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Abstract The 3-D multifluid Block Adaptive Tree Solar-wind Roe Upwind Scheme (BATS-R-US) MHD
code (MF-MHD) is coupled with the 3-D Mars Thermospheric general circulation model (MTGCM). The ion
escape rate from the Martian upper atmosphere is investigated by using a one-way coupling approach, i.e.,
the MF-MHD model incorporates the effects of 3-D neutral atmosphere profiles from the MTGCM model.
The calculations are carried out for two cases with different solar cycle conditions. The calculated total
ion escape flux (the sum of three major ionospheric species, O+, O+

2 , and CO+
2 ) for solar cycle maximum

conditions (6.6 × 1024 s−1) is about 2.6 times larger than that of solar cycle minimum conditions (2.5 ×
1024 s−1). Our simulation results show good agreement with recent observations of 2–3 × 1024 s−1 (O+,
O+

2 , and CO+
2 ) measured near solar cycle minimum conditions by Mars Express. An extremely high solar

wind condition is also simulated which may mimic the condition of coronal mass ejections or corotating
interaction regions passing Mars. Simulation results show that it can lead to a significant value of the escape
flux as large as 4.3 × 1025 s−1.

1. Introduction

The Sun has a powerful influence on planetary atmospheres. This is especially true for planets lacking a
global intrinsic magnetic field, because the solar wind can interact directly with the upper atmosphere. Mars
has no dipole magnetic field; instead, it has a crustal magnetic field [Acuña et al., 1999], which makes the
solar wind interaction with Martian upper atmosphere very complicated and unique. The crustal field is
mainly concentrated in the Southern Hemisphere where it is highly localized. The strongest crustal sources
exist at latitudes poleward of 30◦S and at longitudes between 120◦W and 210◦W.

Recently, Lundin et al. [2008] found that the new energy settings introduced in May 2007 enabled the Mars
Express (MEX) Analyzer of Space Plasma and Energetic Atoms (ASPERA-3) ion mass analyzer to accurately
cover the low-energy range (10–100 eV) for all ions, especially the cold ionospheric ions. Measurements with
these new settings reveal in great detail the low-energy comet-like ion outflow, inferred from Phobos-2.
They found that the low-energy coverage greatly increased the observed Mars ion escape rates to more
than ∼1025 ions/s during the solar cycle maximum conditions.

The study of the solar wind interaction with Mars upper atmosphere/ionosphere has received a great deal
of attention during the last decade. Among the large number of topics in this research area, the investiga-
tion of ion escape fluxes has become increasingly important due to its potential impact on the long-term
evolution of Mars atmosphere (e.g., loss of water) over its history. A number of papers reporting on the mea-
surement of escape fluxes by the ASPERA-3 instrument on the Mars Express spacecraft have been published
[e.g., Lundin et al., 2008; Barabash et al., 2007; Nilsson et al., 2011]. Ion escape rates calculated by different
plasma models, i.e., multispecies MHD model [Ma et al., 2004; Ma and Nagy, 2007], test particle model [Fang
et al., 2010; Curry et al., 2013], multifluid MHD model [Harnett and Winglee, 2006; Najib et al., 2011; Riousset et
al., 2013], and hybrid model [Modolo et al., 2006; Brecht and Ledvina, 2012] have also been published. These
multidimensional plasma codes are all actively participating in an ongoing International Space Studies
Institute effort focused upon the intercomparison of global models and measurements of the Martian
plasma environment [Brain et al., 2010]. However, all of these works are based on 1-D spherically sym-
metric neutral atmosphere profiles except the work by Ma and Nagy [2007] which incorporates the effect
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Figure 1. A sketch (cartoon) of a one-way coupling approach between MTGCM and MF-MHD models. The notation Tn
denotes neutral atmosphere temperatures, NO, NCO2

are the neutral O and CO2 number densities, and IO, ICO2
are the

photoionization frequencies.

of 3-D neutral profiles from the existing MTGCM model developed by Bougher et al. [2000, 2006, 2009].
The multispecies MHD model, however, solves only one momentum and one energy equation for all
different ion species; therefore, it cannot capture the dynamics of individual ion species.

