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Optimization methods have always played a key role in the development of statistical
methodology, but have become of critical importance for modern methods to analyse large
size high-dimensional data. Lange, Choi and Zhua are to be commended for providing a
comprehensive overview of optimization methods widely used in statistics. The paper dis-
cusses classical unconstrained optimization algorithms (steepest descent and variants), the
majorization—maximisation framework that has proved very useful in devising novel algorithms
for a variety of statistical problems, and also provides a flavour of constrained optimiza-
tion problems arising in high-dimensional statistics (e.g. regularisation, matrix completion,
etc.). The topics discussed and their accompanying examples focus on important classes of
algorithms that have helped statisticians develop and solve complex models.

In this note, we focus on a class of algorithms suitable for high-dimensional constrained
optimization problems. The class of interest is that of proximal algorithms, that are very
generally applicable in constrained non-smooth optimization, but are in particular very well
suited to recent statistical techniques developed for the analysis of high-dimensional data Bach
et al. (2011), Lee et al. (2010), & Ravikumar ef al. (2010). In our discussion, we make
connections to a number of topics discussed in Lange, Choi and Zhua, including connec-
tions to majorization—maximisation and classical gradient descent algorithms and acceleration
schemes.

1 Proximal Algorithms

We start by providing some definitions and then discuss special cases arising in high-
dimensional statistics.

Let f : R" — R U {400} be a closed proper convex function; that is, its epigraph is a
non-empty closed convex set. The proximal operator of f is defined as

1
prox ¢ (u) = argmin, (f(x) + ﬁ||x — u||§)) , x,u€R? (1)

where || - ||3 denotes the usual Euclidean norm, and A > 0 is a parameter that controls the
degree to which the proximal operator maps point closer to the minimum of f. As shown in
Boyd & Vandenberghe (2004), the function minimised is strongly convex and not everywhere
infinite and hence admits a unique minimiser. Note that the definition implies that prox s (u) is
a point that approximately minimises f, but remains close to u.

In general, proximal mapping requires solving the minimisation problem posited in (1), but
there are instances where the proximal operator admits an explicit expression.
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(1) f(x) =0, then prox s (u) = u.

(2) f(x) = Ic(x) where I¢ denotes the indicator function of a convex set C; then,
prox s (u) = Pc (u) corresponds to the projection Pc on C.
(3) f(x) = ¥llx||1, where || - ||; denotes the £; norm, then the i-th coordinate of prox / (u)

is given by: (i) prox s (u); = 0if [u;| < ¥; (i) prox s (u); = u; — ¥ ifu; > ¥; and (iii)
prox r(u); = u; + ¢ ifu; < —. It can be seen that the proximal mapping corresponds to
a soft-thresholding operation.

A proximal minimisation algorithm is defined at the k-th iteration step by
Xk = prox s (xk) .

As presented in Bauschke & Combettes (2011), if f has a minimum, then x¥ will converge
to the set of minimisers of f and f(x*) to its optimal value. Similarly to steepest descent
algorithms, convergence is guaranteed for values of the parameter A that satisfy A¥ > 0 and
Yoey A= o0,

This basic algorithm has not found many applications but is instructive from a theoretical
point of view. One important application though is on solving the quadratic function

1
f(x) = Ex/Ax—b/x, AeR™ x belR"

with A > 0 (positive semidefinite). The proximal mapping can be written down explicitly as

1\ 1
=[A+ =1 b+ -uj,
prox 7 (u) ( +)L ) ( —I-Au)
which gives rise to the update of Golub & Wilkinson (1996)

1 \"! 1
k+1: A —7 _k
X ( +A) (b+/\x).

The power of proximal mappings is revealed in the following setting.

2 Proximal Gradient Method

Consider the following optimization problem:
min £(x) + g(x), 2)

where f : R" — Rand g : R — R U {400} are closed proper convex functions, and f
is differentiable. The function g can be used to encode constraints on x as discussed in the
‘Augmented Lagrangians’ section of Lange, Choi and Zhua.

Then, the proximal gradient method is given by

Xk = prox, (xk — Aka(xk)) , 3)

where A¥ > 0 denotes the step size. If V f(x) is Lipschitz continuous with constant M, then
this algorithm converges in O(1/k) steps, for fixed step size AX = A € (0,1/M). If M is
unknown, then various line search strategies (akin to those used in gradient descent methods)
can be employed.
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Note that using the special form of the proximal operator, it can be seen that when g = 0, this
algorithm reduces to the standard gradient descent one, when g = ¥||x||; (a lasso penalty),
it leads to soft-thresholding and for g = I, it reduces to the projected gradient method in
Bertsekas (1999).

