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Abstract 

The exponential growth in IC technology has enabled low-cost and increasingly capable 

wireless sensor nodes which provide a promising way forward to realize the vision of a trillion 

connected sensors in the next decade. However there are still many design challenges ahead to 

make these sensor nodes small, low-cost, secure, reliable and energy-efficient to name a few. 

Since the wireless nodes are expected to operate on a limited energy source or in some cases on 

harvested energy, the energy consumption of each building block is of prime importance to 

prolong the life of a sensor node. It has been found that the radio communication when active has 

been one of the highest power consuming modules on a sensor node. Low-energy protocols, e.g. 

processing the raw sensor data on-node, are more energy efficient for some applications as 

compared to transmitting the raw data over a wireless channel to a cloud server. 

In this thesis we explore signal processing techniques to realize a low power radio solution for 

wireless communication. Two prototype chips have been designed and their performance has 

been evaluated. The first prototype chip exploits compressed sensing for Ultra-Wide-Band 

(UWB) communication. UWB signals typically require a high ADC sampling rate in the receiver 

which results in high power consumption. Compressed sensing is demonstrated to relax the ADC 

sampling rate to save power. The second prototype chip exploits the sensitivity vs. power trade-

off in a radio receiver to achieve iso-performance at lower power consumption and the time-

varying wireless channel characteristics are used to adapt the sampling frequency of the receiver 
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based on the SNR/Link quality of the communication channel, saving power, while maintaining 

the desired system performance. 

It is envisioned that embedded machine learning will play a key role in the integration of 

sensory data with prior knowledge for distributed intelligent sensing which might enable reduced 

wireless network traffic to a cloud server. A Near-Threshold hardware accelerator for arbitrary 

Bayesian network was designed for clique-tree message passing algorithm used for probabilistic 

inference. The hardware accelerator was benchmarked by the mid-size ALARM Bayesian 

network with total energy consumption of 76nJ for 250µS execution time. 
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Chapter 1 

Introduction 

Integrated Circuits (ICs) have come a long way from their days of inception. The tremendous 

growth in IC technology has played a huge role in shaping the way we live our lives today. For 

the past several decades this growth has been accurately predicted by Gordon Moore, also known 

as Moore’s Law stating that the number of transistors on a chip will double approximately every 

two years [1]. This improvement in the number of transistors on a chip (also known as 

integration density) is not the only metric of ICs that has been steadily improving about every 

two years. ICs are becoming cheaper, faster, lower power, and smaller in size with even greater 

functionality. All of these improvements have been made possible by the semiconductor 

industry’s ability to shrink the minimum feature size used to make integrated circuits [2]. es 

shows the trend for Intel’s microprocessor transistor count over several decades and draws 

analogous comparisons if transistors were people to get a better perspective of transistor scaling 

over time [3]. 
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This improvement trend in IC technology has opened doors for many application areas which 

were previously considered not suitable either due to economic reasons or an IC solution was 

simply inadequate. One such example is emergence of low-power, low-cost, multi-functional 

miniature sensor devices which, when combined with a radio transceiver and a microcontroller 

results in a small form-factor sensor node. These sensor nodes, when networked wirelessly, form 

a Wireless Sensor Network (WSN) [4]. The basic concept of a WSN is shown in Figure 2.  

 

 

Wireless Link

Sensor Node

Figure 1 Moore’s law visualization [3] 

Figure 2 WSN conceptual cartoon 
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The WSNs are envisioned to bring about a new wireless revolution and the concept of Internet 

of Things (IOT) to reality [5]. Figure 3 shows some of the application areas of the WSNs. The 

WSNs have diverse applications ranging from medicine [6], agriculture [7], military [8], 

structural health monitoring [9], automotive [10], inventory tracking, smart home and security to 

name a few [9] [11]. In all these application areas the basic idea is the same which is to use 

appropriate sensors and use the WSN sensing and computational capabilities to monitor and 

analyze various markers. The data collected can be processed online or offline depending on the 

application. Ideally a WSN can not only monitor but is also desired to have application-driven 

actuation capabilities. For example, in the field of medicine, sensors can be placed on a subject 

for either invasive or noninvasive monitoring to collect and analyze various bio-markers [12]. In 

case an abnormality is observed, the WSN can take appropriate action by either alerting the 

physician in time or in an ideal case can even administer treatment in a completely autonomous 

and unsupervised environment. 

One of the hurdles in making the WSNs successful is the slow improvement in battery 

technology. While IC technology was improving exponentially, battery technology is not able to 

keep up with it.  
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Figure 4 shows the improvement trend in energy density for a Lithium-Ion battery along with 

a data point for the current state of the art [13]. As can be seen, a less than 7% per year 

improvement in the energy density is observed. The energy capacity of a battery is also limited 

by safety and cost. This, along with the fact that the nodes in a WSN are of small form factor, 

exacerbate the problem as it imposes limitations on the battery size and thereby reduces the total 

amount of energy available for a sensor node to operate. If a sensor node were to operate solely 

on a battery, then this puts a constraint on the life of a sensor node before it runs out of battery 

energy.  

Precision Agriculture Civil Infrastrcuture

Medical

Micro robotics

AutomotiveAssets Tracking

Figure 3 Application areas for the WSNs  [6] [7] [8] [9] [10] [11] 
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It is highly desirable, and often times critical for an application, that the nodes in a WSN have 

a long life span. To tackle this challenge, it is essential that a holistic approach is taken to reduce 

power of each building block on a sensor node. This calls for innovative circuit design 

techniques and architectures from the circuit designers’ community. Another approach to 

improve sensor node’s life span is to tap into the ambient power sources to harvest energy and 

reduce battery dependency. Table 1 shows the power density of potential power sources for 

energy harvesting [14]. Energy harvesting at high conversion efficiencies is still an active area of 

research. The improved circuit designs when combined with energy harvesting techniques is a 

promising way forward to achieve the goal of extending the life span of the sensor nodes in a 

WSN.  

 

 

 

 

 

 

 

Figure 4 Lithium-Ion battery energy density trend [13] 

1.1. WSN for Structural Health Monitoring (SHM) 

As mentioned briefly before, Structural Health Monitoring (SHM) is one of the emerging 

application areas for the WSNs. SHM encompasses, but is not limited to bridges [15], buildings, 

dams [16], pipelines [17], aircrafts [18], ships [19], automotive and robotics [16] [20]. A WSN is 

intended to predict the point of failures of these complex engineering structures as they are 
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exposed to harsh loading scenarios and severe environmental conditions not anticipated during 

the design phase.  They also evaluate the long-term effect of these conditions on structural 

deterioration [16].  

Table 1. Energy harvesting potential sources [14] 

Power source Power 

Solar Outside/Inside 15000/10 µW/cm
2
 

Air flow 380 µW/cm
3
 

Vibrations 375 µW/cm
3
 

Human power 330 µW/cm
3
 

Temperature (5 
o
C gradient) 40 µW/cm

2
 

Pressure variation 17 µW/cm
3
 

 

Some of these structures are already using some sort of structural health monitoring by 

utilizing a mesh of sensors wired to a central data repository unit as shown in a conceptual 

cartoon in Figure 5 [16]. This approach works but has several drawbacks and shortcomings 

which can be addressed by a WSN. One such drawback is that the cost per node of a wired 

sensor network is much greater than for a wireless sensor network mainly because of the 

installation and maintenance cost of extensive lengths of coaxial wires [16]. This not only results 

in increasing the total cost of the sensor infrastructure but also limits the density of sensor nodes 

that can be placed on the structure. In a WSN, wireless connectivity between nodes greatly 

reduces the cost per sensor while allowing more flexibility in sensor placement. As a 

consequence, sensor density on a structure can also be increased significantly. This is important 

for structural health monitoring as more local measurements are available for the damage 

detection algorithms, the more accurately they can evaluate the structural integrity [16]. 
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Figure 6 shows an example in an academic study where a wireless sensor is placed on the Gi-

Lu bridge in the Nan-Tou county Taiwan, to collect and analyze ambient vibration data [21]. 

Figure 7 shows two additional examples of commercially available sensor nodes. Although a 

WSN is a step forward for the current state of the art in SHM, it still faces some key challenges 

e.g. (a sensor node’s battery life) that need to be addressed before the technology can be 

mainstreamed. 

 

 

 

Central Data 

Repository

Sensor Node

Wired Link

Figure 5 Wired sensor network conceptual cartoon 

Intel Imote2Crossbow MICA2 Mote

Figure 6 Sensor on Gi-Lu bridge Figure 7 Commercial sensor nodes 
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To reduce total power consumption of a sensor node, each sub-component’s impact on total 

power must be evaluated. Figure 8 shows a generic wireless sensor node along with its 

constituent components. It is observed that when a sensor node’s radio communication is active 

it is the dominant power consuming block [22]. There are several factors that make radio 

communication expensive in terms of power. First, the radio front-end is typically a linear analog 

continuous time system. Linear analog continuous time systems require constant bias currents. 

