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Summary

1. Biological diversity has long been used to measure ecological health. While evidence exists

from many ecosystems that declines in host biodiversity may lead to greater risk of disease

emergence, the role of pathogen diversity in the emergence process remains poorly under-

stood. Particularly, because a more diverse pool of pathogen types provides more ways in

which evolutionary innovations may arise, we suggest that host–pathogen systems with high

pathogen diversity are more prone to disease emergence than systems with relatively homoge-

neous pathogen communities. We call this prediction the diversity-emergence hypothesis.

2. To show how this hypothesis could be tested, we studied a system comprised of North Amer-

ican shorebirds and their associated low-pathogenicity avian influenza (LPAI) viruses. These

viruses are important as a potential source of genetic innovations in influenza. A theoretical con-

tribution of this study is an expression predicting the rate of viral subtype reassortment to be

proportional to both prevalence and Simpson’s Index, a formula that has been used traditionally to

quantify biodiversity. We then estimated prevalence and subtype diversity in host species at Del-

aware Bay, a North American AIV hotspot, and used our model to extrapolate from these data.

3. We estimated that 4 to 39 virus subtypes circulated at Delaware Bay each year between

2000 and 2008, and that surveillance coverage (percentage of co-circulating subtypes col-

lected) at Delaware Bay is only about 63�0%. Simpson’s Index in the same period varied

more than fourfold from 0�22 to 0�93. These measurements together with the model provide

an indirect, model-based estimate of the reassortment rate. A proper test of the diversity-

emergence hypothesis would require these results to be joined to independent and reliable

estimates of reassortment, perhaps obtained through molecular surveillance.

4. These results suggest both that subtype diversity (and therefore reassortment) varies from

year to year and that several subtypes contributing to reassortment are going undetected. The

similarity between these results and more detailed studies of one host, ruddy turnstone

(Arenaria interpres), further suggests that this species may be the primary host for influenza

reassortment at Delaware Bay.

5. Biological diversity has long been quantified using Simpson’s Index. Our model links this

formula to a mechanistic account of reassortment in multipathogen systems in the form of

subtype diversity at Delaware Bay, USA. As a theory of how pathogen diversity may influ-

ence the evolution of novel pathogens, this work is a contribution to the larger project of

understanding the connections between biodiversity and disease.
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Introduction

The role of biological diversity in the emergence and

transmission of infectious diseases is poorly understood

(Keesing et al. 2010). Some effects of biological diversity

at the level of host species include demographic interfer-

ence (Rohani et al. 1998, 2003), reciprocal manipulation

of the host immune system (Corbett et al. 2002) and the

dilution effect, whereby incompetent hosts diminish the

collective transmission of a pathogen within a mixed com-

munity of host species (Schmidt & Ostfeld 2001; Keesing,

Holt & Ostfeld 2006). Within host species, genetic diver-

sity plays a role both in the effectiveness of host (Hornef

et al. 2002) and vector (Rottshaefer et al. 2011) immune

defences and in the evolution of pathogens with respect to

pathogenicity (Baba et al. 2008), transmissibility (Badrane

& Tordo 2001) or immune escape (Alcami & Koszinowski

2000). In contrast, while parasite diversity has recently

been shown to play a role in emergence and transmission

of infectious diseases through co-infection and cross-reac-

tive immunity (Johnson & Hoverman 2012), the role of

pathogen diversity in infectious disease emergence and

transmission at the level of genetic variability remains

poorly understood in natural systems.

Avian influenza virus (AIV) is a model for understanding

the role of genetic variability in pathogen evolution. The

influenza A virus is composed of eight gene segments: hae-

magglutinin (HA), neuraminidase (NA), nucleoprotein

(NP), matrix proteins (M), non-structural proteins (NS)

and RNA polymerases (PA, PB1 and PB2; Hutchinson

et al. 2010), but it is HA and NA, which are found in the

surface envelope of the influenza virion, that are particu-

larly important as viral antigens responsible for host cell

infiltration and escape (Wagner, Matrosovich & Klenk

2002). Because these proteins routinely interact with host

cell receptors, the HA and NA genes play key roles in influ-

enza evolution (Kilbourne, Johanssen & Grajower 1990). A

total of 17 HA subtypes and ten NA subtypes have been

identified based on binding affinity for a total of 170 possi-

ble combinations (Dugan et al. 2008; Tong et al. 2012).

