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Abstract 

 

It is well known that changes in tissue morphology and/or biochemistry can affect tissue 

function. Characterizing these changes in tissue function through non-invasive and label-

free assessment can inform clinical practice and improve patient outcomes. Optical 

spectroscopic techniques (including reflectance, fluorescence, and Raman scattering) 

coupled with advances in fiber-optic probe technologies, have enabled development of 

“free-space” portable spectroscopy systems that are suitable for studying functional 

changes in biological tissues in vivo. In this dissertation, we employ non-invasive, 

quantitative, label-free, portable, and clinically-compatible reflectance and fluorescence 

spectroscopic technology for use in two clinical challenges: (1) improved detection of 

pancreatic disease and (2) post-implantation monitoring of tissue-engineered construct 

wound healing in an in situ murine model. 

(1) Currently, pancreatic cancer is most commonly detected at its latest stages. As a 

result, only 6% of pancreatic cancer patients survive 5 years after diagnosis, making it the 

4th leading cause of cancer death in the United States. To improve detection of pancreatic 

cancer, we studied the diagnostic utility of optical spectroscopy to detect pancreatic 

disease in 5 Stages, with Stages 1 and 2 previously reported. Stage 1 showed that ex vivo 

measurements of human adenocarcinoma tissue correspond well to in vivo measurements 

from a tumor xenograft in a murine model. Stage 2 showed that malignant tissues 

measured ex vivo distinguish malignant and benign tissues. In this dissertation, we 
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discuss Stages 3-5. In Stage 3, a photon-tissue interaction (PTI) model was verified with 

measurements from tissue-simulating phantoms and validated with measurements from a 

subset of ex vivo human tissues collected in Stage 2. We show that a calibrated PTI 

model consistently extracts biologically-relevant optical tissue scattering parameters in 

the presence of variable hemoglobin absorption. In Stage 4, we perform the first ever, to 

our knowledge, in vivo feasibility study employing optical steady-state spectroscopy to 

detect malignant tissues during open surgery. In Stage 5, we investigate time-resolved 

fluorescence spectroscopy ex and in vivo to improve pancreatic disease classification. 

Furthermore, we show the first ever human pancreatic tissue measurements with an 

endoscopically-compatible fiber-optic probe. 

(2) Regulatory approval for tissue-engineered combinational devices, including tissue 

constructs developed for human implantation, requires reliable methods to assess post-

implantation wound healing in vivo, of which none currently exist. In this dissertation, we 

investigate diffuse reflectance spectroscopy to detect hallmarks of graft wound healing, 

including tissue revascularization, cell proliferation, and cell density, based on construct 

absorption and scattering properties. 

 

 

 

 



 

1 
 

Chapter 1.  
Introduction 

1.1 Optical spectroscopy 

 Optical spectroscopy is a widely employed technique in chemical and biomedical 

applications for non-invasive specimen interrogation and monitoring that can be 

performed on both living and stained/sectioned samples [1]. A variety of spectroscopic 

techniques have been developed for fluorescence applications in quantitative clinical 

tissue diagnostics [2-4], including several involving cancer diagnostics [5-8]. The 

methods developed for clinical tissue sensing are translatable to applications in 

regenerative medicine, since similar excitation sources, optical delivery systems, and 

photon detectors can be employed for sensing in tissue-engineered constructs with 

minimal modifications [9]. Furthermore, these techniques can be employed to optically 

measure human tissues, providing the experimental groundwork to study tissue-

engineered constructs both during development and in vivo, after human implantation. 

When interrogating human tissues, safety is paramount. Optical spectroscopy 

measurements cause minimal to no damage with controlled laser powers; therefore, 

measurements can be taken multiple times, at multiple sites, and performed for repeated 

measurements of human tissues and for assessing tissue-engineered constructs during 

culturing of a sample, prior to release of a tissue-engineered construct for clinical use, 

and after implantation. In particular, optical spectroscopy is able to meet the specific 

needs for the monitoring and analysis of human tissues and tissue-engineered cell-

scaffold constructs, including analyzing a complex three-dimensional structure with local 
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heterogeneities, being adaptable to measuring a variety of constructs – including living 

samples for label-free optical assessment of tissue-engineered constructs and translatable 

to in vivo measurements post-implantation [10].  

In this dissertation, we focus on clinical applications of reflectance and fluorescence 

spectroscopy for quantitative, optical biopsy to address two clinical challenges: (1) 

improved detection of pancreatic disease and (2) non-invasive assessment of tissue 

engineered constructs. Such optical spectroscopies have shown promise in clinical 

applications for rapid, non-invasive, label-free, quantitative, and safe interrogation of 

human tissue. Furthermore, these optical technologies are compatible with remote 

sensing applications requiring miniature probes, including endoscopy and oral surgery. 

 

1.2 Clinical and biological measurement challenges that reflectance spectroscopy 
is suited to address 

Reflectance spectroscopy is suited for rapid and non-invasive sensing in bulk tissues as a 

diagnostic tool (e.g., distinguishing healthy from compromised tissue), analyzing 

variations in local tissue absorption (e.g., measuring local concentration of deoxygenated 

and oxygenated hemoglobin), and interrogating local tissue structure (e.g., assessing 

cellular structures like nuclei or mitochondria) [11,12].  Advantages to reflectance 

sensing include the ability for real-time, non-invasive assessment of local changes in 

tissue absorption and morphology, both potential indicators of compromised tissues. 

1.2.1 Technical implementation of reflectance spectroscopy 

The interaction of light and human tissues is complex. In the simplest model, light 

interacts with tissues through wavelength-dependent scattering and absorption events. 
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Scattering events occur when an index of refraction mismatch reflects light within a 

tissue, occurring from common, endogenous biological components like extracellular 

matrix or cell nuclei. Reflectance occurs if the scattered excitation light has preserved 

energy. That is, the light was elastically scattered without a change in wavelength. These 

elastic scattering events are wavelength-dependent, meaning that relative intensity of 

scattered light varies with wavelength, resulting from the wavelength-dependence of the 

scattering phase function [11]. Therefore, the detected reflectance spectrum contains 

unique spectral contributions from scatterers encountered during their photon path length 

in the tissue. Alternative to scattering, absorption events occur when light is specifically 

converted to heat energy in accordance with Beer’s law by absorptive biomolecules, 

which reduce the light intensity at specific wavelengths proportional to absorber 

concentrations.  

Models employing a priori information about tissue composition can resolve scattering 

properties (e.g., the average morphology and density of a scatterer like cell nuclei) and 

absorption properties (e.g., the concentration and oxygenation of hemoglobin). 

Qualitative or quantitative assessment of local oxygenated and deoxygenated hemoglobin 

concentrations can be used as indirect measures of tissue viability and graft success [12].  

Diagnostic utility of optical spectroscopy is contained within the balance of tissue 

scattering and absorption, simultaneously providing biologically-relevant tissue 

information comparable to histology. Reflectance spectroscopy can be employed for 

rapid and non-invasive assessment of local tissue morphology. In biological tissues, light 

is preferentially forward scattered, encountering numerous scattering events before being 

emitted from the tissue for detection [11]. As a result, the experimental set-up of 
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excitation and detection geometries can impact measured spectra, discussed in more 

detail in the following sections. 

 

1.3 Clinical and biological measurement challenges that fluorescence spectroscopy 
is suited to address 

Biomedical applications of fluorescence spectroscopy include bulk tissue diagnostics 

(e.g., distinguishing healthy from non-viable tissue), determining the relative quality of a 

sample (e.g., measuring cellular growth rate), and assessing local biochemical changes 

(e.g., characterizing the binding state of nicotinamide adenine dinucleotide (NADH)) [1]. 

Advantages of fluorescence sensing include the ability to assess and monitor human 

tissues and tissue-engineered constructs in a non-invasive, non-destructive, and locally 

selective manner.  

1.3.1 Technical implementation of fluorescence spectroscopy 

Several physical processes can occur when light is absorbed by a sample [1]. Figure 1.1 

shows a Jablonski diagram detailing the stages of one such process, fluorescence, which 

occurs when an excitation photon is absorbed by a sample fluorophore. 
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Figure 1.1. Jablonski diagram sketch demonstrating the simplified three-step 
fluorescence process. (A) An excitation photon is absorbed by a fluorophore, 
raising the energy of an electron to an excited state. (B) The electron 
undergoes internal energy conversion to the base level of the excited state. (C) 
The excited electron decays to the ground state, emitting a fluorescence photon 
with energy equal to the energy difference between the states. 

 

The fluorescence photon is emitted isotropically (emitted in a random direction) with 

energy equal to the difference between the ground and excited energy levels of the 

electron. Fluorescent molecules contain different characteristic energy levels and 

electrons that can absorb excitation energy; therefore, each fluorescent molecule has 

unique and characteristic optical absorption and fluorescence emission spectra.  

Fluorophores in biological systems can be divided conveniently into two groups: 

endogenous and exogenous. Endogenous fluorophores are naturally-occurring biological 

molecules that are native to cells and tissues, including the biological materials employed 

to develop tissue-engineered constructs and intracellular metabolites. Typically, 

endogenous fluorophores are low-light level emitters [13,14] compared to exogenous 

fluorophores, molecules that are not naturally-occurring in a sample and are added to 

provide contrast for fluorescence measurements. Exogenous fluorophores are widely used 
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to image cells and thin tissue sections, but introducing exogenous molecules into human 

tissues or thick, tissue-engineered constructs involves a more invasive process, which 

could alter metabolic viability and measurement sterility, compromising optical 

measurements. Therefore, when analyzing tissue-engineered constructs via fluorescence 

spectroscopy, it is common to measure only endogenous fluorescence.  Careful 

application of exogenous fluorophores is required to provide useful fluorescence contrast 

and characterization in thick tissues.  

Endogenous fluorophores typically report on two common components of a tissue-

engineered construct: the extracellular matrix and cellular metabolism [13,15].  Typical 

fluorescence spectra are shown from three common endogenous fluorophores in Figure 

1.2. Endogenous fluorophores that report on the extracellular matrix can be monitored to 

study the growth and development of a tissue-engineered construct.  These molecules 

include collagen, elastin, and keratin. Endogenous fluorophores that report on cellular 

metabolism include nicotinamide adenine dinucleotide (NADH) and flavin adenine 

dinucleotide (FAD), cellular biochemicals that play a role in redox metabolism and are 

naturally fluorescent in their reduced (NADH) and oxidized (FAD) states. NADH is 

produced during cellular glycolysis, an alternative pathway to oxidative phosphorylation 

for adenosine triphosphate (ATP) generation that occurs in cellular mitochondria, and 

transported into mitochondria [16]. Then, the high energy electron carried by NADH is 

utilized during oxidative phosphorylation and the electron transport chain to create a 

proton gradient, converting NADH to NAD+ and FADH2 to FAD, while generating 

cellular energy, ATP. In addition, acetyl Coenzyme A (acetyl CoA) produced during 

glycolysis and transported into the mitochondria enters the citric acid cycle and converts 
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NAD+ to NADH, converts FAD into FADH2, and produces ATP. Having fluorescent 

molecules at local concentrations dependent upon cellular metabolic processes allows for 

monitoring of energy metabolism within tissues and tissue constructs. 

 

 

Figure 1.2. Normalized spectral tissue fluorescence measured from three 
common tissue fluorophores, including extracellular matrix collagen and 
intracellular biomolecules NAD(P)H and FAD. 

  
 

The emission spectrum of each fluorophore is characteristic, with a distinct spectral line 

shape, but many fluorophores emit in the wavelength range from ~325 to 600 nm. Often, 

several fluorophores are excited with the same excitation light source and each 

contributes to the measured fluorescence spectra. 

Exogenous fluorophores, or fluorescent probes, are fluorescent molecules that can be 

employed to report on spatial localization and environmental conditions of a sample [17].   

Exogenous fluorescent drugs have been developed for use in photodynamic therapy [18], 
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monitoring pH [19], and cancer diagnostics [20], where the introduced fluorophore 

accumulates in the tumor region. A combined approach can also be employed with both 

endogenous and exogenous fluorophores for enhanced contrast [21].  

Introducing exogenous fluorophores into tissues can help to characterize the molecules 

present and their micro-environment, but often compromises the sterility and integrity of 

the sample, thereby introducing safety and toxicity concerns [22]. Therefore, works 

discussed in this dissertation include no exogenous dyes. 

 

1.4 Experimental design for reflectance and fluorescence spectroscopy 

The design of the experimental set-up determines the sample volume that will be studied, 

the fluorophores that will be excited, and how the emitted photons will be detected. 

Therefore, careful consideration needs to be given to the experimental set-up employed, 

the excitation source chosen, the detector employed, as well as the sample optical 

properties to measure the most useful data.  

1.4.1 Excitation source 

All optical measurements require an excitation source, most commonly a laser, light-

emitting diode, or lamp. Excitation sources have a variety of characteristic properties that 

determine the optical data measured. First, sources can be continuous, for collection of 

spectrally-resolved reflectance or fluorescence data, or pulsed, for collection of 

wavelength- and time-resolved data. Pulsed sources can be on the order of nanoseconds 

for single photon excitation or on the order of femtoseconds for multiphoton excitation or 

time-correlated single photon counting (TCSPC). Second, each source has a characteristic 

wavelength corresponding to its peak power output. Lastly, pulsed sources have a pulse 



 

9 
 

repetition rate (i.e. number of pulses per second) and corresponding duty cycle (i.e. the 

pulse duration relative to the time between successive pulses).  

To collect reflectance spectra, excitation wavelengths must be selected to preferentially 

interrogate the diagnostically-relevant tissue scatterers and absorbers. For maximizing 

diagnostic utility, reflectance spectra are often collected over a broad wavelength range 

(spanning hundreds of nanometers) that have characteristic contributions from specific 

tissue scatterers and absorbers related to tissue disease state. For the diagnostic 

applications discussed in this dissertation, reflectance spectra were collected at visible 

wavelengths between 400-760 nm to interrogate tissue scattering from cell nuclei and 

extracellular matrix and absorption from hemoglobin and tissue pigments [23]. 

To collect fluorescence spectra, excitation wavelength must be selected to preferentially 

excite the fluorophores of interest in a construct [13], with consideration given to sources 

of background signal or artifacts that may be present. For the diagnostic applications 

discussed in this dissertation, common excitation source wavelengths used are in the UV-

visible range to interrogate concentrations and local biochemistry of collagen, elastin, 

FAD, and NADH. 

To collect time-resolved fluorescence decays, in addition to excitation wavelength, the 

laser pulse repetition rate and duty cycle need to be considered. A common practice in 

fluorescence measurements is to average a set number of measurements to increase the 

output signal-to-noise ratio. Therefore, to acquire data in a rapid fashion, higher pulse 

repetition rate sources allow for more measurements to be taken in a shorter time, 

permitting averaging of more fluorescence data collections and thus higher signal-to-

noise ratios [24]. However, the detector must be optimized to work with such an 
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excitation source. The duty cycle must also be considered, including excitation pulse 

intensity and  duration,  so that the excitation source generates sufficient fluorescence 

without harming or damaging the sample [25].  

1.4.2 Emission detector 

Emitted optical light can be collected with wavelength resolution or time resolution (or 

both). Each modality provides information about the concentration and 

microenvironment of a sample and each employs different detection schemes.  

For wavelength-resolved data, common detector configurations are spectrographs 

coupled to a charge-coupled device (including intensifiers (ICCD) or electron multiplying 

charge-coupled device (EMCCD) [26]) for detection. For time-resolved data, common 

detectors include photo-multiplier tubes [24], avalanche photo-diodes [27], and streak 

cameras [28]. Two common collection techniques are time-correlated single photon 

counting (TCSPC) [29] and direct fluorescence decay recording via a digitizing 

oscilloscope [2,6,30]. 

Additionally, to collect both wavelength- and time-resolved fluorescence simultaneously, 

two common methods exist that employ either one or a combination of the previously 

mentioned detectors. First, the fluorescence emission light can be beam-split and directed 

at two separate detectors, one each for wavelength and time detection [31]. Second, an 

emission monochromator can selectively step through the desired wavelength regime 

with a measured time-resolved decay at each selected wavelength [24]. 

1.4.3 Optical sample properties 

All tissue-engineered constructs and tissues have optical properties that will affect the 

optical signal measured from the sample. In particular, we will discuss five optical 
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properties: the scattering coefficient (µs), absorption coefficient (µa), fluorophore 

absorption coefficient (µafx), anisotropy (g), and absorption quantum yield (Φ) [32,33]. 

These properties all influence any photon propagation within the sample.  

Figure 1.3 shows two photon paths with different center-to-center source to detector 

spacing. Increasing source to detector spacing preferentially detects scattered photons 

with longer average photon paths (photons that have traveled deeper within a tissue) than 

would smaller spacing, evidenced by an optical contribution from Layer 2. The scattering 

coefficient is the reciprocal of the average path length a photon travels between scattering 

events. The absorption coefficient is the reciprocal of the average path length a photon 

travels before being absorbed by a non-fluorophore. The fluorophore absorption 

coefficient is the reciprocal of the average path length an excitation photon travels before 

being absorbed by a fluorophore. Multiple fluorophore absorption coefficients are needed 

for a sample with multiple fluorophores, and multiple scattering coefficients (modeled as 

a linear combination of each) are needed for a sample with multiple fluorophores. 

The tissue anisotropy is the mean cosine of the scattering angle of a photon within a 

sample. Anisotropy is determined by the phase function used to model a tissue, and 

anisotropy values range from 0 to 1, with higher values representing more forward 

scattering media [34]. The quantum yield of a fluorophore defines the efficiency with 

which a fluorophore absorbing an excitation photon undergoes the fluorescence process. 

Each fluorophore has a different quantum yield, which also depends on the excitation 

wavelength employed. In addition, each fluorophore has a fluorescence lifetime, τ, which 

relates to the radiative decay of a fluorophore.  
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Figure 1.3. Fluorescence spectroscopy is characterized by excitation photons 
(blue arrow) entering a tissue at wavelength ex, propagating according to the 
tissue optical properties (absorption coefficient ai, scattering coefficient si; 
i=layer, all =f()) at the excitation wavelength, being absorbed and 
isotropically re-emitted as fluorescence by a fluorophore (F1, F2; green and red 
stars), and fluorescence photons propagating back to the tissue surface 
according to the tissue optical properties at the emission wavelength. Tissue 
optical properties are frequently different in each layer of a multi-layered 
tissue, impacting the photon trajectories in each layer. Upon exiting from the 
tissue surface, the photons (green and red arrows) can be collected by fiber-
optic probes and sent to a detector. The detected fluorescence intensity 
spectrum contains information about the fluorophores in each tissue layer. 
Measured data can be analyzed to characterize the sample and extract tissue 
information, including fluorophore concentrations and tissue optical 
properties. 

 

Table 1.1 introduces common values of the optical properties that can be employed to 

mathematically model a tissue construct that contains any combination of four common 

endogenous fluorophores discussed in the applications of this chapter: NADH, FAD, 

keratin, and collagen. These values can be measured experimentally or obtained from 

literature. These optical parameters can be employed in mathematical models to predict 

photon propagation and optimize experimental setups. The values for each optical 

property are dependent on the components of the sample and the wavelength of light 
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employed to interrogate the sample, with different values used for modeling excitation 

and fluorescence light. 

 

Table 1.1 Approximate ranges for optical properties of biological tissue 
[14,35,36]. 

 NADH FAD Keratin Collagen Tissue 

Φ 0.02 – 0.1 0.03 0.25 0.1 – 0.4 - 

τ (ns) 0.4 – 2.5 3.0 4.0 4.5 – 6 - 

µafx (cm-1) ~ 0.2 – 6.1 ~ 0.9 ~ 0.5 ~ 0.3 – 1.5 - 

µa (cm-1) - - - - 0.1 – 30 

µs (cm-1) - - - - 40 – 500 

g     0.85 - 0.98 

Φ: fluorescent quantum yield, τ: fluorescent lifetime, µa: absorption coefficient, µs: scattering 
coefficient,  
µafx: fluorophore absorption coefficient, g: anisotropy 

 
 

1.4.4 Additional experimental considerations 

To avoid altering or damaging specimens, careful consideration must be given to the 

experimental conditions employed for optical excitation and detection. Photobleaching is 

a phenomenon that can cause a fluorophore to be permanently damaged and unable to 

undergo fluorescence events [37]. In fluorescence spectroscopy measurements, 

photobleaching is seen as a reduction in detected fluorescence over repeated 

measurements of a sample [38]. Methods to reduce photobleaching include reducing the 

excitation laser energy or limiting the excitation time.   

Another consideration is the pressure with which the optical-probe is brought into 

physical contact with the tissue specimen. Probe pressure has been shown to impact 

optical spectroscopic measurements including measured fluorescence [39,40] and 
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reflectance [41]. Measurements are impacted from increased probe pressure resulting 

from tissue compression, possibly influencing local construct scattering and absorption 

properties. Therefore, a setup with minimal, controlled probe pressure is best suited to 

minimize possible affects for fluorescence measurements. 

1.4.5 Environmental conditions 

Controlled environmental parameters, like the background signal, temperature, pH, and 

oxygenation levels, are required to create repeatable measurements that accurately reflect 

the sample conditions. All of these experimental variables can change over time; 

therefore, to accurately compare measurements, measurement time should be kept to a 

minimum. 

1.4.6 Background artifacts – absorption and fluorescence  

Background artifacts can be inherent to a sample or originate due to the experimental 

setup, including absorbing chromophores, room lights, and culture media. Chromophores 

are molecules that do not fluoresce, but instead absorb excitation or emission photons, 

thus distorting measured optical spectra. To limit background artifacts, spectra should be 

background corrected to account for room lights prior to each measurement [31] and 

acquisition time should be minimized.  

Culture media present when measuring cells or constructs can produce background 

fluorescence or cause excitation attenuation due to absorption from any of the variety of 

nutrients, cofactors, and other molecules present. There are two common techniques to 

limit the influence of culture media: employ phenol-red free media [42,43] or prior to 

measurement, wash the sample construct in phosphate buffered saline (PBS) [44], 
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although this alters the sample’s physiological conditions and could impact measured 

fluorescence compared to native culture conditions.  

Additional background fluorescence can occur when trying to measure human tissues, 

cells atop a highly-fluorescent collagen scaffold, or once a construct is implanted into a 

patient, when blood absorption becomes a determining factor in the amount of signal 

attenuation. Analyzing the effects of both hemoglobin concentration and oxygenation 

quenching has been developed on tissue samples with spectral filtering modulation [45]. 

Similar background signal artifacts can be present when studying exogenous 

fluorophores, where endogenous fluorescence is a background artifact that should be 

accounted for during analysis [46].  

1.4.7 Temperature, pH, and oxygenation 

Common protocols developed for tissue-engineered constructs include culturing 

constructs in an incubator at 37°C with controlled pH and oxygenation to promote cell 

growth [47]. Often, measurements are made under sufficiently different or unmonitored 

environmental conditions. These environmental factors can significantly impact the 

subsequent fluorescence measurements, including temperature variations [48], pH 

[49,50], and oxygenation in cell studies [51] and tissue studies [52]. Oxygenation has also 

been shown to be an effective quencher of fluorescence [53]. 

1.4.8 Spectroscopic optical data  

Often, qualitative and quantitative differences are observed in both wavelength- and time-

resolved reflectance and fluorescence data. Traditionally, most researchers collect 

wavelength-resolved data, because wavelength-resolved instrumentation is readily 

commercially available and spectral data is often sufficient for accurate sample analysis. 
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However, time-resolved data, and in particular the collection of time-resolved 

fluorescence data discussed in this dissertation, is very useful when measured 

fluorophores have overlapping emission spectra (e.g., free/bound NADH and FAD) or to 

isolate time-resolved fluorescence decays from a wavelength-regime where the 

fluorophore of interest has a higher signal contribution than the background signal. Both 

modalities can be employed to extract useful biological information from the studied 

sample, often being employed in parallel to extract maximum fluorescence information 

from a sample. 

