yield of
standing water (Syw= 1.0) was weighted higher than the
specific yield of soil and sediment (Sys), resulting in a greater
composite specific yield (Syc).
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Evapotranspiration

Of the 131 days per year of the study, the WLF method was
applicable to an average of 24 (standard deviation, SD=4.4)
days in 2006 and 40 (SD=4.9) days in 2007, leading to a
potentially more robust relationship between ETG and PET in
2007. ETC hourly rates peaked near the end of July and
beginning of August for most swales (e.g. Figure 5D).
Comparable with previously published wetland ET values
(Table II), the average daily rates over the 2006 growing
season (June 3 to October 11) ranged from 4.0mmd�1

(SD=1.1) in Swale 8 to 6.6mmd�1 (SD=1.9) in Swale 73.
The 2007 growing season showed average daily rates ranging
from 4.1mmd�1 (SD=1.4) in Swale 26 to 6.5mmd�1

(SD= 1.5) in Swale 38. The highest mean daily rates
generally were observed in July of 2006 and June of 2007.
Estimated ET values (ETG) approximated the PETPM

calculations in magnitude (Figure 7), considering that a 1 : 1
relationship is not expected. Predicted ET values (e.g. ETPM)
also showed good correspondence with empirically derived
ETG (Figure 6). A power function was used because it
Published 2013. This article is a U.S. Government work and is in the public
minimized the RMSE (mmh�1) and described the data trend
more realistically than a linear function (Figure 7).

When testing the potential effect of having a barometric
pressure sensor above ground, and therefore subject to thermal
effects, for the first month of the study (ordinal dates 154–183
in 2006), we found no significant difference between
the monthly mean ETG values in June 2006 and June 2007
(2006 mean = �6.45 mm d�1; 2007 mean = �6.59;
ANOVA: F(1,28) = 0.13, p = 0.72), suggesting that the
thermal effects were minimal.

The two methods of estimating ET on days with rain
included: (1) using our PET–ETG relationship and (2)
assigning a zero ET value. Of the 133 days of our study in
each year, rain was recorded on 48 days in 2006 and 43
days in 2007. The majority of rain events were relatively
short; events lasted for less than 4 h on 77% and 79% of
those days in 2006 and 2007, respectively. On average,
assigning a zero ET value on rainy days resulted in
a significant 30% reduction in ET with respect to the
PET–ETG relationship method (ANOVA; 2006: F(1,28) = 66.8,
domain in the USA. Ecohydrol. 7, 378–390 (2014)
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Published 2013. This article is a U.S. Government work and is in the publi
p< 0.001; 2007: F(1,28) = 61.3, p< 0.001). Whereas using
the PET–ETG relationship, mean ET rates across all sites
ranged from 3.97mmd�1 to 6.15mmd�1, using a zero ET
assumption on rainy days resulted in ET estimates ranging
from 2.73mmd�1 to 4.39mmd�1.

Sources of water

Mean daily Grec rates in 2006 ranged from 2.5mmd�1

(SD=1.2) in Swale 26 to 4.1 mmd�1 (SD=1.5) in Swale 73
and from 2.6mmd�1 (SD=1.2) to 4.4mmd�1 (SD=2.2) for
the same swales in 2007. Reversing head gradients in the
groundwater system resulted in flow reversals at the edge of
the swale over the course of the day. Loss by ETwas followed
by a gain in groundwater discharge, as evidenced by the lag in
peak ETG and groundwater inflow (Grec) rates in Figure 4.

The linear regression used to predict groundwater (Grec)
from ET (ETG) performed well. Regressions for all swales
were significant (a = 0.05), and R2 values ranged from 0.78
to 0.97, with a mean of 0.91 (SD= 0.04) across all swales
in 2006 and 2007, suggesting that ET is a robust predictor
of shallow groundwater flux at this site.