In the present work, we adopt the 3-D Mars neutral atmosphere profiles (i.e., neutral atmosphere tempera-
tures Tn, neutral densities NO, NCO2

, and photoionization frequencies IO, ICO2
as shown in Figure 1) from the

MTGCM model and one-way couple it with the MF-MHD model that solves separate momentum and energy
equations for each ion species [Powell et al., 1999; Glocer et al., 2009; Najib et al., 2011; Tóth et al., 2012]. We
also compare the simulation results with the currently available observational data. Meanwhile, this work
has the potential to provide predictions of ion escape rates for comparison to future data to be returned by
the Mars Atmosphere and Volatile EvolutioN (MAVEN) mission (2013–2016).

2. Model Description

The MTGCM model is a finite difference primitive equation model that self-consistently solves for
time-dependent neutral temperatures, neutral-ion densities, and three-component neutral winds over the
Mars globe [e.g., Bougher et al., 2000, 2006, 2008, 2009]. The modern MTGCM code contains prognostic
equations for the major neutral species (CO2, CO, N2, and O), selected minor neutral species (Ar, NO, N(4S),
and O2), and several photochemically produced ions (O+

2 , CO+
2 , O+, CO+, and NO+). The resolutions in lat-

itude and longitude are 5◦. The vertical coordinate is log pressure with a resolution equaling to 0.5 scale
heights (which is about 5 km in the Martian lower thermosphere). All fields are calculated on 33 pressure lev-
els above 1.32 μbar, corresponding to altitudes from roughly 70 to 300 km (at solar maximum conditions).
The MTGCM model is thermally and dynamically coupled with the NASA Ames Mars general circulation
model (5◦ × 5◦ grid) [McDunn et al., 2010]. The E10.7 or F10.7 cm index (solar EUV/UV flux variation), the helio-
centric distance, and the solar declination corresponding to Mars seasons are the key adjustable parameters
in the model that can be varied for investigating different MTGCM cases. A fast nonlocal thermodynamic
equilibrium 15 μm cooling scheme is implemented in the MTGCM, dynamically dependent upon simulated
atomic O abundances, along with corresponding near-IR heating rates Bougher et al. [2006]. The model is
constrained by observations from MGS (Mars Global Surveyor), Mars Odyssey, and Mars Reconnaissance
Orbiter [see Bougher et al., 2008].

In order to one-way couple the MTGCM model with the MF-MHD model, we initialize the latter (from 100 km
to 5 RM, where RM is the radius of Mars ∼ 3396 km) with the 3-D neutral profiles (i.e., Tn, NO, NCO2

, IO, and
ICO2

). The equinox season (solar longitude = 180◦) for both solar minimum (F10.7 = 70) and solar maximum
(F10.7 = 200) conditions is considered. Since both models are built on spherical coordinates, we can lin-
early interpolate the cell value from one to the other in the overlapping domains of each model (100 km
to 250 km). From 250 km to 5 RM, we assume constant neutral temperature and photoionization frequen-
cies based on the MTGCM upper boundary values since these values are almost constant when approaching
the MTGCM outer boundary. For the neutral atmosphere densities, however, we use an extrapolation based
upon the hydrostatic assumption which assumes the neutral atmosphere densities decrease exponentially
with altitude, i.e., n = n0exp(−dz∕H), where dz is the altitude change and H is the scale height (which
depends on the gravity, neutral temperature, and neutral species mass). The hot atom densities are taken
from Kim et al. [1998] that are assumed to be spherically symmetric. We also adopted more realistic colli-
sion frequencies between species [Schunk and Nagy, 2009]. In order to make the code run more efficiently,
we use large super cells in the polar regions [Tóth et al., 2012], which can accelerate the speed of model
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Table 1. Input Parameters Used for the Different Calculations

Simulation Solar Solar Wind Upstream B Solar Wind Subsolar
Cases Condition Density (cm−3) Field Velocity (km/s) Positiona

Case 1 Solar Minimum 4 3 nT Parker Spiral 400 180◦W 0◦N
Case 2 Solar Maximum 4 3 nT Parker Spiral 400 180◦W 0◦N
Case 3 Solar Maximum 20 By=20 nT, Bx=Bz=0 1000 180◦W 0◦N

aThe crustal fields face the Sun.

convergence, and allow larger time steps for time accurate simulations. This new grid structure will enable
us to investigate the effects of some dynamic events (such as coronal mass ejections (CMEs) and Martian
dust storm) on the ion escape flux in the future. Unless mentioned otherwise, the other parameters are the
same as those in Najib et al. [2011].