1.4.8.1 Wavelength-resolved data 

Wavelength-resolved spectra can highlight local changes in fluorophore concentration, 

environmental changes, sample morphology attributed to scattering changes, and 

absorber concentrations [1]. Each fluorophore has a distinct absorption spectrum and a 

corresponding emission spectrum. In samples with multiple fluorophores, the 

measurement is a linear combination of each fluorescence emission spectrum. In tissues, 

many fluorophores present have well characterized wavelength-resolved fluorescence 

spectra. Therefore, these molecules can be preferentially excited with prior knowledge of 

their absorption spectra and analyzed post-measurement with published literature spectra 

or  measurements on purified endogenous fluorophores [23] when photon propagation 

effects are also considered [27]. Similarly, scattering biomolecules and tissue absorbers 

(e.g., hemoglobin and pigments) have distinct absorption spectrum that can be resolved 

with reflectance spectroscopy and post-measurement analysis. 
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1.4.8.2 Time-resolved data 

Each fluorophore has characteristic time-resolved kinetics, represented by the 

fluorescence lifetime, tau (τ). The fluorescence lifetime is the average time spent by a 

fluorophore in the excited state and has been well characterized [54] for common 

biological components. Fluorescence is a radiative decay process that occurs typically on 

the order of nanoseconds [1]. Measured fluorescence decay data is the convolution of the 

intrinsic fluorescence decay and the instrument response function (a measurement 

characterizing the pulse profile of a detected excitation laser pulse). The most common 

fluorescence decay model is a linear combination of exponential decays, although 

alternative fitting algorithms can be employed, including stretched exponential [55], 

Laguerre deconvolution technique [56], and phasor analysis [57]. 

Extracting lifetime parameters can be rather straightforward, but interpretation can be 

difficult. Each fluorophore has a natural variability in its measured lifetime due to the 

complex sample environmental conditions that can affect decay behavior. Additionally, 

the number of parameters used to fit data can lead to high quality fits, which may or may 

not be unique. In a sample containing multiple fluorophores, the resulting lifetime 

measurement is a linear combination of each individual lifetime and the fluorescence 

quantum yield in the wavelength range studied [58].  

1.4.8.3 Wavelength- and time-resolved data 

Wavelength- and time-resolved fluorescence data can be collected simultaneously in 

order to provide additional sample information without adding to measurement time [27]. 

Depending on the application, both methodologies can be employed initially to determine 

if one data domain is sufficient, although both methodologies can be advantageous to 
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improve sample analysis and characterization [30,31]. Furthermore, tri-modal optical 

systems can be developed that sequentially collect wavelength-resolved reflectance, 

wavelength-resolved fluorescence, and time-resolved fluorescence data. Majority of data 

collection in this dissertation was performed with such a system, named the Reflectance 

and Fluorescence Lifetime (RFLS) spectrometer [27,31]. 

With the RFLS, steady-state reflectance, steady-state fluorescence, and one time-resolved 

fluorescence decay is measured for all collected wavelengths. The collected data shows 

promise for collecting diagnostically useful optical parameters (see Chapter 4). In 

Chapter 5, we discuss instrumentation that could improve the accuracy and diagnostic 

utility of the time-resolved collection of the RFLS through the  simultaneous collection of 

wavelength- and time-resolved fluorescence data [24]; sample data is shown in Figure 

1.4. Each data collection contains wavelength-resolved spectra and numerous time-

resolved decays. Figure 1.4A is a three-dimensional matrix composed of both 

wavelength- and time-resolved fluorescence intensity data. Time-resolved decays can be 

extracted at each measured wavelength. In Figure 1.4B, the fluorescence decay was 

extracted at the wavelength of peak fluorescence intensity and fit to a single-exponential 

decay with a least-squares iterative fit. Extracted lifetime parameters compared very well 

to expected literature lifetimes [24]. The breadth of collected fluorescence data and high 

quality, accurate fit illustrates the promise for using time-resolved fluorescence 

instruments to monitor tissue-engineered constructs with multiple fluorophores present 

and varying environmental conditions. 
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Figure 1.4. Wavelength- and time-resolved fluorescence data from a standard 
calibration fluorophore (Rhodamine 6G) is shown. (A) A three-dimensional 
matrix is composed of fluorescence time-resolved decays at user-selected 
wavelengths and a resulting wavelength-resolved spectrum. Time-resolved 
decays can be extracted and analyzed at each user-input wavelength, including 
the peak fluorescence intensity wavelength. In a complex sample with multiple 
fluorophores, decays can be extracted and analyzed at several wavelengths, 
yielding different decay dynamics vs. wavelength that reveal the relative 
proportion of each fluorophore in the sample. (B) The fluorescence decay at 
the wavelength of peak fluorescence intensity was extracted and analyzed via a 
least-squares iterative fit to a single exponential decay. Minimal residual 
shows a high quality fit [24]. (Used with permission) 

 

1.4.8.4 Optical data analysis 

A variety of analysis techniques can be employed to correct optical data and extract 

information potentially useful for sample classification and viability determination, 

including the tissue fluorophores present, their relative concentrations, their 

microenvironment, and the scattering and absorption coefficients of the sample. Many 

classification techniques have been applied to tissue fluorescence spectroscopy such as 

principal component analysis [59], linear discriminate analysis [4], partial least squares 

discriminate analysis [60], semi-empirical algorithms [23], and fluorescence ratio 

algorithms [31]. Techniques range in complexity from relatively simple to technically 

sophisticated in nature, and which to employ is application dependent. Often, several 
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techniques are evaluated before identifying the algorithm optimal for a specific 

application. 

1.4.8.5 Correcting optical data 

Many factors can impact the quality of fit and extraction of sample parameters from 

measured data. Of these, particularly notable are optical attenuation artifacts that can 

affect the spectral line-shape or influence the time-resolved measurements from a sample. 

Therefore, many techniques have been developed to correct measured tissue optical data 

for common attenuation artifacts [61], including blood absorption and oxygen quenching 

with fluorescence measurements [45] and in combination with reflectance measurements 

[23,62,63]. Carefully applying these techniques can enable the reconstruction of intrinsic 

optical data, thereby improving the quality and capabilities of data analysis. 

 

1.4.9 Fiber-optic probe spectroscopy 

Fiber-optic probes are employed for optical spectroscopy applications that are 

incompatible with free space light delivery and detection. Under these conditions, remote 

sensing with fiber-optic probes is convenient because it is non- or minimally-invasive, 

non-destructive, portable, and adaptable to measure a variety of samples, including future 

use in common clinical applications such as endoscopy or remote tissue sensing in space 

confined human cavities, such as the mouth. Many fiber-optic probes have been 

developed for use in biological tissue diagnostics, offering capabilities for tissue-

construct monitoring [64]. Additionally, probes allow repeated measurements with 

selective sample interrogation, can be scanned over the sample volume to characterize a 

large tissue surface relatively quickly, and require little user training prior to use. The 
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probe geometries discussed below are not limited to a signal modality, being widely 

applicable for numerous spectroscopic applications, including fluoresce and reflectance 

spectroscopy discussed in this dissertation. 

1.4.9.1 Quantitative models for probe design 

Mathematical models have been developed to quantify fluorescence measurements from 

tissue samples [63] and tissue-engineered samples [65], including models based on the 

diffusion approximation [66], semi-empirical models [23,67], and Monte-Carlo (MC) 

simulations [32,33,68,69]. Accurate models provide the means of predicting measured 

fluorescence prior to experimentation, affording the opportunity to optimize probe 

design. These models are only as accurate as the input parameters [70] and only useful if 

the optimal probe design can be manufactured. For label-free sensing in tissue 

engineering applications, endogenous fluorophores and common tissue scattering and 

absorption properties have been well characterized and literature values can be employed 

as model inputs [13,54]. 

 MC codes have been especially important in the development of optical spectroscopy 

applications, instrumentation setups, and appropriate fiber-optic probes [33,71]. An 

accurate MC code provides a flexible framework that can be employed to easily and 

accurately model a new optical setup or to predict the expected optical data obtained from 

measuring a new sample with input excitation and collection parameters. The MC 

approach can follow photon propagation for small path lengths (as small as 10-100 µm 

[71]), making it possible to model configurations where the same fiber is employed for 

both excitation and detection. MC models can be  successfully applied to photon 

propagation in small tissue volumes, a regime where other models based on transport 
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equations lose accuracy [63]. MC codes for fluorescence have been successfully 

developed to model human tissue [69] as well as tissue-engineered constructs [72]. 

Before spending the time and resources for probe development, having the ability to 

predict the optimal probe design can be an invaluable tool. 

1.4.9.2  Probe Design 

Fiber-optic probe geometries have been developed and employed for a wide range of 

biomedical optical spectroscopy sensing applications [64,73,74]. Probe design is 

dependent upon the optical technique being employed; however, many probe geometry 

concepts can be adapted for different modalities. For example, ball lenses have been used 

for both fluorescence [75] and Raman spectroscopy [76].  

Several important choices are made when designing a probe, including the number of 

excitation and emission fibers and their diameters, the excitation and collection geometry, 

and the method for coupling the fiber-optic probes to the sample. Also, careful 

consideration must be given to the fluorophores under investigation, where they are 

located in the sample, the sample volume to study, the scattering and absorption 

properties of the sample, background signal present, environmental factors (temperature, 

pH, oxygenation, probe pressure), and any external size constraints on the fiber-probe 

geometry.  

Figure 1.5 provides an overview of several fiber-probe geometries that can be employed 

for the detection of fluorescence from tissue-engineered constructs. In particular, 

arrangements are included with fiber probes normal to the tissue surface with varying 

configurations for excitation and collection (Figure 1.5A-1.5D), with angled fibers 

(Figure 1.5E), with a ball lens (Figure 1.5F) and with beveled fibers (Figure 1.5G and 
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1.5H). Probes best used for measuring fluorescence from bulk tissues are located in the 

top row of Figure 1.5. Probes best used for measuring fluorescence from controlled 

depths within a tissue are located in the bottom row of Figure 1.5.  

Figures 1.5A and 1.5B illustrate the two simplest fiber-probe geometries to employ for 

experiments in scattering media. The excitation photons enter the tissue according to the 

optical fiber’s numerical aperture, but due to light scattering in the medium, this creates 

an optical glow ball dependent on the scattering coefficient of the sample, but on the 

same order of size as the fiber diameter. Detected fluorescence photons are most likely to 

originate within this glow ball volume [32,77].  

When employing the optical setup in Figure 1.5B, the source to detector fiber separation 

has a significant impact on the path detected photons travel. Here, the detected 

fluorescence photons are most likely to travel along a parabolic shape, with the depth 

traveled related to the source to detector fiber separation, also dependent on scattering 

coefficient. 
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Figure 1.5. Fiber-optic probes for tissue spectroscopy have been developed 
using a variety of geometries, as illustrated here [64]. (A) Probe that uses a 
single fiber for both excitation and detection. The excitation light propagates 
into the turbid media and creates a glow ball of excitation light; detected 
fluorescence photons also originate within the glow ball. (B) Probe with a 
single source fiber and multiple detector fibers positioned at various distances 
from the excitation fiber. This probe can detect photons that traveled deeper 
into the tissue than in (A), with larger depth penetration for increased center-
to-center spacing. Average classical photon path are shown between each fiber 
by the parabolic volumes. (C) A ring fiber bundle is employed to detect the 
same fluorescence information as in (B), but more fluorescence is detected 
with multiple source or detection fibers. Additionally, several center-to-center 
fiber spacing can be employed to detect different sample depths. Each 
concentric ring of fibers (gray and black) represents collection fibers with a 
fixed center-to-center spacing relative to the central white fiber. Employing 
concentric rings of fibers for excitation or emission detection can increase the 
measured fluorescence intensities. Fiber rings can be employed for either 
excitation or detection, with modifications interrogating different photon 
paths. (D) A vertical offset is introduced between the fiber probes and the 
sample surface to predominately excite and detect from a more superficial 
depth than in either (A) or (B). (E) Probe in which the fibers are angled 
relative to the sample. Angled excitation and detection promotes the detection 
of photons to propagate to shallower paths and thus detected fluorescence 
originates from shallower tissue depths. (F) A ball lens is employed to excite 
fluorescence in the upper layer of a sample. The detected fluorescence has 
been shown to be from a more superficial layer than that in (A) and (B) [78]. 
(G, H) Beveled fibers are employed that function similar to the angled fiber in 
(E) without needing to change probe orientation relative to tissue surface. (H) 
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Beveled fibers can be designed to detect fluorescence from different sample 
layers or depths [79]. 

 

1.4.9.3 Fiber-optic probe geometries 

An important concern when selecting experimental probe geometry is the sample depth 

interrogated. The exact sample volume interrogated can be determined by employing 

Monte Carlo or diffusion photon propagation models. However, rough approximations 

can be provided for the upper and lower rows of Figure 1.5. For the upper row, sample 

depth analyzed is on the order of the center-to-center fiber spacing employed [80,81] (i.e. 

~1 mm3 sample volume analyzed with 600 µm diameter probes at small center-to-center 

spacing). For the bottom row, experimental set-ups are designed to mimic confocal 

microscopes with thin sectioning capabilities [74,79] (i.e. preferentially isolating a 

measurement top-layer thickness on the order of < 500 μm). 

1.4.9.3.1 Fibers perpendicular to tissue 

One of the simplest probe designs employs a single optical fiber (or multiple optical 

fibers) oriented perpendicular to the tissue surface [9,68,82]. When such a probe is placed 

in contact with tissue, excitation photons create a glow ball (Figure 1.5A, B), with 

photon excited volume diameter related to the scattering coefficient of the sample that 

has a diameter on the order of magnitude of the probe diameter, dependent on the 

scattering coefficient. Common applications involve bulk samples where fluorescence is 

detected from a large sample volume. 

For a single fiber, a shallower sample layer is studied and more signal is generally 

detected, as the light photons travel a shorter path before detection [68]. For multiple 

probe geometries, the excitation photons generating detected fluorescence photons travel 
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a longer and relatively deeper path prior to detection, encountering more scatterers, 

absorbers, and fluorophores in optical paths that are parabolic in shape, based on the 

sample optical scattering properties [83]. Detection depth depends on the diameter of the 

fibers employed and the center-to-center probe spacing (Figure 1.5B), with smaller fiber 

diameters and smaller center-to-center spacing detecting shallower depths. 

A MC study to analyze the effects of numerical aperture, fiber diameter, source-

collection fiber separation distance, and fiber-tissue spacer thickness in multi-fiber probes 

geometries designed for fluorescence spectroscopy [68] predicted several experimental 

effects. These include that increases in numerical aperture could increase the detected 

signal without changing the origin of fluorescence. For example, increasing the probe to 

tissue surface standoff distance promotes probing a more superficial depth, shrinking 

both excitation and collection fibers promotes detecting fluorescence from a superficial 

depth, and increased center-to-center source detector fiber-optic probe spacing results in 

homogenous sample fluorescence measurements because detected photons have a wide-

range of optical paths before being collected. Each finding should be considered when 

designing or implementing a fluorescence spectroscopic measurement with a multi-fiber 

setup. 

1.4.9.3.2 Angled fibers 

As with the probes described above, angled probes can be designed using Monte Carlo 

codes and validated on tissue-simulating phantoms before use on tissues. Angled 

excitation or collection fibers can be employed to achieve depth selectivity within a 

sample [72,84] and to increase depth selectivity in multilayered epithelial tissues [84,85]. 
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Such probe geometries employed are easily translatable to tissue-engineered constructs 

which mimic similar tissue geometries.  

Another approach to angle the excitation light is to employ beveled fibers, similar to the 

sketch in Figure 1.5H. This model was employed for elastic light scattering [79], but the 

probe design could be employed for fluorescence spectroscopy with minimal alterations. 

The model tested a developed probe with 110 µm diameter beveled fibers (35°, 40°, 45°). 

Predictions showed that depth resolution between ~350 µm and ~1200 µm could be 

achieved and confirmed with a three-layer scattering phantom and that a 40° bevel angle 

was optimal for depth resolving measurements on tissue-simulating phantoms mimicking 

oral precancer and in vivo on normal human oral mucosa. Beveled fibers could be 

manufactured to mimic the angled fiber results while not increasing the outer diameter of 

a stand-along probe due to the bending radius of the tilted fiber, a setup that can be 

employed when sectioning is desired but the probe outer diameter is a limiting design 

factor. 

1.4.9.3.3 Lens-coupled fibers 

Fiber-optic probes coupled with lenses (such as an objective lens or ball lens) can be 

employed to achieve fluorescence depth selectivity. These setups often attempt to mimic 

the depth selection of a microscope without requiring the additional expense and bulk of 

microscopy equipment. Advantages to employing such setups include a smaller fiber 

bundle setup that is desirable for clinical measurements. Similar probes have been 

employed for Raman spectroscopy [76].  

When compared to measurements with fibers perpendicular to the sample, employing a 

ball lens was found to extract 3.8 times and 0.74 times as much fluorescence from the top 
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and bottom layers, respectively [78]. This experiment highlights that fiber-optic probe 

and optical lens geometries can lead to greater optical interrogation from superficial 

sample depths, useful when interrogating an epithelial cancer or thin tissue-engineered 

construct. Fiber-optic probes incorporating both beveled fibers and ball lenses have been 

designed and simulated for fluorescence spectroscopy measurements with improved 

depth-resolution [86]. Depth-selective probes have also been employed to analyze 

samples at a constant, superficial depth for reflectance spectroscopy [74]. With minimal 

to no changes in design, this probe could be employed for fluorescence. Confocal and 

multiphoton-excitation fluorescence spectroscopy 

Inhomogeneous tissue-engineered samples, such as layered constructs, require 

spectroscopic techniques that preferentially excite fluorophores in a single layer of the 

construct, possibly at some preferred depth. These specifications are difficult to achieve 

using fiber-optic probes. Conventional applications to achieve sample sectioning include 

histology (destructive in nature) or other methods of sample staining. However, living 

tissue-engineered constructs can be analyzed with confocal and multiphoton-excitation 

fluorescence spectroscopy in a non-destructive and non-harming manner. Therefore, 

confocal and multiphoton spectroscopies have been employed to optically section thick 

biological samples down to thicknesses comparable to a cellular layer (a few m),  [87], 

thereby reducing  the presence of background fluorescence from additional layers 

[88,89]. Confocal and multiphoton-excitation fluorescence spectroscopies are newly 

applied in the field of regenerative medicine, with few reported studies. Neither of these 

applications will be discussed in this dissertation, but are important to consider for future 

work due to the improved spatial resolution possible.  
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1.4.10 Example Applications 

Following is a brief introduction to studies performed with optical spectroscopy. It is 

meant as an overview of the types of studies performed and not a thorough scientific 

review. 

Applications of optical spectroscopy include sensing alterations in extracellular matrix 

collagen, including changes related to polymerization and temperature (attributed to 

alterations in collagen content), thermal stressing of collagen constructs to detect 

reversible or irreversible changes to collagen [90], detecting the viscoelasticity of tissue-

engineered cartilage samples by monitoring type II collagen [91,92], and monitoring 

articular cartilage samples by studying extracellular collagen and intracellular NADH 

[27]. Furthermore, an important application of fluorescence spectroscopy is to monitor 

cellular or tissue metabolism. It has been reported that NADH and FAD are natural 

biomarkers for cellular metabolism. In addition, a ratiometric method to evaluate cellular 

metabolism was developed with NADH and FAD fluorescence [16]. Therefore, 

characterizing the fluorescence properties of these endogenous fluorophores is the first 

step toward the accurate quantification of cellular viability.  

 

1.4.11 Clinical need for non-invasive optical diagnostics 

Optical spectroscopy provides a useful tool for interrogating human tissues in vivo and 

tissue-engineered constructs, enabling targeted, selective, quantitative, and non-invasive 

techniques to assess tissue health and disease status. While optical spectroscopy has been 

widely investigated as a diagnostic technique to assess tissue status, it has only recently 

been applied to studies in regenerative medicine. For improved human disease detection, 
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a primary obstacle is improving quantitative detection of cancer at early stages before the 

disease has become incurable [93].  For tissue engineering, a primary obstacle for the 

clinical translation of “cell-scaffold products” is known to be “the development of 

appropriate in vitro and in vivo testing and characterization methods [10].”  

 

1.5 Dissertation Objectives 

With an understanding of the advantages and common uses of optical spectroscopy, this 

dissertation details employing steady-state reflectance, steady-state fluorescence, time-

resolved fluorescence, or combinations thereof to address two clinical challenges: (1) 

improved detection of pancreatic disease and (2) assessing wound healing of in situ 

tissue-engineered constructs. 

 

Specific Aim 1: To verify and validate a semi-empirical model of steady-state 

reflectance for quantitative optical assessment of pancreatic disease from tissue-

simulating phantoms and ex vivo human pancreatic data. A photon-tissue interaction 

(PTI) model was previously developed and employed to extract optical absorption and 

scattering parameters from human ex vivo pancreatic tissues. Here, we will verify the PTI 

model with measurements of tissue-simulating phantoms with varying absorption and 

scattering properties and validate the model with measurements of ex vivo human 

pancreatic tissues with varying absorption over repeated measurements at unique sites. 
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Specific Aim 2: To assess in vivo feasibility of optical spectroscopy, analyzing 

diagnostic utility of steady-state reflectance, steady-state fluorescence, and time-

resolved fluorescence measurements.  The first-ever in vivo optical spectroscopic 

measurements of human pancreatic tissues will be collected with clinically-compatible 

instrumentation during open surgery. Diagnostic utility of in vivo measurements will be 

assessed with site-matched in and ex vivo measurements of steady-state reflectance, 

steady-state fluorescence, and time-resolved fluorescence. For the first time, diagnostic 

utility of time-resolved fluorescence measurements of ex and in vivo measurements will 

be assessed with a rigorous classification model. 

Specific Aim 3: To design and develop instrumentation for rapid collection of 

wavelength-time matrices. Clinically-compatible instrumentation will be developed to 

collect wavelength-time matrices, three-dimensional data sets containing numerous 

wavelength-resolved fluorescence decays. Future potential to assess in vivo biological 

tissues will be discussed. 

Specific Aim 4: To assess post-implantation wound healing of tissue-engineered 

constructs with diffuse reflectance spectroscopy. For the first time, depth-sensitive 

diffuse reflectance spectroscopy will be employed to assess post-implantation construct 

wound healing in an in situ murine model to distinguish healthy from compromised 

constructs. 
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1.6 Dissertation Overview 

Chapter 2 describes the verification and validation of a photon-tissue interaction model, 

verifying the model with measurements from tissue-simulating phantoms and validating 

the model with measurements from ex vivo human pancreatic tissues. 

Chapter 3 describes the first-ever in vivo steady-state optical spectroscopy measurements 

of human pancreatic tissues during open surgery, comparing the diagnostic utility of in 

vivo measurements to a previously-collected ex vivo data set. 

Chapter 4 describes the first-ever analysis of an ex and in vivo time-resolved 

fluorescence data set from human pancreatic tissues. A rigorous classification model was 

employed to account for intrapatient correlations during tissue classification. 

Chapter 5 describes the development of novel, clinically-compatible instrumentation to 

collect wavelength-time matrices for enhanced time-resolved characterization of 

biological tissues. 

Chapter 6 describes the assessment of post-implantation tissue-engineered construct 

wound healing in an in situ murine model with diffuse reflectance spectroscopy and 

corresponding analysis to distinguish healthy from compromised constructs post-

implantation. 

Chapter 7 describes the regulatory approval process for optical spectroscopic 

technology, outlining the necessary steps from idea conception, device development, 

human trials, and finally to clinical use.  

Chapter 8 concludes the dissertation, emphasizing scientific contributions described in 

this dissertation and future work. 
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Chapter 2.  
Verification and validation of a photon-tissue interaction model 

2.1 Introduction 

Reflectance spectroscopy has the potential to provide quantitative, minimally invasive 

tissue assessment for biomedical applications, such as detection of cancer 

[5,7,20,23,63,94-98], atherosclerosis [99], and monitoring of brain injuries [100], by 

providing tissue parameters related to optical scattering (including scatterer size and 

concentration) and absorption (including hemoglobin concentration and blood-oxygen 

saturation). These parameters can be extracted from reflectance data via mathematical 

models, including models developed from diffusion theory, Monte Carlo simulations, or 

semi-empirical equations [1]. Previously, we showed that a semi-empirical Photon-Tissue 

Interaction (PTI) reflectance model has the potential to extract diagnostically-relevant 

parameters related to tissue morphology (Figure 2.1) and biochemistry in the human 

pancreas [23,101]. The model mathematically transforms an average measured 

“canonical normal” pancreatic tissue reflectance spectrum into an accurate model for 

pancreatitis (by increasing the collagen concentration) and adenocarcinoma (by 

increasing the collagen concentration and the mean size of the cell nuclei). 
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Figure 2.1. Conceptual illustration (to scale) of the distribution of 400 nm 
photons (left) and 700 nm photons (right) launched into a pancreatic 
adenocarcinoma tissue site with the fiber-optic probe configuration used in 
clinical studies (three adjacent identical fibers with diameter 600 m, arranged 
in a triangular configuration). The probe appears tilted to show the bottom face 
of the fibers, but the optical axis of the probe was placed perpendicular to the 
tissue surface for all measurements reported in this study. The distribution of 
photons within the tissue (orange and yellow glowball) is related to scattering 
from morphological tissue features (shown here as purple-stained cell nuclei 
and pink-stained extracellular collagen fibers). The structural tissue 
components (such as cell nuclei and extracellular collagen fibers) responsible 
for wavelength-dependent scattering of incident light are not expected to 
change during short periods of data acquisition, even when hemoglobin 
concentration and blood oxygenation (and hence, wavelength-dependent 
absorption) are changing. Therefore, quantitative optical spectroscopy (with 
PTI modeling) should enable accurate and consistent scattering property 
extraction even when tissue absorption is changing due to variations in blood 
content. The histology images are from [102]. 