Second, as with any analog system, there exists complex trade-offs and power is traded with 

different performance parameters [23]. Third, the received radio signal amplitude at the antenna 

can be very small. In the worst case, the received radio signal amplitude can range anywhere 

from few µV to pV. This usually calls for significant signal gain at RF frequencies to overcome 

the noise added by the signal processing and demodulation circuits. Given the fact that gain at 

RF frequencies is expensive in terms of power [24] puts a limitation on lowering the total power 

consumption of the radio front-end. Experimental studies have corroborated this fact. Figure 9 

shows the measured current consumption of a Mica2 sensor node for transmitting a single radio 

message at maximum transmit power [22]. 

Commercial low power radios for wireless communication consume power in the few mW 

ranges. The Texas Instruments (TI) low-power low-cost RF transceiver for the ISM band (part 

number CC2500) consumes 24mW in receive (Rx) mode at a 250KBaud rate while it consumes 

39mW in transmit (Tx) mode at +1dBm output power [25]. Another TI radio transceiver 

example is the 2.4GHz Bluetooth low energy system on chip CC2540. It consumes 59mW at 

1Mbps in Rx mode and 81mW in Tx mode at 0dBm output power [26]. Analog Devices 

ADF7242 is a low power transceiver for the 2.4GHz ISM band. It consumes 34.2mW in Rx 

mode at 250Kbps and 35.3mW in Tx mode at 0dBm output power [27]. 
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Commercial communication radio power when compared with an on-board micro-controller 

is 1 to 3 orders of magnitude higher, depending on the amount of processing. For example one of 

the industry’s lowest power microcontrollers is the PIC12LF1822 from Microchip, whose active 

mode power consumption is 30µW/MHz [28]. 

 

 

Figure 8 Generic Wireless Sensor Node 
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Figure 9 Mica2 Sensor node power profile [22] 

  

Another important block on a sensor node is the Timer. To extend the battery life of a sensor 

node, the radio communication is typically duty cycled and a wireless sensor node is expected to 

stay in the sleep mode most of the time. Many applications can tolerate relatively long sleep 

times [29]. However while a wireless node is in the sleep mode it is imperative that it doesn’t 

lose time synchronization with its neighboring nodes if it desires to communicate with them 

when awoken. This is important because if a wireless node comes out of sleep mode and there is 

no other node nearby and also awake, then wireless communication can’t happen, which 

degrades the overall performance of the network. So in order to improve the performance of the 

network it is important that wireless nodes in a network maintain some level of synchronization 

[29]. This means that while the sensor node is asleep the timer on the node is continuously 

running. This requires that the power consumption of the timer should be as low as possible 

while maintaining the desire accuracy of synchronization. An additional benefit of an accurate 

low power timer is that the wireless nodes can stay asleep longer for a fixed timing error 
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tolerance to keep the average power low [29]. The power consumption of high precision timers is 

easily in the few mW ranges [29] [30], however real-time clocks are now commercially available 

in the 50nW range [31]. 

An alternative approach for duty cycling the communication radio using complex 

synchronization protocols is to use a wakeup radio [32]. The idea is to use an ultra-low power 

always-on radio which continuously listens for a wakeup signal over the communication 

channel. In the event of detecting a wakeup signal the main communication radio is interrupted 

to come out of its sleep mode. It is clear that the wakeup radio power consumption should be 

made as small as possible while maintaining good sensitivity. Wakeup radio is still an active area 

of research and current state of the art wakeup radios offers sensitivities around -70dBm with 

total power consumption in few tens of µW [33] [32] [34]. 

To put the power numbers into perspective Figure 10 shows the relative power consumption 

of various sub-components on a sensor node. It is clear that efforts should be made to reduce the 

power of the communication radio and a sensor node’s radio should be turned off most of the 

time and be active only for short intervals of time; i.e. the communication radio should be 

heavily duty cycled and its leakage power should be minimized.  
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Figure 10 Relative power consumption of a sensor node 

 

To transmit and receive a single bit, even the lowest power transceivers designed for short 

range communication typically requires tens to hundreds of nJ whereas energy consumption per 

ADC conversion or microprocessor instruction of just a few tens of pJ has been demonstrated 

[35]. Figure 11 shows a comparison of energy consumed per bit broken down by task in a 

wireless sensing node using current state-of-the-art hardware [36]. It is clear that it requires less 

power to process 1 bit of data on a sensor node than to wirelessly transmit it. Therefore efforts 

should be made to take advantage of a sensor node’s local computational capabilities to process 

the raw time-history data instead of sending it over a wireless link. Priority should be given to 

process the data locally and transmit only the information content contained in the raw data 

which is needed for global structural health monitoring [16]. For example, an FFT can be 

computed locally on a sensor node on the raw time-history sensor data and only the most 

significant spectral components’ information can be transmitted over the wireless channel. 

 

Comm Radio

Sensor

Processor

1 mW

1 µW

1 nW

Timer WU Radio
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Figure 11 Comparison of energy consumed per bit in a wireless sensing node [36] 

 

To get some perspective let’s assume that a sensor node’s radio is to survive on a single AA 

Alkaline battery of capacity 2500mAh for 5 years. If the radio is duty cycled at 1% (average 

~15mins per day) this corresponds to (        )               of operation. This 

results in 5.7mA of active current for the radio to operate on, assuming no other components on 

the sensor node consume any power. If an average voltage of 1.2V is assumed for the AA 

battery, this corresponds to 6.8mW of available average power for the radio. It is clear from the 

above discussion that current state of the art for commercial radios is shy of meeting these 

requirements. If let’s say the radio front-end energy efficiency is 5nJ/bit and the data rate is 

250Kbps then the radio would consume 1.3mW of average power which for a 1.2V supply 

would require about 1.1mA of average current from the battery. Such a radio receiver could 

easily last for 5 years on a single AA Alkaline battery when duty cycled at 1% (average ~15mins 

per day). 
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1.2. Background Study 

 In this section a background study of some of the recently published low-power radio 

receiver architectures is presented. The intention is to present the main ideas and techniques used 

to implement low-power radio receivers rather than going into the details of the implementation. 

A comparison table at the end summarizes the performance of the radios discussed. 

An ultra-low-power 2.4GHz transceiver for wireless sensor network is presented in [35]. The 

receiver front-end is fully passive and utilizes an on chip resonant matching network to achieve 

voltage gain and interface directly to a passive mixer. Figure 12 shows the proposed transceiver 

block diagram. The transceiver is demonstrated to have 1nJ per received bit and 3nJ per 

transmitted bit with 300µW transmit power and 7dB receiver noise figure. The transceiver uses 

binary FSK with a higher modulation index, trading spectral efficiency for low-power 

architecture. The receiver consumes only 330 µW of power. The achieved receiver sensitivity is 

not reported. 

 

Figure 12 Transceiver block diagram [35] 

 

In [37] a fully integrated 2.4GHz IEEE 802.15.4 compliant transceiver is presented. The 

receiver is a low-IF architecture for achieving high sensitivity at low power consumption while 
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avoiding the problems associated with direct conversion receivers. The achieved sensitivity is -

101dBm at 1% packet error rate. The receiver RF front-end consumes 10mW of power with 

5.7dB noise figure. Low power is achieved by avoiding IQ down-conversion, which requires 

power hungry LO buffers and IQ generation circuitry. In the proposed architecture passive poly-

phase filter (PPF) is used to down convert the signal by using only the real LO signal. Passive 

mixer is used to further reduce power. The signal loss due to PPF filter and passive mixer is 

compensated by using two cascaded LNA which use current reuse to save power. 

 

 

 

Figure 13 RF front-end block diagram [37] 

 

A low-power 2.4GHz current-reused receiver front-end is presented in [38]. The receiver is a 

heterodyne architecture with Intermediate Frequency (IF) of 10MHz. The receiver consumes 

500µW of power with 10.2dB of noise figure. The achieved RX sensitivity is -90dBm. Low 

power operation is achieved by the current-reused folded cascode front-end shown in  
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Figure 14. The achieved data rate is 100Kbps at 10
-3

 BER. The receiver front-end achieves 

5nJ/bit energy efficiency. 

An energy-efficient OOK transceiver for short-range wireless sensor networks is presented in 

[39]. The receiver architecture is based on non-coherent envelope detection (and hence no need 

for a local oscillator) and highly scalable RF front-end. Energy efficiency is achieved by 

leveraging un-tuned RF circuits compared to tuned RF circuits. The receiver consumes 2.6mW 

while achieving -65dBm sensitivity at a BER of 10
-3

. Spectral efficiency is traded for energy-

efficiency. Figure 15 show the receiver block diagram, only one horizontal signal gain path is 

active at any given time. The transceiver achieves 0.5nJ/bit for the receiver and 3.8nJ/bit for the 

transmitter. 

 

 

Figure 14 Proposed current-reused folded-cascode front-end [38] 

 

In [40] an ultra-low power receiver for the wireless sensor networks is presented based on a 

binary frequency-shift keying (BFSK) super-regenerative principle Figure 16. The receiver 
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consumes only 215µW while achieving -75dBm sensitivity at 2Mbps data rate. The energy 

efficiency of the receiver is 0.18nJ/bit. 