The MF-MHD model was described in detail in the previous paper [Najib et al., 2011], thus we only briefly
summarize the model here. The newly developed 3-D MF-MHD [Najib et al., 2011] can better simulate the
interplay between Martian upper atmosphere and solar wind by considering the dynamics of individual
ion species. In the multifluid formulation, we have separate continuity, momentum, and energy equations
for the four ion fluids H+, O+, O+

2 , and CO+
2 . The lower boundary is set at 100 km above the Martian surface,

where the O+, O+
2 , and CO+

2 densities are taken to be the photochemical equilibrium values. Given the solar
wind proton can penetrate into the ionosphere to some extent, the H+ density at the inner boundary is
set to be approximately 30% of the solar wind density, 0.3Nsw. The model adopts a nonuniform, spherical
grid structure with a radial resolution varying from 5 km at the lower boundary to 1000 km at the outer
boundary ( ∼ 20 Mars radii) and with angular resolution varying from 1.5◦ to 3◦. We choose the smallest
vertical resolution as 5 km since we want to capture all the vertical structure of the neutral profiles from the
MTGCM model. The x axis in the coordinate system points from Mars toward the Sun, the rotation axis is
in the x-z plane, and the y axis completes the right-hand system. The computational domain is defined by
−24 RM ≤ X ≤ 8 RM; −16 RM ≤ Y, Z ≤ 16 RM. A reflective inner boundary condition for the velocity 𝐮 is used,
which results in near-zero velocity at the inner boundary as expected. The plasma temperature, Tp = Ti + Te,
at the inner boundary is set to be twice the value of the neutral temperature, Tn, because at that low altitude,
both ions (Ti) and electrons (Te) have roughly the same temperature as neutrals.

The upstream solar wind plasma temperatures are set to 3.5 × 105 K, and the interplanetary magnetic field
(IMF) is assumed to be a Parker spiral in the X-Y plane with an angle of 56◦ for the first two cases. We use
the 60◦ harmonic expansion for the crustal magnetic field developed by Arkani-Hamed [2001] to describe
the observed fields at Mars [Acuña et al., 1999]. The chemical reaction calculations include charge exchange,
photoionization, and electron impact ionization; in order to calculate the latter, the model assumes that the
electron temperature is half of the calculated plasma temperature and uses the ionization rates given by
Cravens et al. [1987]. We adopt the same chemical reaction schemes as Ma et al. [2004] and Ma and Nagy
[2007] in order to allow direct comparison with the multispecies model results.

3. Simulation Results and Discussions

In order to evaluate the effects of different solar radiation, interplanetary field magnitudes, solar wind den-
sity, and velocity on the Mars upper atmosphere ion escape fluxes, we first study two standard cases for solar
minimum and solar maximum conditions. A case for solar maximum conditions with extremely high solar
wind parameters (i.e., high solar wind velocity, strong upstream magnetic field, and large solar wind density)
is also investigated to estimate the level of the enhanced ion escape flux for such an extreme environment.
Table 1 summarizes the parameters used for the three different cases.

Compared with the multispecies MHD model [Ma et al., 2004], the multifluid MHD model employs separate
mass, momentum, and energy equations for the four ion fluids [Najib et al., 2011]. The differences caused by
solving individual momentum and energy equations for different ion species are shown in Figure 2, where
the main feature is the asymmetric escape plume shape for heavy ion species. The asymmetry is primarily
caused by different Lorentz forces acting on each ion species. In the individual ion momentum equations,
the MF-MHD model includes the Lorentz force nsqs(𝐮𝐬 × 𝐁 + 𝐄):

𝜕𝜌s𝐮𝐬
𝜕t

+ ∇ ⋅
(
𝜌s𝐮𝐬𝐮𝐬 + Ips

)
= nsqs(𝐮𝐬 × 𝐁 + 𝐄) + S𝜌sus

(1)
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Figure 2. The calculated ion number densities in cm−3 in the X-Z plane for H+, O+
2 , O+ , and CO+