Shallow groundwater offset 59–73% of the water loss
due to ET in 2006 and 59–75% in 2007, with the greater
percentage offsets occurring when ET rates were low in the
spring and fall (Figure 5). Precipitation accounted for 35–59%
of ET in 2006 but only 24–42% in 2007. The sources of
water calculated explicitly in the water budget (precipitation
and groundwater inflow) were sufficient to account for loss
due to ET, but water levels still declined over the growing
season (Figure 5B), likely due to deep percolation loss
(downward groundwater flux out of the rooting zone)
following rainstorms.
DISCUSSION

The modifications used in this study to extend a sub-daily
method applicable in semi-arid riparian wetlands (Loheide,
2008) to a general wetland scenario (e.g. flow-through
wetlands in humid climates) afforded reasonable estimates of
ET and groundwater-flow rates. Averaging 5.1mmd�1

across all swales over the 2006 and 2007 growing seasons
(June 3–October 11), mean daily ET was within the range
previously reported at other wetland sites (Table II).

Calculation of PET has been utilized widely in wetland
hydrologic studies because of the relatively simple weather-
station data requirements and continuous data record.
Alternatively, WLFs can be useful for determining ET in
that they reflect changes in plant life stage, community
composition and antecedent moisture conditions, which PET
does not (Lautz, 2008). Furthermore, WLF methods are not
subject to variations in canopy structure, and estimates of
groundwater-flow rates also can be extracted from the same
analysis of WLFs (Gerla, 1992; Loheide et al., 2005; Butler
et al., 2007; Hill and Neary, 2007; Gribovszki et al., 2008;
Loheide, 2008). Application of WLF methods, however, has
been limited thus far to riparian wetlands with subterranean
water levels, with few exceptions (e.g. Hill and Neary, 2007).
Despite the acknowledgment that WLF methods are
c domain in the USA. Ecohydrol. 7, 378–390 (2014)
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underutilized inwetland applications (e.g. Butler et al., 2007),
little improvement has beenmade to this end, perhaps because
application to a general wetland scenario, to our knowledge,
has never before been presented. Combining the two ET
estimation methods is particularly useful for scaling PET
estimates to WLF rates and estimating ET for days when
WLF methods cannot be applied. Because ET varies greatly
with atmospheric and soil conditions, combining the two
methods affords a more realistic representation of AET rates
than would averaging WLF values and applying the average
to the entire growing season.
Previous application of WLF methods has occurred

primarily in semi-arid riparian wetlands because inundation
and rain events, both rare in such wetlands, pose an obstacle
for using a WLF approach. The methodology presented here
can be applied to a variety of wetland types in humid climates
as well. The main requirements are that the wetland be
connected to the groundwater system and that diurnal
fluctuations in the water table are apparent in the hydrograph.
As long as it can be assumed that the well in which water
levels are measured is connected to the groundwater recovery
source, thismethod is applicable. Complex surficial geologies
that contain confining layers may disrupt this connection, and
care should be taken to understand the hydrogeologic system
when undertaking WLF studies. These techniques can be
used in fens and other flow-through wetland systems but
would not be appropriate for bogs and perched wetlands.
The method for calculating specific yield presented here

allows for application to flooded conditions, thereby extend-
ing the utility of the WLF approach to a wider variety of
wetlands with varying hydroperiods. Using this approach, we
can use WLF methods for wetlands that experience periodic
or sustained flooding, such as cattail marshes and wet
meadows, in addition to forested and riparian wetlands.When
water levels are below ground, the composite specific yield
(Syc) in Equation (3) becomes equivalent to the soil specific
yield (Sys), and a readily available specific yield (sensu
Meyboom, 1967) can be used, thus maintaining the method’s
applicability in non-flooded conditions.
When applying this approach to humid climates, the