This gene pool forms the basis for any future pandemic or

domestic animal strains (Taubenberger & Kash 2010).

While one HA type and one NA type are currently con-

fined to bats (HA17 and N10; Tong et al. 2012), the main

reservoir of the remaining gene pool is a large complex of

low-pathogenicity avian influenza (LPAI) viruses that are

naturally widespread and continuously circulating in wild

waterfowl, gulls and shorebirds. Because HA/NA sub-

types differentially infect various vertebrate host species

(e.g. birds, swine, horses, humans) with some overlapping

host ranges, various scenarios for the emergence of a pan-

demic strain can be constructed from the possible

sequences of infection and co-infection that might allow a

stable HA subtype to reassort with viruses containing

genes that confer a propensity to infect and replicate

within humans. Understanding the ecological conditions

under which reassortment occurs is therefore crucial to

understanding the circumstances under which emergence

of a pandemic strain is most likely. Reassortment within

low-pathogenicity avian influenza viruses provides an

ideal model for such a study. To date, 103 of the 144 pos-

sible subtype combinations have been detected in North

America (Table S1) and are maintained in waterfowl,

gulls and shorebirds with little or no morbidity or mortal-

ity. While extensive research exists on LPAI, much of it is

in direct relation to the ecology or immunology of indi-

vidual subtypes (e.g. Woolcock, Suarez & Kuney 2003;

Capua et al. 2004; Swayne & Slemons 2008). The purpose

of our study was to investigate the role that subtype

diversity plays in reassortment. We first developed a

model to relate subtype diversity and prevalence to the

rate at which co-infections accumulate in a population of

hosts. We then estimated subtype diversity and prevalence

at Delaware Bay, a North American ‘hotspot’ for avian

influenza transmission (Krauss et al. 2010). These results

provide the first theoretical basis for understanding how

the community ecology of virus antigenic subtypes relates

to pathogen evolution and an application of this theory

to understanding evolutionary potential at a key site.

Model

In this section, we derive a model for the rate at which

reassorted subtypes accumulate in a population, which is

specified up to a coefficient of proportionality concerning

the probability that the two different subtypes in a mixed

infection result in one or more reassorted combinations.

This is a ‘strategic’ model in the sense that it aims to

develop a set of concepts under the most idealized circum-

stances, neglecting such details as seasonal breeding,

migration, social aggregation and the age or immunologi-

cal structure of the host population. As such, it is appro-

priate only as an approximation over a relatively short

period of time (i.e. less than one breeding season). We

believe that its value is its generality, and that the key

conclusions (role of prevalence and diversity in reassort-

ment) are robust in the sense that similar conclusions

must apply to a very wide range of more detailed models.

We begin by considering co-infection in a system of

co-circulating pathogens, where co-infection is the simul-

taneous infection of a single host by two different patho-

gens. We assume that co-infection of a single host cell by

two different pathogens is proportional to the probability

of host co-infection. We break the problem into two

pieces: the rate at which co-infection occurs and the prob-

ability that a co-infection will be of two different subtypes

(i.e. a second infection can consist of a completely differ-

ent HA+NA combination, a virus different only with

respect to HA type, or a virus different only with respect

to NA type). That is, the rate at which reassorted sub-

types occur is assumed to be proportional to the product

of: (i) infection rate, (ii) the probability that an infection

becomes a co-infection, and (iii) the probability that the

co-infecting virus is of a different antigenic type (all
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assumed to be independent via mixing in the environ-

ment).