2 in a logarithmic scale. Note that the logarithmic scales in
different plots are different.

where 𝜌s, ns, qs, 𝐮𝐬, and ps are the individual mass density, number density, charge, velocity, and pressure of
the ion species s, respectively. 𝐄 and 𝐁 denote the electric and magnetic fields, 𝐉 is the current density, I is
the identity matrix, e is the electric charge, and S𝜌sus

is the momentum source term. The electric field 𝐄 can
be calculated from the generalized Ohm’s law:

𝐄 = −
∇pe

ene
− 𝐮𝐞 × 𝐁 = −

∇pe

ene
−
(
𝐮+ − 𝐉

ene

)
× 𝐁 (2)

where 𝐮𝐞 and 𝐮+ =
∑

s nsqs𝐮𝐬∕(ene) are the electron fluid velocity and the charge averaged ion velocity,
respectively. The electron pressure is denoted by pe and the term 𝐉×𝐁∕(ene) on the right-hand side is called
the Hall term. Substituting 𝐄 into the ion momentum equation, we are left with

𝜕𝜌s𝐮𝐬
𝜕t

+ ∇ ⋅ (𝜌s𝐮𝐬𝐮𝐬 + Ips) = nsqs(𝐮𝐬 − 𝐮+) × 𝐁 +
nsqs

nee
(𝐉 × 𝐁 − ∇pe) + S𝜌sus

(3)

It can easily be proved that (𝐮𝐬 − 𝐮+)×𝐁 term will lead to a flow asymmetry in the X-Z plane only, as long
as the magnetic field is in the X-Y plane. Thus, the plume provides a channel for ions to escape while this
cannot be captured by the multispecies model. Given all the ion species are fully picked up by the solar
wind eventually and ignoring the friction resulted from the source term, the characteristic spatial scale, Lg,
associated with the asymmetry is controlled by the ratio msusw∕(qsB) via dimensional analysis. Actually, Lg is
the characteristic spatial scale for the heavy ion fluid to reach the solar wind speed, usw, or to be fully picked
up. Therefore, the heavier the ions are (note qs = e in the model), the more significant the escape plume is.
On the other hand, from the particle simulation point of view, the asymmetry can also be explained by the
induced electric field [Fang et al., 2010].
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Table 2. Calculated Ion Escape Fluxes (in s−1)

MHD Model Neutral Profile Simulation Cases O+ O+
2 CO+

2 Total

Case 1 4.2 × 1023 1.7× 1024 3.5 × 1023 2.5 × 1024

Multifluid 3-D MTGCM Case 2 3.7 × 1024 2.5 × 1024 3.8 × 1023 6.6× 1024

Case 3 1.0 × 1025 2.5 × 1025 8.2 × 1024 4.3 × 1025

Multifluida 1-D Case 2 7.7 × 1023 9.0 × 1023 1.7 × 1023 1.84 × 1024

Case 1 7.2 × 1023 1.9 × 1023 1.3 × 1023 1.0 × 1024

Multispeciesb 3-D MTGCM Case 2 1.8 × 1024 4.1 × 1023 1.8 × 1023 2.4 × 1024

Case 3 2.3 × 1025 3.3 × 1024 4.1 × 1024 3.0 × 1025

aThe case 2 shows the results from Najib et al. [2011] by adopting the 1-D spherically symmetric neutral
atmosphere, where they defined the case 2 we studied here as case 4.

bThe multispecies simulation results are from Ma and Nagy [2007], where they labeled the cases 1, 2, and 3
we studied here as their cases 4, 6, and 7.

Comparing case 1 with case 2 (see Figure 2), the ion escape plume is more significant for the solar maximum
conditions and the density close to the planet is increased. This is caused by the enhanced solar radiation
during the solar maximum conditions which increases the amount of ions. Therefore, the ion escape rate
for case 2 should be larger than that of case 1. Case 3 is motivated by Pioneer Venus observations which
measured very high escaping ion fluxes from Venus during significantly increased solar wind pressure con-
ditions [Luhmann et al., 2007]. Thus, the simulation results of case 3 may yield an estimation of ionospheric
outflow during some extreme conditions such as CMEs and corotating interaction regions (CIRs). Inspec-
tion of Figure 2 reveals that the asymmetry in case 3 becomes less obvious than case 1 and case 2 while the
escape plumes in the regions near Mars body become even stronger compared with case 2. This is because
the characteristic spatial scale, Lg, associated with the asymmetry is controlled by the ratio msusw∕(qsB).