 

 

Figure 15 Receiver front-end. Only a single gain path is enabled at any time [39] 

 

 

Figure 16 Block diagram for the BFSK super-regenerative receiver [40] 

 

Table 2 summarizes the performance parameters of the different radio architectures discussed 

above. It is clear that commercial radios for wireless sensor network are far behind in terms of 

achieving sub-nJ/bit energy efficiencies which have been demonstrated by academia. In the next 

section we present how some of these design challenges are addressed using signal processing 

and hardware co-design as an alternative solution to reduce power for energy constrained 

microsystems. 
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Table 2 Performance comparison of recently published low-power radios in JSSC 

 [35] [37] [38] [39] [40] 

Rx Power 330µW 10mW 500µW 2.6mW 215µW 

Sensitivity --- -101dBm -90dBm -65dBm -75dBm 

Noise Figure 7dB 5.7dB 10.2dB 15dB --- 

Energy Efficiency 1nJ/bit --- 5nJ/bit 0.5nJ/bit 0.18nJ/bit 

 

 

1.3. Thesis contributions 

In this research we have addressed energy efficient radio communication and the sensor data 

fusion of a wireless sensor node to reduce wireless network traffic by utilizing distributed 

intelligent sensing. 

 

1.3.1. Radio Communication 

We have investigated the application of signal processing for reducing the power of radio 

communication for wireless sensor networks. One way to reduce the required transmit energy for 

each bit is to employ wide-bandwidth signals, such as ultra-wide band signals (UWB). UWB 

transmitters have been reported with the lowest transmitted energy per bit [41] [42] [43]. 

However, the required Nyquist rate and the associated signal processing algorithms to process 

the received signals generally require significant energy at the receiver. But, in certain cases 

where the signals are sparse (e.g. UWB pulses are sparse in the time domain) it may be possible 

to reduce the sampling rate at the receiver using an approach called Compressed Sensing (CS). 
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─ CS is leveraged to reduce power for GHz ADCs required for sampling UWB signals 

and its impact on radio communication is studied. The design decisions for the 

proposed architecture (based on heterodyne architecture) are discussed and it is also 

benchmarked with respect to power and performance against the traditional Nyquist 

based radio architecture. 

 

Another approach to reduce radio power is to exploit the direct tradeoff between sensitivity 

and power. This can be useful for situations where a good communication channel exists 

between two wireless nodes. In that situation the extra link margin can be traded to save power 

for reduced radio sensitivity and hence communication distance. 

 

─ An IEEE 802.15.4 standard compliant low power, moderate sensitivity receiver 

(Homodyne architecture) is designed which adapts its sampling rate based on the 

quality of the communication channel. The receiver comprises an analog RF front-end, 

flash ADC and Near-Threshold digital baseband processor. The receiver achieves 

lowest reported RX power for a coherent Zigbee radio and achieves 2X better energy 

efficiency for the RF front-end than current state of the art. 

 

1.3.2. Distributed Intelligent Sensing 

To improve energy efficiency of the overall network for distributed intelligent sensing, as 

discussed previously in a WSN with current state-of-the-art radio energy efficiencies, it might be 

efficient for some applications to perform local computations as compared to sending the raw 

sensor data wirelessly to a cloud server. For this purpose we designed a Near-Threshold 
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hardware accelerator for arbitrary Bayesian networks which is capable of running Clique-tree 

message passing algorithm for probabilistic inference. Bayesian networks are a class of graphical 

models which are used for making probabilistic inference. This probabilistic inference can be 

based on the prior-knowledge of the system and fusing it with the updated knowledge from the 

sensor data. Bayesian networks have numerous applications from diagnostic in medical expert 

systems, automobiles and infrastructure health monitoring to name a few [44] [45]. The 

hardware accelerator can be programmed to realize a complete Bayesian network on a sensor 

node or process just part of a large distributed network. This way by processing the data locally 

to extract information and sending that information rather than the raw sensor data can result in 

significant reduction in the wireless data communication. 
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Chapter 2 

Compressed Sensing 

This chapter presents a detailed overview of Compressed Sensing (CS). Before understanding 

CS, it is worth mentioning the original problem of digital data acquisition i.e. sampling. Given an 

analog signal of finite bandwidth W, what should be the rate at which the analog signal should be 

sampled such as not to lose any information content? This question is answered by the famous 

Nyquist-Shannon sampling theorem. The theorem states that given a band-limited signal with 

bandwidth W, the analog signal can be exactly recovered from its sample values if the sampling 

frequency (Fs) is greater than twice the maximum frequency present in the analog signal (2*W) 

[46]. 

The sampling theorem is the underlying principle in nearly all digital data acquisition systems. 

This with the fact that Digital Signal Processing (DSP) was leveraging the exponential IC 

growth, resulted in a digital revolution. 
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CS explores an alternative sampling scheme that doesn’t rely on the Nyquist-Shannon 

sampling theorem [47]. CS theory asserts that one can recover certain signals from fewer 

samples than that required by the traditional Nyquist-Shannon sampling theorem. This is 

achieved by making an assumption that the input signal is sparse (i.e. has few non-zero 

coefficients). 

Compressive Sensing (CS) theory states that given a signal is sparse in one domain (e.g. an 

impulse in the time domain or a Dirac delta in the frequency domain); it can be sampled 

randomly in an orthogonal domain (e.g. the frequency domain or time domain, respectively) at a 

rate less than that suggested by the Nyquist sampling theorem. The sparse signal can then be 

recovered with high probability from these fewer or compressed samples, but with an error 

proportional to the compression rate, by using a recovery algorithm (e.g. L1 minimization) [48] 

[49]. 

We’ll next illustrate this with an example. Suppose an N dimensional signal ‘x’ (vector of 

length N) which is S-sparse (having S non-zero values) in a certain basis ψ (e.g. time domain). 

Now the signal ‘x’ is transformed into another domain in which it is not sparse. Assume K 

samples are then taken in the non-sparse domain, where S < K << N. The compressed 

measurements K are then processed by a non-linear recovery algorithm to recover the original 

signal ‘x’. This works because if sufficient measurements are taken then the compressed 

measurements preserve the structure and information contained in the signal ‘x’.  

Figure 17 shows a simplified block diagram of such a compressed sensing data acquisition 

system. 
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Figure 17 Simplified CS block diagram 

 

Figure 18 shows an illustrative example where the signal ‘x’ is sparse with sparsity S=1 in a 

given basis ψ and with dimension N=3. The compressed measurements ‘y’ with dimension K=2, 

are taken in an orthogonal domain by projecting the sparse signal ‘x’ into a basis where the 

signal is not sparse. This transformation is achieved by a measurement matrix φ whose 

dimension is given by K x N which in this example would be 2x3. 

 

 

 

Figure 18 CS illustrative example 

 

2.1. Matlab demonstration 

In this section compressive sensing is demonstrated by the help of two Matlab examples.  

 

 
Compressed 

Samples

S < K << N

K
Reconstruct

N
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– The first example deals with a signal sparse in the Frequency domain while the 

random orthogonal measurements are taken in the Time domain.  

 

– The second example deals with a signal sparse in the Time domain and the random 

measurements are taken in the Frequency domain.  

 

In both examples, noise is not considered and therefore SNR of the signals being considered is 

infinite. The l1-magic Matlab code is used which basically runs a basis pursuit algorithm to 

recover the original signal from compressed measurements [50]. The Matlab code for both 

examples is freely available to download from [51]. 

 

2.2. Sparse in Frequency 

This example demonstrates the compressive sensing using a sparse signal in the Frequency 

domain. The signal consists of the summation of two sinusoids of different frequencies in the 

Time domain. Since the signal is sparse in the Frequency domain therefore K=256 random 

measurements are taken in the Time domain out of total N=1024 samples. This corresponds to a 

compression rate of 75%. 

 

Figure 19 shows the time domain signal and its corresponding DFT. In Figure 20 the recovered 

signal spectrum is shown along with the original signal spectrum. Finally in Figure 21 the 

recovered signal in the time domain is compared with the original time domain signal. 
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Figure 19 Sparse in Frequency 

 

 
 

Figure 20 Recovered sparse signal in Frequency 
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Figure 21 Recovered signal in the Time domain 

 

2.3. Sparse in Time 

This example demonstrates the compressive sensing using a sparse signal in the Time domain. 

The signal consists of a UWB (Ultra Wide Band) pulse in the Time domain. Since the signal is 

sparse in the Time domain and not sparse in the Frequency domain K=90 random measurements 

are taken in the Frequency domain out of total N=481 samples. This corresponds to a 

compression rate of 81.3%. 