rain dilemma – how to determine ET during prolonged
precipitation events – becomes a particular challenge for
ecohydrological studies involving plants. Understandably
so, most studies omit calculations on such days altogether (e.
g. Wilson et al., 2001; Mould et al., 2010). Available
methods for calculating ET generate greater uncertainty on
days when precipitation occurs. Micrometerological sensors
(e.g. hygrometers, radiometers) tend to experience large
errors when impacted by rain. Likewise, WLF methods are
problematic because of the rain-induced rapid rise in water-
table elevation and subsequent percolation loss that
disconnects the measurement well from the groundwater
recovery source. Assuming that no ET occurs on days with
rain, however, is also empirically inaccurate, as diurnal
losses are apparent in the hydrograph following rain events.
Furthermore, plants tend to open their stomata under humid
conditions and continue to photosynthesize and, therefore,
transpire. In fact, as vapour pressure difference between
ambient air and the leaf decreases, stomatal conductance
Published 2013. This article is a U.S. Government work and is in the public
increases (Avissar et al., 1985). Even so, optimal transpir-
ation rates result from the right combination of soil water
conditions, solar radiation, air temperature and water stress
in addition to humidity (Lhomme, 2001). The overall effect
of these conditions results in a decrease in ET rates on rainy
days, primarily due to increased cloud cover and decreased
temperatures. Because of these complicating factors, using
a relationship between PET and ETG that combines
information from two estimation techniques may provide a
robust estimate, even on rainy days. When rain events last
for a substantial portion of the day, as may be the case in
subtropical and tropical climates, a zero ET assumption may
be the best option. On the other hand, if a short rain event
occurs, which was common in this study, the PET–ETG

relationship may be more appropriate. Therefore, it is
important to take into account the manner in which climate
affects precipitation frequency and duration at the site of
interest, and choose the appropriate rainy day ET estimate
accordingly.

In our study, the ET values derived by the PET–ETG

relationship were 30% higher than estimates when zero ET
was assumed for days with rain. Both methods produce
results that are comparable with previously reported ET
estimates (Table II). The resulting values of these
approaches represent end members in the range of ET
values; the former method may overestimate the AET,
whereas the latter is an underestimate. Overall, our ETG

corresponded favourably with calculated PET rates. ETG

was sometimes greater and sometimes less than PET.
Although we recognize that the amount of water transferred
to the atmosphere by transpiration cannot exceed PET
determined by atmospheric capacity for absorbing water
vapour, both methods represent ET estimates and vary
accordingly. Because WLF methods take into account
additional factors regarding the plant community compos-
ition and canopy characteristics (Lautz, 2008), it is likely
that AET is, indeed, higher when conditions allow than PET
calculations would suggest. For example, on particularly
sunny days when plants had ample water supply, we
sometimes observed ETG values that were greater than PET
(e.g. Figure 6; 7/29 to 8/2). The lack of exact congruency
between ETG and PET is commonly encountered in such
studies (e.g. Lott and Hunt, 2001; Andersen et al., 2005;
Mould et al., 2010). Using the WLF and PET methods in
conjunction can produce a more robust estimate that takes
into account physical characteristics of the plant community
and antecedent soil moisture as well as the micrometerologic
conditions.

Daily estimates of ET are needed for water-budget
analyses, water-resources management and climate-change
predictions. Because groundwater inflow rates vary over
the course of a day (Troxell, 1936; Gribovszki et al., 2008;
Loheide, 2008), better estimates of ET can be obtained by
WLF methods that calculate ET and groundwater inflow
rates on a sub-daily, rather than daily, time step
(Gribovszki et al., 2008; Loheide, 2008). If such a degree
of accuracy is not required, however, the modifications
presented here can be applied to the daily White (1932)
method as well. Nonetheless, understanding how plants
domain in the USA. Ecohydrol. 7, 378–390 (2014)
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interact with hydrologic flow on a sub-daily basis may
help water-resource managers predict the effects of
groundwater withdrawal on riparian, coastal and other
wetland ecosystems as well. A more thorough picture of
water demands in wetland ecosystems across more
climate zones also will enable water-resource and wetland
managers to adapt to global climate change more
effectively.
Uncertainty in the method is associated primarily with