We summarize the calculated ion escape fluxes by adopting different MHD models and neutral atmosphere
profiles in Table 2. The calculation is conducted by integrals of the plasma density times the radial velocity
component at the surface of a sphere far from the planet. In this paper, we select the integral spherical sur-
face to be 6 RM since we find that the calculated ion escape fluxes do not change to any significant degree
once the radius exceeds 4 RM. Lundin et al. [2008] suggested that the total ion escape rate (O+, O+

2 , and CO+
2 )

is around 3 × 1024 s−1 during solar cycle minimum conditions and it may achieve values more than 1025 s−1

during solar cycle maximum conditions. Nilsson et al. [2011] found that the net ion escape flux for solar cycle
minimum conditions is around 2 × 1024 s−1. Our total ion escape flux for solar minimum conditions (case
1) is 2.5 × 1024 s−1, which is reasonably consistent with the available MEX observations. It is of particular
interest to find that the calculated total ion escape flux for solar maximum conditions is about 2.6 times
larger than that of solar minimum conditions, which is in good agreement with the value (∼ 2.5) suggested
by Verigin et al. [1991] and Nilsson et al. [2011]. As we expected from Figure 2, the total ion escape flux for
extreme case (case 3) is 1 order of magnitude larger than case 1 and case 2, and the value is on the order of
1025 s−1 which is again consistent with the value suggested by Lundin et al. [2008].

Compared with the multispecies MHD simulation results (Table 2), the MF-MHD calculations show that the
O+ escape flux generally becomes smaller while the O+

2 , CO+
2 , and total escape fluxes increase for all three

cases. One of the main reasons is that the heavy ions have a significant asymmetric ion escape plume, and
therefore, the MF-MHD code provides a new channel for ions to escape; this feature, however, cannot be
captured by the multispecies MHD model. On the other hand, the escape flux also greatly depends on the
ionospheric chemical reactions in the model (refer to Najib et al. [2011, Table 1]), e.g., CO+

2 is produced only
from photoionization while it is consumed by three chemical reactions, indicating the CO+

2 escape flux is
less than that of O+

2 . In addition, the MTGCM code has been improved since its output was first utilized in
the multispecies MHD model of Ma and Nagy [2007]. Recent MTGCM improvements include the following:
(a) updated lower atmosphere forcing using dust opacity distributions from the MGS/Thermal Emission
Spectrometer [Smith, 2004] and (b) the adoption of new solar fluxes (1.0 nm bins) from the empirically based
Flare Irradiance Spectral Model of Chamberlin et al. [2008] for solar minimum and maximum conditions.
Given the different model setup and input, we cannot compare quantitatively our simulation results with
the previous similar case studies [see, e.g., Harnett and Winglee, 2006; Brecht and Ledvina, 2012]. However, it
is interesting to mention that both models [Harnett and Winglee, 2006; Brecht and Ledvina, 2012] show that
O+

2 is dominant over other heavy ion species during the ion escape, which is reasonably consistent with our
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simulation results. Their simulation results also indicate that the dayside crustal field has a shielding effect
that tends to reduce the ion escape flux in the process of ion loss, which is consistent with the results shown
by Ma et al. [2004].