co-infection rate

In what follows, we make minimally restrictive assump-

tions. For instance, we make no assumption about

whether infections are immunizing (SI vs. SIR dynamics)

and neglect age-dependent susceptibility to infection. In

general, then, the rate of co-infection is the rate at which

infected individuals at time t, I(t), become doubly

infected. First, we assume that each encounter of an infec-

tious dose of virus by a single host is an independent

event. The infection rate is therefore a Poisson process

with rate k(t) where k(t) is the conventionally defined

force-of-infection (Anderson & May 1991). Also, for a

given infection, we assume that the infectious period

(empirically, the shedding period) is distributed according

to the probability density function g(x). Then, the proba-

bility that a second infection is acquired before the first is

cleared is given by

PðcoinfectionÞ ¼
Z1

0

FðxÞgðxÞdx;

where F(x) is the cumulative distribution function of the

inter-event times of the infection process. If we make the

quasi-equilibrium assumption that k(t) = k may be taken

as fixed for the duration of an infection, then the time to

infection is exponentially distributed with distribution

function

FðxÞ ¼ 1� e�kx:

If we make the routine assumption that the infectious

period, g(x), is exponentially distributed with mean c�1,

we have

PðcoinfectionÞ ¼
Z1

0

ð1� e�kxÞce�cxdx ¼ k
kþ c

:

We note that according to this model P(co-infec-

tion) = 0�5 when the average time-to-infection and the

infectious period are equal (i.e. k�1 = c�1) and that when

k ranges over orders of magnitude, during outbreaks, the

behaviour is switch-like: at times where k < c, where c is

recovery rate, the probability of co-infection is negligible,

but where k > c the probability of co-infection is approxi-

mately one.

probabil ity that the second infection is of a
different type

The probability that the second infection is of a different

type than the first depends on the diversity of the pool

of potentially infecting strains. For concreteness, let zi(t)

be the prevalence of infections of subtype i at time t,

and

piðtÞ ¼ ziðtÞPn
i¼1

ziðtÞ

be the relative abundance of subtype i. Assuming that

there is an infinite source pool that changes only slowly

with respect to the course of an infection (i.e. that the

number of free virus particles is large so that sampling

with replacement is valid) and that infection events are

independent, the probability that two subsequent infec-

tions will be of type i is pi
2. Summing over n subtypes, we

have the total probability of infection with identical

subtype

D ¼
Xn
i¼1

p2i

This quantity was proposed by Simpson (1949) as a

measurement of diversity. From its complement, we

obtain the total probability of infection with a different

subtype

pðzÞ ¼ 1�D ¼ 1�
Xn
i¼1

p2i ;

which is widely used in ecology as an index of diversity.

reassortment rate

Combining these expressions, we have the rate of increase

in co-infected individuals, W, which depends on the num-

ber of susceptible hosts at time t, S(t),

dw

dt
¼ kðtÞSðtÞ kðtÞ

kðtÞ þ c
pðzÞ;

where we assume that the composition of infectious

strains z(t) = (z1(t), z2(t), z3(t),…) does not greatly affect

the force-of-infection k(t). Assuming that the rate at

which reassorted combinations occur is proportional to

the rate at which double infections arise, we draw the

following conclusions:

1 Regardless of prevalence, reassortment rate is propor-

tional to subtype diversity p(z).
2 If k(t) ≫ c, reassortment rate is proportional to: (i) the

force-of-infection k(t), and (ii) I 9 R0 = k(t)/c, where
R0 is the basic reproductive rate of an infection.

3 If k(t) � c, reassortment rate is proportional to k(t)2.

Assuming an ongoing epidemic (which further implies

that k(t) > >c), we ignore the effects of environmental

transmission, such as are considered for avian influenza

viruses in Rohani et al. (2009), and substitute k(t) = bSI,
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where b is the contact rate between individual hosts and

I represents disease prevalence, so that we have

dW

dt
� bSIpðzÞ:

Thus, in the special case that transmission is dominated

by density-dependent direct transmission, we see that

reassortment rate is proportional to both diversity and

prevalence.