 

 
Assessing optical spectroscopic methods for tissue diagnostics [7] involves analyzing 

extracted tissue parameters to calculate their predictive accuracy for diagnostic 

classification [5,7,23,94-96,103]. Reported studies have analyzed a single measurement 
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for each tissue site [94,95], averaged repeated measurements [104], or considered 

multiple measurements acquired from the same site to be independent [5,7]. However, 

quantifying the precision of quantitative optical spectroscopy over the time-course of 

measurement is important for both in vivo studies of human tissue (where blood is 

dynamically flowing through the tissue, and measurements may be impacted by fiber-

probe pressure and the puncture of a needle-based probe [105]) and ex vivo studies 

(where blood is draining from the tissue and becoming more oxygenated over time). 

Variations in blood content that occur in vivo can be linked to hypoxia and tissue 

vasculature [106,107], which are important considerations in clinical studies. Therefore, 

precise ex vivo quantification of tissue scattering parameters in the presence of notable 

changes to tissue hemoglobin concentration provides a proof-of-principle that the optical 

method should also be able to quantify these parameters in vivo (where the tissue 

scattering should be the same as that measured ex vivo, but the absorption could change 

significantly due to differences in blood content). 

Here, we apply the PTI model to data collected from tissue-simulating phantoms and 

freshly excised pancreatic tissues. In Section 2.2, we describe the data acquisition 

procedures employed in this study. In Section 2.3, we validate the PTI model on tissue-

simulating phantoms and then describe how individual tissue absorption and scattering 

parameters affect the PTI modeled reflectance of human pancreatic tissues. In Section 

2.4, we show that tissue scattering parameters extracted from human pancreatic tissue 

reflectance measurements remain consistent even for tissue sites at which repeated 

measured spectra appear very different due to blood draining from the tissue over the 

course of measurement. Section 2.5 gives the conclusions of the paper. 
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2.2 Experimental methods 

2.2.1 Prototype instrumentation 

Prototype clinically-compatible instrumentation [27,31] was developed, as described in 

detail previously [5,31], to acquire reflectance spectra from tissue-simulating phantoms 

and  human pancreatic tissues. Human pancreatic tissue measurements were obtained 

within 30 minutes of surgical resection at the University of Michigan (U-M) Medical 

Center. The human tissue study received approval from the Institutional Review Board of 

the U-M Medical School, and written consent was obtained from all patients.  

Briefly, a tungsten-halogen lamp was employed as the reflectance source and light from 

the lamp was directed onto the surface of the sample with a source optical fiber. 

Reflectance photons were collected by a separate detector fiber placed adjacent to the 

source fiber (Figure 2.1). The probe also included a third optical fiber for collection of 

fluorescence photons (not described in this report). Light from the detector fiber was 

coupled to a spectrograph-coupled intensified charge-coupled device (ICCD) for spectral 

detection. The ICCD was wavelength-calibrated with a mercury-argon lamp (Oriel 

Instruments) with known emission wavelengths. The spectral response of the instrument 

was determined by measuring the spectrum of a tungsten-halogen lamp (Oriel 

Instruments, National Institute of Standards and Technology traceable) and dividing the 

measured spectrum by the theoretical spectrum from Oriel Instruments. Measured data 

were divided by the spectral response for calibration.  The instrumentation also included 

components to acquire fluorescence data, although fluorescence data analysis is outside 

the scope of this report. 
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2.2.2 Tissue-simulating phantom measurements with two fiber-optic probes 

For measurements on tissue-simulating phantoms, we employed two different fiber-optic 

probes: a probe containing fibers of 600 m diameter (600/660 probe) and a probe 

containing fibers of 200 m diameter (200/220 probe). The 660 and 220 denote the 

center-to-center spacing between source and detection fibers. Both probes had the 

configuration shown in Figure 2.1. The 200 m diameter fiber-probe was designed for 

compatibility with in vivo pancreatic fine-needle aspiration. 

Tissue-simulating phantoms were developed to mimic scattering and absorption 

properties of normal pancreatic tissues. The phantoms were mixtures of polystyrene 

microspheres (9 or 12 m diameter, Bangs Labs) and hemoglobin (5 M, 10 M, 15 M,   

20 M, and 25 M concentrations, Sigma-Aldrich). Phantoms were measured in a 1 cm 

quartz cuvette, and measurements occurred at least 2 cm from the cuvette bottom to 

eliminate boundary effects. The absorption spectrum of a 5 M solution of the 

hemoglobin (in deionized water) was measured with a spectrophotometer. 

2.2.3 Clinical human pancreatic tissue data acquisition protocol, histopathological 
“gold standard,” data pre-processing, and data exclusion 

Optical data were acquired from pancreatic tissues from each of 9 patients within 30 

minutes of excision. The spectrum of the light source was measured by placing a 

reflectance standard (Labsphere) in front of the instrument. Excess blood was wiped off 

of the tissue with gauze as needed, the on-site pathologist identified sites of interest on 

the excised tissue, and the optical probe was placed on those tissue sites for data 

acquisition. Some of these sites were beneath the surface of the tissue; in these cases the 

tissue was cut in order to provide access for the fiber-probe. At each site, the probe was 
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held in position by hand and monitored closely by the pathologist and the person taking 

the measurement. Repeated optical measurements (reflectance and fluorescence) were 

made at each site (with the exception of one site having only a single reflectance 

measurement) without removing the probe between measurements. The acquisition time 

for a single reflectance measurement was 1 second (obtained by averaging 10 

measurements of 100 ms each), and the time between repeated reflectance measurements 

on a given site was approximately 30 seconds.  When all measurements at a given site 

were completed, the probe was removed and the pathologist immediately excised a 

portion of the tissue from that site for standard histopathologic analysis. In this manner, 

optical measurements were obtained at multiple tissue sites from each patient and each 

tissue site had a specific histopathology reading, which served as the “gold standard” for 

the study.  

Prior to data analysis, reflectance spectra were background-subtracted, corrected for the 

instrument response, and divided by the lamp spectrum (which was also background-

subtracted and corrected for the instrument response). Then, all calibrated spectra were 

smoothed and normalized to peak intensity. Data analysis was performed on sites from 

which two usable measurements were acquired. Non-usable measurements (fluorescence 

signal-to-noise ratio < 25, or reflectance intensity at 550 nm < 10% of that at 650 nm, 

such that key scattering-related features were washed out due to extremely high levels of 

blood) were discarded. An additional five sites were removed due to artifacts from room 

lights. The resulting usable reflectance data set from 9 patients contained 42 sites (10 

normal, 19 chronic pancreatitis, 13 adenocarcinoma) and 84 measured spectra (2 per 
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site). Chronic pancreatitis indicates chronically injured tissue that may also be 

inflammed. 

It is important to note that in this study, variations in tissue blood content could not be 

experimentally controlled. Absorption-related variations were observed in the two 

reflectance spectra acquired at each site. These variations were presumably caused by 

changes over time in the concentration and oxygenation of blood in the freshly-excised 

tissues, known to occur during and to have impact upon post-resection measurements of 

optical spectra [31,108].  

 

2.3 Photon-Tissue Interaction (PTI) model 

2.3.1 Semi-empirical reflectance equations 

A PTI model using semi-empirical reflectance equations [41,109] (as described 

previously [23,101]) was employed to extract parameters attributed to absorption- and 

scattering (Table 2.1) from the measured reflectance spectra. Figure 2.2 illustrates the 

components of the PTI model. 

 

Table 2.1. Tissue parameters that can be characterized by photon-tissue 
interaction (PTI) model of reflectance. 

 
Scattering Absorption 

 
Morphological parameter related to cell 

nuclei, <L> 
Total hemoglobin  

concentration, [Hb]tot 

 Refractive index of cell nuclei, ns

Morphological parameter related to collagen 
fibers, c 

Blood-oxygen saturation, SO2 
Mean blood vessel radius, rbl 
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As shown in Figure 2.2, the starting point of the PTI model is an average measured 

“canonical normal” reflectance spectrum, Nmeasured(), obtained by averaging all 

reflectance measurements from histopathologically normal pancreatic tissue sites in the 

data set. This “canonical normal” spectrum is then mathematically transformed to 

produce a PTI model spectrum RPTI() that can be fit to an individual reflectance 

measurement of “unknown” tissue type. This mathematical transformation takes the 

form: 

RPTI ()  Nmeasured ()
Rempirical ()

Nempirical ()                                  (2.1) 

 In Eq. (2.1), Rempirical() and Nempirical() are quantities (obtained from semi-empirical 

equations) whose ratio is employed to scale the “canonical normal” reflectance into a PTI 

model prediction that can be fit to a reflectance measurement from an “unknown” tissue 

type. Both of these semi-empirical equations take the following general form R() 

[41,109]: 

R()  s
' ()exp 

Ccorra ()b

Ccorr ()a ()s
' () 

c













                             (2.2) 
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Figure 2.2. Conceptual illustration of the photon-tissue interaction (PTI) 
model employed to extract pancreatic tissue properties from measured 
reflectance spectra. The inset of the best fit PTI model is from [23]. 

 

In Eq. (2.2), a() is the tissue absorption coefficient and s’() is the reduced scattering 

coefficient, defined as s’() = s()(1-g), where g is the anisotropy [101]. The variables 
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b and c are related to tissue and fiber-probe properties [109]. Tissue scattering was 

attributed to cell nuclei (modeled as spheres [94,110] with mean diameter <L> and 

refractive index ns = 1.375) and collagen fibers (modeled as cylinders [111] with 

concentration c = 3x106 fibers/cm2). Tissue absorption was attributed to oxy- and deoxy-

hemoglobin [41,94,112], with a correction factor Ccorr() that accounted for the 

confinement of blood to cylindrical blood vessels [113] with mean radius rbl (set to 7 

m). From each reflectance measurement, a morphological parameter L/Lo and the total 

hemoglobin concentration [Hb]tot were extracted [23,101]. The morphological parameter 

ratio characterized changes in cellular morphology by analyzing spectral features 

attributed to cell nuclei diameter [101]. The value of L/Lo was previously shown to be 

larger for adenocarcinoma than for normal pancreatic tissue or pancreatitis, a result that 

agreed with histopathological observation [23,101]. 

 

2.3.2 Calibration of PTI model for different fiber-probe properties 

The first step in fitting the PTI model to the reflectance data from tissue-simulating 

phantoms was to empirically obtain the calibration coefficients b and c. These 

coefficients were determined by scaling the reflectance from the phantom with 5 M 

hemoglobin to that from the phantom with 10 M hemoglobin. In this fitting procedure, 

the absorber (hemoglobin) and scatterer (polystyrene microsphere) concentrations, as 

well as the scatterer size and refractive index, were set to their true values in the PTI 

model. The scattering coefficient s() of the microspheres was calculated with Mie 

theory, using the refractive index of polystyrene reported in [27]. During the fitting 

calibration, the parameters b and c were freely varied between 0.05 and 0.99, while the 
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anisotropy g for the phantom with 10 m hemoglobin was freely varied between 0.5 and 

0.99. A constrained optimization algorithm extracted the values of b, c, and g for each 

probe configuration. The best fit between the PTI model and the measured reflectance 

had an error in fit of <1% for the 600/660 and <3% for the 200/220 probe (error function 

ER = |Rmeasured() – RPTI()|/Rmeasured()) from 400-760 nm). The values of b, c, and g 

extracted from these fits were b = 0.71, c = 0.28, and g = 0.875 for the probe with 600 

m diameter fibers and b = 0.72, c = 0.50, and g = 0.875 for the probe with 200 m 

diameter fibers. These sets of coefficients were then used in the PTI model to extract 

phantom absorption and scattering properties (Section 2.3.3). For analysis of human 

pancreatic tissue reflectance measurements (Sections 2.3.4 and 2.4), the values of b and c 

were set to 0.22 and 0.2, respectively, following our previous publications [5, 6]. 

 

2.3.3 Verification of PTI model with tissue-simulating phantom measurements 

To verify the ability of the PTI model to extract accurate absorption and scattering 

properties, two different tests were performed. First, for both fiber-probes described in 

Section 2.2.2, the reflectance measurement from the phantom with polystyrene 

microspheres and 5 M hemoglobin (the “canonical normal” measurement for this study) 

was scaled to model the reflectance measurement from the phantom with polystyrene 

microspheres and either 10, 15, 20, or 25 μM hemoglobin (Figure 2.3). For each probe, 

the measured reflectance from the two experimental trials only deviated by ~2%, so the 

average of the two measurements was fit with the PTI model. The extracted values of b, 

c, and g for each probe (Section 2.3.2) were employed in this fitting procedure. Figure 

2.3(a) shows the best fit of the PTI model to the averaged reflectance obtained with the 
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600 m diameter probe (mean percent error in fit < 2%). Figure 2.3(b) shows the best fit 

of the PTI model to the averaged reflectance obtained with the 200 m diameter fiber-

probe (mean percent error in fit < 4%). The extracted diameter of the scatterers was 

accurate to within 1% for all hemoglobin concentrations, and the extracted concentration 

of the absorber was accurate to within 17%. The discrepancy between the percentage 

error in the absorption and the percentage error in the scattering was attributed to cross-

talk between the absorption concentration parameter and the scatterer concentration 

parameter Ns. Fitting results extracted consistent optical scattering and absorption 

parameters from measurements of tissue-simulating phantoms with 12 μm diameter 

polystyrene microspheres (data not shown). 

Second, the reflectance measurement obtained with the 600 m fiber probe from the 

phantom with 9 μm diameter polystyrene microspheres and 5 M hemoglobin was scaled 

to model the reflectance obtained with the 200 m fiber probe from the phantom with 9 

μm diameter polystyrene microspheres and 20 m hemoglobin. The measured reflectance 

from the two experimental trials only deviated by < 4%, so the average of the two 

measurements was fit with the PTI model. For this case, the extracted values of b, c, and 

g for both probes (Section 2.3.2) were employed in the same PTI fitting procedure, and 

Figure 2.4 shows the best fit of the PTI model to the averaged reflectance (mean percent 

error in fit < 5%). The extracted diameter of the scatterers was accurate to within 1% and 

the extracted concentration of the absorber was accurate to within 6%. 
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Figure 2.3. PTI model accurately scales reflectance measurements from tissue-
simulating phantoms with 5 μM hemoglobin to those from phantoms with 20 
M hemoglobin. Measurements were obtained using fiber-optic probes with (a) 
600 μm diameter fibers with center-to-center spacing of 660 μm and (b) 200 
μm diameter fibers with center-to-center spacing of 220 μm. Both phantoms 
also included scattering from polystyrene microspheres with 9 μm diameter. 
PTI model fits extracted tissue optical parameters, including scatterer diameter 
and concentration, concentration of absorbers, and anisotropy. PTI model best-
fits (shown) extracted scatterer diameter to within 1% and absorber 
concentration to within 17%. 
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Figure 2.4. Demonstration of PTI model scaling measured canonical normal 
with 600/660 probe to measured reflectance obtained with 200/220 probe from 
a phantom with different absorption than the canonical normal. In this 
demonstration, the canonical normal was measured from a liquid phantom 
composed of 9 μm diameter polystyrene microspheres and 5 μM blood in 
deionized water with the 600/660 probe. The measured reflectance was 
measured from a liquid phantom of 9 μm microspheres, but with 20 μM blood 
and measured with the 200/220 probe. Scatterer diameter was extracted to < 
1% error and absorber concentration was extracted to < 6% error. 

 

2.3.4 Effect of scattering parameters on PTI reflectance model of human 
pancreatic tissues 

Figure 2.5 illustrates how Eqs. (2.1) and (2.2) can be employed to mathematically 

transform an average measured “canonical normal” human pancreatic tissue spectrum 

(obtained here by averaging 20 reflectance measurements from normal pancreatic tissues) 

into a PTI reflectance model RPTI(λ) for pancreatic tissues with different scattering 

properties. In Figure 2.5(a), the morphological parameter attributed to collagen fibrils ρc 
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is varied, and in Fig. 2.5(b), the mean morphological parameter <L> is varied. In both 

cases, the region of the spectrum from 450-525 nm is most prominently affected. 

 

Figure 2.5. Effect of changes in two different scattering parameters on PTI 
reflectance model RPTI(λ) of human pancreatic tissue: (a) varying values of the 
morphological parameter attributed to collagen ρc and (b) varying values of the 
mean morphological parameter <L>. Changing the morphological parameter 
attributed to collagen has a subtle effect on the reflectance lineshape from 450-
525 nm, while changing the mean morphological parameter size has a much 
more notable effect on the reflectance in this region. 

 

        
Using Figure 2.5 as a guide, Figure 2.6 shows how some key features of the reflectance 

spectra from the PTI model (Figure 2.6(a)) correspond to average measured reflectance 

data from human chronic pancreatitis and adenocarcinoma (Figure 2.6(b), [5]). First, the 

mean morphological parameter size is kept constant but the morphological parameter 

attributed to collagen is multiplied by a factor of three, shown in the medical literature to 

be indicative of both chronic pancreatitis and adenocarcinoma [114]. In this case, the PTI 

reflectance model (dot-dashed green line in Figure 2.6(a)) looks similar to the average 

measured reflectance from chronic pancreatitis (dot-dashed green line in Figure 2.6(b)). 

This result is consistent with the observation at histopathology that chronic pancreatitis 
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is characterized by increased extracellular collagen, but no significant increase in the 

mean size of cell nuclei (relative to normal tissue) [101]. 

 
Next, the morphological parameter attributed to collagen fibrils is kept at three times that 

of normal tissue, but the mean morphological parameter size <L> is increased from its 

initial value of Lo to a value of 1.25x Lo. For this larger value of <L>, one can see the 

similarity between the PTI reflectance model (dashed red line in Figure 2.6(a)) and the 

average measured reflectance from adenocarcinoma (dashed red line in Figure 2.6(b)). 

This result agrees with the observation at histopathology that adenocarcinoma is 

characterized by increased extracellular collagen and enlarged cell nuclei (relative to 

normal tissue) [101]. 

 

Figure 2.6. Demonstration of PTI reflectance models RPTI() for various 
combinations of tissue scattering parameters (a), shown alongside average 
measured data from human pancreatic tissues [31] (b). When the 
morphological parameter attributed to collagen fibrils is increased to three 
times that of normal pancreatic tissue but the mean morphological parameter is 
left unchanged (dot-dashed green line in (a)), there is a notable similarity 
between the PTI model and the measured data from chronic pancreatitis (dot-
dashed green line in (b)), relative to normal (blue lines in (a) and (b)). When 
the mean morphological parameter is increased to 1.25 times that of normal 
tissue, and the morphological parameter attributed to collagen fibrils is kept at 
three times that of normal tissue, the PTI model (dashed red line in (a)) looks 
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similar to the average measured reflectance from adenocarcinoma (dashed red 
line in (b)), relative to normal. The increase in morphological parameter 
attributed to collagen fibrils provides a subtle change in the reflectance from 
450-525 nm, while the increase in nuclear morphological parameter size is 
responsible for the more pronounced change in the reflectance in this region. 
The error bars in (b) represent the standard error. 

 

2.4 Consistency of PTI model of human pancreatic tissue when blood 
concentration varies 

2.4.1 Degree of difference between repeated measurements at each human 
pancreatic tissue site 

Changes in pancreatic tissue blood concentration at the measurement site will affect the 

optical absorption properties of the tissue. However, these changes should not 

significantly affect the dependence of the tissue reflectance spectrum on the disease-

related alterations in tissue scattering modeled in Figures 2.4 and 2.5. To confirm this 

hypothesis, we analyzed the subset of human pancreatic tissue sites for which there was a 

significant degree of difference between the two repeated reflectance measurements R1() 

and R2(). These sites were identified by using the manually-selected criterion |R2()-

R1()| > 4.25. Here,  denotes a sum over all wavelengths between 400 nm and 700 nm 

(the same range over which the PTI model was fit to each reflectance spectrum). Using 

these criteria, 26 of the 42 sites exhibited significant differences between the two 

measured reflectance spectra in the 400-450 nm and 525-600 nm ranges, where 

absorption from hemoglobin is known to visibly affect reflectance. These differences 

were attributed to variations in the amount of blood during the time-course of the 

experiment. For the other 16 sites, there was no significant variation between the two 

reflectance measurements (illustrating the capability of the instrumentation and 

experimental protocol to provide consistent measurements). 
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2.4.2 Procedure to fit PTI model to measured human pancreatic tissue reflectance 
spectra 

The PTI model was fit to each of the two reflectance spectra acquired from all 42 sites. In 

the fitting procedure [23], representative parameters of the cellular nuclear refractive 

index ns and morphological parameter attributed to collagen fibrils c were kept constant 

(at values of ns = 1.375 and c = 9x106 fibers/cm2, respectively [101,111,114]), while 

representative parameters of a morphological parameter L/Lo (attributed to varying size 

and shape of cell nuclei) was varied from 1.0 to 1.5 (in steps of 0.1), the blood-oxygen 

saturation SO2 was varied from 0.1 to 0.9 (in steps of 0.1), and the total hemoglobin 

concentration [Hb]tot was varied over an expanded range (from 1 M to 401 M, in steps 

of 5 M) to better account for the blood content of the tissue.  

For each measurement, the best fit of the PTI model to the data was defined to be the fit 

that minimized the cost function CR = |Rmeasured() – RPTI()|, where Rmeasured() was the 

measured reflectance spectrum, RPTI() was the PTI reflectance model, and  represented 

a sum over all wavelengths from 400-700 nm. For each site, the values of L/Lo and 

[Hb]tot extracted from the best fits were compared for the two repeated measurements. 

The parameter L/Lo was used in this analysis because changes in L/Lo have previously 

been shown to distinguish the adenocarcinoma spectra from the normal and chronic 

pancreatitis spectra [101].  

2.4.3 Consistency of scattering properties extracted from repeated measurements 
at each human pancreatic tissue site 

Figure 2.7(a) shows two measured reflectance spectra (solid lines) from a single 

adenocarcinoma site, along with the corresponding fits of the PTI model (dashed lines) to 

each spectrum. According to the criterion described in Section 2.4.1, the two 
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measurements shown in Figure 2.7(a) were not considered to be significantly different. 

As expected, the extracted values of the morphological parameter L/Lo and the mean 

reduced scattering coefficient <s
’> were identical for the two repeated measurements.  

Figure 2.7(b) shows two measured reflectance spectra (solid lines) from a second 

adenocarcinoma site, along with the corresponding fits of the PTI model (dashed lines) to 

each spectrum. Here, according to the criterion described in Section 2.4.1, the two 

measurements were considered to be significantly different. Indeed, the [Hb]tot values 

extracted from the fits to repeated measurements were different. However, the extracted 

values of the morphological parameter L/Lo and the mean reduced scattering coefficient 

<s
’> were still identical for the two measurements, demonstrating the ability of the PTI 

model to extract consistent values of the tissue scattering properties even when there are 

noticeable variations in the amount of blood at a given site. 

 

Figure 2.7. Pairs of reflectance measurements (solid blue and green curves) 
acquired from two different pancreatic adenocarcinoma sites ((a) and (b)), 
shown with the corresponding fits of the PTI model to the measured spectra 
from 430-500 nm  (dashed red and orange curves). For the site shown in (a), 
the two measured spectra were very similar, and the values of the total 
hemoglobin concentration [Hb]tot, the morphological parameter L/Lo, and the 
mean reduced scattering coefficient <μs’> extracted from the two spectra were 
identical ([Hb]tot = 1 μM, L/Lo = 1.3, <μs’> = 18.7 cm-1). For the site shown 
in (b), the two measured spectra were significantly different (likely due to 
changes in absorption caused by the draining of blood from the freshly excised 
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tissue), and the [Hb]tot values extracted from the two spectra differed by 15 
μM ([Hb]tot1 = 16 μM, [Hb]tot2 = 1 μM), but the values of the morphological 
parameter L/Lo and mean reduced scattering coefficient <μs’> extracted from 
the two spectra were still identical (L/Lo = 1.3, <μs’> = 18.7 cm-1). This result 
illustrates the ability of the PTI model to extract consistent values of tissue 
scattering parameters even when the blood content of the tissue changes over 
time. 
 