 

Figure 22 shows the Time domain signal and its corresponding DFT. In Figure 23 the 

recovered signal is compared along with the original signal in the Time Domain. 
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Figure 22 Sparse in the Time domain 

 

 

Figure 23 Recovered sparse signal in the Time domain 
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From the Matlab simulations it is clear that if the signal of interest satisfies the sparsity 

assumption then the sparse signal can be recovered with high probability from the given 

compressed measurements. This potentially allows us to sample a given sparse signal below the 

required Shannon-Nyquist sampling rate (for arbitrary signals) and hence reduce the sampling 

frequency of the Analog to Digital converter for wide-band signals to save power.
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Chapter 3 

Compressed Sensing Analog Front-End for GHz ADCs 

Ultra Wide Band (UWB) signals also known as pulse radio are defined as radio signals with 

bandwidth in excess of 500MHz or 20% of the center frequency. Thus by time-frequency duality 

UWB signals are very short duration pulses in time. This is conceptually illustrated in Figure 24 

along with narrowband signals [52]. Due to their high bandwidth, UWB signals can potentially 

transmit high data rate and can achieve very low transmit energy per bit but on the other hand 

UWB receivers have to process wide bandwidth signals which usually results in high power 

consumption and high energy per bit for the receiver. This is corroborated by the UWB 

transceivers presented in [53] [54]. Figure 25 shows a fully coherent DSSS UWB transceiver 

which consumes 105mW in the transmit mode and 280mW in the receive mode [53].
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Figure 24 Ultra Wide Band (UWB) signaling in frequency and-time domain [52] 

 

A non-coherent UWB transceiver achieving -78dBm sensitivity is shown in Figure 26 [54].  

The transceiver consumes 0.7mW in the transmit mode and 7mW (analog only) in the receive 

mode [54].  
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Figure 25 DSSS UWB transceiver block diagram [53] 

 

It is clear from Figure 24 that UWB signals are sparse in time. The Nyquist sampling rate for 

a UWB pulse requires ADC sampling at a frequency greater than a GHz, which usually results in 

prohibitively large power consumption in the ADC and following baseband processing. This 

power can be a significant fraction of the total power consumption of the entire system. In [55] 

[56] [57] the power consumption for a 6-bit ADC with a sampling rate in the range of 1.2–1.6 

GHz is greater than 150mW, which might be excessive for certain applications. Sampling the 

UWB signal below the Nyquist rate (sub-Nyquist) may lead to a low power alternative solution. 

Since our goal is not recovering the signal directly but recovering the data being transmitted by 

the UWB signal, a lower sampling rate could be possible.  
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Figure 26 802.15.4a Compliant Fully Integrated UWB Transceiver [58] 

 

We apply CS theory [47] [49] for low power circuit design and investigate its application to 

wireless communication. We propose using the Hadamard transform as a measurement matrix, 

as opposed to a Guassian matrix (widely used in CS framework) for CS considering also the 

difficulty of implementation. We further investigate the effect of quantization of the received 

signal and the application of matched filtering in the compressed domain (smashed filtering [59]) 

instead of applying a matched filter in the time domain. We also propose a practical hardware 

implementation for computing the Hadamard Projections (HP) and provide the design criteria for 

selecting the number of compressed measurements and the resolution of a sub-Nyquist ADC. 
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Further, the power saving for the sub-Nyquist ADC is evaluated as compared to the Nyquist 

ADC with the proposed Walsh Hadamard Transform (WHT) front-end.  

 

3.1. Proposed Hardware 

In this section we propose a hardware architecture with practical constraints for computing 

HPs (Hadamard Projections). The goal is to propose an architecture that will not only allow us to 

take HPs [by computing the Walsh–Hadamard Transform (WHT)] but which is also amenable 

for circuit implementation in an ASIC. Figure 27 shows the block diagram of a hardware system 

exploiting the WHT as a measurement matrix in a CS system. Our signal of interest is a 

baseband UWB pulse which is sparse in the time domain. An analog WHT is computed on the 

incoming sparse signal, the output of which is sub-Nyquist sampled by randomly choosing K 

WHT coefficients out of N possible samples assuming a Nyquist grid. The compressed samples 

may then be post-processed if needed (depending on the particular receiver architecture) using a 

recovery algorithm (e.g., L1 minimization) which reconstructs the original sparse signal in the 

time domain [60] [61]. 

 

 

 

Figure 27 CS acquisition system 

As a practical architecture exploiting CS for computing the analog WHT, we propose a 64-

point WHT as the measurement matrix. The Hadamard coefficients are the inner products of the 

input signal with the Walsh codes as shown in matrix form in Figure 28. To compute the WHT 
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in the analog domain, a discrete-time WHT front-end is proposed, as shown in Figure 29 [62]. 

The incoming UWB signal is correlated with the Walsh codes using Nyquist rate sampling 

(typically in the gigahertz range for UWB signal pulses) and discrete-time integration. 

 

 

 

 

Figure 28 Hadamard transform 

 

 

 

Figure 29 Block diagram of analog WHT front-end [62] 
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The detailed operation of the proposed discrete-time WHT to compute HPs is as follows. A 6-

bit linear feedback shift register (LFSR) generates a pseudo-random number which is used by the 

Walsh code generator (WG) from [63], to generate the Walsh code of that sequency. This is 

equivalent to randomly selecting a row (i.e. a Walsh sequence) in the WHT matrix. The input is 

sampled at the Nyquist rate by the S/H circuits with either positive or negative polarity 

depending on the current value of the Walsh sequence. The circuit operates in two phases: 

sampling and integration. After the input is sampled with the appropriate polarity, the circuit 

enters into the integration phase to integrate the sampled values. At the end of the integration 

phase, the input signal has been correlated with the generated 64-point Walsh sequence. The 

integrator is reset and the computed Hadamard coefficient is then digitized by the sub-Nyquist 

ADC. The S/H circuit is sampling the input signal at the required Nyquist rate while the 

Hadamard coefficients are being output at every 64
th

 sample of the input signal (since the input is 

correlated with a 64-point Walsh sequence).  

 

The above process produces one Walsh coefficient. Now there are two possibilities for a CS 

system which requires computing K compressed coefficients. First, is the parallel architecture in 

which the proposed hardware is repeated K times and the K Hadamard coefficents are computed 

in parallel by simultaneously correlating the input with K different Walsh sequences. This will 

require replicating the sub-Nyquist ADC by K times or increasing the sampling rate for the sub-

Nyquist ADC to be (K/N) x the required Nyquist rate (here N=64). Second, is the series 

architecture in which the Hadamard coefficients are computed in series. This puts a restriction on 

the input to be repetitive for K times to enable the Hadamard computation by correlating the 

input with K different Walsh sequences in series. In this case the sub-Nyquist ADC sampling 
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rate will be (1/N) x the required Nyquist rate for the input (N=64). The proposed architecture can 

be adapted for either series or parallel implementation, or a combination of both. 

 

3.2. Design Decisions 

Three important questions need to be addressed regarding architectural design decisions [62]. 

First, how to choose the optimum number of compressed measurements (K) or compression ratio 

(N-K)/N. Second, how to choose the resolution of the sub-Nyquist ADC. Third, how the 

proposed CS hardware with sub-Nyquist ADC compares with using a Nyquist ADC without CS. 

For this purpose a Matlab simulation was setup for the architecture shown in Figure 27 for 

different random measurements (K) and resolutions of the sub-Nyquist ADC. In order to 

investigate the effect of CS only, it is assumed in this simulation that the transmitted pulse passes 

through an ideal channel with no additive noise. Figure 30 shows the mean square error (MSE) 

between the input and the recovered pulse (averaged for 100 iterations) as a function of the 

number of random measurements for different resolutions of the sub-Nyquist ADC. The right y-

axis marks the mean square quantization error (MSQE) for the input pulse quantized by a 

Nyquist ADC without CS for comparison. 

 

It is observed that for about K ≥ N/3 the MSE does not depend on K, but is limited by the 

resolution of the sub-Nyquist ADC quantizing the Hadamard coefficients. Furthermore, by 

comparing the recovered pulse’s MSE with the MSQE of a Nyquist ADC, we observe that the 

sub-Nyquist ADC quantizing a signal in the Hadamard domain saves roughly one bit of 

resolution for the same quantization error as for the Nyquist ADC quantizing in the time domain. 
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An ADC figure-of-merit (FoM) is defined as, 

 

    
     

        
   (1) 

 

 where ENOB is the effective number of bits,    is the sampling frequency and Power is the 

total power consumption of an ADC. Since an ideal ADC is assumed in this paper, in that case 

ENOB is equal to the resolution of the ADC. By taking compressed samples K assuming the 

architecture in Figure 29, the sampling rate for the sub-Nyquist ADC reduces to (K/N) x   . 

Furthermore, as mentioned above a sub-Nyquist ADC quantizing Hadamard coefficients can 

save one bit in resolution over a Nyquist ADC quantizing time samples. 