Materials and methods

study system

Because subtype diversity is a precondition for reassortment, and

because our model shows that subtype diversity is proportional

to subtype reassortment, we sought next to estimate the diversity

of LPAI viruses in migratory shorebirds at Delaware Bay, USA,

from 2000 to 2008, a known hot spot for avian influenza. Dela-

ware Bay, located between the states of New Jersey and Delaware

on the east coast of North America (Fig. 1), is an important

stopover on the Atlantic Flyway during spring migration to

breeding grounds in the Arctic. During migrations, over 200 000

birds use Delaware Bay in a given day (Clark, Niles & Burger

1993). The six most abundant species are all shorebirds and gulls,

including ruddy turnstone (Arenaria interpres), red knot (Calidris

canutus), semipalmated sandpiper (Calidris pusilla), sanderling

(Calidris alba), herring gull (Larus smithsonianus) and laughing

gull (Leucophaeus atricilla; Delany & Scott 2006). Due to simulta-

neous use of this stopover site by a vast number of birds, Dela-

ware Bay is considered a hotspot for pathogen transmission both

within and among bird species (Krauss et al. 2010; Maxted et al.

2012; Brown et al. 2013). Our data set consisted of 9746

individual birds sampled from 24 locations within a 27 km radius

during peak spring migration over the 9 years of study (Maxted

et al. 2012). Data were collected each year from 2000 through

2008 between April 26 and June 4 as part of a long-term popula-

tion study and are representative of avian influenza subtypes

present in shorebirds at Delaware Bay [see Influenza Research

Database (www.fludb.org) for a list of all avian influenza

subtypes detected according to location and host species]. Birds

were captured with cannon nets and samples collected using

cloacal swabbing (Maxted et al. 2012). Of the 9746 samples, 439

(4�5%) were determined to be positive for AIV through virus

isolation in embryonating chicken eggs, followed by confirmation

with RT-PCR using primers targeting the matrix gene of AIV

(Fouchier et al. 2000; Stallknecht et al. 2012). Subtypes were

determined using traditional serological subtyping (haemaggluti-

nin and neuraminidase inhibition tests; National Veterinary

Services Laboratories, Ames, IA). The final data set included the

collection date and location (e.g. beach name), host species, infec-

tion status (positive or negative), and if positive, the subtype.

subtype diversity

The total number of co-circulating subtypes was estimated using

the abundance-based coverage estimator (ACE) of Chao & Lee

(1992) and Chao, Ma & Yang (1993) implemented in program

SPADE (available from: http://chao.stat.nthu.edu.tw/softwareCE.

html). ACE is a nonparametric richness estimator that estimates

the total number of types from the observed frequencies of ‘rare’

types. It takes a single tuning parameter (k), the cut-off such that

type i is considered rare if and only if the frequency of observa-

tions of type i in the sample is less than or equal to k. We fol-

lowed Chao and Lee in setting k = 10. Because ACE is a

nonparametric estimator, it makes minimal assumptions

concerning the relative frequency of different types and general-

izes on the principle found in both Good-Turing theory and the

Fig. 1. Map of Delaware Bay indicating

AIV sampling locations.
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earlier Chao1 estimator that the rare types contain virtually all

the information about the relative frequency of unobserved types.

By dividing the number of subtypes identified in each year by our

ACE estimate, we also obtained an estimate of surveillance cover-

age (fraction of circulating subtypes identified). We also estimated

subtype diversity (Simpson’s Index; Simpson 1949) using the

maximum likelihood estimator (MLE) of Magurran (1988).Our

final estimates were reported as 1-D, where D = MLE value.

Confidence intervals were calculated using nonparametric jack-

knife (Chao & Shen 2003). Subtype diversity was estimated both

for all host species combined and separately by host species.

Prevalence was calculated as the fraction of samples within a

pool from which influenza was isolated. Confidence intervals on

estimated prevalence were obtained from the likelihood function

for the binomial distribution.

Results

subtype diversity and prevalence within an
avian host community

Overall, we recorded about half of all subtypes (52 of 103)

ever detected in North America at Delaware Bay between

2000 and 2008, with a minimum (n = 3) in 2004 and a maxi-

mum (n = 19) in 2008 (Table 1, Fig. 2). The number of

subtypes estimated to co-circulate ranged from 4 (in 2005)

to 39 (in 2008; Fig. 2). For the years 2001 and 2005, the

Chao1 estimator was used in place of ACE. Chao1 is a

lower-bound nonparametric estimator that does well in

data containing numerous singletons (Chao 1984). Com-

bining these results, we estimate that coverage (percentage

of circulating subtypes collected) ranged from 31�8% in

2001 to 81�6% in 2005 with an average of 63�0% (Table 1).