 
Figure 2.8(a) shows a histogram of the differences between the total hemoglobin 

concentration values [Hb]tot acquired at the sites (N = 16) for which there was no 

significant difference between the two measured spectra (including the site shown in 

Figure 2.7(a)) according to the criterion described in Section 2.4.1. Figure 2.8(b) shows 

the corresponding histogram of the differences between the L/Lo values extracted from 

the two reflectance spectra extracted from each of these sites. The differences [Hb]tot 

and L/Lo were defined as [Hb]tot2-[Hb]tot1 and (L/Lo)2-(L/Lo)1, respectively, where the 

subscripts 1 and 2 denoted the first and second measurements taken from a given tissue 

site. For 15 of these 16 sites (94%), the [Hb]tot values extracted from the two 

measurements differed by less than 10 M. Furthermore, for this set of 16 sites, the 

average difference between the L/Lo values extracted from the two measurements was 

less than 1%. Figure 2.8(b) shows that for 15 of these 16 sites, the L/Lo values extracted 

from the two measurements were identical. In addition, the average difference between 

the <s’> values extracted from the two measurements was less than 1%. These results 

demonstrate the robustness of the data collection method and the stability of the PTI 

model of human pancreatic tissue.   

Figure 2.8(c) shows a histogram of the differences between the [Hb]tot values extracted 

from the two reflectance spectra acquired at the sites (N = 26) for which there were 

significant differences between the two measured spectra (including the site shown in 



 

53 
 

Figure 2.7(b)) according to the criterion described in Section 4.1. Figure 2.8(d) shows 

the corresponding histogram of the differences between the L/Lo values extracted from 

each of these sites. As expected, for 21 of these 26 sites (81%), the [Hb]tot values from 

the two measurements differed by at least 10 M. However, the average difference 

between the L/Lo values extracted from the two measurements was less than 7%. Figure 

2.8(d) shows that for 22 of these 26 sites (85%), the magnitude of L/Lo was no greater 

than 0.1 (the step size for L/Lo in the PTI fitting procedure described in Section 2.4.2). 

The average difference between the <s’> values extracted from the two measurements 

was less than 8%. These results indicate that the PTI model extracted consistent values of 

human pancreatic tissue scattering properties even when the tissue blood content varied 

significantly.  

Over the entire set of 42 human pancreatic tissue sites interrogated in the study, the 

hemoglobin concentration varied by an average of 23 M between the two measurements 

from a single site, but the mean morphological parameter and mean reduced scattering 

coefficient both varied by less than 6% between the two repeated measurements from a 

single site. 
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Figure 2.8. Histograms of differences in extracted values of the total 
hemoglobin concentration (Δ[Hb]tot) and morphological parameter (ΔL/Lo) 
for (a, b) the 16 pancreatic tissue sites with similar repeated reflectance 
measurements and for (c, d) the 26 pancreatic tissue sites with significantly 
different repeated reflectance measurements. (For ease of view, the bar at the 
far left of (c) represents two sites with Δ[Hb]tot values of -135 μM and -280 
μM, respectively.) When the two reflectance measurements were not 
significantly different, the magnitude of Δ[Hb]tot (a) was less than 10 μM for 
15 of 16 sites (94%), and the average difference between the two extracted 
L/Lo values (b) was less than 1%. When the two reflectance measurements 
were significantly different, the magnitude of Δ[Hb]tot (c) was 10 μM or 
greater for 21 of 26 sites (81%), but the average difference between the two 
extracted L/Lo values (d) was still less than 7%. 

 

2.4.4 Potential for clinical diagnostic significance 

For each human pancreatic tissue type, the five sites for which the two reflectance 

measurements were the most different from each other were determined by maximizing 
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the function Diff(R1(),R2()) = (R2()-R1()), where R1() and R2() were the two 

repeated reflectance spectra measured from each site and  represented a sum over the 

wavelengths from 400-700 nm. For this reduced data set, the mean L/Lo value for 

adenocarcinoma (L/Lo = 1.28) was still 22% larger than that of normal pancreatic tissue 

(L/Lo = 1.05) and 20% larger than that of chronic pancreatitis (L/Lo = 1.07). Using 

Wilcoxon rank-sum tests [29], the p-values for using L/Lo to distinguish adenocarcinoma 

from normal tissue (p < 2x10-3) and to distinguish adenocarcinoma from chronic 

pancreatitis (p < 7x10-3) were still statistically significant for this challenging subset of 

the data. These results suggest that the PTI algorithm has the potential to distinguish 

between different pancreatic tissue types even for tissue sites with notable variations in 

blood content. 

2.5 Conclusions 

Here, we have demonstrated the potential of quantitative tissue optical spectroscopy 

(using reflectance spectroscopy and a photon-tissue interaction model for data analysis) 

to provide consistent values of tissue scattering parameters at a given human pancreatic 

tissue site, even when the measured spectra at that site are varying noticeably over time 

due to changes in absorption from blood. The results reported here illustrate the 

feasibility of employing optical spectroscopy for consistent characterization of disease-

related morphological and compositional changes in human pancreatic tissues, and these 

findings should also be applicable to a wide range of other tissue types. The optical 

diagnostic technique reported here, including the instrumentation and algorithms, is 

clinically-compatible for real-time characterization of tissue absorption and scattering in 

vivo in clinical settings, where blood concentration and oxygenation will vary over time. 
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Chapter 3.  
In vivo optical spectroscopy for improved detection of pancreatic adenocarcinoma:  

a feasibility study  

3.1 Introduction 

Pancreatic adenocarcinoma has a five-year survival rate of only 6%, making it the 4th 

leading cause of cancer death in the United States (US) [115].  By 2020, pancreatic 

cancer is projected to become the 2nd leading cause of cancer death in the US [115]. 

Current diagnostic procedures are unable to accurately detect early stage disease [116], 

successfully diagnosing only 7% of early-stage pancreatic cancers [115]. As a result, only 

20% of discovered pancreatic cancers are treatable with surgery. The challenges to 

accurate detection and characterization of pancreatic neoplasia include the relative 

inaccessibility of the organ, as well as the non-specific nature of symptoms. In particular, 

a stromal reaction with intense fibrosis is associated with both adenocarcinoma and 

chronic pancreatitis (chronically injured tissue). As a result, the sensitivity for diagnosing 

cancer in the setting of chronic pancreatitis (inflammation) has been reported to be only 

54% when using the diagnostic procedure-of-choice for tissue acquisition in suspect 

pancreatic cancer, endoscopic ultrasound-guided fine-needle aspiration (EUS-FNA) 

[117].  

Several studies have employed optical techniques for minimally invasive detection of 

cancer [118] in tissues including breast [7], cervix [119], colon [6,120], and esophagus 

[4]. Further, optical spectroscopy is compatible with clinical EUS-FNA procedures [105]. 

Optical techniques investigated in pancreatic tissues include optical coherence 
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tomography [121,122], needle-based confocal laser endomicroscopy [123], near-infrared 

spectroscopy [124,125], non-linear optical imaging [126], optical field effect analysis 

from duodenal tissues [127,128], diffuse optical tomography [129], and our own studies 

employing optical spectroscopy [5,23,31,101,130]. Advantages to our optical 

spectroscopy technology include addressing the primary medical need: improved and 

minimally invasive detection of pancreatic cancer in the presence of overall tissue 

inflammation. 

Our approach examines the feasibility of optical spectroscopy for clinical pancreatic 

cancer diagnostics in four stages: (1) identify key features in human tissue spectra using 

an in vivo murine model (human pancreatic tumor xenograft), (2) perform ex vivo pilot 

study to optically detect human pancreatic malignancy, (3) verify and validate accuracy 

of a photon-tissue interaction (PTI) model, and (4) perform a human pilot study to assess 

feasibility in vivo. In Stage 1, measurements from ex vivo human adenocarcinoma tissues 

were shown to correspond well to in vivo measurements from a tumor xenograft [31]. In 

Stage 2, accurate detection of normal, chronic pancreatitis (inflamed), and 

adenocarcinoma tissues was achieved [5,23,101]. Malignant tissues were distinguished 

from benign tissues with sensitivities and specificities of 85% and 86%, respectively [5], 

and with statistical significance [23] in the setting of chronic pancreatitis. In Stage 3, a 

PTI model was employed to detect a pancreatic cancer precursor [131]. Here, we address 

Stage 4 by reporting the in vivo feasibility of optical spectroscopy to detect malignant 

tissues. 
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3.2 Clinical optical spectroscopy measurements of in vivo human pancreatic 
tissues 

3.2.1 Reflectance and Fluorescence Lifetime Spectrometer (RFLS) 

A Reflectance and Fluorescence Lifetime Spectrometer (RFLS) [27,31] was employed to 

collect optical data from human pancreatic tissues in vivo (Figure 3.1).  

 

 

 

Figure 3.1. Pancreatic tissue optical measurement protocol, designed to mimic 
fine-needle aspiration (FNA) procedures by introducing the optical probe via a 
hollow angiocatheter. (1) In vivo: at this stage of surgery, tissue was still 
perfused with some blood and was near body temperature. The sterilized fiber-
optic probe (6 m length) extended from the RFLS in the non-sterile field to the 
patient in the sterile field. At each selected site, the surgeon inserted a 14 
gauge angiocatheter (B Braun Medical) ~1 cm into the tissue, removed the 
stylet from the angiocatheter, and inserted the fiber-optic probe. Data 
acquisition for each site was < 45 s, with each modality acquired in < 1 s. (2) 
In vivo and ex vivo measurements were acquired at the same tissue site by 
marking the site prior to resection. (2, right) Each optical measurement was 
estimated to interrogate ~1 mm3 of tissue. Repeatability was tested by 
collecting two successive optical measurements at each site, with up to two 
tissue sites measured per patient. Tissue sites were biopsied for 
histopathologic analysis. 
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The RFLS sequentially collected steady-state reflectance and fluorescence with a hand-

held three-channel fiber-optic probe [31]. Measured spectral data were background 

subtracted and corrected for the spectral instrument response [5,23,31,101,130]. 

Reflectance measurements were acquired by delivering broadband white light from a CW 

tungsten halogen lamp (HL 2000FHSA, Ocean Optics) to tissue. An 850 nm short-pass 

filter (Semrock) protected human tissue from infrared light. Reflected photons were 

collected with the common detection fiber and detected by a spectrograph (MS 125, Oriel 

Instruments) coupled to an intensified charge-coupled device (ICCD 2063, Andor 

Technology).  

Fluorescence measurements were acquired by delivering 355 nm pulsed laser excitation 

(PNV001525-140, JDS Uniphase) to the tissue. Laser energy delivered to the tissue was 

< 12 μJ. The fluorescence emission was collected with the common detection fiber and 

measured with the spectrograph-coupled ICCD.  

3.2.2 In vivo and ex vivo data collection protocol 

Optical measurements followed a study protocol approved by the University of Michigan 

(U-M) Institutional Review Board. Patients enrolled in the study provided written 

informed consent. Optical fiber probes were sterilized with an ethylene oxide protocol 

developed in accordance with U-M Hospital Central Sterile Supply. Figure 3.1 outlines 

the optical measurement protocol for human pancreatic tissues. It is important to note that 

cancer patients undergoing surgical intervention (e.g., all patients in this study) have a 

high pre-test likelihood of pancreatic disease. Our optical measurements of “normal” and 

“chronic pancreatitis” tissues were obtained from this biased patient population. 

Histological observations, including average diameter of cell nuclei, from our expect 
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pathologist confirmed that the “normal” and “chronic pancreatitis” tissues had 

morphological parameters consistent with an unbiased patient population. Thus, optical 

measurements from our biased patient population are hypothesized to be consistent with 

typical pancreatic tissues in patients without cancer. 

In vivo and ex vivo optical measurements were collected from the same tissue sites 

(freshly-excised tissues within 30 minutes of resection [5,23,31]). Ideally, a fixed 

angiocatheter would mark the tissue site for in vivo and ex vivo measurements. Due to 

surgical complications, the angiocatheter remained in place for only 1 patient. For the 

other 5 patients, the point-of-entry was uniquely marked with surgical thread. The 

surgeon collected optical data in vivo. An expert pathologist oversaw ex vivo data 

collection and performed a tissue biopsy at each site immediately after optical 

measurements. Biopsy specimens were sent for analysis via histopathology. 

3.2.3 In vivo optical data set 

In total, 10 pancreatic tissue sites were measured from 6 patients with histopathological 

classification of pancreatic adenocarcinoma (5 sites) and normal (5 sites). Exclusion 

criteria were employed to remove tissue sites with excessive amounts of absorption (e.g., 

R550 nm/R650 nm < 0.1) or low signal-to-noise ratio (e.g., < 5). After exclusion, the in vivo 

data set included steady-state reflectance measurements from 8 (3 normal from 2 patients, 

5 adenocarcinoma from 3 patients) tissue sites and steady-state fluorescence 

measurements from 4 (1 normal from 1 patient, 3 adenocarcinoma from 2 patients) tissue 

sites. Thus, steady-state reflectance measurements were analyzed quantitatively, as they 

constituted the largest usable data set and as previously reported results [5,23,31,101] 

showed that reflectance analysis alone can improve diagnosis of pancreatic malignancy.  



 

61 
 

3.3 Steady-state reflectance spectroscopy analysis 

A reflectance spectral ratio classifier was developed to quickly characterize the measured 

tissue sites. In human pancreatic tissues, the ratiometric classifier R470 nm/R650 nm was 

shown in prior work to vary with pancreatic disease [31]. 

Previously, for an ex vivo human pancreatic tissues data set, we reported a quantitative 

analysis algorithm that directly extracted optical tissue parameters [23,101]. The photon-

tissue interaction (PTI) model that was fit to the optical spectra was obtained by 

employing a semi-empirical reflectance model [109] to scale the “canonical normal” 

reflectance (average of all measured normal reflectance spectra) to a model for each 

unknown reflectance spectrum. Here, we employed a canonical normal obtained from our 

in vivo data set (2 of 3 normal sites with comparable hemoglobin content) to model 

measured in vivo spectra from 450 - 530 nm [23,101]. This in vivo PTI model extended 

the maximum hemoglobin concentration from 25 [101] to 60 μM. Model fits to data with 

more than 15% error between 450 – 530 nm were excluded, including one 

adenocarcinoma and one normal site. 

 

3.4 Feasibility of optical spectroscopy on human pancreatic tissues in vivo  

For the first time, to our knowledge, tissue optical reflectance and fluorescence 

measurements were recorded from human pancreatic tissues in vivo. Figure 3.2 shows 

reflectance and fluorescence spectra from a tissue site measured in vivo and ex vivo on 

the same patient. Measurements were recorded rapidly (< 1 s per modality) and were 

remarkably consistent, especially considering the anticipated large variability in tissue 

blood content in vivo.   
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Figure 3.2. Optical measurements from a tissue site in vivo and ex vivo for 
(A) steady-state reflectance and (B) steady-state fluorescence. Measurements 
of the same tissue site contained similar features, attributed to similar tissue 
composition and morphology [23], and differed only slightly between 400-475 
nm due to the anticipated blood content variations. The site was 
histopathologically confirmed to be adenocarcinoma. 

 
 

3.5 Optical reflectance differences between normal and adenocarcinoma tissues in 
vivo 

Figure 3.3(A) shows that for human tissues measured in vivo, there are significant 

differences between the optical reflectance spectra of normal pancreas and 

adenocarcinoma, notably in the shaded wavelength range 455-525 nm. This result is 

consistent with ex vivo studies [5,23,31,101,130] and is attributed to differences in 

scattering between tissue types [23]. Indeed, in vivo reflectance measurements on human 

pancreatic cancer xenografts grown in mice [31] (Figure 3.3(B)) clearly show the 

pronounced reflectance peak in this region. 
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Figure 3.3. Representative in vivo reflectance measurements from human 
pancreatic adenocarcinoma (blue solid: A, B), (A) normal human tissue (green 
dashed), and (B) human pancreatic cancer tumor xenograft in a non-obese 
diabetic/severe combined immunodeficiency (NOD/SCID) mouse (red dashed) 
[31]. In the diagnostically important wavelength range between 455-525 nm 
(shaded), adenocarcinoma tissues have greater relative reflectance than normal 
tissues, consistent with extensive ex vivo studies [5,23,31,101,130]. 

 

3.6 Quantitative reflectance analysis with spectral ratios classifier and PTI model 

Figure 3.4 summarizes the results of quantitative analyses applied to in vivo human 

pancreatic tissue reflectance data. In vivo reflectance data was consistent with ex vivo 

reflectance data (both for the ex vivo results obtained here and for the ex vivo results 

obtained on an extensive data set [5,23,31,101,130]) and was able to distinguish between 

normal human pancreas and pancreatic adenocarcinoma. 
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Figure 3.4. Quantitative analysis of in vivo reflectance data is consistent with 
ex vivo results and can distinguish between normal human pancreas and 
pancreatic adenocarcinoma. (A) The R470 nm/R650 nm ratio for in vivo data (gray 
box plot) analyzed the pronounced spectral feature at 470 nm which clearly 
distinguished adenocarcinoma from normal tissues. The blue and green 
overlays show the analysis for an extensive ex vivo data set [23], which shows 
the same trend as that observed in vivo. Minor differences between ex vivo and 
in vivo results were attributed to the limited experimental control of local 
blood content during in vivo measurements. (B) PTI model best fit (red, 
dotted) to the in vivo adenocarcinoma data in Figure 3.2 (blue) (4% fit error 
between 450 – 530 nm). (C) A PTI-extracted morphological parameter (L/L0, 
related to changes in cellular nuclear size and shape) from in vivo 
measurements clearly distinguished adenocarcinoma from normal pancreas, 
consistent with results from an extensive ex vivo data set [23]. In vivo 
measurements from adenocarcinoma tissues modeled with an ex vivo 
“canonical normal” (from [23]) showed comparable results to employing an in 
vivo “canonical normal.  Error bars represent standard error.  

  

3.7 Discussion and conclusions 

Pancreatic adenocarcinoma has a five-year survival rate of less than 6%, a fact that has 

not changed in nearly forty years [115]. This exceptionally low survival rate is attributed 

to the lack of accurate detection methods, which limits diagnosis to advanced stages of 

disease development [116,117]. 

Here, we presented an in vivo pilot study to assess the feasibility of optical spectroscopy 

to improve the clinical detection of pancreatic adenocarcinoma. This in vivo feasibility 

study was performed with limited experimental control over blood content using a 
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protocol that mimicked fine-needle aspiration, the diagnostic procedure-of-choice for 

tissue acquisition in suspect pancreatic cancer. Our promising results demonstrate the 

robustness of both the data collection and the analysis methods employed to characterize 

measured optical data in the presence of varying blood.  

We note that our optical measurements of “normal” tissue sites are biased by the high 

pre-test likelihood of disease in the enrolled patients. Because these “normal” tissue sites 

were histologically consistent with normal human pancreas, we hypothesize that 

measurements from both normal tissues would be qualitatively and quantitatively similar. 

Future work will characterize morphological tissue parameters without employing a 

“canonical normal,” removing dependence on a priori data. 

From optical measurements acquired during open surgery on 6 patients, we verified the 

ability to collect spectrally-resolved reflectance and fluorescence rapidly (< 45 s) and 

repeatedly in vivo. From site-matched data, we examined the consistency between in vivo 

and ex vivo measurements and found both qualitative and quantitative (via known 

ratiometric [5,31] and photon-tissue interaction [23,101,130] models) agreement between 

the two. Further, quantified differences between adenocarcinoma and normal tissues 

measured in vivo were consistent with differences established previously using an 

extensive ex vivo dataset [5,23,31,101,130].  

Overall, these results suggest that optical spectroscopy is a promising method for the 

improved diagnosis of pancreatic cancer in vivo. 
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Chapter 4.  
Improved detection of pancreatic disease with time-resolved fluorescence 

spectroscopy 

4.1 Introduction 

Pancreatic adenocarcinoma is not reliably diagnosed in its earliest stages, resulting in a 

dismal five-year survival rate of only 6% [132]. The pancreatic cancer diagnostic 

procedure-of-choice is endoscopic ultrasound-guided fine-needle aspiration (EUS-FNA) 

[117,133]. In a recent clinical study, the sensitivity of EUS-FNA for detecting pancreatic 

adenocarcinoma in the setting of chronic pancreatitis (inflammation) was found to be 

only 54% [117]. A recent meta-analysis of 28 clinical studies concluded that it was not 

advisable to use EUS-FNA to diagnose pancreatic adenocarcinoma because malignancy 

“cannot be ruled out with adequate reliability [133].” Therefore, there is a significant 

clinical need for a method that can reliably detect early-stage pancreatic cancer in the 

setting of chronic pancreatitis.  

Optical spectroscopy has shown potential to improve cancer diagnostics in many types of 

human tissues, including the breast [7], colon [94], cervix [119], esophagus [96], and 

lymph nodes [8, 9]. Our own studies have demonstrated the potential of steady-state 

reflectance and fluorescence spectroscopies for optical diagnostics in the pancreas 

[5,23,101]. Current state-of-care in detecting pancreatic disease would improve if 

technology could distinguish pancreatic disease in the following five tissue groupings: (1) 

malignant (adenocarcinoma) from benign (normal and chronic pancreatitis) tissues, (2) 

adenocarcinoma from chronic pancreatitis tissues, (3) diseased (adenocarcinoma and 
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chronic pancreatitis) from normal tissues, (4) adenocarcinoma from normal tissues, and 

(5) chronic pancreatitis from normal tissues.  

 Compared to the steady-state optical spectroscopy results, time-resolved fluorescence is 

sensitive to fluorophore microenvironment, including binding status, pH, and 

temperature, while generally insensitive to hemoglobin absorption [1]. Indeed, time-

resolved fluorescence spectroscopy has shown potential to assist with disease diagnostics 

in other organs (including the brain [134,135], colon [14], heart [136], and skin [137]). 

Here, we employ only time-resolved fluorescence data to classify pancreatic disease with 

an ex vivo data set. This ex vivo data set is further employed as training data in a 

classification algorithm that classifies the first ever in vivo time-resolved decays 

measured from human patients.  

4.2 Materials and Methods 

4.2.1 Clinically-compatible time-resolved fluorescence spectrometer 

Time-resolved decays were acquired from human pancreatic tissues with a clinically-

compatible prototype Fluorescence Lifetime Spectrometer (FLS) [5,31]. The FLS 

(Figure 4.1) employed a fiber-optic probe (600 μm diameter) to deliver 355 nm laser 

light (PNV001525-140, JDS Uniphase; 1 kHz, ~16 μJ/pulse, 500-ps pulse duration) to the 

tissue. A second channel of the fiber optic probe (600 μm diameter, 660 μm center-to-

center spacing) collected emitted fluorescent photons. A long-pass filter rejected 

excitation and emission light < 500 nm which prevented collagen signal (peak ~420 nm) 

from dominating measured fluorescence. Emission fluorescence > 500 nm was detected 

by an avalanche photodiode (C5658, Hamamatsu) and digitized with an oscilloscope 

(TDS 784A, Tektronix).  
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Figure 4.1. (A) A Fluorescnece Lifetime Spectrometer collected fluorescence 
decays from pancreatic tissues with a free-space fiber-optic probe. (B) Ex vivo 
data set and in vivo pilot study measurements were measured with a large 
fiber-optic probe for proof-of-principle studies. To demonstrate compatibility 
with future endoscopic procedures, optical fiber diameter was reduced by 1/3rd. 
The endoscopically-compatible fiber-optic probe was emlpoyed during a ex 
vivo feasibility study of 1 normal patient site. The third channel was not 
employed in this study, but was used in previous studies for reflectance 
spectroscopy measurements. Abbreviations - ND: neutral density filter, L: 
collimating lenses, LP: long-pass filter at 500 nm, APD: avalanche photodiode. 

 

4.2.2 Optical Data Set  

Study protocols were approved by the University of Michigan Institutional Review 

Board, and written informed patient consent was obtained before each measurement. 

Established protocols were followed for ex vivo [31] and in vivo [138] measurements. 