In Beck & Tebouille (2012), the proximal gradient algorithm is interpreted as a majorization—
minimisation algorithm. Specifically, consider the upper bound on f(x) given by

0:(v.) = fO) + Y 10Y =3+ 5-llv =yl A >0,

For fixed A, Q(x, y) is convex and satisfies 0, (x,x) = f(x) and is an upper bound on f
when V f is Lipschitz continuous with constant M and A € (0, 1/ M]. Then, the algorithm that
uses updates of the form

xk+l

= argmin, Q0 (x, xk)

is a majorization-minimisation one. Analogously, for the function f(x) + g(x), we can use
0;,(x,y) = 0;(x,y) + g(x), and some algebra shows that the majorization—minimisation-
based update

Xk = argminxQ,x (x,xk)

is equivalent to (3).

3 Accelerated Proximal Gradient Method

Nesterov (Nesterov, 1983) introduced a sequence of updates that accelerate the convergence
rate from linear (O(1/k)) to quadratic (O(1/k?)) in convex programming problems. The
sequence extrapolates between previous updates of the algorithm. Specifically, for the proximal
gradient method, it takes the form

yRHL = )k 4k (xk _ xk—l) xR = prox, (yk+1 ARV f (yk+1>> ’ (4)

where ¥ € [0, 1) is an extrapolation parameter and A¥ the usual step size. A simple choice for
the extrapolation parameter is w* = k/(k + 3).

Then, it can be established that for V f Lipschitz continuous with constant M, the
acceleration scheme guarantees convergence in (O(1/k?) steps with a fixed step size
Ak = X € (0,1/M]. As before, if M is unknown, the step sizes can be determined through a
line search.

4 Stochastic Proximal Gradient Algorithms

An area where we believe more research is needed to specifically suit the needs of statis-
tics is stochastic optimization. This corresponds for example to (2), where the function f is
given as an intractable integral of the form f(x) = [ F(x,{)II(d¢). This is a well-known
problem in stochastic programming and online learning and has generated various stochas-
tic extensions of the algorithms presented earlier (Nemirovski ef al., 2009; Xiao, 2010; Duchi
et al., 2012; Lan, 2012). But in statistics, this problem takes a more challenging form.
Latent variables abound in statistics and lead to log-likelihood functions and their derivatives
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that are intractable: f(x) = log [ F(x,{)T1(d¢), Vf(x) = [ Vi{log F(x, §)}H (d¢), where
1 «(dl) o« F(x,0)I1(d{). The important point here is that the distribution I, is typically
very difficult to simulate, and unlike most examples in online learning stochastic optimization,
IT, depends on x. Nevertheless, one can easily adapt the proximal gradient algorithm and its
accelerated version presented earlier, by replacing V f(x) by a Monte Carlo approximation
v f(x) obtained by simulating from I, (possibly using Markov chain Monte Carlo methods).
The approximation can be obtained with a fixed number of Monte Carlo steps, or with an
increasing number of Monte Carlo steps.

For illustration purposes, consider the following random effects logistic regression example.
We have n statistical units with repeated binary responses {y;;, 1 <t < T;}, yir € {0, 1}. For
the covariate matrix Z € R"*?, with i -th row denoted by z;, we assume that

eziﬂ-i-ui

yit|ui"’Ber(m)y 1<i<n, 12t=<T;,

where u; Hd N (0,0?). The log-likelihood of B is intractable and requires integrating out the
random effect u. We estimate 8 by an £;-penalised likelihood approach; thus, g(8) = ¥ ||8]:.

We implemented the proximal gradient algorithm, and its accelerated version by replacing in
(3)and (4), V f(x¥) by V f(x¥) obtained using a Markov chain Monte Carlo scheme. Figure 1
depicts the relative error || 8x — B« ||/ || B«ll, as a function of the iterations k for both algorithms,
where B, denotes the true value of the parameter vector.

This simulation example suggests that stochastic versions of the proximal gradient algo-
rithm and its accelerated versions can be designed to deal with high-dimensional statistical
models with intractable log-likelihood functions. However, more work is required to gain a
clear and deep understanding of the conditions needed so that these extensions work and exhibit
convergence properties analogous to their deterministic counterparts.

& — FixNoise
-=-- Decreasing Noe
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Relative error
1
1
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Figure 1. Relative errors for stochastic proximal gradient algorithm for a random effects logistic model with p = 100,
T = 10 and k = 200.
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5 Alternating Direction Method of Multipliers

In the proximal gradient algorithm, the function f was assumed to be smooth. However, the
method can be adapted to handle the following variant of the minimisation problem:

min (x) + g(x).

where f,g : R — R U {+o0o} are closed proper convex functions, and both f, g can be
non-differentiable. Then, the alternating direction method of multipliers employs the following
updates:

Xk = proxf(zk —uky, ZFH = prox, (xk+1 + uk), uk Tl = b g kL R

It can be seen that this method handles the two functions in the objective function completely
separately through their proximal operators. It is most useful when the proximal operators of f
and g can be easily computed, but that of the objective function f + g is not. The convergence
theory for this method is discussed in detail in Boyd et al. (2011).
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