Unsurprisingly, the number of isolates collected was corre-

lated with the number of individuals sampled (Spearman’s

rank-order correlation: q = 0�67, P = 0�039). There was

also evidence for an effect of sample size on the number of

species estimated using ACE (Spearman’s rank-order corre-

lation: q = 0�72, P = 0�02), but we did not find evidence for

an effect of sample size on the percentage coverage (Spear-

man’s rank-order correlation: q = �0�48, P = 0�17). Simp-

son’s Index ranged from 0�22 in 2006 to 0�89 in 2003 with

an average of 0�62 (Table 1). The variation among these

estimates across years suggests that subtype diversity is

based on subtype turnover in Delaware Bay, and means

that some years represent higher potential for reassortment

among LPAI subtypes.

Prevalence overall ranged from 0�5% to 10�6% among

host species with an average of 2�6% (Table 2); there was

no evidence for a trend in prevalence over time (Spear-

man’s rank-order correlation: q = 0�23, P = 0�55). When

prevalence was broken up by host species, ruddy turn-

stones exhibited the highest prevalence of LPAI over all

years (10�6%; CI: 9�7–11�6%), but again there was no evi-

dence for a trend in prevalence over time when ruddy

turnstones were compared to the remainder of the host

community (Spearman’s rank-order correlation: q = 0�4,
P = 0�29 and q = �0�43, P = 0�25 respectively, Fig. S1). T
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By contrast, prevalence in the next most infected species,

herring gull, was lower by a factor of c. 10, corresponding

to an infection odds ratio of c. 8. Prevalence in the

remaining species was similar (Table 2). These results sug-

gest that ruddy turnstone may play an important role in

the transmission of avian influenza viruses in shorebirds

as a major amplifying host.

subtype diversity and prevalence within a
ruddy turnstone population

Plots of subtype diversity by host over all years also show

that ruddy turnstone was the most permissive host species

(in the sense that ruddy turnstone harboured the greatest

range of subtypes), representing 50 of the 52 (96�1%)

subtypes collected during this period (Fig. S2). By con-

trast, the second-ranked species, red knot represented only

nine of 52 (17�3%) subtypes. These results, interpreted

through the assumptions of our model, suggest that ruddy

turnstones are most likely to be co-infected by multiple

subtypes and most likely to play a role in reassortment.

Taken together, these results suggest that ruddy turn-

stone is the most probable host for avian influenza virus

reassortment at Delaware Bay. We therefore next consid-

ered the diversity of subtypes circulating just within this

species. Restricting analysis to isolates collected only from

this species, abundance-based coverage estimates still indi-

cated that the number of subtypes actually circulating in

each year was greater than the number collected, despite

isolation of the greatest number of subtypes from this spe-

cies (Table 3, Fig. 2). However, on average we collected

92�3% of estimated co-circulating subtypes at Delaware

Bay from ruddy turnstones. As for all host species com-

bined, the estimated number of co-circulating subtypes

was greatest in 2008, although the numbers of isolates col-

lected in 2002 and 2003 were similar (Table 3, Fig. 2). As

with the analysis of all species, year by year levels of sub-

type number and diversity were considerably lower than

for the pooled sample, confirming the earlier impression

of high turnover. While the correlation between yearly

prevalence in the ruddy turnstone population and yearly

prevalence in the remainder of the host community was

Fig. 2. Barplot indicating the number of observed subtypes (i.e. subtypes collected) and number of subtypes missed at Delaware Bay for

each year and for all years combined for all species at Delaware Bay and for ruddy turnstones only. Estimated number of subtypes

(ACE) incorporates both observed subtypes and missed subtypes. Error bars indicate the 95% confidence intervals for ACE estimates.

Note that for 2001 and 2005, the Chao 1 estimate is used in place of the ACE estimate. Also note that for 2005, the number of missed

subtypes is 0 and the confidence intervals are (4�0, 4�07). These data suggest high variability in LPAI subtypes among years regardless of

whether the entire host community is sampled or just ruddy turnstones are sampled.