Time-resolved fluorescence decays were acquired from freshly-excised human pancreatic 

tissues ex vivo from 10 patients within 30 minutes of removal during pancreatic surgery 

and in vivo from 5 patients during open surgery with a sterilized fiber-optic probe. In vivo 

measurements were collected from embedded tissue sites by guiding the fiber-optic probe 

through an angiocatheter to mimic future fine-needle aspiration procedures [138]. For ex 

vivo measurements, up to 10 unique sites were measured per patient [31]. For in vivo 

measurements, up to 2 unique sites were measured per patient [138]. At each site, two 
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time-resolved fluorescence decays were collected sequentially. At one ex vivo site, only 

one measurement was collected. An expert pathologist specializing in gastrointestinal 

research supervised all measurements and collected site-matched biopsies for “gold 

standard” histological analysis from each measured site. These biopsies were 

subsequently stained, sectioned, and analyzed to determine tissue disease state. Prior to 

applying exclusion criteria, ex vivo data set comprised measurements from 29 normal 

(N), 16 chronic pancreatitis (CP), and 27 adenocarcinoma (A) sites and in vivo data set 

comprised measurements from 3 N and 5 A sites.  

4.2.3 Data Pre-Processing and Exclusion Criteria 

Prior to analysis, baseline offset was subtracted from fluorescence decays. Fluorescence 

decays with peak intensity prior to normalization of < 0.03 were excluded from the 

analyzable data set. Data sets after applying exclusion criteria are shown in Table 4.1. 

From the ex vivo data set, 3 N, 1 CP, and 1 A site were excluded. From the in vivo data 

set, 1 N site was excluded.  

Table 4.1. Analyzable ex and in vivo data set. 

Ex Vivo In Vivo 

Patients Sites Patients Sites 

Normal (N) 6 26 2 2 

Chronic Pancreatitis (CP) 4 16 - - 

Adenocarcinoma (A) 4 26 3 5 

Total 10* 68 5 7 

                                           *Not a sum of patients, some patients had multiple tissue types measured.  
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4.2.4 Time-resolved fluorescence analysis methods 

4.2.4.1 Instrument response function 

A laser instrument response function (IRF) was measured for each patient as scattering 

from a solution of silica microspheres in deionized water. Fitting algorithms deconvolved 

the instrument response from measured fluorescence decay to extract fluorescence 

lifetime parameters. Employed fitting algorithms included a bi-exponential decay model 

[24] and the Laguerre expansion method [56]. 

4.2.4.2 Bi-exponential decay model 

Time-resolved fluorescence decay curves were fit to a bi-exponential decay model [24], 

computed as F(t) = a1 exp(-t/1) + a2 exp(-t/2). i and ai represent the extracted 

fluorescence lifetime and raw intensity contribution of fluorophore i, respectively. Ai 

were calculated as the percent contribution of i. 

4.2.4.3 Laguerre expansion method 

A Laguerre expansion method modeled decay curves as a linear combination of Laguerre 

basis functions [56], a set of orthonormal functions that require no a priori assumptions 

about the behavior of the fluorescence decay prior to analysis [139]. Fluorescence decays 

were modeled as   
1

0

( ) ( )
L

model i i
i

F t T LEC b t 




  . LECi are the Laguerre expansion 

coefficients, bi
(t) are the Laguerre basis functions, T denotes the sampling interval, L 

represents the number of Laguerre functions, and  relates to how fast Laguerre functions 

converge to zero. Typical values of α are < 1 [56,140].  

Laguerre functions modeled measured fluorescence decays by varying  and L over pre-

defined grids:  from 0.5 to 0.95 with 0.025 step size and L from 3.0 to 6.0 with 1.0 step 
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size. The values of LECi and  that minimized the percent error between measured and 

modeled data were extracted for each time-resolved fluorescence decay 

.  

4.3 Tissue classification protocol 

4.3.1 Calculating average fluorescence decay parameters for each measured site 

For each measured ex and in vivo site, up to two decay measurements were collected. 

Each measurement was fit with a bi-exponential decay model and the Laguerre expansion 

method. If both measurements remained after employing exclusion criteria, the extracted 

fitting parameters were averaged to yield one set of fitting parameters per site. If a site 

had one measurement excluded, the extracted fitting parameters from the non-excluded 

site were employed in the classification algorithm. 

4.3.2 Statistical analysis tests independence of tissue types 

SAS® software was employed to assess the patient-level statistical independence of 

extracted fitting parameters from measurements of adenocarcinoma, chronic pancreatitis, 

and normal tissues with a Pearson’s chi-squared test. Significance was determined at p < 

0.05. 

4.3.3 Multinomial logistic analysis  

For the ex vivo data set, classification was performed with a leave one patient out 

analysis. With 10 studied patients, 10 unique training and test sets were employed for 

classification. Training sets comprised extracted fluorescence decay parameters from 9 

patients to train the classification algorithm, while test sets comprised extracted 

fluorescence decay parameters from the 10th patient. The classification algorithm, 

developed in SAS® software, trained a multinomial logistic model that employed 
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Generalized Estimating Equations (GEE) [141]. The GEE analysis accounted for 

correlations from intrapatient measurements. Fit coefficients from the trained 

multinomial logistic model were employed to evaluate the test set. Classification 

algorithm outputs were the predictive probabilities of each site being normal [P(N)], 

chronic pancreatitis [P(CP)], or adenocarcinoma [P(A)]. The predictive probabilities 

summed to 1. 

For in vivo data set classification, the training set comprised all 10 ex vivo patients and 

the test set comprised all 5 in vivo patients. As with ex vivo data alone, the classification 

algorithm outputs were P(N), P(CP), and P(A). 

4.3.4 Receiver operating characteristic curves 

Output predictive probabilities were employed to compute receiver operating 

characteristic (ROC) curves at the site-level. For each of the 5 tissue groupings, 

sensitivity and specificity were calculated by employing a varying threshold on P(A) or 

the sum of P(A) and P(CP). 

4.3.5 Method to compute classification results 

Output predictive probabilities from the classification algorithm were manually 

thresholded to calculate sensitivity, specificity, positive predictive value (PPV), and 

negative predictive value (NPV). Manual thresholds were set to best classify 

measurements from each of the 5 tissue groups. Alternative methods could be employed 

to calculate thresholds, including penalty tables or simplistic thresholds (i.e., linear 

threshold at P(A) = 0.3). Manual thresholds were selected for optimizing diagnostic 

utility of each classification parameter. 
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4.4 Results 

4.4.1 Average fluorescence decays distinguish normal, chronic pancreatitis, and 
adenocarcinoma tissues 

Figure 4.2 shows averaged fluorescence decays from pancreatic tissues ex and in vivo. 

Relative to normal tissues, broader fluorescence decays were measured from chronic 

pancreatitis and adenocarcinoma tissues. This trend was observed for both ex vivo and in 

vivo data sets. Broader fluorescence decays indicated greater contribution of a long 

lifetime fluorophore, attributed to the relative long lifetime of extracellular collagen in 

human tissues [27]. 

 

Figure 4.2. Time-resolved fluorescence decays distinguish normal, chronic 
pancreatitis, and adenocarcinoma tissues from (top row) ex vivo and normal 
from adenocarcinoma tissues from (bottom row) in vivo measurements. 
Fluorescence decays are shown with (left column) linear and (right column) 
logarithmic y-axis for improved comparison of data. Fluorescence decays were 
normalized to their peak, the peak from all decays of each tissue type aligned, 
and the aligned decays averaged for comparison. Fluorescence decays 
measured from adenocarcinoma and chronic pancreatitis tissues are broader 
than corresponding measurements of normal tissues. Error bars represent 
standard error. 
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4.4.2 Bi-exponential and Laguerre expansions fitting methods characterize 
differences between normal, chronic pancreatitis, and adenocarcinoma 

Figure 4.3 shows extracted fitting parameters from bi-exponential decay and Laguerre 

expansion methods. Ex vivo fluorescence decays distinguish normal, chronic pancreatitis, 

and adenocarcinoma tissues. Extracted fluorescence decay parameters from an in vivo 

pilot study confirm that normal and adenocarcinoma tissues quantitatively agree with ex 

vivo measurements. Extracted parameter A1 represents the relative contribution of the 

long lived endogenous fluorophore and LEC1 represents the relative contribution of the 

first Laguerre expansion function. A1 best distinguished normal from adenocarcinoma 

tissues, whereas LEC1 best distinguished normal from chronic pancreatitis tissues. 

 

Figure 4.3. Fluorescence decay fitting parameters (top row) A1 and (bottom 
row) LEC1 distinguish measurements from normal, chronic pancreatitis, and 
adenocarcinoma tissues (left column) ex vivo. Extracted quantitative fitting 
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parameters from (right column) in vivo decays were consistent for normal and 
adenocarcinoma tissues. Relative differences in fitting parameters of normal, 
chronic pancreatitis, and adenocarcinoma tissues indicate decay broadening 
from normal to chronic pancreatitis to adenocarcinoma tissues (Figure 4.2). 
Statistical analysis was not performed on in vivo data due to limited measured 
sites. For in vivo data, the line from normal sites represents the mean extracted 
parameter from two sites. 

 

4.4.3 Fluorescence decay analysis classifies normal, chronic pancreatitis, and 
adenocarcinoma both ex and in vivo 

4.4.3.1 Receiver operating characteristic curves 

Receiver operating characteristic curves classify malignant from benign tissues, 

adenocarcinoma from normal tissues, diseased (adenocarcinoma and chronic pancreatitis) 

from normal tissues, adenocarcinoma from chronic pancreatitis tissues, and chronic 

pancreatitis from normal tissues. Classification algorithm employed fitting parameters A1 

and LEC1 to compute predictive probabilities. ROC curves were computed by varying 

diagnostic threshold as either P(A) or as the sum of P(A) and P(CP). The best 

classification results for each of the five tissue groupings are shown in Figure 4.4. 
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Figure 4.4. Receiver operator characteristic curves were computed for the 5 
tissue groupings: (1, top left) A v (CP & N), (2, top middle) A v N, (3, top 
right) (A & CP) v N, (4, bottom left) A v CP, and (5, bottom middle) CP v N. 
(top row) To distinguish adenocarcinoma from either benign or normal tissues, 
receiver operating characteristic curves had highest area under the curve 
(AUC) when varying diagnostic threshold to the sum of P(A) and P(CP). 
(bottom row) To distinguish chronic pancreatitis from either adenocarcinoma 
or normal tissues, receiver operating characteristic curves had highest AUC 
when varying diagnostic threshold to P(A). Overall, A1 was the most useful 
diagnostic parameter to distinguish adenocarcinoma from benign tissues, 
whereas LEC1 helped improve classification of chronic pancreatitis tissues. 

 

4.4.3.2 Ex vivo classification results: sensitivity, specificity, PPV, and NPV 

Figure 4.5 shows ternary plots that were employed to distinguish normal from pancreatic 

disease. Ternary plots are two-dimensional scatter plots of three parameters. Here, ternary 

plots show the predictive probabilities P(N), P(CP), and P(A). Bi-exponential fitting 

parameter A1 best classified normal from adenocarcinoma tissues, whereas Laguerre 

expansion improves distinguishing chronic pancreatitis from normal tissues. These results 

indicate that two fitting methods can be sensitive to slight differences in the measured 
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fluorescence decays, highlighting the importance of employing more than one fitting 

method. 

 

Figure 4.5. Two fluorescence decay fitting parameters, A1 and LEC1, 
classified adenocarcinoma, chronic pancreatitis, and normal tissues. A1, the 
percent contribution of the long lifetime component extracted with a bi-
exponential decay model, best distinguished adenocarcinoma from benign 
tissues, whereas LEC1, the percent contribution of the first Laguerre expansion 
function, best distinguished adenocarcinoma from chronic pancreatitis tissues. 
Red lines show manual classification threshold to distinguish adenocarcinoma 
from benign tissues (for A v (N&CP), A v CP, and A v N). Green lines show 
manual classification threshold to distinguish chronic pancreatitis and diseased 
from normal tissues (for CP v N and (A&CP) v N). 

 

4.4.3.3 In vivo data is accurately classified by ex vivo data set 

Figure 4.6 shows ternary plots of predictive probabilities to distinguish normal from 

adenocarcinoma tissues in vivo. The classification algorithm was trained with an 

extensive ex vivo data set and applied to classify a limited in vivo data set measured from 

5 patients. As demonstrated with ex vivo data, adenocarcinoma tissues are best 
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distinguished with bi-exponential fitting parameter A1. Measurements from additional 

sites are required to report any statistical or classification results with confidence. 

 

Figure 4.6. In vivo fluorescence decays accurately distinguish normal from 
adenocarcinoma tissues. An extensive ex vivo data set was employed to train 
the classification algorithm to distinguish the in vivo measurements. With 
measured sites from the pilot feasibility study (2 normal and 5 
adenocarcinoma), time-resolved fluorescence distinguish both normal sites and 
4/5 adenocarcinoma sites with A1 and 3/5 adenocarcinoma sites with LEC1. 

 

4.4.4 Endoscopically-compatible probe measures fluorescence decay data 
consistent with proof-of-principle fiber-optic probe 

An ex vivo feasibility study compared measured fluorescence decays with a larger, proof-

of-principle probe to a 3x smaller, endoscopically compatible probe. Fluorescence decays 

were measured from one normal human site, shown in Figure 4.7. Good qualitative 

agreement was observed, confirming that diagnostically useful information is preserved 

during in vivo measurements. This result demonstrates the promise of time-resolved 

fluorescence instrumentation to detect adenocarcinoma tissues during endoscopic 

diagnostic procedures. 
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Figure 4.7. As part of a feasibility study, one ex vivo human pancreatic tissue 
normal site was measured with a proof-of-principle and an endoscopically-
compatible fiber-optic probe. Results show good agreement between the two 
measurements, indicating that no fluorescence information is lost with an 
endoscopically-compatible fiber-optic probe. 

 

4.5 Discussion and conclusions 

Non-invasive, label-free, and quantitative time-resolved fluorescence data and 

corresponding analysis distinguished normal, chronic pancreatitis, and adenocarcinoma 

tissues. Compared to steady-state optical spectroscopy results, time-resolved data results 

are comparable to distinguish malignant from benign tissues and may be better to 

distinguishing normal from chronic pancreatitis. 

Tissue classification was performed by accounting for intrapatient correlations. While 

rigorous, this classification algorithm could not account for inherent biases within the 

data set. For example, of the 15 chronic pancreatitis measurements in the ex vivo data set, 

8 measurements were obtained from (1 of the 4) patients. 6 of these 8 measurements were 

consistent with adenocarcinoma, adding potential bias to the classification results. 
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Additional measurements could show if these chronic pancreatitis tissues are outliers or if 

more sensitive instrumentation is required for more accurate classification. 

We note that all patients enrolled under this study were undergoing surgical intervention 

to treat suspected or confirmed pancreatic cancer. Thus, each patient had a high pre-test 

likelihood of pancreatic disease. Therefore, optical measurements of “normal” and 

“chronic pancreatitis” tissues were obtained from a patient who likely had pancreatic 

cancer. Histological observations, including average diameter of cell nuclei and relative 

concentration of collagen fibrils, from our expect pathologist confirmed that these 

“normal” and “chronic pancreatitis” tissues had morphological parameters consistent 

with tissues from patients without cancer. Thus, optical measurements from our biased 

patient population are hypothesized to be consistent with normal pancreatic tissues in 

healthy patients. 

In this study, a single time-resolved decay was measured from all wavelengths > 500 nm. 

Therefore, local variations in broadband tissue absorber concentrations between 

measurements could impact the relative contributions from endogenous tissue 

fluorophores measured. For example, a site with excess hemoglobin would have an 

artificial lower fluorescence contribution from fluorophores that emit at wavelengths < 

~550 nm, including collagen, due to hemoglobin absorption. To mitigate absorber-related 

artifacts, future studies will employ instrumentation that rapidly collects wavelength- and 

time-resolved data, such as wavelength-time matrices [24]. Employing such sensitive 

detectors for wavelength-resolved fluorescence decay collection may improve 

classification results.  
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Classification results were calculated by manually thresholding ROC curves. Therefore, 

threshold lines were drawn to optimize tissue classification from these ex vivo studies. 

With more measurements analyzed, tissue classification thresholds may need to be 

redrawn. Alternative methods could be employed to calculate unbiased thresholds, such 

as penalty tables or collection of additional in vivo fluorescence decays.  

A parallel study employing only steady-state optical parameters (18 patients; 105 sites: 39 

normal, 34 pancreatitis, 32 adenocarcinoma) reported a sensitivity, specificity, PPV, and 

NPV of 87.5%, 89.0%, 77.8%, and 94.2% for distinguishing malignant tissue 

(adenocarcinoma) from benign (normal and pancreatitis), 87.5%, 79.4%, 80.0%, and 

87.1% for distinguishing adenocarcinoma from pancreatitis, and 70.6%, 82.1%, 77.4%, 

and 76.2% for distinguishing pancreatitis from normal tissue. Reported classification 

results (see Figure 4.5) employing only time-resolved fluorescence parameters show 

improved classification of adenocarcinoma and chronic pancreatitis tissues, including 

100% sensitivity and 79% sensitivity to detect malignant from benign tissues. Therefore, 

time-resolved fitting parameters may improve tissue classification results for 

distinguishing adenocarcinoma from benign tissues, as well as distinguishing chronic 

pancreatitis from normal tissues. To compare the diagnostic utility of time-resolved and 

steady-state optical parameters, future studies will employ similar patient and site 

numbers. 

In conclusion, we report the first-ever time-resolved fluorescence measurements from 

human pancreatic tissues ex and in vivo. Classification results indicate that time resolved 

fluorescence decays may improve tissue classification. Furthermore, we show that in vivo 
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fluorescence decays are a suitable method to detect adenocarcinoma during open surgery 

and compatible with endoscopic use.  
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Chapter 5.  
Instrumentation to rapidly acquire fluorescence wavelength-time matrices of 

biological tissues 

5.1  Introduction 

The multidimensional data provided by fluorescence spectroscopy opens up the 

possibility of rapidly deriving quantitative diagnostic information from tissues in a 

minimally-invasive manner [142]. Steady-state and time-resolved fluorescence 

measurements have been performed with instrumentation designed for eventual 

translation to the clinic [2,27,143]. Steady-state fluorescence spectroscopy has been 

employed for cancer diagnostics in organs including the breast [7], cervix [119], 

esophagus [4,96], lung [144], and pancreas [5,31,101]. Time-resolved fluorescence 

spectroscopy has been employed for cancer diagnostics in organs including the brain 

[135,145], colon [6,14], esophagus [4], and lung [8]. Steady-state and time-resolved 

fluorescence measurements have been employed in ophthalmology for detection of 

conditions including macular degeneration, diabetic retinopathy, and retinal artery 

occlusion [146,147]. Time-resolved fluorescence measurements have also recently been 

used for the detection of cardiovascular disease [136] and type 2 diabetes [137].  

Although steady-state fluorescence can reveal information about fluorophores in a 

biological tissue, the intensity of steady-state spectra are influenced by a variety of 

artifacts [143]. Time-resolved fluorescence measurements provide the fluorescence 

lifetime τ, which is the mean time spent by a fluorophore in its excited state [1]. The 

lifetime value is sensitive to the environment of the fluorophore, so it can vary with 
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changes in binding, pH, oxygen, and temperature. Importantly, lifetime measurements are 

not strongly dependent on intensity-based effects such as absorption, photobleaching, and 

changes in excitation intensity and collection efficiency [143,148]. Lifetime values for 

multiple fluorophores in a sample can be obtained from time-resolved fluorescence 

measurements, even if the steady-state spectra of the fluorophores overlap. Therefore, 

steady-state and time-resolved methods are both useful tools for characterization of 

biological tissue fluorescence. 

Ideally one would maximize the amount of independent fluorescence information and the 

quality of the data (signal-to-noise ratio, for example) for every sample. However, 

clinical applications require consideration of measurement speed, portability, cost, and 

ease of use.  The first in vivo endoscopic time-resolved fluorescence measurements on 

human patients were reported in 1998, using a portable, fiber-optic based system with a 

low repetition-rate laser and limited spectral resolution [6,14]. Since then, two strategies 

have been employed for combining spectral and temporal fluorescence data collection in 

a clinically compatible format. The first approach uses one laser excitation source, but 

two different detection platforms. The spectral and temporal data are collected in 

sequence, but could be obtained simultaneously. The second approach collects a full 

fluorescence wavelength-time matrix (WTM, Figure 5.1) by stepping an emission 

monochromator through a series of wavelengths, such that a fluorescence decay curve is 

produced sequentially at each of those wavelengths. Integrating the WTM over time 

yields a steady-state fluorescence spectrum. Integrating the WTM over wavelength yields 

a time-resolved fluorescence decay curve.  
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Figure 5.1. Fluorescence wavelength-time matrix (WTM) of 1 μM Rhodamine 
6G in ethanol acquired with fiber-optic probes for light delivery and detection. 
The WTM contains both wavelength-resolved and time-resolved fluorescence 
data. 

 

In this study, a specialized compact digitizer was employed to obtain WTMs from 

samples excited with a microchip laser, which had a repetition rate significantly higher 

than that used in similar spectroscopic devices [4,6,135,136]. Section 5.2 describes the 

technology developed for detecting fluorescence WTMs, the incorporation of this 

technology into a clinically compatible fiber-probe based instrument, and the 

experimental methods employed to assess the technology. Section 5.3 details system 

characterization using standard fluorophore solutions. Section 5.4 describes using the 

system to acquire fluorescence WTMs from tissue-simulating phantoms.   
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5.2 Instrumentation and experimental methods 

5.2.1 Clinically-compatible instrumentation 

The instrumentation (Figure 5.2) consisted of a 473 nm microchip laser (Lumanova, 20-

030005, µFlare Blue, 3 kHz pulse repetition rate, ~2 ns pulse duration), a specialized 

transient digitizer (Fluorescence Innovations (FI), Inc., Bozeman, MT) for WTM 

measurement [149-151], a scanning monochromator (Optometrics, MC1-03), and a 

photo-multiplier tube (PMT) (Hamamatsu, H6780-20).  

 

Figure 5.2. Schematic of the instrumentation developed for rapid acquisition 
of fluorescence WTMs, using fiber-optic probes for light delivery and 
detection (set-up 4, Table 5.1).  WTMs were also obtained with three other 
set-ups (Table 5.1): (1) right-angle free-space geometry, in place of the fiber-
probes, for light delivery and detection; (2) free-space light delivery and a 
fiber-probe for fluorescence detection; (3) a fiber-probe for light delivery and 
right-angle free-space geometry for detection. 
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The FI digitizer is an extremely compact, low power digitizer for direct waveform 

recording of the fluorescence decay curves. Its unique 10-bit, fast-in slow-out, analog-to-

digital converter operates at 1 gigasample/second (GS/s) with a sampling depth of 128 ns. 

For most applications, 5X interleaving is applied to increase the effective sampling rate to 

5 GS/s. This approach permits high-speed sampling without requiring equally high-speed 

conversion, which enables very reliable digitization. Event rates in excess of 25 kHz are 

possible. A graphical user interface enables user control over input parameters.  

The digitizer can be employed to measure single-laser pulse collections. Additional laser 

pulses can be averaged to increase the signal-to-noise ratio. The time increase for 

measurements with additional laser pulses averaged is proportional to the increased 

number of laser pulses, with a small increase in pulses averaged not greatly affecting total 

collection time due to the rapid acquisition speed and high repetition rate laser employed. 

For samples with a lower concentration of fluorophores and weaker fluorescence signal, 

the PMT voltage can be increased prior to measurement to maximize the dynamic range 

of the digitizer. The detection system has a wavelength resolution of 0.01 nm and a 

temporal resolution of 200 ps.  

The dimensions of the main system components are: 16 cm x 10.3 cm x 3.0 cm 

(digitizer), 9.5 cm x 4.0 cm x 7.0 cm (microchip laser), 15.2 cm x 6.4 cm x 6.4 cm 

(monochromator), 5.1 cm x 2.6 cm x 2.6 cm (PMT), 19.5 cm x 5 cm x 10 cm (laser 

power supply), and 16.5 cm x 10.5 cm x 4.5 cm (pulse generator). This small table-top 

footprint makes the system ideal for eventual translation to a clinical setting.  
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5.2.2 Optical configurations (fiber optics vs. free space)       

For system characterization, four different system set-ups (Table 5.1) were employed to 

acquire WTMs from standard fluorophore solutions. Set-up 1 was a free-space right-

angle geometry commonly used for cuvette-based measurements. Set-ups 2 and 3 were 

identical to set-up 1, except that set-up 2 used a fiber for detection and set-up 3 used a 

fiber for light delivery.  Set-up 4 (Figure 5.2) was clinically compatible because it used 

fiber-optic probes (Fiberguide Industries, SFS600/660N, 600 m core diameter) for light 

delivery and detection. For the reported studies, fiber-optic probes were inserted 

vertically 1 cm below the top surface of the fluorophore solution and 3 cm above the 

bottom of the cuvette with a 660 µm probe spacing.  