In general, for the MF-MHD simulation, all the ion escape fluxes increase for the 3-D neutral input compared
with the 1-D case (see Table 2). The 3-D neutral atmosphere basically changes the atmosphere temperature
Tn, densities, and the photoionization frequencies of neutral species O and CO2 compared to the previous
studies [Najib et al., 2011]. In the 3-D neutral upper atmosphere, the major Martian atmosphere compo-
nents (CO2 and O) are no longer symmetric about the planet. There exists more neutral CO2 on the dayside
than nightside (at a constant altitude) because the CO2 global distribution is mainly controlled by the tem-
perature structure and not the dynamics. The neutral CO2 densities are enhanced (reduced) on the dayside
(nightside) where temperatures are warmer (colder). Neutral O, however, is mainly controlled by transport
due to its relatively small mass. The neutral wind will transport neutral O from dayside to nightside, result-
ing in a bulge of neutral O in the nightside upper atmosphere. Hence, it is more realistic to use the 3-D
atmospheric structure from the MTGCM model than the 1-D neutral atmosphere. The significant change in
(MHD) model input indicates that the MTGCM neutral profiles essentially increase the ion sources resulting
from various ionization processes (i.e., photoionization, charge exchange, and electron impact ionization),
which in turn enhances the ion escape flux. It is noteworthy that although the MTGCM model provides the
MF-MHD code with 3-D neutral atmosphere profiles that are certainly more realistic (i.e., asymmetric about
the globe), there are presently no accurate measurements of the (thermal and suprathermal) oxygen pro-
files in the Mars atmosphere [Bougher et al., 2008]. This uncertainty will affect the calculated ion escape
fluxes. Therefore, the neutral atmosphere profiles to be returned by the MAVEN mission will significantly
reduce the uncertainty in calculated escape rates resulting from the lack of direct information regarding the
oxygen abundance.

Besides providing better input to models, MAVEN also has the opportunity to test specific predictions from
the models. For instance, MAVEN could test the enhanced ion escape fluxes during various extreme events,
such as CMEs/CIRs/solar energetic particles and Martian dust storms and compare them with simulation
results, which could help to improve the models with the possible missing physics. It is also possible that
MAVEN could make direct observations of the magnetic reconnection in the near Martian magnetotail by
its magnetometer, as has been observed near Venus by Venus Express [Zhang et al., 2012]. To better study
the magnetotail reconnection, one has to adopt adaptive mesh refinement to refine the blocks in the mag-
netotail region in order to reduce the numerical diffusion. Meanwhile, one needs to employ the resistive
MHD model, where the electrical conductivity, 𝜎, is no longer infinite. Although the heavy ion (such as O+)
cyclotron waves generated from the pickup of exospheric O+ have never been observed, they may be an
important source for heating the cold ionospheric O+ [Dong et al., 2013]. MAVEN may be able to investi-
gate the existence of these waves upstream of the Martian bow shock using the Langmuir probe and waves
antenna. In order to investigate this problem, high-resolution global hybrid simulations are essential. In
short, the scientific return from the MAVEN mission will benefit greatly from combining its future returned
data with various model results.

4. Conclusions

In summary, we studied the solar wind interaction with Martian upper atmosphere by using a one-way cou-
pling of two comprehensive 3-D models, i.e., the MTGCM thermosphere-ionosphere model output is used as
input for the MF-MHD model. Our model predicted ion escape fluxes are in good agreement with the recent
observational data. The immediate impact of the work will be improvements to estimated ion escape fluxes
and global ion escape rates. Furthermore, this work has the potential to provide improved predictions of ion
escape rates for comparison to future data to be returned by the MAVEN mission (2013–2016) and thereby
improve our understanding of the present-day escape processes.

Additionally, we plan to further investigate the solar wind interaction with the Martian upper atmosphere
using a more sophisticated coupling approach. In future work, we will adopt the 3-D Mars cold neutral
atmosphere profiles (100–300 km) from the newly developed and validated ground to exosphere Mars
Global Ionosphere Thermosphere Model (MGITM) [Bougher et al., 2011] and the 3-D hot oxygen profiles
(100 km to 5 RM) from the Direct Simulation Monte Carlo (DSMC) Exosphere Model [Valeille et al., 2009].
We will exchange these 3-D model output fields with the 3-D BATS-R-US Mars multifluid MHD model
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(100 km to 20 RM). The MGITM model together with the DSMC model take into account the effects of solar
cycle and seasonal variations on both cold and hot neutral atmospheres. This will allow us to investigate the
corresponding effects on the Martian upper atmosphere ion escape by using a one-way coupling approach
(i.e., both the MGITM and DSMC model output will be used as input for the MF-MHD model). Moreover,
one-way coupling is a necessary precursor to future full two-way integration of various models since the
two-way integration requires using a combination of MF-MHD, MGITM, and DSMC codes to solve for the
overlapping domains of each model (100–300 km).
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