Table 2. Subtype prevalence of the six most abundant avian host

species at Delaware Bay. Numbers in parentheses indicate confi-

dence intervals for estimates

Species Prevalence, %

Ruddy turnstone (Arenaria interpres) 10�6 (9�7–11�6)
Sanderling (Calidris alba) 0�9 (0�5–1�7)
Red knot (Calidris canutus) 0�8 (0�5–1�2)
Semipalmated sandpiper (Calidris pusilla) 0�5 (0�2–1�4)
Herring gull (Larus smithsonianus) 1�4 (0�4–5�1)
Laughing gull (Leucophaeus atricilla) 1�2 (0�5–2�7)
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not significant (Fig. 3), the correlation between Simpson’s

Index in the ruddy turnstone population and Simpson’s

Index in the remainder of the host community was signifi-

cant (Fig. 4), suggesting that the ruddy turnstone is a

good indicator of influenza dynamics in the community

overall. Hall et al. (2012) found that the duration of

Fig. 3. Scatterplot of AIV prevalence in the host community at

Delaware Bay with ruddy turnstones excluded vs. AIV prevalence

in only ruddy turnstones at Delaware Bay reveals a correlation

(though not significant) between community prevalence and prev-

alence in ruddy turnstones.

Fig. 4. Scatterplot of Simpson’s Index for the host community at

Delaware Bay with ruddy turnstones excluded vs. Simpson’s

Index for only ruddy turnstones at Delaware Bay reveals a signif-

icant correlation between the two indices.
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shedding for ruddy turnstones to be between 2 and

8 days, which is comparable to other bird species (Lu &

Castro 2004; Brown et al. 2006; Brown, Stallknecht &

Swayne 2008; VanDalen et al. 2010; Maxted et al. 2012).

They also found that while ruddy turnstones arrive at

Delaware Bay with low levels of infection, prevalence in

ruddy turnstones increases during the stopover season

and decreases near the end (Maxted et al. 2012). All four

major migratory shorebird species (ruddy turnstone, red

knot, semipalmated sandpiper and sanderling) arrive at

and depart from Delaware Bay at approximately the same

time, and no other migratory species exhibits the increase

in prevalence seen in ruddy turnstones (Maxted et al.

2012). Together with the fact that ruddy turnstones are

more than eight times more likely to be infected than any

other species, this suggests that ruddy turnstones are a

driver, not just a barometer, of reassortment in this

system.

Discussion

In this study, we present a new model for the rate of

co-infection in a multipathogen disease system. Applied to

avian influenza, this model predicts that subtype reassort-

ment rate will be proportional to subtype diversity, as

quantified by Simpson’s Index. During periods of intense

transmission, when the force-of-infection is greater than

the recovery rate (often much greater than recovery rate),

the model predicts that reassortment rate will also be pro-

portional to the force-of-infection, R0, and prevalence.

Alternatively, when the force-of-infection is less than the

recovery rate (i.e. low-level transmission), the model pre-

dicts that reassortment rate will increase quadratically

with the force-of-infection.

The simplicity of our model, which is the source of its

generality and what enables the link between pathogen

diversity reassortment to be transparent, is also a limita-

tion. More detailed models might include seasonal

breeding, host migration, a mixture of direct and environ-

mental transmission and overlap in habitat use by the

multiple host species (Breban et al. 2009; Rohani et al.

2009; Brown et al. 2013). Additionally, environmental

changes, such as declines in the number of spawning

horseshoe crabs (Krauss et al. 2010) or phenological

asynchrony due to climate change (Brown & Rohani

2012) could radically alter the potential of this ecosystem

to serve as a site for reassortment. One final possible

extension of this theory would consider multiple hosts

and viral subtype combinations with host-dependent fit-

ness, so that circulating viruses are subject to evolution-

ary trade-offs. Such a model might provide more detailed

guidance about the potential paths by which novel human

strains might arise, but are currently almost certainly not

parameterizable given the well-known complexities of

influenza evolution. Such a synthesis of the ecological

and evolutionary dynamics of influenza remains an open

problem.