 

Table 5.1. Set-ups employed to acquire fluorescence WTMs. 

Set-up Light delivery Fluorescence detection 

1 Direct illumination Right-angle detection 

2 Direct illumination Fiber-optic probe 

3 Fiber-optic probe Right-angle detection 

4 Fiber-optic probe Fiber-optic probe 

 

 

Focusing lenses (Thorlabs, LA4306-UV, LA4052-UV) and a 500 nm longpass filter 

(Semrock, FF01-488) were employed in set-ups 2 and 4 to couple and filter light from the 

fiber-optic probe to the monochromator. In set-up 4, fiber holders were attached to 

micrometer stages for controlled source-detector spacing. 
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5.2.3  Sample preparation 

5.2.3.1 Standard fluorophore solutions 

The system performance was tested (Section 5.3) by acquiring WTMs from solutions of 

three standard fluorophores: rhodamine 6G (Sigma, R4127), fluorescein (Sigma, 

166308), and rose bengal (Sigma, 330000). Each fluorophore was made with a 1 µM 

concentration in ethanol. The solutions were thoroughly mixed in a cuvette prior to 

measurement. Signal-to-noise characterization of the system was performed with a stock 

solution (~1.7 × 107 beads/mL) of fluorescent beads (Invitrogen, A7303).  

5.2.3.2 Tissue-simulating phantoms 

Four tissue-simulating phantoms were made with different scattering coefficients. Each 

phantom originated from a ~1 mM solution of Rhodamine B (Sigma, R6626) in 

deionized water. For the first phantom, 4 mL of deionized water was combined with 4 µL 

of the original Rhodamine B solution. For the second phantom, 3.5 mL of deionized 

water was combined with 0.5 mL polystyrene microspheres (Duke Standards, 4009A, 

1µm diameter) before adding 4 µL of the Rhodamine B solution. For the third phantom, 3 

mL of deionized water was combined with 1 mL of polystyrene microspheres before 

adding 4 µL of the Rhodamine B solution. The fourth phantom was made by combining 2 

mL of deionized water with 2 mL of the polystyrene microspheres before adding 4 µL of 

the Rhodamine B solution. Thus, the resulting concentration of Rhodamine B in each 

mixture was 1 µM. Each of these mixtures was then thoroughly combined with ~0.025 g 

of powder gelatin (Sigma, 097K0108) in a 50 mL conical tube. Then, each mixture was 

transferred to a 35 mm Petri dish and placed on an 80˚C hot plate for 20 minutes to 

dissolve the gelatin, stirring every 5 minutes.  Each sample was removed from the hot 
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plate and returned to room temperature before refrigeration at 3°C overnight to solidify 

the sample.  The resulting thickness of each phantom was approximately 4 mm. 

An integrating sphere (RT-060-SF, Labsphere, North Sutton, NH) set-up was employed 

to measure the scattering coefficient for each phantom [152]. Briefly, a lamp with a 

Kohler illuminator (KI-120, Labsphere) was connected to a power supply (LPS-150-

0660, Labsphere) to uniformly illuminate each phantom. Two configurations, one for 

reflectance and one for transmittance, were used; in both cases, the detected light traveled 

from the integrating sphere into a spectrometer (Ocean Optics, Dunedin, FL, HR2000+) 

via an optical fiber (Ocean Optics, P1000-2-VIS-NIR). The wavelength-resolved 

reflectance and transmittance of each phantom were input into an inverse adding-

doubling (IAD) algorithm [153] to obtain the absorption and scattering coefficients. For 

the four phantoms, three of which contained microspheres, the IAD algorithm extracted 

negligible absorption coefficients and scattering coefficients of 10 cm-1, 50 cm-1, 108  

cm-1, and 222 cm-1.  

 

5.3 System characterization - reference fluorophores in fluid solution 

5.3.1 Signal-to-noise as function of acquisition time 

A stock solution of fluorescent beads was used to measure the signal-to-noise ratio of the 

system as a function of laser pulses averaged per waveform (Figure 5.3). Fluorescence 

decays were collected at 550 nm only and the standard deviation of fluorescence intensity 

from ten measurements was calculated by averaging standard deviations of intensity 

around the emission decay maximum (t = 36–38 ns). In Figure 5.3 (a), the standard 

deviations (green curve) were measured with system set-up 4 (Figure 5.2) and were 



 

91 
 

obtained for acquisition times corresponding to 5, 125, 250, 375, 500, 750, 1000, 1250, 

and 1500 laser pulses averaged. The result was characteristic of Poisson noise (blue 

curve), which was defined as the square root of mean intensity divided by the square root 

of the number of laser pulses averaged, and multiplied by a factor of 0.045 to match the 

scale of the experimental results. The arrow in Figure 5.3(a) represents fluorescence 

acquisition with 125 laser pulses averaged. This fluorescence detection had a peak 

intensity of ~28 (a.u.) and a standard deviation of ~0.25 (a.u.), yielding a SNR greater 

than 100. 

Figure 5.3(b) shows two measurements of time-resolved fluorescence: one obtained with 

5 laser pulses (red curve), and the other obtained with 1250 pulses (purple curve). These 

two curves correspond to the circled collection points in Figure 5.3(a). The two curves 

were similar in shape despite a 250-fold decrease in the number of laser pulses averaged.  
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Figure 5.3. Signal-to-noise characterization of the system, performed on a 
stock solution of fluorescent beads: (a) standard deviation of measured 
fluorescence intensity (green curve), compared to prediction of Poisson theory 
(blue curve), as a function of acquisition time; (b) normalized fluorescence 
decay curves for 5 laser pulses averaged (red curve, corresponding to red 
circle in (a)) and 1250 laser pulses averaged (purple curve, corresponding to 
purple circle in (a)). The arrow in (a) denotes data acquisition with 125 laser 
pulses averaged; the standard deviation of the relative peak intensity at this 
point is ~0.25 (a.u.) with a peak signal intensity of ~28 (a.u.), yielding a SNR 
greater than 100. 

 

5.3.2 Wavelength-resolved fluorescence  

WTMs were acquired from the standard fluorophore solutions from 500 to 650 nm in 

steps of 2 nm, using 1250 laser pulses for excitation per wavelength. Time-resolved 

fluorescence was acquired from 0 to 127.8 ns in steps of 0.2 ns. The PMT setting was 

varied to keep detected signal within the operating range of the digitizer. Prior to data 

acquisition, the emission intensity of each sample was monitored for one minute to verify 

that no photobleaching occurred. 

Figure 5.4 shows the time-integrated fluorescence spectrum of each standard fluorophore 

solution. For each fluorophore, three measurements with the fiber-based set-up (set-up 4, 

Figure 5.2) were averaged to obtain the spectra shown in Figure 5.4. The error bars 

(standard deviation) were similar in size for all four of the system set-ups (data not 
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shown). The collection time for each WTM was 82 seconds. The wavelength range 

measured was 500 to 650 nm with a 2 nm step size.  For each wavelength, 1250 laser 

pulses were averaged to produce the time-resolved decay. These data were in good 

qualitative agreement (peak intensity wavelength agreed within 2 nm) with those reported 

in the literature [154]. 

 

Figure 5.4. Fluorescence spectra of rhodamine 6G (blue curve), rose bengal 
(red curve), and fluorescein (green curve), measured with the fiber-based 
system set-up 4 and normalized to the area under the curve. Each curve is the 
average of three measurements; the error bars represent the standard deviation. 

 

5.3.3 Time-resolved fluorescence and extraction of fluorescence lifetimes 

Figure 5.5 shows time-resolved fluorescence decay curves obtained with the four system 

set-ups for rhodamine 6G (Figure 5.5(a)), rose bengal (Figure 5.5(b)), and fluorescein 

(Figure 5.5(c)). Each plot represents the average of the time-resolved fluorescence 

decays acquired for four set-ups (Figure 5.5) and multiple emission wavelengths. For 

each of these three plots, time-resolved measurements at the peak emission wavelength as 
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well as wavelengths corresponding to 0.6x peak intensity were averaged. Time-resolved 

fluorescence was obtained at three different emission wavelengths for rhodamine 6G and 

rose bengal. Time-resolved fluorescence from fluorescein was obtained at only two 

different emission wavelengths because the emission peak of fluorescein was near the 

first collection wavelength. The time-resolved fluorescence decays for each set-up were 

shifted to a common peak value for comparison, because integrating fiber-optic probes 

into the system set-ups changed the travel time slightly for delivered laser pulses and 

detected fluorescence. The error bars plot the standard deviation for each fluorophore, 

indicating that the measured time-resolved decays are consistent across collection 

wavelengths and system set-up geometries.  
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Figure 5.5. Time-resolved fluorescence decay curves measured on solutions of 
rhodamine 6G ((a), (d)), rose bengal ((b), (e)), and fluorescein ((c), (f)).  Panel 
(a) plots 36 averaged rhodamine 6G fluorescence decays, panel (b) plots 36 
averaged rose bengal fluorescence decays, and panel (c) plots 24 averaged 
fluorescein fluorescence decays (four system set-ups per fluorophore, three 
emission wavelengths for rhodamine 6G and rose bengal, two emission 
wavelengths for fluorescein).  The error bars represent standard deviation. In 
panels (d), (e), and (f), one representative decay curve for each fluorophore 
measured with set-up 4 was fit to a single exponential decay. 
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Figure 5.5 also shows fits of representative time-resolved fluorescence curves measured 

with set-up 4 from rhodamine 6G (Figure 5.5(d)), rose bengal (Figure 5.5(e)), and 

fluorescein (Figure 5(f)) to a single-exponential decay e-t/τ, where  is the mean 

fluorophore lifetime. An iterative least-squares fitting algorithm was employed to obtain 

these fits and extract the corresponding lifetime values [150]. In order to perform the 

fitting procedure, the instrument response function (IRF) was also acquired for each 

detection setting. The IRF was measured from a sample of deionized water in a cuvette, 

using neutral density filters to reduce the transmitted light energy to the sample. All data 

was fit using an IRF taken within 1 nm of the excitation laser wavelength (473 nm), 

selected because it is independent of the wavelength of the fit data and repeatable across 

experiments. The residuals are presented to show the quality of each fit. 

Lifetime analysis was performed on the four set-ups at the peak fluorescence wavelength 

from each fluorophore, as presented in Table 5.2 All data was fit as a single exponential 

decay with Fluorescence Analysis Fitting Software (Fluorescence Innovations (FI), Inc., 

Bozeman, MT). The extracted lifetimes were in good agreement with previously reported 

values and this agreement was consistent for each set-up.  For each system set-up, three 

measurements were collected for each fluorophore and independently fit. The reported 

lifetime is the average of the three measurements plus or minus the standard deviation. 

We note that the small discrepancies between lifetimes extracted for the four set-ups, as 

well as between the measured and literature values, could be due to differences in the 

way that the IRF was acquired, external factors such as temperature and pH, or impurities 

in the fluorophore solutions. For the measurements reported here, each fluorophore was 
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used directly from the manufacturer without further purification, and temperature and pH 

conditions were not monitored.  

 

Table 5.2. Lifetime values obtained from standard fluorophore solutions. 

     Measured a    Literature 

  
 Set-up 

1  
Set-up 

2  
Set-up 

3  
Set-up 

4 
  

Emission 
Wavelength 

(nm) 
Fluorophore 

 
Lifetime 

(ns) 
 

Lifetime 
(ns) 

 
Lifetime 

(ns) 
 

Lifetime 
(ns) 

 
Lifetime 

(ns) 

550 
Rhodamine 

6G 

 
3.977 ±    
0.001 

 
3.828 ± 
0.004 

 
3.971± 
0.004 

 
3.910 ± 
0.001 

 

 
3.99 ± 

0.01[155] 
 

514 Fluorescein 
 4.449 ± 

0.004 
 

4.603 ± 
0.007 

 
4.534± 
0.002 

 
4.620 ± 
0.004 

 
4.25± 

0.01[155] 

572 
Rose 

Bengal 

 
0.668 ± 
0.014 

 
0.676 ± 
0.006 

 
0.648 ± 
0.003 

 
0.711 ± 
0.001 

 
 

0.850 ± 
0.030 [1] 

aFor each system set-up, three measurements were independently fit. The reported 
lifetimes are average plus or minus the standard deviation of these three fits. 
 

5.4 Tissue-simulating phantom study   

System set-up 4 (Figure 5.2) was employed to acquire WTMs from four tissue-

simulating phantoms with different scattering coefficients in a range relevant to 

biological tissue. The measured scattering coefficients of the tissue-simulating phantoms 

were 10 cm-1, 50 cm-1, 108 cm-1, and 222 cm-1. A 0.66 mm fiber-probe source-detector 

separation was used during WTM collection for each phantom. Additional measurements 

with fiber-probe source-detector separations of 1.66 mm, 2.66 mm, 3.66 mm, and 4.66 

mm were collected for the tissue-simulating phantoms with a scattering coefficient of 108 

cm-1 and 222 cm-1. Data was acquired from 500-700 nm (in 5 nm steps) with 1250 laser 

pulses averaged per wavelength. For tissue simulating phantoms with higher scattering 

coefficients, the PMT high-voltage was decreased for WTM measurement. The data 
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acquisition time for each tissue-simulating phantom was 49 seconds. This time can be 

substantially reduced with straightforward modifications, by decreasing the number of 

laser pulses averaged, or increasing the step size. 

Figure 5.6(a) shows steady-state fluorescence spectra for each phantom, averaged over 

three sites and normalized to the area under the curve. Each of these spectra is a 

combination of the fluorescence spectra of gelatin (dark red curve) and Rhodamine B 

(dark green curve). The spectra of the four phantoms are very similar, with some small 

variations around 515 nm and 575 nm, where the standard deviations (error bars) are also 

higher. These variations may be the result of a variable gelatin fluorescence signal in the 

phantoms. Figure 5.6(b) plots time-resolved fluorescence decay curves obtained from 

averaging measurements at peak intensity at the three sites on each phantom. The small 

standard deviations (error bars) show that the decays at all three sites are similar.  
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Figure 5.6. Wavelength-resolved (a) and time-resolved (b) fluorescence from 
tissue-simulating phantoms with varying scattering coefficients (measured 
with a source detector separation of 0.66 mm). Three sites on each phantom 
were measured.  The spectra represent the average of the three sites, with error 
bars representing standard deviation.  Panel (a) also includes spectra from pure 
gelatin and from a solution of rhodamine B in deionized water. 

 

Figure 5.6(b) suggests that phantoms with increased scattering coefficients exhibited 

stretched waveform decay. The stretched waveform decay shown in Figure 5.6(b) for 

tissue-simulating phantoms with a µs of 108 cm-1 and 222 cm-1 (using a fiber-probe 

source-detector separation of 660 µm) was also observed for larger source detector 
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separations out to 4.66 mm (data not shown). The distortion of the waveform was 

observed for each source-detector separation measured, with the relative waveform 

differences between each phantom remaining the same. For the 4.66 mm source-detector 

separation, at which the diffusion approximation is valid, the experimentally observed 

trend matched the prediction of diffusion theory (Figure 5.7) [142]. In Figure 5.7 the 

experimental results and the diffusion theory predictions were both time-shifted to align 

the rising shoulders of the decay curves for the two different scattering coefficients (108 

cm-1 and 222 cm-1). Additionally, both diffusion theory results were convolved with the 

corresponding instrument response functions from the phantom measurements. 

Computational studies employing Monte Carlo codes to model photon propagation are 

underway to further investigate the effect of increased optical scattering coefficients on 

the resulting transient fluorescence decay and extracted fluorophore lifetime [14,32,33]. 

 

Figure 5.7. Measured time-resolved fluorescence decay curves from two 
phantoms with biologically-relevant scattering coefficients at a source-detector 
separation of 4.66 mm (a), compared with the predictions of diffusion theory 
(b). Each curve in (b) is a convolution of the diffusion theory result with the 
instrument response function of the corresponding tissue-simulating phantom. 
For the sake of comparison, the experimental results and the diffusion theory 
predictions were time-shifted to align the rising shoulders of the curves.  In 
both panels, the time-resolved decay from the medium with the higher 
scattering coefficient (red dashed curve) was noticeably broader than the decay 
from the medium with the lower scattering coefficient (blue solid curve). 
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5.5 Discussion 

Most clinical fluorescence instruments emphasize the spectral domain, often integrating a 

spectrograph and CCD camera for rapid data collection in which the entire spectrum is 

measured at once. In these systems, data is acquired over multiple laser shots for signal 

averaging. Most approaches for acquiring time-resolved fluorescence employ a pulsed 

laser and digital oscilloscope. The nitrogen laser is often employed because it is small, 

relatively low cost, and its UV wavelength (337 nm) excites endogenous fluorescence. 

However, the effectiveness of the nitrogen laser for rapid collection of time-resolved 

fluorescence is hindered by its relative low pulse repetition frequency. 

 In this report, we employed a 473 nm microchip laser (3 kHz repetition rate) and a 

specialized digitizer capable of collecting the data obtained at this rate. The system was 

tested on standard fluorophore solutions and tissue-simulating phantoms. WTMs from 

samples with fluorophore concentrations of 1 µM were acquired with speed (under 25 s 

for a WTM from 500 to 650 nm with a 5 nm step size and 125 laser pulses averaged) and 

precision (error less than 1% for Rhodamine 6G and Fluorescein solutions), without 

maximizing the sensing capabilities of the transient digitizer.  

The autofluorescence intensity measured from biological tissues depends on several 

factors, including the excitation wavelength, fiber-probe geometry, and composition of 

the biological sample. It is likely that detected autofluorescence signals from biological 

tissues will be weaker than those from the stock fluorescent solutions used in this study. 

To compensate for this signal loss, system parameters can be changed to increase the 

detected fluorescence intensity.  For example, the excitation fiber diameter can be 

increased in size to excite a larger sample volume and the detection fiber diameter can be 

increased to detect a larger portion of the emitted fluorescence photons. In addition, the 
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PMT gain can be increased in order to maximize the dynamic measurement range of the 

digitizer.  

We note that the stretched behavior of the fluorescence decay curves from phantoms with 

increased scattering coefficients is under investigation. Preliminary results suggest that 

the Rhodamine B lifetime in the phantom is different than its value in cuvette solution, 

which may be due to the dependence of the fluorescence properties of Rhodamine B on 

its local environment[155]. Specifically, the lifetime of Rhodamine B within the 

phantoms may have been altered by the presence of the gelatin and microspheres. Studies 

are underway employing phantoms containing a more stable fluorophore (Rhodamine 

6G[155]). 

It is important to note that the system set-ups reported here were designed only for point 

measurements, not imaging. However, the system can be modified to perform scans of 

multiple points on a sample in order to generate spatially-resolved information. Spatial 

resolution can also be obtained by use of fiber-probes with multiple source-detector 

separations.  

It is also important to note that the acquisition speed of this system is not fully optimized. 

Acquisition time depends on laser pulse repetition frequency, number of laser pulses 

averaged per waveform, and spectral resolution. In addition, there is the time overhead 

associated with moving from one wavelength to the next and downloading an averaged 

waveform. Much of the time needed to generate the WTM data presented in this report 

was consumed by data transfer to a computer and stepping of the monochromator. The 

actual time it takes for the stepper motor to advance to the next wavelength once the 

command has been received and recognized is very small. Likewise, the data transfer 
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time is very fast once the computer is alerted that data is ready for transfer and the 

computer communicates that it is ready to receive this data. Additional delays are caused 

by having the computer update the graphical display after each waveform. 

Currently, waveform averaging is performed on the digitizer and, one at a time, the 

averaged waveforms are downloaded. However, the digitizer can store up to 4000 

waveforms before its memory is full. If 100 laser pulses were averaged per waveform 

(including the 5X interleaving), the data associated with 40 such waveforms 

(corresponding to the wavelength range from 500 nm to 695 nm in steps of 5 nm) could 

be packed in memory. For a laser pulse repetition rate of 4000 Hz, the 100 pulses 

necessary per waveform are generated every 25 ms. The monochromator could be 

independently controlled to step every 25 ms without any intermediate communication 

once the sequence is initiated. In this scenario, the operator could hit a keystroke (or 

depress a foot pedal) to start the acquisition, then after a brief delay the full WTM would 

be collected in one second. Data transfer from the digitizer memory to the computer 

would take a few additional seconds, after which the system would be ready to repeat the 

process. The actual waveform averaging could then be performed on the computer, post 

data collection. 

 

5.6 Conclusions  

In this paper, we reported on the design and validation of novel technology for rapid, 

precise, and accurate acquisition of fluorescence wavelength-time matrices (WTMs) from 

fluorophore solutions and tissue-simulating phantoms. The clinically compatible 

technology employs a microchip laser with a 3 kHz repetition rate and a digitizer capable 
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of detecting at this rate. The system can rapidly acquire fluorescence WTMs with high 

signal-to-noise ratio (greater than 100 when averaging 125 laser pulses per emission 

wavelength). The compact size enables future system translation to a portable, clinically-

compatible unit. Integrated fiber-optic probes to deliver excitation light and detect 

fluorescence emission provide the capability for remote sensing of fluorescence from 

biological tissues.   

These results suggest that the system will be able to perform rapid and accurate 

measurements of time- and wavelength-resolved fluorescence in a biomedical 

environment. The accurate, rapid, and portable nature of the system, combined with the 

information-rich fluorescence data set supplied by WTM collection, suggest that the 

technology reported here is potentially useful for a number of biomedical optics 

applications in clinical settings. 
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Chapter 6.  
Non-invasive assessment of implanted tissue-engineered constructs success in situ by 

quantitative diffuse reflectance spectroscopy 

6.1 Introduction  

Tissue-engineering and regenerative medicine promises improved clinical care for 

functional restoration of tissues damaged by disease or trauma. For example, implanting 

manufactured tissue-engineered constructs developed from a patient’s own cells can heal 

oral wounds up to twice as fast as the current clinical standard-of-care [156]. Regulatory 

approval for such cell-based combinational devices requires reliable methods to assess 

pre-implantation construct viability in vitro and post-implantation construct success in 

vivo [157]. Unfortunately, current evaluation methods [158] are limited in that they are 

inherently qualitative, destructive, and time-consuming (e.g., histology and 

immunohistochemical techniques) or are unreliable and lacking in spatial information 

(e.g., molecular and biochemical assays) [159,160]. Non-invasive characterization 

techniques [159,161] are being developed to evaluate viability of in vitro tissue 

constructs, but are not compatible for rapid, portable measurement of constructs in situ. 

Non-invasive evaluation techniques employed to assess tissue-engineered construct 

success in situ include computed tomography [162] and optical imaging [163-166]. 

However, these methods have limited ability to detect cellular proliferation and tissue 

neovascularization, both of which are tissue properties strongly associated with wound 

healing [167]. Therefore, in this study, we develop clinically compatible technology for 

real-time, quantitative diffuse reflectance spectroscopy (DRS) measurements on 
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engineered tissues in situ. This label-free, non-invasive approach is sensitive to tissue 

optical properties associated with cellular density and organization, as well as 

hemoglobin concentration and oxygenation [168,169]. Indeed, reflectance-based 

approaches have been employed for burn assessment [170] and wound analysis [169,171] 

studies. Here, we test the ability of quantitative DRS to assess post-implantation construct 

success in situ for a tissue engineered construct developed for oral soft tissue repair (ex 

vivo produced oral mucosal equivalents - EVPOME) [47,167]. 

 

6.2 Materials and methods 

6.2.1 Construct culture protocol - Ex Vivo Produced Oral Mucosal Equivalents 
(EVPOME)  

The clinical study protocol was approved by the University of Michigan (UM) Medical 

School Institutional Review Board. Human tissue samples were obtained from patients 

who provided written informed consent. All study practices were in accordance with the 

Declarations of Helsinki Guidelines. 

EVPOMEs were manufactured over 11 days according to a previously reported protocol 

[47] using cells obtained from discarded surgical tissues from the UM Hospital. Primary 

human oral keratinocytes were enzymatically dissociated from the tissue samples and 

isolated keratinocyte cultures were established in a chemically-defined, serum-free 

culture medium (EpiLife and EDGS, Invitrogen) with 0.06 mM calcium, 25 µg/mL 

gentamicin, and 0.375 µg/mL fungizone (Sigma). Cells were twice passaged and 

cryopreserved. Prior to EVPOME manufacturing, donor cells were thawed and passaged 

up to two times. 200,000 cells/cm2 were seeded onto a 1 cm diameter circular piece of 

acellular cadaver skin (AlloDerm®, LifeCell), hereafter referred to as the dermal 
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equivalent. Prior to seeding, the dermal equivalent was pre-soaked overnight in 0.05 

µg/µL human type IV collagen at 4ºC. The seeded construct, now comprising 

keratinocytes and dermal equivalent, was submerged for 4 days (Days 1 to 4) in culture 

medium containing 1.2 mM calcium to promote cell proliferation. Then, the construct 

was raised to an air-liquid interface for an additional 7 days (Days 5 - 11) to induce cell 

stratification.  