its sensitivity to specific yield (Sy), which is needed to
adjust the ET and groundwater estimates from bulk
aquifer volume to water volume (Meyboom, 1967;
Nachabe, 2002; Loheide et al., 2005). For example, a
10% reduction in Sy would produce an average change in
ETG of 1.66mmd�1 over the growing season for Swale
28. Fortuitously, because the wells were developed in
sand, classically defined Sy (saturation water content
minus residual water content) closely approximates
readily available Sy (water released over the period of a
diurnal cycle) (Loheide et al., 2005). If this were not the
case, readily available Sy dependent on sediment texture
and water-table depth would need to be determined
(Loheide et al., 2005).
Using the thickness of sediments (Ds) and water depth

(Dw) to weight the soil and standing water components of
specific yield provided a reasonable estimate for the
composite specific yield when water levels were above
ground, as shown in Figure 8. If anything, the method
appears to underestimate Sy in that the modelled trend of the
composite specific yield (Syc) against water depth matches
the slope but underestimates the intercept in comparison
with the observed trend. The differences we observed
between the AGS and BGS data sets were minimal, but
errors may have been introduced when combining ET rate
and groundwater-flux calculations for flooded and non-
flooded conditions. For example, our assumption of a
rectangular cross-sectional geometry with a much larger
width than depth (Figure 2A) may have led to underestima-
tion of ET. Because the water-level recorders were located
on the lakeward side of each swale (position 1 in Figure 2),
the portion of the water column representing standing water
(Syw = 1.0) would be less than the bulk of the wetland if a
more conic geometry was the case, as argued by Hill and
Neary (2007) (Figure 2B). Other configurations (Figure 2C,
Figure 2D), however, could lead to overestimation of Syc
and, therefore, ET. While some of the wetlands tended
toward these geometries, ET rates for days whenwater levels
were BGSwere generally higher than for flooded conditions,
suggesting that gross overestimation did not occur
(Figure 5D).
Care must be taken to ensure that ET by this method is

not estimated for several days following rain events until
the water table has re-equilibrated with the recovery source.
Fortunately, days when ET calculation may include
percolation are readily evident from the hydrograph
(Figure 5B) as an exaggerated decline in the water table
following a rainstorm and are easily removed from the data
set. Likewise, over-smoothing the water-level data leads to
overestimation of ET and groundwater fluxes. Minimal
Published 2013. This article is a U.S. Government work and is in the publi
smoothing should be applied. Finally, when a barometric
pressure transducer is used, it must be placed in a dry well
BGS so that it experiences similar temperatures as the
submersed pressure transducer. Otherwise, gross overesti-
mation of ET can occur (McLaughlin and Cohen, 2011;
Cuevas et al., 2010). Although the barometric pressure
transducer was in a well AGS for the first month of our
study, the comparison of the resulting ET estimates to the
subsequent year suggested that minimal overestimate
occurred, likely because the temperature fluctuations at
this northern latitude were not severe early in the year.
CONCLUSIONS

By extending the WLF method of estimating ET and
shallow groundwater-flow rates to a general wetland
scenario, we captured rates across two growing seasons
in a highly variable Great Lakes coastal wetland system.
Seasonally flooded conditions and periodic rain events
meant that plants were rarely, if ever, water-limited and
continued to transpire throughout the growing season.
Deeper rooted trees on the ridges (e.g. birch, maple) also
used groundwater and no doubt contributed to ET losses.
More studies of diverse wetland types that span the
growing season and take into account changes in plant
water requirements are needed to capture the full range of
ET losses. The generalized method presented here allows
for calculation of ET and groundwater flow over a greater
range of wetland conditions than previous adaptations of
the WLF approach, thereby providing the opportunity for
incorporating WLF methods over a wider array of
ecohydrologic studies. Even in semi-arid riparian wetlands
where WLF methods traditionally have been applied, this
methodology may provide more accurate growing-season
ET estimates. By providing a means for estimating two
major components of the wetland water balance, this
methodology could be adapted relatively easily by wetland
resource managers operating under a wide range of climatic
conditions.
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