The central finding of this study is more modest: our

main theoretical result implies that, in addition to estimat-

ing prevalence, estimation of Simpson’s Index should be a

standard component of surveillance activities. As a dem-

onstration of application, we retrospectively analysed

prevalence and subtype diversity of avian influenza in

shorebirds at Delaware Bay, a key hotspot for avian influ-

enza transmission in North America. Although previous

studies have investigated total prevalence of AIVs at Del-

aware Bay (Maxted et al.2012), none has studied the rela-

tive prevalence of subtypes, used statistical estimators to

extrapolate to unsampled individuals, or quantified the

potential for reassortment. Results of our analysis showed

that not only prevalence but also diversity of avian influ-

enza viruses varies widely among years. Thus, the poten-

tial for reassortment of new subtype combinations in

avian hosts also varies greatly from year to year. This is

significant because reassortment is an important pathway

by which avian influenza genes enter human and domestic

animal influenza virus gene pools and because waterfowl

and shorebirds are the dominant wildlife hosts currently

harbouring the greatest genetic diversity of influenza

strains.

Predicting the identity of future reassortments requires

knowing the conditions of prevalence and diversity under

which reassortment is likely to occur, parameters which

we estimate here. However, it also requires knowing

which influenza subtypes are circulating within the avian

community and are therefore available for reassortment,

which involves surveillance and laboratory diagnosis. It is

widely understood that the number of species in a collec-

tion is necessarily less than or equal to the number of spe-

cies in the community from which the sample is drawn

and that, unless the sample is truly exhaustive, the raw

count of types is biased. In communities containing large

numbers of individuals and highly skewed distributions of

relative frequency, even a fairly large sample may contain

only a minority of the species present. Therefore, in addi-

tion to estimating prevalence and diversity, we also esti-

mated the number of co-circulating subtypes using the

abundance-based coverage estimator of Chao & Lee

(1992). This method uses statistical extrapolation to pro-

vide much less biased estimates of species diversity.

Indeed, our analysis finds that on average only 63% of

circulating subtypes are actually detected during surveil-

lance. While it is unlikely that one could detect all sub-

types circulating in a given year, undetected or rare

subtypes can increase in abundance and contribute to sub-

type reassortment and transmission in subsequent years.

We would therefore conclude that additional surveillance

effort is warranted. Using ecological techniques for esti-

mating the number of subtypes in a collection such as

those we have deployed here, it is possible to estimate in

advance the sample size that is expected to yield a collec-

tion of circulating isolates with arbitrary desired coverage.

We advocate that such statistical procedures be used in

the design of future surveillance studies.
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The model we have developed makes clear testable pre-

dictions about the functional relationships among

co-infection rate, prevalence and subtype diversity. It is not

presently possible to perform a direct test of this model,

however, due to the fact that detection of co-infections

must be by PCR or other molecular detection methods

from the raw sample to reliably detect and identify

co-infecting subtypes (Dugan et al. 2008; El Zowalaty

et al. 2011), a procedure which is used only occasionally

in influenza surveillance. A direct test might be performed

in other systems that have served as models for under-

standing the ecology of multipathogen systems (e.g. rabies

in bats; Streicker et al. 2010). We know of no other

system that exhibits the same degree of diversity and reas-

sortment potential as LPAI, however. The extent to which

subtype diversity (such as exists in the LPAI system at

Delaware Bay) is relevant to pathogen evolution and

emergence in other systems remains unknown. Develop-

ment of appropriate models for understanding the role

that biological diversity at multiple levels plays in the

emergence and transmission of infectious diseases there-

fore remains a high priority for research.
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Figure S1. Plots of prevalence through time for the host commu-

nity at Delaware Bay with Ruddy Turnstones excluded (solid

black line) and for Ruddy Turnstones only (dashed red line) at

Delaware Bay. There was no significant trend in prevalence in

either case, nor were there any significant trends in within-year

prevalence in either case.

Figure S2. Subtype diversity from 2000 through 2008 at Delaware

Bay separated by host species.

Table S1. Documented avian influenza subtypes in North

America and globally.
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