For all culture days, control constructs were maintained at 37ºC with 5% CO2. Stressed 

constructs were maintained under those conditions for all culture days except for 24 

hours from Days 9 to 10, when they were maintained at 43ºC [159]. This stressing 

condition was chosen to reduce cell viability and proliferation capabilities relative to 

experimental controls.  

6.2.2 Study design – implantation cohort development and characterization 

Study design in Figure 6.1 details the development and characterization of 42 implanted 

constructs from 6 batches. A batch is defined as a set of control and stressed constructs 

from one distinct primary human cell donor (one patient). The study evaluated two 

implantation cohorts, constructs implanted for 1 week and those implanted for 3 weeks, 

and each cohort contained constructs from 5 distinct human patients. Replicates 

(duplicates and for Batch 6, triplicates) were included for all constructs in case any 

construct was compromised. (Indeed, surgical complications eliminated 3 of the 42 

constructs from consideration, but their replicates were available for study.) 
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Figure 6.1. Study design. 

 

Construct characterization prior to implantation included glucose measures and histology, 

while characterization after implantation included in situ optical DRS measurements and 

histology. Glucose concentration from stock media and Day 11 spent media were 

measured from ~1 μL aliquots with a glucose meter (ACCU-CHEK®, Aviva). Consumed 

glucose was calculated as Day 11 spent media glucose concentration subtracted from 

stock media glucose concentration. Percent glucose consumption was calculated as 

consumed glucose divided by stock media glucose concentration multiplied by 100.   
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Prior to implantation, a small (~2 mm wide) specimen of tissue near the edge of each 

manufactured (Day 11) construct was removed for histological examination. To process 

histology samples, the tissue specimen was fixed in 10% formalin, washed with 

phosphate buffered saline, and stored in a 70% ethanol solution. Specimens were stained 

with hematoxylin and eosin, cut into 5 μm sections, and preserved for future analysis and 

scoring on slides in duplicate or triplicate at the UM Dental School histology core. 

Representative histological sections from manufactured (Day 11) EVPOMES prior to 

implantation are shown in Figure 6.2 Pre-implantation control EVPOMEs developed 

three characteristic layers: an air-exposed top keratin layer ~20-50 µm thick, a middle 

living cell layer ~30-50 µm thick, and a bottom dermal equivalent layer ~300-600 µm 

thick. Conversely, pre-implantation stressed EVPOMEs exhibited poorly defined keratin 

and living cell layers. These histological features led to the development of a quantitative 

histology score, described in ‘Histology Scoring by Expert Panel.’  
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Figure 6.2. Representative hematoxylin and eosin (H&E) sections are shown 
from (A-C) control/healthy and (D-F) stressed/compromised constructs  (A,D) 
pre- and (B-C,E-F) post-implantation sorted by experimental condition 
(control versus stressed) and histology score (healthy versus compromised).  
(A) Pre-implantation control histology section shows the three-layered 
EVPOME structure, with a top keratin layer (K), a middle living cell layer 
(LC), and a bottom dermal equivalent layer (DE). Mature healthy (majority of 
control) constructs developed keratin and living cell layers atop the dermal 
equivalent, whereas compromised (majority of stressed) constructs did not. 
Compared to (A) pre-implantation control/healthy constructs, (B,C) post-
implantation control/healthy constructs showed (B,C) continued development 
of the keratin and living cell layers after 1 week and (C) visible 
revascularization after 3 weeks16 post-implantation. Alternatively, 
stressed/compromised constructs had undefined keratin and living cell layers 
(D) pre-, (E) 1 week, and (F) 3 weeks post-implantation. 

 

As shown in Figure 6.3, panel scores from destructive histological sections distinguished 

control from stressed Day 11 constructs, whereas non-invasive glucose measures were 

unable to reliably distinguish control from stressed Day 11 constructs. 
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Figure 6.3. Pre-implantation construct success was characterized by histology 
and percent glucose consumption.  (left column) Sorted by pre-implantation 
histology score, 100% of control constructs and only 25% of stressed 
constructs had a pre-implantation histology score > 2. (right column) Sorted by 
percent glucose consumption, only 61% of control constructs and 5% of 
stressed constructs had a percent glucose consumption > 5%.  When sorted by 
cohort, pre-implantation histology score distinguished control from stressed 
constructs (p = 0.03 for constructs to be implanted for 1 week, p = 0.01 for 
constructs to be implanted for 3 weeks), whereas percent glucose consumption 
did not (p = 0.12 for constructs to be implanted for 1 week, p = 0.09 for 
constructs to be implanted for 3 weeks). 
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6.2.3 Construct implantation protocol – murine model  

Day 11 EVPOMEs were implanted into 7 to 8-week old female severe combined 

immunodeficient (SCID) mice according to a previously developed protocol[167]. The 

UM Committee on Use and Care of Animals approved the study protocols.  

To implant constructs, mice were anesthesized and their dorsal skin disinfected (betadine, 

Purdue Products L.P.) before a full-thickness curvilinear incision was made down to the 

panniculus carnosus to create a skin pouch. The skin pouch was ~2.0 cm2, which was 

sufficient to house a ~1.0 cm2 construct. Inside the pouch, the construct’s dermal 

equivalent side was placed onto the animal’s muscular fascia. The top keratin layer of the 

construct was covered with a thin silastic sheet (~130 μm thick) cut to twice the construct 

diameter to prevent adherence with the animal skin. The skin pouch was secured with 

Autoclip (Becton Dickinson).  

As shown in the representative histology images in Figure 6.2, during post-implantation 

wound healing, control constructs developed an increased thickness of the top keratin and 

middle living cell layers and notable revascularization, whereas stressed constructs 

exhibited relatively less revascularization and a poorly defined or absent cell layer.  

6.2.4 Tissue diffuse reflectance spectroscopy instrumentation 

Diffuse reflectance spectra were collected on tissues in situ using a clinically-compatible 

prototype fiber-optic reflectance spectrometer[27,31]. Briefly, a fiber-optic probe 

(QF600-8-VIS/NIR, Ocean Optics), shown in Figure 6.4, directed broadband white light 

from a tungsten halogen lamp (HL 2000FHSA, Ocean Optics) to the sample. The fiber-

optic probe comprised seven excitation fibers (600 μm diameter) beveled at 60º relative 

to tissue normal and a central, flat-tip 600 μm diameter optical fiber to collect photons 
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scattered out of the tissue. Compared to conventional flat tip optical fibers, beveled fibers 

increase interrogation of tissue near the construct surface (here, optimized for 

interrogating a tissue’s top ~600 μm, the estimated average thickness of an EVPOME). 

Thus, employing a beveled fiber-optic probe enabled interrogating the thin tissue 

construct while mitigating interrogation of the native animal tissue. Ray-traced, non-

sequential simulations in ZEMAX®, shown in Figure 6.4, visualized excitation light 

path from beveled fibers (red and green rays), elastic scattering from tissue within the 

construct, and emission light path (blue rays). Overlap of excitation light and emission 

light shows optical interrogation volume primarily constrained to within the construct’s 

top 600 μm. Construct was modeled with optical scattering properties of dermal 

equivalent [35]. Collected photons were detected by a spectrograph (MS 125, Oriel 

Instruments) coupled to an intensified charge-coupled device camera (ICCD 2063, Andor 

Technology).  
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Figure 6.4. Diffuse reflectance spectroscopy instrumentation selectively 
interrogated mature EVPOME constructs. A standoff fiber-optic probe enabled 
rapid, portable, and repeatable measurements. Broadband light was delivered 
to and collected from the construct with a beveled fiber-optic probe, shown in 
cross-sectional and side view. A ray traced model, employed in ZEMAX® with 
tissue optical properties18 of dermal equivalent, estimated the optical 
interrogation volume18 in mature constructs. Cross-sectional view shows the 
(red) 7 excitation beveled fibers around a (blue) common detection fiber.  Side 
view shows simulated (green and red) excitation photons overlap with (blue) 
emission photons within the constructs keratin, living cell, and dermal 
equivalent layers without interrogating the native tissue. One excitation fiber 
ray is colored green to illustrate the interactions of rays from different 
excitation fibers more clearly. 
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6.2.5 Diffuse reflectance spectroscopy measurement protocol 

EVPOME constructs were measured optically after being implanted in the murine skin 

pouch for 1 week and 3 weeks, which were suitable time frames to promote wound 

healing [167,172]. Mice were administered buprenorphine subcutaneously for analgesia 

and isoflurane via a nose cone for anesthesia. To mimic future clinical studies on 

constructs implanted in human oral mucosa, a curvilinear incision was made through the 

animal’s skin and the silastic sheet was removed, thereby exposing the constructs to air 

prior to optical measurement. Mice were placed prone onto a heating pad set to ~100°F. 

The mouse and heating pad were then placed on a stage capable of tilting so that the 

construct’s surface could be oriented approximately perpendicular to the optical axis of 

the DRS fiber-optic probe. The DRS probe was mounted on a micrometer-guided 3-axis 

linear translational stage to position the probe at a controlled distance above a tissue 

measurement site. Up to three randomly selected construct sites per animal were 

measured at 1.0, 1.5, and 2.0 mm standoff distances above the tissue surface. An off-

construct site was measured to characterize hemoglobin absorption from native animal 

tissue surrounding implanted constructs. Individual DRS measurements were acquired in 

100 milliseconds. DRS investigators were blinded to a construct’s experimental condition 

during these measurements.  

6.2.6 Optical data set and pre-processing 

Measured diffuse reflectance spectra were background-corrected for ambient light, 

corrected for the spectral instrument response, and smoothed with a ten-point moving 

average filter [27]. Corrected and smoothed spectra were normalized to peak intensity so 

that further quantitative analysis would characterize relative spectral differences in tissue 
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optical properties. Exclusion criteria were developed to eliminate measurements with 

excessive blood absorption, attributed either to thin dermal equivalent (< 400 µm) or to 

surgical complications that artificially increased local blood content. For constructs 

implanted for 1 week, spectra with normalized reflectance intensity greater than 0.55 at 

410 nm or 0.75 at 586 nm were excluded. For constructs implanted for 3 weeks, spectra 

with normalized reflectance intensity greater than 0.2 at 410 nm or 0.5 at 575 nm were 

excluded. Resulting data set is shown in Table 6.1. Exclusion criteria differed between 

implantation cohorts, because constructs implanted for less time were expected to have 

less hemoglobin absorption. Applying the exclusion criteria eliminated 52 out of 135 

measurements from constructs implanted for 1 week, and 32 out of 108 constructs 

implanted for 3 weeks.    

Table 6.1. Number of batches, constructs, sites, and measurements in data set 
after employing exclusion criteria. Batches indicate control and stressed  
constructs cultured from one distinct primary human cell donor. 

 

6.2.7 Quantitative reflectance spectral analysis  

Measured reflectance spectra were analyzed with MATLAB® software using built-in 

principal component analysis function and home-built spectral intensity classifiers.  

Figure 6.5 shows representative reflectance spectra from control and stressed constructs 

(at 2.0 mm standoff) and dermal equivalent compared to principal component 6 and 

hemoglobin absorption [168]. Principal component 6 accounted for key variations 
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attributed to hemoglobin absorption and cell scattering, whereas principal components 1-

5 accounted for the similarities between control/healthy and stressed/compromised 

constructs. These similarities include optical contributions from dermal equivalent and 

absorption from baseline concentrations of hemoglobin.  

Two spectral intensity classifiers were employed to classify constructs, named the total 

and oxygenated blood indicator and the total blood and cell scatterer indicator.  

Total and oxygenated blood indicator: 

 [R(500 nm) - R(422 nm)] * [R(560 nm) - R(542 nm)] 

Total blood and cell scatterer indicator: 

 [R(452 nm) - R(422 nm)] / [slope from 650 to 760 nm] 

R(λ) indicates the relative reflectance intensity value at λ. Spectral intensity classifiers 

characterized relative amount of hemoglobin absorption [173] (intensity differences 

between hemoglobin isosbestic points: 422, 452, and 500 nm), relative oxygenated 

hemoglobin (intensity differences between maximum and minimum oxygenated 

hemoglobin absorption wavelengths: 542 and 560 nm), and tissue scattering (slope from 

650-760 nm [168]). 
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Figure 6.5. Representative DRS measurements at 2.0 mm standoff from (left) 
1 week and (middle) 3 weeks post-implantation constructs compared to (right) 
dermal equivalent that was pre-soaked in phosphate buffered saline. (gray 
overlays) The primary wavelengths employed for spectral intensity 
classification correspond to (right) hemoglobin absorption bands19, cellular 
and collagen scattering (slope from 650-760 nm), and the peaks and valleys of 
(left) principal component 6 (PC6). As expected, (right) hemoglobin 
absorption was lowest from (left) 1 week post-implantation stressed and 
greatest from (middle) 3 weeks post-implantation control constructs. 

 

6.2.8 Histology scoring by expert panel 

Histology scoring classification criteria were developed and implemented by a blinded 

panel of three expert readers. Readers evaluated construct pre-implantation viability and 

post-implantation construct success on a 5 point scale from 1-5, with 1 being least and 5 

being most viable. Evaluation criteria were the health of the basal cell layer, the cellular 

organization of the living cell layer, and the structural quality of the keratin layer. For 

example, 1 indicated a construct with few to no cells, little or no cellular organization, 

and an unstructured keratin layer, while 5 indicated a construct with a thick layer of 

rounded basal cells, thick superficial layers comprised of many gradually flattening cells, 

and a compact keratin layer. Overall, control constructs had healthier basal cells, 

increased cellular organization, and better structural quality of the keratin than stressed 

constructs. Tissue revascularization was not reliably assessed with H&E staining and 
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therefore not an evaluation criterion. Readers internally calibrated by selecting histology 

images unanimously agreed to be 1 and 5. Then, readers scored each construct’s 

histology slide while blinded to the constructs experimental condition and the other 

readers’ scores. 

6.2.9 Statistical analysis 

Statistical analysis was performed at the batch level to account for the hierarchal nature 

of the measurements, including intra-batch and standoff related correlations. For 

example, a mixed-effects model accounted for correlations from standoff measurements 

from the same construct site, measurements from sites on the same construct, and 

measurements from constructs from the same batch. For each parameter, models 

calculated the mean difference between control/healthy and stressed/compromised 

constructs. All tests were conducted using a 0.05 significance level. If batch-level 

analysis was not significant, a less rigorous statistical test was performed by treating all 

measurements as independent with a Wilcoxin rank-sum test. Significance was 

determined with a 0.05 significance level. 

 

6.3 Results  

6.3.1 Glucose readings are non-invasive, but inherent measurement variability 
limits ability to distinguish control from stressed constructs 

While non-invasive, glucose readings are highly variable (see Figure 6.3). Therefore, 

when percent glucose consumption was compared for individual cohorts, these readings 

did not distinguish control from stressed constructs (p = 0.12 and 0.09 for cohort 

constructs to be implanted for 1 week and 3 weeks, respectively). Because glucose 
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measurements were measured pre-implantation, readings from cohorts were grouped and 

reanalyzed, increasing the sample size and statistical power. When grouped, glucose did 

distinguish control from stressed constructs (p = 0.001). However, the high inherent 

variability of measurements (ranging from 0-40% consumption) indicates that glucose 

readings are an unreliable tool to distinguish control from stressed constructs. 

6.3.2 Histology sections are able to distinguish control from stressed constructs, 
but are destructive 

Figure 6.6 compares pre- and post-implantation histology scores for both implantation 

cohorts. Pre-implantation histology scores distinguished control from stressed constructs 

for both implantation cohorts (p = 0.03 and 0.01 for cohort constructs to be implanted for 

1 week and 3 weeks, respectively, and p < 0.001 after combining cohorts) and post-

implantation histology scores distinguished control from stressed constructs for both 

implantation cohorts (p = 0.02 and 0.03 for cohort constructs implanted for 1 week and 3 

weeks, respectively). After implantation for 3 weeks, histology scores were significantly 

lower than corresponding pre-implantation histology scores (p = 0.04). The mean 

difference between histology scores of constructs from the 3 weeks implantation cohort 

and their corresponding pre-implantation histology scores was ~2.2, whereas 

corresponding difference in histology scores of constructs from the 1 week implantation 

cohort was ~0.7. This notable histology score decrease after 3 weeks of implantation was 

attributed to construct wound healing. As wounds healed, human cells slough off and are 

replaced by native animal cells. While our optical technology was sensitive to the 

recruited animal cells, our expert panel scored such constructs poorly because the 

constructs lacked human cells.  
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Figure 6.6. Pre-implantation histology scores from control and stressed 
constructs predicted post-implantation histology scores 1 week post-
implantation, but not 3 weeks post-implantation. (left) Post-implantation 
histology scores from 1 week post-implantation constructs distinguished 
control from stressed constructs (p = 0.02). (right) At 3 weeks post-
implantation, majority of constructs had average post-implantation histology 
score between 2 and 3. While histology score distinguished  control and 
stressed constructs (p-value = 0.03), the decrease in histology score for control 
constructs indicated advanced stages of wound healing, where low histology 
scores indicated the invasion of host cells.  Gray dotted lines indicate 
employed thresholds to characterize healthy and compromised constructs based 
on panel histology score (for Figure 6.7). 

 

6.3.3 Reflectance spectra distinguish constructs sorted by experimental condition 
and post-implantation histology score 

Figure 6.7 shows averaged reflectance spectra from both implantation cohorts sorted by 

experimental condition (i.e., control versus stressed) and histology score (i.e., healthy 

versus compromised determined by histology score threshold from Figure 6.5). 

Measured spectra have characteristics of hemoglobin absorption at ~420 nm and between 

~510-575 nm and tissue scattering from ~650-760 nm [168]. Measured spectra from off-
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construct sites showed greater hemoglobin absorption than construct sites, confirming 

that non-excluded reflectance spectra primarily interrogated the implanted construct and 

not native tissue (data not shown). 

 

Figure 6.7. Diffuse reflectance measurements were normalized to peak, 
averaged, and renormalized to peak. These average diffuse reflectance 
measurements from (left column) 1 week and (right column) 3 weeks post- 
implantation constructs clearly distinguish measurements from constructs 
sorted by (left column) experimental condition and (right column) post-
implantation histology score. The absorption bands near ~422 nm and ~540-
570 nm were attributed to hemoglobin absorption [173], whereas the higher 
intensity regions near between 650-760 nm were attributed to sample 
scattering properties [168]. As expected, average reflectance spectra differed 
most when classifying constructs according to post-implantation histology, 
which accounted for stressed constructs that grew well in vivo. Gray overlays 
emphasize primary wavelength ranges of interest from Figure 6.4. Error bars 
represent standard error. 
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6.3.4 Reflectance parameters distinguish constructs sorted by experimental 
condition and histology score 

Optical parameters classified measurements from constructs implanted for 1 week based 

on experimental condition and post-implantation histology analysis (Figure 6.8). 

Compared to experimental condition, constructs sorted by post-implantation histology 

classified stressed constructs that grew well as healthy. Higher absolute values of 

calculated metrics for spectral intensity classifiers indicate greater total and oxygenated 

hemoglobin absorption and tissue scattering.  

Optical parameters did not significantly distinguish constructs implanted for 3 weeks at 

the batch level (p > 0.05). Based on the classification threshold in Figure 6.6, 2 of the 5 

batches with constructs implanted for 3 weeks only had healthy constructs. Therefore, the 

batch-level study was effectively reduced to N = 3 batches. At the measurement-level, the 

total and oxygenated blood indicator distinguished measurements of healthy constructs 

from measurements of compromised constructs (p = 0.04).  

 

 

Figure 6.8. In vivo, non-invasive, and label-free reflectance spectra, 
characterized by 3 reflectance parameters, distinguish 1 week post-
implantation constructs at the batch level after sorting by experimental 
condition (control versus stressed) and histology score (healthy versus 
compromised). Statistically significant parameters indicate that DRS 
characterizes tissue-engineered construct success in vivo. Error bars represent 
standard error. 



 

124 
 

6.4 Discussion 

Measured reflectance spectra from EVPOMEs undergoing wound healing in vivo are 

sensitive to tissue absorption, attributed to revascularization, and tissue scattering, 

attributed to relative thickness of cell layer to dermal equivalent. In general, in vitro 

EVPOME morphology is homogeneous [156]. However, during in vivo wound healing, 

EVPOMEs may become heterogeneous. In our study, up to three unique sites were 

measured per construct. To account for local heterogeneities in tissue absorption and 

scattering, future work will include analyzing more sites to effectively map the 

construct’s surface. Furthermore, tissue histology samples will be obtained from sites < 2 

mm from the measurement to account for these heterogeneities, rather than collecting one 

representative histology sample per construct. 

In this study, control constructs were compared to compromised constructs developed by 

pre-implantation thermal stressing. Histology scores confirmed that thermal stressing 

damaged the construct’s morphology and biochemistry, consistent with previous reports 

[159,161]. Alternative stressing mechanisms to reduce the viability of tissue constructs 

include starvation [159], culturing constructs with higher-than-normal calcium 

concentrations [161], or altering cell biochemistry with immunosuppressant drugs [161]. 

For each stressing mechanism, histology confirmed constructs were compromised similar 

to thermal stressing, with notable damage to the keratin and living cell layers that alter a 

construct’s tissue scattering and absorption properties. Therefore, the hallmarks of 

compromised constructs identified by DRS from thermal stressing are expected to be 

applicable to distinguish constructs compromised with alternative stressing mechanisms. 

Measurements were collected with a variable standoff fiber-optic probe designed for 

interrogating ~600 μm into the sample, estimated as the average thickness of an 
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EVPOME. In practice, dermal equivalent was thinner than specified. Thin dermal 

equivalent manufactured EVPOMEs < 600 μm thick. Therefore, the interrogated sample 

area may have included EVPOME and native host tissue, introducing higher levels of 

tissue absorption from the vascularized muscle tissue underneath EVPOMEs. Exclusion 

criteria were developed to remove these measurements with excessive absorption, 

consistent with optical measurements from off-construct sites. Future work will employ a 

fiber-optic probe that interrogates < 600 μm into the sample to characterize constructs 

developed thin dermal equivalent (< 400 μm thick).  

In this study, fiber-optic probe interrogated the superficial construct layers with a fixed 

standoff, controlled with micrometer translation stages. The standoff maximized 

interrogation of the construct, and thus minimized interrogation of the host tissue 

underneath. In clinical practice, a clinician will employ the fiber-optic probe by hand for 

remote sensing, requiring a fixed standoff achieved with an optical spacer. The optical 

spacer will control the standoff distance and minimize optical losses from light transport 

through air.  

Histology scoring showed that EVPOMEs implanted for 3 weeks were at advanced stages 

of wound healing. That is, histology sections showed that native mouse cells had largely 

replaced human keratinocytes. Because our optical instrumentation cannot distinguish 

optical signatures from human and animal cells, DRS measurements were unable to 

distinguish healthy from compromised constructs implanted for 3 weeks at the batch level 

(but did distinguish healthy from compromised constructs at the measurement level). 

Future work will include studying intermittent stages of wound healing from constructs 

implanted for between 1 week and 3 weeks. 
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6.5 Conclusion 

Diffuse reflectance spectroscopy (DRS) characterized tissue-engineered constructs 

implanted for 1week and 3 weeks. Compared to measurements of stressed constructs, 

measured reflectance spectra from control constructs had greater hemoglobin absorption, 

relative concentration of oxygenated hemoglobin, and tissue scattering from cell nuclei. 

Optical metrics characterized these differences to classify healthy from compromised 

constructs implanted for 1 week (p < 0.01 at batch level). After 3 weeks of implantation, 

most constructs had reached advanced stages of wound healing. Optical metrics were 

unable to distinguish healthy from compromised constructs at the batch level, but did 

distinguish healthy from compromised constructs at the measurement level (p = 0.04). 

Overall, DRS is a rapid, easy-to-use, and sensitive tool for the in vivo analysis of tissue-

engineered construct wound healing that can be employed for future clinical studies with 

a portable, hand-held, fiber optic probe. 

 

 



 

127 
 

Chapter 7.  
Clinical translation and commercialization of optical spectroscopy technology 

7.1 Clinical applications 

The sensitivity of optical measurements to disease-related biochemical and 

morphological changes in tissue has led to promising developments in reflectance- and 

fluorescence-based diagnostic technology for a wide variety of clinical applications. 