 

 

 

Figure 30 MSE as a function of K. 
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relative to the Nyquist ADC. Figure 31 shows the simulated IF as a function of K for different 

resolutions of the sub-Nyquist ADC. The dashed line in the plot represents IF=1, below which 

the sub-Nyquist ADC consumes more power than the Nyquist ADC. There clearly exists an 

optimum value of K=24 for which the IF shows a peak. At the peak value of IF, the power of a 

sub-Nyquist ADC can be reduced by a factor of 6. Figure 32 shows the IF for 5 bit resolution of 

the sub-Nyquist ADC along with its constituent components. As expected the (N/K) factor 

decreases as we take more compressed measurements (K) and the resolution factor (  ) saturates 

at about K ≥ N/3, which explains the peaking effect of the IF.  

 

Now to answer the three questions relating to the architecture implementation, the resolution 

of the sub-Nyquist ADC can be chosen based on the intended application requirements for the 

MSQE. Once the resolution of the sub-Nyquist ADC is chosen, there exists an optimum value of 

K for which IF is maximum. At around the peak value of the power of the sub-Nyquist ADC can 

be reduced by a factor of about 6 when compared with the Nyquist ADC.  

 

 

 

Figure 31 Improvement factor over Nyquist ADC 
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Figure 32 Improvement factor for Res = 5 bit. 

 

Figure 33 shows the 64-point Hadamard transform for an input pulse along with K=26 randomly 

selected coefficients chosen out of N=64. Figure 34 shows the recovered pulse in the time 

domain using SPGL1 from [61] with a 5-bit resolution for the sub-Nyquist ADC.  

 

The MSE shown in Figure 30, to first order, is a performance metric for the proposed system. 

But for a communication system we are more interested in finding how the choice of and 

resolution of the sub-Nyquist ADC affects the BER in an additive white Gaussian noise 

(AWGN) channel, which is investigated in the next section. 
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Figure 33 Hadamard transform 

 

 

 

Figure 34 Recovered pulse 

 

3.3. Simulation Results 

To generate the waterfall curves assuming an ideal channel with AWGN noise, two different 
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Figure 35 [62]. In the first architecture, compressed samples are taken in the Hadamard domain 

and the time-domain sparse signal is recovered using SPGL1 [60], which is then correlated with 

an ideal template to make bit decisions. In the second architecture, the difference is that matched 

filtering is done directly in the Hadamard domain using sub-Nyquist samples (also known as 

smashed filtering in the CS literature) rather than in the time domain after reconstruction. 

 

 

 

Figure 35 Receiver architecture for waterfall curves 

 

Figure 36 shows the bit error rate (BER) curves for both receiver architectures for infinite 

resolution of the sub-Nyquist ADC and compares it with an ideal BPSK curve for different 

values of K. It is found that the smashed filter has better performance compared to the matched 

filter in the time domain. One explanation for this is that the recovery algorithm attempts to find 

a sparse solution in the time domain to a given set of compressed measurements K. However, a 

signal with low SNR cannot be considered sparse, because noise produces many nonzero values. 
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Figure 36 BER curves for infinite resolution 

 

The recovery algorithm in the CS framework assumes a sparse solution to the given set of 

compressed measurements. As a result, the algorithm attempts to reconstruct the noise with the 

sparse solution. This affects the performance of the matched filter and results in an increased 

probability of error (Pe) at a given signal-to-noise ratio (Eb/No) for K< N. We believe that this is a 

strong function of the recovery algorithm being used and should be investigated further in future 

work. 

 

Figure 37 shows the BER curves for 5-bit resolution of the sub-Nyquist ADC quantizing 

Hadamard coefficients. In this case the BER curve for K = N = 64 doesn’t overlap the ideal 

BPSK curve due to the quantization noise. Next we define excess Eb/No as the extra energy per 

bit required in the CS receiver in order to achieve the same BER as that of an ideal BPSK 

receiver. The excess Eb/No required for different values of K at a BER of 10
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Figure 38. Both receiver architectures are compared along with infinite and 5-bit resolution for 

the sub-Nyquist ADC. Using a smashed filter with 5-bit resolution requires an excess Eb/No of 

about 1dB. The excess Eb/No for the smashed filter with infinite resolution overlaps the 

theoretical predicted loss in SNR curve when K random Hadamard coefficents out of N samples 

are chosen [64]. The theoretical loss in SNR in dB is given by 
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Figure 37 BER curves for Res = 5 bit. 

 

This result is very important for a designer to consider when designing a compressed sensing 
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Figure 38 Excess Eb/No vs. compression ratio for BER = 10
-3

 

 

3.4. Prototype Chip 

There exist many potential orthogonal domains suitable for compressive sensing. In this 
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multiply the time signal and the inversion can be easily implemented in hardware. 

Figure 39 shows the block diagram of a system exploiting CS and the discrete-time WHT 

front-end [65]. In this work an Analog WHT is computed on the incoming sparse signal, the 

output of which is sub-Nyquist sampled by randomly choosing K samples out of N Nyquist 

samples. These compressed samples are then post processed by a recovery algorithm [60] which 
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Figure 39 Block diagram [65] 

 

The Hadamard coefficients are the inner products of the input signal with the Walsh codes as 

shown in matrix form in Figure 28. To compute the WHT the incoming signal is correlated with 

the Walsh codes using a GHz sampling rate and discrete-time integration. The speed requirement 

of the sampling and integration are met by splitting the correlation operation into three identical 

time-interleaved channels as shown in Figure 39. A 6-bit LFSR generates a pseudo random 

number which is used by the on-chip Walsh code generator (WG) [63] to generate the Walsh 

code of that sequency. The input is sampled with either positive or negative polarity depending 

on if it is multiplied with +1 or -1 in a Walsh sequence. The inversion is facilitated by the cross 

connections at the input sampling network as shown in Figure 40. The sampling network is fully 

differential to mitigate charge injection and clock feed-through. Each channel accommodates 
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time-interleaving the 12 S/H circuits. All switches in the sampling network are implemented as 

NMOS switches with boosted gates to a supply voltage of 1.4V, which is provided by a level 

converter circuit. 

 

 

 

Figure 40 Input S/H 

 

Each channel has two phases, a sampling phase and an integration phase, controlled by state 

machines [65]. Figure 41 shows the timing diagram and a complete cycle for channel 1. During 

the first four clock cycles, Channel 1 is sampling the input. In the next four clock cycles, 

Channel 1 begins integrating its sampled values while Channel 2 enters the sampling mode. 

Similarly in the next four clock cycles, Channel 2 starts integrating while Channel 3 samples and 

Channel 1 completes the integration phase. The cycle repeats until the input signal is correlated 

with the 64-point generated Walsh sequence. The state machine then connects the output of the 

three channels to the summing amplifier followed by an output buffer. The output settling time is 

conservatively set to 32 clock cycles (26.7ns), after which the next random Hadamard coefficient 

is computed.  
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The integration time for each integrator is 6 clock cycles, or 5ns. In order to achieve this speed 

an integrator based on ZCBC (Zero Crossing Based Comparator) [66] is used as shown in Figure 

42. Since there is no closed-loop feedback, the ZCBC response time is fast but at the cost of 

overshoot at the output which needs to be compensated. For this purpose a binary weighted 7-bit 

current DAC is used which is enabled only during the charge transfer phase of the ZCBC. 

 
 

 

 

Figure 41 Timing diagram [65] 

 

The chip is fabricated in a 65nm CMOS process. The active area is 0.1425mm
2
. The total 

power consumption is 11.2mW. The dynamic digital power at 1.2GHz is 5.4mW while the 

analog section consumes 5.8mW. The measured Hadamard coefficients are shown in Figure 43, 

along with an ideal Matlab computation of the coefficients (using the measured input pulse 

shown in Figure 44) for comparison. In order to exploit CS, K=26 random Hadamard coefficients 
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using a L1 minimization recovery algorithm and the input pulse is recovered with a mean square 

error of 0.3% as shown in Figure 44. 

 

 

Figure 42 ZCBC based integrator [65] 
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Figure 43 Measured Hadamard coefficients [65] 

 

 

 

Figure 44 Recovered pulse [65] 
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The recovered pulse with and without CS are scaled in Matlab to match the input pulse 

amplitude for better comparison. The measurements clearly show that the accuracy requirements 

on the computed Hadamard coefficients are relaxed. Figure 45 shows the measured overshoot 

calibration by the 7-bit current DAC of the ZCBC based integrator. The overshoot can be 

calibrated within ±15mV (differential) which is close to expected from simulated results. Figure 

46 shows the die photo. 

We have explored the application of compressed sensing to reduce power for GHz ADCs 

required for sampling ultra-wide-band (UWB) signals. It is found that the sub-Nyquist ADC with 

the proposed WHT front-end is lower power by about a factor of 6 as compared to Nyquist ADC 

for the same FoM. The WHT front-end circuit consumes 11.2mW of power while sampling at 

1.2GHz. The achieved compression rate assuming an ideal ADC is 59.4% with a mean square 

error of 0.3%. 