These applications range from cancer diagnostics to dental caries [174] to inflammatory 

diseases, such as arthritis [175] or Crohn’s disease [176]. Potential future clinical 

applications include diabetes, neurological diseases, arthritis, and metabolic diseases 

[177]. Additionally, optical techniques have been developed and employed for clinical 

cancer diagnostics for nearly two decades, as chronicled in a recent review article [178]. 

Cancers are characterized by a number of biological and morphological tissue changes, 

which can be markedly different among tissue types, thus requiring specific optical 

instrumentation and analysis algorithms for accurate classification. A wide variety of 

cancers have been previously studied with fluorescence sensing methods, including head 

and neck [179] (including oral [180]), skin [181-184], breast [7,185], colon [6], brain 

[186], lung [187,188], stomach [189,190], prostate [191], cervix [119], ovarian [192], and 

pancreatic [3,23,35,101]. Although some of these studies were ex vivo, the fluorescence 

technology reported is clinically translatable and the research goal is to develop in vivo 

clinical technology.  
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7.2 Clinical design considerations  

7.2.1 Regulatory issues 

Device safety is charged to the device manufacturer, both during the FDA approval 

process and afterwards, when monitoring the device once it is employed for clinical use. 

To achieve FDA approval, Class III clinical devices (any device that is employed to 

support human life, prevents human harm, or presents an amount of unreasonable risk of 

patient injury or illness) must undergo FDA pre-market approval (PMA) to assess their 

safety and effectiveness, and to designate them as an adjunct or replacement technology 

[193]. For a specific technology that poses potential risk to patient health, safety, or 

welfare, an investigational device exemption (IDE) may be required. Devices employing 

laser sources add additional concerns regarding photosensitivity, including radiation 

hazards and thermal tissue heating [25,194]. 

The first regulation for clinical fluorescence technologies was enacted in 1990 with the 

Safe Medical Devices Act, shortly followed by Medical Devices Amendments in 1992.  

In 1997, the FDA outlined clear guidelines for developing fluorescence technology 

targeting cervical cancer [195], which can be extended to similar optical technologies. 

These FDA requirements outline the procedure for Investigational Device 

Exemption/Investigational New Drug (IDE/IND) approval and define the permitted 

clinical uses of the technology. Four uses were permitted: (1) adjunct tool to cytology, (2) 

screening device after abnormal cytology, (3) localize biopsy sites, and (4) primary 

screening as an alternative to cytology.  

Optical clinical technologies typically indicate a significant risk device, requiring an IDE 

application, which must include all technology details, including the device description, a 

complete list of the patient-contacting materials, and software details. Preclinical testing 
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must conform to Good Laboratory Practices (GLP), which are general practice guidelines 

to ensure that biocompatible materials and optical radiation levels employed will not 

compromise patient safety [196].  

For laser-based devices, safety must be demonstrated according to American National 

Standards Institute (ANSI) standards [197]. Before clinical trials begin, a local 

institutional review board (IRB) must review and approve the study. To gain IRB 

approval, technology must demonstrate two layers of safety, defined as either procedural 

or instrument based barriers to protect the patient from the technology and vice versa 

[198]. The detailed requirements for performing Phase I and II clinical trials are 

discussed in the Clinical Trials section below.  

Also pertinent to study success is the sterilization of all materials that will contact the 

patient [199]. Detailed guidelines regarding disinfection and sterilization practices for 

healthcare facilities were outlined in 2008 by the Healthcare Infection Control Practices 

Advisory Committee (HICPAC) [200]. Specific to fiber-optic probes were sterilization 

guidelines for steam, flash steam, and ethylene oxide sterilization. Previous studies have 

outlined procedures used to sterilize fiber-optic probes and endoscopes [64,201]. A new 

probe disinfector has been FDA approved for disinfection of transesophageal ultrasound 

probes, but has yet to be employed for reflectance or fluorescence fiber-optic probes and 

endoscopes [202].  

Recently, regulatory processes for medical imaging technology seeking FDA approval 

and clinical use were discussed for four separate medical imaging modalities (including 

near-infrared fluorescence and multispectral fluorescence imaging) [196]. The study 

concluded that each of the four technologies was at a different stage of the translational 
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pipeline (Figure 7.1) and that each group had taken a slightly different approach to 

gaining approval. This outcome suggested that a standardized pipeline would advance 

promising technology to a commercial stage more efficiently, returning greater value 

from the funding provided by both private and taxpayer dollars. 

 

 

Figure 7.1. Schematic of the ‘translational pipeline’ from device discovery 
through FDA approval. An emphasis is placed on the iterative process during 
device development and clinical trials [196]. The goal of a common 
translational pipeline is to improve and standardize the approval process for 
medical imaging technologies. With faster approval times, and thereby 
expedited returns on investment, investors should be more apt to fund clinical 
imaging technology companies developing fluorescence instrumentation. 
(Adapted with permission from [196]). 

 

7.2.2 Integration with hospital environment  

To successfully integrate fluorescence technology into the clinic, it must possess several 

attributes to ensure adoption by physicians [203].  

In clinical diagnostic and surgical procedures, clinicians make real-time decisions based 

on the findings of the procedure (e.g., the presence or absence of cancer). Therefore, 
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clinicians require instrumentation that immediately provides accurate, reliable 

diagnostics. Optical technologies must significantly improve upon a physician’s current 

tools. If diagnostics are negligibly improved, the training time and equipment cost cannot 

be justified by the physician or hospital. The technology must also uphold IRB safety 

standards [198] and include back-up plans that protect the patient from potential device 

failure. 

Optical instrumentation for disease detection may be used by clinicians throughout a 

procedure. For instance, optical instrumentation for cancer detection could be employed 

for both point detection and tumor margin analysis. Therefore, the technology should be 

designed to smoothly incorporate into the current clinical protocol. To achieve this goal, 

the instrument should be intuitive to use and it should provide the clinician with 

diagnostically-significant information that enables an improvement upon current methods 

for disease detection. This information should be easy for the clinician to interpret: for 

fluorescence imaging, displays should incorporate well-understood color schemes (e.g.,  

green for go, red for stop) and false coloring for clear distinction of healthy and diseased 

tissue; for point detection, the instrument should clearly indicate the presence or absence 

of disease (e.g., H for healthy, D for diseased) on an easy-to-read interface within the 

clinical procedure room [204]. 

7.2.3 Clinical trials 

Before a new medical technology can be made commercially available, it must 

successfully undergo a series of clinical trials [205][206]. Phase I clinical trials employ a 

group of 20-80 patients and are focused on evaluating the safety of the technology. Phase 

II clinical trials involve a patient set of 100-300 people and are employed to test both the 
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effectiveness and the safety of the technology. Phase III clinical trials include 1,000-

3,000 patients, a large enough sample size to compare the new technology to currently-

employed techniques and develop protocols for safe use of the technology. Phase IV 

clinical trials occur after marketing of the technology has begun, and they are designed to 

gain a more complete understanding of the advantages and drawbacks of the new 

technology so that a strategy for using of the technology can be optimized.  

Numerous fluorescence-based techniques have undergone clinical trials. For example, 

from 2002-2009, the ability of a fluorescence-based device to detect cervical (pre-)cancer 

was tested in a clinical trial sponsored by the M. D. Anderson Cancer Center (Houston, 

TX) in collaboration with the National Cancer Institute [206]. In this trial, 100 patients 

who were undergoing colposcopy at one of five different clinical locations were also 

given a fluorescence-based cervical examination, and these results were employed to 

assess the diagnostic accuracy of the fluorescence technology. The same sponsor and 

collaborator conducted a larger clinical trial from 1998-2009 that enrolled 1,070 healthy 

patients [207]. In this trial, fluorescence and reflectance measurements were acquired 

from each of two sites on the cervix (one normal columnar site, one normal squamous 

site) and biopsies were obtained from both of these locations. The goal of this trial was to 

better characterize the optical spectra of normal cervical tissues, so that normal tissue, 

inflamed tissue, and pre-cancerous tissue could be better distinguished from each other 

using fluorescence- and reflectance-based techniques. Techniques assessed in these trials 

were employed to distinguish diseased tissues (moderate dysplasia, severe dysplasia, or 

malignant) from non-diseased tissues (mild dysplasia or non-dysplastic) with a sensitivity 
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of 100%, specificity of 71%, and area under the receiver operating characteristic (ROC) 

curve of 0.85 [208].   

Optical devices that employ fluorescence for oral cancer detection are currently 

undergoing clinical trials. The Multispectral Digital Microscope (MDM) [180,209] 

obtains wide-field fluorescence images of the oral cavity under 365 nm, 405 nm, and 450 

nm excitation, in addition to white-light reflectance and orthogonal polarization images. 

The FastEEM4 [210] excites tissue fluorescence at multiple wavelengths to measure 

spectrally-resolved fluorescence excitation-emission matrices (EEMs). (Previous versions 

of this instrument were employed in clinical trials for cervical cancer detection [211].) 

The PS2-Oral [212] incorporates an optical setup for fluorescence and reflectance 

imaging onto a surgical headlight system. A clinical trial employing the MDM, 

FastEEM4, and the PS2-Oral began in 2007 and is scheduled for completion in 2014 with 

an estimated enrollment of 200 patients [213].  

 

7.3 Commercialized clinical fluorescence technologies 

A number of clinically-compatible devices that employ fluorescence for disease detection 

are commercially available [214]. Typically, these devices provide tissue analysis using 

contrast from the tissue fluorescence measured at the surface, thereby assisting with 

visual diagnostic examination.  

The VELscope (LED Dental Inc.) is a hand-held device (8.6” x 2.2” x 3.4”) that 

illuminates the oral mucosal tissue on the inside of the mouth with blue (400-460 nm 

[215,216]) light in order to detect malignant and pre-malignant lesions using endogenous 

tissue fluorescence. Normal tissue will emit fluorescent light that causes the surface of 
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the mouth to glow a green (> 480 nm [217]) color. However, cancerous and pre-

cancerous tissue will not emit a notable amount of fluorescence, so the surfaces of 

diseased regions will appear darker than the surrounding normal tissue. The VELscope 

procedure can be easily incorporated into a dental exam, as the total time required to 

examine the patient with the device is only about 2 minutes. Recently, a study involving 

620 patients [218] demonstrated that the VELscope was able to assist with detecting all 

28 of the lesions that were not found during standard visual examination. However, the 

utility of this device is limited if the patient has inflamed tissue or if the device is 

interrogating a region with high pigmentation or prominent blood vessels near the tissue 

surface [215]. Under these circumstances, the fluorescence can be attenuated by tissue 

optical absorption from these features and the surface may appear dark even if there is no 

disease present. 

The Identafi 3000 (DentalEZ) also uses tissue autofluorescence (similar to the 

VELscope) via a violet light source (Identafi). This device was approved by the FDA in 

2009 for use in assisting with visual examinations of the oral cavity to detect cancerous 

and pre-cancerous lesions. It was also approved as a tool to assist with the identification 

of tumor margins during oral surgery. An ongoing clinical trial [219,220] is testing the 

ability of the instrument to identify oral neoplasia. This trial involves over 300 patients 

from two different comprehensive cancer centers that are independently researching the 

diagnostic accuracy of the device. The device employs 405 nm excitation to measure 

fluorescence images of stromal neovasculature and stromal breakdown, both associated 

with lesion growth. The device also employs white light for reflectance measurements 

and amber light (545 nm [219]) for improved detection of vasculature. 
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The WavSTAT optical biopsy system (SpectraScience) delivers laser light (410 nm 

[221]) onto human colon tissue via a fiber-optic probe incorporated into a pair of biopsy 

forceps inserted through the instrument channel of a colonoscope [222]. The detected 

endogenous fluorescence signal from the colon tissue is translated into a binary 

diagnostic result of “suspect” or “non-suspect” for the site of interest, thereby removing 

the need for the examiner to have expertise in analysis or interpretation of complex 

fluorescence spectra. Preliminary in vivo studies showed promise in distinguishing 

hyperplastic (benign, with no malignant potential) polyps and from adenomatous (pre-

malignant) polyps in the colon [222]. 

The LUMA imaging system (SpectraScience) was approved by the FDA in 2006 for use 

by clinicians performing cervical cancer examinations, to determine if other regions of 

the cervix should be biopsied after colposcopy [214]. The device employs 337 nm laser 

light for fluorescence excitation and two flash lamps for reflectance [223]. The lamps and 

laser are coupled to a fiber-optic probe to deliver light to the tissue, and the system scans 

a region of 25 mm diameter, mapping a suspicious area of the cervix [223]. The scan 

takes roughly 12 seconds and the probe does not contact the tissue during this process 

[223]. In two randomized clinical trials, the true positive biopsy rate was found to 

increase by at least 25% when the LUMA device was employed along with colposcopy, 

and the corresponding increase in the false positive rate was only 4% [123,223].   

7.4 Conclusions 

Optical spectroscopy technologies can be applied to address a wide range of unmet 

clinical needs in tissue diagnostics. For successful clinical integration of these 

technologies, a clearly-defined “translational pipeline” should be further developed to 
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expedite the timeline from preliminary clinical trials to commercialization and adoption 

by the medical community. As additional optical technologies progress through the FDA 

approval process in the future, the impact of optical spectroscopy and imaging 

technologies on clinical patient care is expected to increase, directly addressing the need 

for cost-effective, real-time, objective, and non-invasive tissue diagnostics. 
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Chapter 8.  
Conclusions and future directions 

8.1  Major contributions of this dissertation 

Optical technologies are commonly employed for non-invasive sensing of biological 

tissues because they are sensitive to tissue changes that may indicate disease status, 

including local changes in optical tissue properties, such as absorption and scattering, and 

microenvironment, such as binding status, temperature, and pH. The work presented in 

this dissertation describes the development, characterization, and employment of non-

invasive optical sensing technologies, including steady-state diffuse reflectance, steady-

state fluorescence, and time-resolved fluorescence, to address two primary clinical 

challenges: (1) improved detection of pancreatic disease state and (2) assessment of 

wound healing in implanted, in situ tissue-engineered constructs. First, we verified and 

validated a photon-tissue interaction (PTI) model that was then employed for the first 

ever characterization of in vivo reflectance spectra in a human pilot study with 6 patients. 

Results from PTI and ratiometric analysis models demonstrated quantitative similarity 

between the in vivo and corresponding ex vivo measurements. In a parallel study, we 

assessed the diagnostic utility of time-resolved fluorescence decays to classify human 

pancreatic disease ex and in vivo. Based on these promising results, we developed next 

generation, clinically-compatible wavelength-time matrix instrumentation to collect 

enhanced time-resolved fluorescence information from biological tissues and suitable for 

in vivo clinical use to study human tissues, such as those in the pancreas. Furthermore, we 
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employed diffuse reflectance spectroscopy to characterize wound healing in implanted 

tissue-engineered constructs in situ, distinguishing healthy from compromised constructs. 

These portable, hand-held, and sterilizable tools can be employed for real-time, 

quantitative sensing of biological tissues in clinics. 

 

The major contribution of this dissertation can be summarized as follows: 

Chapter 2 

 We calibrated fitting parameters of two fiber-optic probes with a photon-tissue 

interaction (PTI) model. One probe was employed for proof-of-principle 

spectroscopic studies and a smaller second probe was employed for 

endoscopically-compatible measurements. 

 We verified a PTI model to extract consistent optical scattering parameters from 

reflectance spectra measured from tissue-simulating phantoms with scattering 

parameters representative of pancreatic cell nuclei. 

 We demonstrated that, with calibrated fiber-optic probes, the PTI model extracts 

consistent scattering properties when a measurement from a large, proof-of-

principle probe is scaled to model a measurement from a smaller, endoscopically-

compatible probe. 

 We validated the ability of a PTI model to extract consistent biologically-relevant 

optical tissue parameters from ex vivo measurements of human tissue in the 

presence of varying hemoglobin concentrations, such as those that will occur 

during in vivo measurements. 
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Chapter 3 

 We measured the first-ever, to our knowledge, in vivo optical spectra (steady-state 

fluorescence and reflectance) from human pancreatic tissues during open surgery. 

 We showed that site-matched in vivo and ex vivo steady-state reflectance and 

fluorescence spectra qualitatively and quantitatively agreed. Quantitative 

similarity between in and ex vivo measurements was confirmed by comparing 

extracted parameters from ratiometric and PTI model analysis. 

 We quantified differences between adenocarcinoma and normal tissues in vivo, 

confirming that diagnostic utility of optical spectroscopy is retained during in vivo 

measurements.  

 We demonstrated that optical spectroscopy is a promising method for the 

improved diagnosis of pancreatic cancer in vivo. 

Chapter 4 

 We analyzed the first-ever, to our knowledge, time-resolved fluorescence decays 

collected from ex vivo human tissues with a rigorous classification algorithm that 

accounted for intrapatient correlations. Furthermore, we show the first-ever time-

resolved fluorescence decays collected from in vivo human tissues. 

 We employed an ex vivo fluorescence decay data set to train a rigorous 

classification algorithm for classification of in vivo measurements. Accurate 

diagnosis of in vivo measurements showed the clinical potential of in vivo time-

resolved fluorescence measurements for improved detection of pancreatic disease. 
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 We demonstrate that time-resolved fluorescence decays collected with an 

endoscopically-compatible fiber-optic probe qualitatively agree with 

measurements from a larger, proof-of-principle fiber-optic probe. 

Chapter 5 

 We developed a novel, clinically-compatible, fiber-optic system that rapidly 

acquires fluorescence wavelength-time matrices (WTMs) with high signal-to-

noise ratio. WTMs are information rich, three dimensional matrices containing 

both spectrally-resolved and time-resolved fluorescence information. 

 We characterized the WTM system performance with measurements of 

fluorescence standards, reporting rapid, high signal-to-noise ratio measurements. 

 We evaluated WTM system performance with measurements of tissue-simulating 

phantoms with varying scattering properties. WTM data contained characteristic 

contributions from increased scattering, consistent with diffusion theory 

predictions. 

Chapter 6 

 We employed diffuse reflectance spectroscopy (DRS), with a novel bevel-tipped 

fiber-optic probe, for label-free, non-invasive, and real-time assessment of thin 

implanted engineered oral tissues, preferentially interrogating the construct’s top 

~600 μm. Construct wound healing was assessed after 1 week and 3 weeks 

implantation in an in situ murine model. 

 We validated DRS wound healing assessment by comparison with “gold 

standard” histological analysis, showing that healthiest in situ constructs had the 
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greatest relative amounts of hemoglobin absorption, hemoglobin oxygenation, and 

contributions from construct scattering. 

Chapter 7 

 We outlined the regulatory process and guidelines for successful clinical 

translation of optical spectroscopic instrumentation. 
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8.2 Future work 

Combining time-resolved fluorescence, steady-state fluorescence, and steady-state 

reflectance data for improved detection of pancreatic disease 

Building upon the human pancreatic classification analysis with time-resolved 

fluorescence data described in Chapter 4, extracted optical parameters from time-resolved 

fluorescence, steady-state fluorescence, and steady-state reflectance will be 

simultaneously employed for tissue classification with a classification algorithm 

developed from General Estimating Equations to account for intrapatient measurements. 

The complementary information measured with reflectance and fluorescence are 

expected to improve classification results compared to either reflectance or fluorescence 

parameters alone.  

The following manuscript is in preparation: 

R.H. Wilson*, W.R. Lloyd*, M. Chandra, L.-C. Chen, J. Scheiman, D. Simeone, B. 

McKenna, O.E. Lee, J.M.G. Taylor, and M.-A. Mycek, “Combined steady-state and time-

resolved optical spectroscopy improves pancreatic disease diagnostics” (in preparation). 

(*denotes equal contribution) 

Collecting wavelength-time matrices to classify pancreatic disease 
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Chapter 4 discussed the diagnostic utility of time-resolved fluorescence decays ex and in 

vivo. While adenocarcinoma was shown to be reliably assessed, broadband time-resolved 

fluorescence spectroscopy, steady-state fluorescence spectroscopy, and steady-state 

reflectance spectroscopy showed limited potential to reliably detect chronic pancreatitis. 

In this study, we employ our clinically-compatible WTM technology to improve 

detection of chronic pancreatitis. 

Unified analysis of time-resolved fluorescence and steady-state fluorescence 

Fluorescence measurements of pancreatic tissues were simultaneously collected in the 

steady-state and time-resolved domain. That is, emission photons from pancreatic tissue 

were simultaneously collected as steady-state and time-resolved data, with equivalence 

expected between each such pair of measurements. A model is being developed to 

compare the fluorescence contributions of endogenous tissue fluorophores in both data 

modalities. For broad-band time-resolved fluorescence, corrections will be made for 

detector sensitivity, fluorescence quantum yields, and non-uniform contributions of 

hemoglobin absorption. 

Direct-Fit Photon-Tissue Interaction Model for Real-Time, Quantitative Analysis of Ex 

Vivo and In Vivo Data 

Previously, a photon-tissue interaction model was developed based on scaling an a priori 

“canonical normal” to unknown tissue data. Here, a direct-fit model, developed by 

scaling an empirical steady-state reflectance equation, will be developed for real-time, 

quantitative analysis of pancreatic tissue data requiring no a priori information. The 
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direct-fit model will be evaluated on previously collected ex vivo and in vivo pancreatic 

data sets. 

Effect of Modeled Scattering on a Photon-Tissue Interaction Model 

Previously, a photon-tissue interaction model estimated tissue scattering as the linear 

combination of scattering from cell nuclei and collagen fibers, evaluated as spherical and 

cylindrical Mie scattering. In the last decade, numerous alternative models to the 

simplistic Mie scattering models have been proposed and validated. Here, alternative 

scattering models, including incorporation of power laws and wavelength-dependent 

phase functions and anisotropies to model scattering will be developed and compared to 

the Mie scattering model. 

Validating Confidence Interval of Extracted Parameters from a Photon-Tissue 

Interaction Model  

A photon-tissue interaction model extracts biophysically relevant optical tissue 

parameters from measured steady-state reflectance and fluorescence spectra, including 

contributions from tissue scattering parameters attributed to cell nuclei diameter and 

collagen fiber density. Here, a rigorous model will be developed to characterize the 

confidence intervals of extracted parameters and the subsequent impact on tissue 

classification. 

Validating an Endoscopically-Compatible Fiber-Optic Probe 

Previously, optical spectroscopy was employed to characterize pancreatic disease in 

human patients ex vivo, with subsequent in vivo verification with human patients 
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(Chapter 3). To be compatible with current clinical standard-of-care (e.g., endoscopic 

ultrasound-guided fine needle aspiration), the fiber-optic probe diameter will need to be 

reduced at least three-fold (see time-resolved data in Chapter 4). This reduced fiber 

diameter will reduce the center-to-center spacing between excitation and emission fibers, 

and thus the average path length and number of scattering steps for reflectance and 

fluorescence photons. Here, we continue the validation discussed in Chapter 2 with more 

optical tissue scattering phantoms, ex vivo animal tissues, and with ex vivo human tissue 

data. 

Photon-Tissue Interaction Modeling of Diffuse Reflectance Spectra from Tissue-

Engineered Constructs  

Chapter 6 discusses the ability of diffuse reflectance spectroscopy to distinguish control 

from stressed tissue-engineered constructs with ratiometric parameters developed from 

spectral intensities. Here, a photon-tissue interaction model, based on the models 

developed and employed for pancreatic tissue classification (see Chapter 2), will be 

employed to extract biophysically relevant optical tissue scattering and absorption 

parameters from diffuse reflectance spectra of constructs to distinguish healthy from 

compromised tissues. 

Pre-Implantation Analysis of Tissue-Engineered Constructs 

Chapter 6 discussed diffuse reflectance spectroscopy for post-implantation 

characterization of tissue-engineered constructs based on detecting variation in local 

tissue scattering and absorption. While tissue absorption changes primarily depend on 

neovascularization in situ, tissue scattering changes are attributed to the morphology of 
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keratin and living cell layers of a tissue-engineered construct that develop in vitro and 

continue development after implantation. From histology analysis, we found that pre-

implantation control constructs have similar morphology (structured, dense keratin layer 

and a proliferated, living cell layer atop dermal equivalent) as those constructs implanted 

for 1 week. In a pilot study (N = 2 constructs, 1 control and 1 stressed), diffuse 

reflectance spectroscopy showed promise to characterize the differences of in vitro 

control and stressed constructs. This work will employ diffuse reflectance spectroscopy 

on an expanded construct set to distinguish healthy and compromised constructs in situ. 
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