 

 

 

Figure 45 Integrator overshoot calibration 
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Figure 46 Die photo
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Chapter 4 

2.4GHz Short-Range Zigbee Compatible RX with Near-

Threshold Digital Baseband 

The traditional circuit design approach of designing a circuit for the worst-case situation 

doesn’t seem to be optimal for energy constrained applications. Rather circuits that can adapt to 

the dynamic environment and adjust their energy needs to deliver the required performance 

seems to be a promising approach for energy constrained applications. This has been 

successfully demonstrated for microprocessor systems using dynamic voltage and frequency 

scaling [67]. In this chapter we will describe a radio receiver that can adjust its sampling rate for 

the data payload on per packet basis while providing the required performance by exploiting the 

time-varying characteristic of a communication channel, to reduce the total average energy 

required by the radio receiver. 
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An IEEE 802.15.4 standard [68] compatible radio receiver architecture is presented in this 

section which leverages high input SNR to save power while maintaining the desired system 

performance. The main idea is to exploit the sensitivity vs. power tradeoff in a radio receiver to 

save power. The digital baseband estimates the SNR/Link Quality of the communication channel 

and varies the average sampling rate of the processor to 25%, 50%, 75% or 100% of 2x the 

Nyquist rate. By reducing the average sampling rate in the digital baseband, power is further 

reduced while maintaining the desired link performance. 

 

4.1. IEEE 802.15.4 Standard Specification 

In this section we briefly review the IEEE 802.15.4 Low-Rate Wireless Personal Area 

Networks (LR-WPANs) standard specification. The purpose of the standard is to provide for 

ultra low complexity, ultra low cost, ultra low power consumption and low data rate wireless 

connectivity among inexpensive devices [68]. The standard defines multiple PHYs but we will 

focus only on the O-QPSK PHY in the 2.45 GHz ISM band. The frequency band and data rate 

parameters are defined in Table 3. 

 

Table 3 Frequency band and data rate for 2.45GHz O-QPSK PHY [68] 

PHY (MHz) 

Frequency 

band (MHz) 

Spreading parameters Data parameters 

Chip 

rate 

(kchip/s) 

Modulation 

Bit 

rate 

(kb/s) 

Symbol 

rate 

(ksymbol/s) 

Symbols 

2450 DSSS 2400-2483.5 2000 O-QPSK 250 62.5 

16-ary 

orthogonal 
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Figure 47 shows the schematic view of the PHY Protocol Data Unit (PPDU) and it’s format is 

illustrated in Figure 48. 

 

 

Figure 47 Schematic view of the PPDU [68] 

 

Figure 48 Format of the PPDU [68] 

 

The length of the preamble for the O-QPSK PHYs is 8 symbols (i.e. 4 octets) and the bits in 

the Preamble field are all binary zeros [68]. The binary data contained in the PPDU is encoded 

using the modulation and spreading functions shown in a reference modulator block diagram  

Figure 49. Each data symbol is mapped into a 32-chip PN sequence as specified in Table 4. 

 

 

 

Figure 49 Modulation and spreading functions for the O-QPSK PHYs [68] 
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4.2. Modulation and Spreading 

The chip sequences representing each data symbol are modulated onto the carrier using O-

QPSK with half-sine pulse shaping. Even indexed chips are modulated onto the in-phase (I) 

carrier, and odd-indexed chips are modulated on the quadrature-phase (Q) carrier. In the 2450 

MHz band, each data symbol is represented by a 32-chip sequence, and so the chip rate is 32 

times the symbol rate. To form the offset between I-phase and Q-phase chip modulation, the Q-

phase chips are delayed by Tc with respect to the I-phase chips as illustrated in  

Figure 50, where Tc is the inverse of the chip rate [68]. 

 

Table 4 Symbol-to-chip mapping for the 2450 MHz band [68] 

Data symbol Chip values (c0 c1 … c30 c31) 

0 11011001110000110101001000101110 

1 11101101100111000011010100100010 

2 00101110110110011100001101010010 

3 00100010111011011001110000110101 

4 01010010001011101101100111000011 

5 00110101001000101110110110011100 

6 11000011010100100010111011011001 

7 10011100001101010010001011101101 

8 10001100100101100000011101111011 

9 10111000110010010110000001110111 

10 01111011100011001001011000000111 
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11 01110111101110001100100101100000 

12 00000111011110111000110010010110 

13 01100000011101111011100011001001 

14 10010110000001110111101110001100 

15 11001001011000000111011110111000 

 

 

 

Figure 50 O-QPSK chip offsets [68] 

The half-sine pulse shape is used to represent each baseband chip and is given by (3), 

 

 ( )  {
   ( 

 

   
)         

           
  (3) 

 

 

 

Figure 51 Sample baseband chip sequences (the zero sequence) with half-sine pulse shaping [68] 
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4.3. Adaptive Sampling 

The adaptive sampling is implemented by choosing the samples on the Nyquist grid. During 

Synchronization, the chip initially starts sampling at the full Nyquist rate. After timing 

synchronization is achieved, the digital baseband learns the channel template from the Preamble. 

The acquired samples in the template are then ranked based on their energy. The digital baseband 

determines the number of samples to acquire per symbol for the subsequent data payload in the 

packet depending on the link quality of the communication channel. For example Figure 52(a) 

shows the 2x Nyquist sampling of a data symbol. For 50% sampling on the 2x Nyquist grid the 

first two samples carrying the most significant energy (sample two & three) are selected on the 

2x Nyquist grid for subsequent sampling Figure 52(b). 

 

 

  

  

  

  

a)                                                               b) 

 

  

A Matlab simulation was performed to evaluate the system performance of the proposed 

receiver architecture. Figure 53 shows the probability of chip errors (Pce) as a function of energy 

per bit (Eb/No) for different sampling rates. It should be noted that the curve corresponding to 

the 2x Nyquist sampling rate doesn’t overlap with the ideal BPSK waterfall curve, the reason for 

Figure 52 a) Nyquist Sampling grid b) 50% samples on the Nyquist grid 
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that is channel estimation has not been performed in the digital baseband for simplicity. For a 

target link performance e.g. Pce=10
-3

, the required Eb/No for Nyquist based receiver is greater 

than 8.5dB while the same performance can be achieved at 50% sampling rate for Eb/No greater 

than 9.2dB (0.7dB excess SNR) and with 25% sampling rate for Eb/No greater than 11.2dB 

(2.7dB excess SNR). 

  

 

 

Figure 53 Probability of chip error rate 

 

4.4. Prototype Chip 

Figure 54 shows the block diagram of the prototype receiver chip that has been designed. The 

direct conversion architecture is chosen for its integration, cost and low power benefits. The 
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receiver front-end doesn’t employ an LNA. The RF signal is directly applied to the active mixer 

for quadrature down-conversion and low pass filtered. The quadrature LO signal is assumed to 

be available off-chip. The receiver front-end specifications such as Gain, Noise Figure, linearity, 

sensitivity, selectivity and channel selection are describe in [69] and summarized in Table 5 for 

sampling at 2x Nyquist rate and at 50% of 2x Nyquist rate. 

 The channel selection anti-aliasing filter specifications can be derived from the requirements 

of jamming resistance. The IEEE 802.15.4 PHY requires 0-dB rejection at the adjacent channel 

(±5MHz) and 30-dB rejection at the alternate channel (±10MHz), respectively. Assuming 10-dB 

margins, 40-dB rejection at the alternate channel can be achieved through the third-order 

Butterworth-type filter with corner frequency of 1.5MHz. The filter will provide 50-dB rejection 

at 10MHz apart from the wanted signal and thus can be used as the channel selection anti-

aliasing filter [69]. 
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Figure 54 Prototype chip block diagram 

Table 5 Rx Target Specifications 

Parameters 

Specification @ 1% PER for 

2x Nyquist rate 

Specification @ 1% PER for 

50% of 2x Nyquist rate 

SNRmin -0.36 dB 2 dB 

Gain 9-39 dB 11-43 dB 

NF < 41 dB < 39 dB 

IIP3 > -10 dBm > -10 dBm 

IIP2 > -34 dBm > -32 dBm 

SFDR > 18 dB > 18 dB 

Input power -60 to -20 dBm -60 to -20 dBm 
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LPF Third order, fc=1.5 MHz Third order, fc=1.5 MHz 

ADC resolution 5 bits 5 bits 

Communication 

range 

9.7 m 9.7 m 

 

After quadrature down-conversion and low-pass filtering the baseband signal is amplified 

using programmable gain amplifiers (PGAs). DC-offset cancellation is achieved by using binary 

weighted current DACs throughout the PGAs and at the output of the LPF. A gated buffer 

interfaces the amplified baseband signal to the 5-bit Flash ADC digitizing the baseband signal at 

the sampling rate of 4MHz. 

 

The Friis equation (4) can be used to calculate the maximum line-of-sight communication 

range. The target receiver sensitivity is -60dBm. The IEEE 802.15.4 standard specifies the 

receiver sensitivity to be -85dBm and the nominal transmit power of 0dBm. Using the ISM band 

center frequency of 2.45GHz the communication range corresponding to -60dBm Rx sensitivity 

is found to be 9.7m. 

  

  
     (

 

   
)
 
  (4) 

The Packet Error Rate (PER) is related to the Bit Error Rate (BER) by the following relation if 

acquisition effects are ignored. 

             (5) 

Where N is the number of bits in a packet. For IEEE 802.15.4, N=160 bits and therefore 1% 

PER corresponds to 0.00625% BER. The BER of O-QPSK modulation with half-sine pulse 

shaping is given by (6) [70] 
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    (√  
  

  
)     (6) 

For 1% PER the required SNRmin would be 8.5dB. Employing Direct Sequence Spread 

Spectrum (DSSS) technique the radio receiver has a Processing Gain (PG) which is calculated by 

the ratio of the chip rate to the data rate. 

          (
         

         
)   (7) 

The chip rate is 2Mcps and Data rate is 250Kbps which corresponds to PG of about 9dB. 

Hence the minimum SNRmin required to achieve 1% PER including PG can be read off  

Figure 53 which is -0.36dB for Nyquist rate sampling and 2dB for 50% Nyquist sampling rate. 

 

For other parameters it is assumed that the ADC reference voltage (REFADC) is 200mV, 

reference impedance is 50 Ohms, insertion loss for the RF band select filter is 2dB and Margin is 

of 10dB. The NF of the receiver front-end is calculated by (8) where BW is assumed to be 

1.5MHz. 

                                              (8) 

 

IEEE 802.15.4 standard doesn’t specify the linearity requirements of the receiver front-end.  

Hence the linearity requirements can be derived from the interferer profile [69] . 

 

IIP3, IIP2 and SFDR are calculated as follows [24] [69],  

     
(                        )

 
      (9) 

Where Pint is the power of the interferer and Psig is the power of the desired signal. 

                                 (10) 
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(      )             (11) 

F is the receiver noise factor. The maximum and minimum gain required from the front-end 

assuming 5-bit ADC (NADC) and a Back Off (BO) margin of 10dB is calculated as follows, 

 

                                      (12) 

                           (13) 

Where Rmax is the maximum received power which is -20dBm 

 

4.5. Analog Front-End Building Blocks 

The schematic of the analog front-end is shown in Figure 55, with external LO.  Single-to-

differential conversion of the LO signal is achieved using an on-chip LO buffer, the output of 

which is then AC coupled to a single-balanced gilbert-cell active mixer. The baseband gain is 

distributed between the active filter and the PGAs. The LPF which also acts as a channel select 

anti-aliasing filter is designed to satisfy IEEE 802.15.4 PHY requirements. 
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Figure 55 Schematic of the analog front-end 

 

Single-to-differential conversion of the LO is achieved on-chip using the LO buffer shown in  

Figure 56. A resistive loaded differential amplifier is cascaded with a source-follower for a DC 

level shift. 

To save power the receiver doesn’t use an LNA and instead relies on an active mixer to 

provide RF gain. The mixer is implemented using a single balanced gilbert cell shown in  

Figure 57. The devices in the active mixer are sized to reduce the flicker-noise corner frequency 

to <100 KHz. 
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Figure 56 LO buffer 

 

 

 

Figure 57 Single-balanced active mixer 

 

The baseband gain is distributed between the active filter and Programmable Gain (PG) 

stages. The active filter is based on a 3
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 order Butterworth gm-C filter. The first order and 2
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order section of the filter are shown in Figure 58 and Figure 59 respectively. Offset cancellation 

is achieved using a binary weighted current DAC at the input stage of the 2
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a 3-bit binary control word to vary capacitance by ±20%. The differential output of the mixer is 

converted into single-ended by the input stage of the gm-C filter. The entire baseband is 

implemented single-ended to save power. 

 

 

 

Figure 58 gm-C based active filter, first order section 

 

Programmable gain is implemented by switchable fixed gain-stages shown in  

Figure 60. The gain stage is basically a first order gm-C stage without the capacitor. A 

transmission gate is used which when enabled allows the input signal to bypass the gain stage 

which is being disabled by a footer. Each PG stage provides about a gain of about 8dB. Three 

cascaded PG stages are used to achieve a total gain of roughly 24dB. For distributed offset 

calibration, the current DACs are designed to reduce the DC-offset to within LSB/2 of the flash 

ADC. 

The output of the PG stages is fed into a buffer which drives the input capacitance of the flash 

ADC. The buffer is implemented by two cascaded source followers Figure 61. The source 

followers provide a DC level-shift. 
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Figure 59 gm-C based active filter, second order section 

 

 

 

Figure 60  Gain stage 
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Figure 61 Buffer for driving Flash ADC 

 

A 5-bit 4 MHz Flash ADC is designed to digitize the baseband signal. S/H circuit is avoided 

at the input of the flash ADC considering that 1MHz baseband signal isn’t fast enough relative to 

the comparator speed in 65nm CMOS to cause aperture errors. The LSB size is 9.4mV for a 

reference voltage of 300mV, generated off-chip. The DBB converts the thermometer code into 

binary and uses a simple adding encoders’ technique to reduce bubble and sparkle errors of the 

Flash ADC [71] . To reduce power, no pre-amplifier is used in the comparator which makes the 

Flash converter susceptible to comparator kick-back. To reduce comparator kick-back and the 

power consumption of the reference ladder, decoupling capacitors of 2pF are added to the 

reference ladder. 

The schematic of the comparator is shown in Figure 62 which is sized to reduce the 

comparator offset to less than LSB/4. The output of the comparator is stored into an SR latch 

shown in Figure 63 to be read by the digital baseband.  
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Figure 62 Flash ADC comparator 

 

 

Figure 63 SR latch 

 

The digital IQ chips are processed by the digital baseband whose state diagram is shown in  

Figure 64. The digital baseband stays in the idle mode until the start signal is asserted, at which 

point it starts processing the received chips to detect the RF signal using simple energy detection. 

Once the RF signal is detected, timing synchronization is achieved by correlating the received 

signal with the header template. 
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Figure 64 Digital baseband state diagram 

 

After timing synchronization, carrier phase correction is performed with an assumption that 

there is no carrier frequency error between the transmitter and the receiver front-end. This 

assumption is made to simply the digital baseband. The digital baseband then estimates the 

channel response and link quality. Depending on the link quality the average sampling rate of the 

digital baseband is adjusted. To increase performance under sub-sampling, the digital baseband 

chooses the points with maximum energy on the Nyquist grid. Hard decision decoding is chosen 

over soft decision decoding for simplicity at a cost of roughly 3dB in performance. Finally 

depsreading is performed which outpus the IQ bits. 

 

Figure 65 shows the block diagram of the digital baseband along with conceptual illustration of 

adaptive sampling. The chip is implemented in 65nm CMOS technology with a total chip area of 

2x1 sq.mm.  
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Figure 65 Digital baseband block diagram and adaptive sampling illustration 

 

 

 

Figure 66 Prototype chip die photo in 65nm CMOS 
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4.6. Measured Results 

Figure 67 shows the measured performance of the analog front-end along with Flash ADC 

spectrum. The flash ADC achieves an ENOB of 4.3 at the input frequency of 1MHz. The total 

average gain over the IF bandwidth of 1MHz is 37dB while the average NF is 28dB. A two-tone 

test at (LO ± 50 KHz) shows the measured IIP3 at high-gain and low-gain setting as -35dBm and 

-14dBm respectively. Figure 68 shows the measured energy efficiency profile of the entire 

system along with simulated energy efficiency breakdown of the radio, the BER curve and the 

radar plot of the most desirable RX metrics for comparison. In the radar plot, a bigger star 

represents a superior design. This plot highlights how communication distance has been traded-

off for improved energy efficiency and battery life. The measured energy efficiency of the radio 

is 3.5nJ/bit and 2.3nJ/bit for the ADC and the DBB. For a BER test the DBB enters into a state 

where it receives the data infinitely. The measured sensitivity of the RX is -52.5dBm at 10
-3

 

BER. From the measured BER performance, it is observed that if the input SNR is about 3dB 

higher at Nyquist sampling than for the same link performance of 10
-3

 the DBB can be operated 

at 25% Nyquist samples with an energy efficiency of 2.1nJ/bit. It should be noted that the DBB 

power doesn’t scale proportional to the reduction in the sampling frequency i.e. 25% of the 

Nyquist rate (4x reduction). This is because the power savings by computing only 1 out of 4 

samples aren’t a significant portion of the overall digital baseband power. This can be addressed 

in the future work by carefully designing and clock gating the digital modules in the synthesized 

baseband logic. Table 6 summarizes the performance of the system and benchmarks with other 

2.4GHz short-range Zigbee radios. The entire system is implemented in 65nm CMOS with active 

area of 0.86mm
2
 Figure 66. This Zigbee RX has 2x better energy efficiency for the radio front-
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end (3.5nJ/bit) than current state-of-the-art, while reporting the lowest energy per bit (8.1nJ/bit) 

for a Zigbee coherent receiver with near-threshold DBB. 

 

 

Figure 67 Measured Gain, NF, IIP3, IIP2 of the RX front-end and Flash ADC spectrum 

 

Figure 69 shows the measured baseband I channel waveforms. The bottom plot shows the 

transmitted OPQSK data on I-channel, the mid-plot shows the down-converted baseband signal 

at the output of the PGA and the top plot shows the Flash ADC output. The RX is tested with 

off-chip LO power of -6dBm shown in Figure 70. IEEE 802.15.4 compliant packet format is 

used for testing the RX. The bottom plot is obtained when the digital baseband is receiving the 

data infinitely. Four RF packets are shown in the plot, each of duration 2ms. 
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Figure 68 Measured Energy per bit profile along with simulated energy efficiency breakdown of 

the radio, Bit error rate and the radar plot of the system 
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Table 6 Summary and comparison table 

 This work [72] [73] [54] 

Architecture Zero-IF Sliding-IF Low IF 

(2MHz) 

Zero-IF 

Technology 65nm 90nm 65nm 180nm 

Integrated Digital 

Baseband 

YES NO NO NO 

Data rate & 

modulation 

250 Kbps 

OQPSK 

250 Kbps 

OQPSK 

250 Kbps 

OQPSK 

250 Kbps 

OQPSK 

RX energy 

efficiency 

3.5 nJ/bit 

(excluding 

ADC) 

7.2 nJ/bit 

(excluding 

ADC) 

6.8 nJ/bit 

(excluding 

ADC) 

50.4 nJ/bit 

(including 

ADC) 

RX sensitivity -52.5 

dBm*1 

-100 dBm*2 --- -96 dBm*2 

RX IIP3 (High 

gain) 

IIP3 (Low gain) 

-35 dBm -19 dBm -6 dBm -18 dBm 

-14.5 dBm --- --- 

RX gain (dB) 37 76 57 83.5 

RX NF (dB) 28 6 8.5 9.5 

Power Radio (mW) 

 

0.87 @ 1V 1.8** 1.7** 12.6** 

(including 

ADC) 

Pipeline 
Power ADC (mW) 0.57 @1V 

Flash 

0.3 

SAR 

--- 

Power Digital 

Baseband (DBB) 

(mW) 

0.58 @ 

0.75V 

--- --- --- 

Active Area (mm
2
) 0.86 --- 0.22 --- 

*1 Sensitivity measured @ BER 10
-3 

*2 Sensitivity measured @ PER 1% 

** Excluding frequency synthesizer 
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Figure 69 Measured baseband signal for -40dBm RF signal. 

RF=-40dBm, OQPSK modulated signal
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Figure 70 Measurement setup and received RF packets
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Chapter 5 

Near-Threshold Hardware Accelerator for Arbitrary 

Bayesian Networks 

In chapter 1, we have discussed the challenges of the WSNs to realize the vision of the 

Internet of Things (IoTs). The nodes in the WSNs are expected to have sensing, signal 

processing/conditioning, communication and computational capabilities. It might be desirable for 

some applications that the nodes in the WSNs to have the capability to function in a completely 

unsupervised environment while minimizing offloading the raw sensor data to a cloud server, to 

improve overall network energy efficiency. For this reason we envision another layer of 

capabilities for these nodes to enable some sort of intelligence or learning abilities from the data 

that has been acquired through sensing capabilities. 
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The idea has been borrowed from the field of Machine learning, which is a branch of artificial 

intelligence. Machine learning is a field of study that gives computers the ability to learn without 

being explicitly programmed. Machine learning is a multi-disciplinary field that borrows 

techniques from statistics, probability and mathematical optimizations Figure 71.

 

 

Figure 71 Machine Learning 

Machine

Learning

Statistics Probability

Mathematical 

Optimization
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Figure 72 Reducing wireless traffic through intelligent sensing 

 

A generic WSN is shown in Figure 72 using embedded machine learning in a sensor node to 

reduce the overall wireless network traffic. The idea is again emphasized by a simple FFT 

transformed time-series data of eBay stock which is being reconstructed with 20 harmonics. The 

sensor node can learn this data pattern over time and can send this information instead of sending 

the raw time-series data wirelessly. 

 

Sensor
Embedded

Machine Learing
Raw

data

Information/

Knowledge

Knowledge 

instead

of raw sensor data

is wirelessly 

transmitted

FFT transformed 

time series data 

(Raw data) of 

eBAY stock 

reconstructed with 

20 harmonics 

(Knowledge)*

* Ref. http://intelligenttradingtech.blogspot.com/2010/02/fft-of-time-series-promises-and.html
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5.1. Bayesian Networks 

There are many frameworks in Machine Learning one of them is Bayesian networks. A 

Bayesian network is a probabilistic graphical model that represents a set of random variables and 

their conditional dependencies via a directed (where the edges have a source and a target) acyclic 

graph (graph with no loops) [44]. A Bayesian network is a subset of probabilistic graphical 

models. A probabilistic graphical model is a graphical representation of a probability distribution 

that is also used for knowledge representation. Bayesian networks have widespread applications 

ranging from medicine, finance, robotics, fault diagnosis, structural health monitoring and 

machine learning etc. 

In this research we are mostly interested in the application of Bayesian networks for structural 

health monitoring (SHM) and fault diagnosis. The research will seek a scalable circuit 

architecture which can be programmed for arbitrary Bayesian networks. It is expected that the 

ASIC can be used in a wireless sensor network infrastructure for autonomous operation by 

borrowing some of the techniques from the field of machine learning. 

We will next introduce Bayesian networks by way of a simple illustration. Figure 73 shows a 

simple Bayesian network example for a student [44]. The random variables in the network are 

“Difficulty” of the course that a student undertakes, “Intelligence” of a student, the “Grade” a 

student receives in a course, “SAT” score of a student and “Letter” of recommendation for a 

student. The graphical model represents the relationships among the different random variables. 

Prior probabilities have been assigned to random variables in a network. These can be learned 

either from data or with the help of a domain expert. The network can be queried for inferences 

based on observing different random variables. For example, given a student is intelligent and 
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the course is easy, what is the probability for the student to get a letter of recommendation? Or 

what is the probability for the student to ace the SAT exam given the student is not intelligent? 

 

Figure 73 A simple Bayesian network [45]  

 

The inference algorithms are mainly divided into two categories: namely Exact Inference and 

Approximate Inference. For example, Variable elimination and Clique trees algorithms belong to 

Exact Inference while inference as optimization and particle based methods belong to 

Approximate Inference. The Sum-product variable elimination algorithm is a very simple brute-

force algorithm which has been summarized in Figure 74. The details of the algorithm can be 

found in reference [44].  Here we will discuss briefly the basic operations that are needed to be 

performed to run the algorithm. 
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Figure 74 Sum-product Algorithm [44] 

 

The probability distributions represented in a tabular form in Figure 73 are called factors. A 

factor is a function of one or more random variables. One basic operation in a Sum-product 

algorithm is a factor product. Figure 75 shows an example of a factor product in which two 

factors are multiplied to produce a third factor. 

 

 

Figure 75 Factor product 
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Factor marginalization is a process that produces a probability distribution by extracting a 

subset from a larger probability distribution by eliminating some of the random variables.  

Figure 76 shows an example in which a random variable B has been marginazlied from a factor 

resulting in a new factor which depends on random variables A and C only. 

 

 

Figure 76 Factor marginalization 

 

Factor reduction is a process which makes the probability distribution consistent with the 

observations. Figure 77 shows an example in which a value c1 has been observed for the random 

variable C. Factor reduction operation takes that into account and deletes all the entries from the 

distribution which are not consistent with c1 (obervation). 

 

 

Figure 77 Factor reduction 
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5.2. Clique Tree Example 

One possible clique tree T for the Student network  is shown in Figure 78 [44]. The first step 

is to generate a set of initial potentials associated with different cliques. The initial potential 

ψi(Ci) is compuated by multiplying the initial factors assigned to the cliques Ci. For example, 

ψ5(J,L,G,S) = φL(L,G) . φJ(J,L,S). Now, if we were to compute the probability P(J) we would do 

the variable elimination process so that J is not eliminated. Thus, we select our root clique some 

clique that contains J, for example, C5 [44]. We then execute the following steps [44]: 

 

Figure 78 Message propagation in the Student clique tree [44] 

 

1. In C1: We eliminate C by performing ∑   (   )   The resulting factor has scope D. We 

send it as a message     ( ) to C2. 

2. In C2: We define   (     )      ( )    (     ). We then eliminate D to get a factor 

over G, I. The resulting factor is     (   ), which is sent to C3. 

3. In C3: We define   (     )      (   )    (     ) and eliminate I to get a factor over 

G, S, which is     (   ). 
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The factor    is a factor over G,J,S,L that encodes the joint distribution P(G,J,L,S): all the 

CPDs (Conditional Probability Distributions) have been multiplied in, and all the variables have 

been eliminated. If we now want to obtain P(J), we simply sum out G, L, and S. In a similar way, 

we can apply exactly the same process to computing the distribution over any other variable [44]. 

So far, we have assumed that a clique tree is given to us. How do we construct a clique tree 

for a given Bayesian network or for a set of factors? There are two basic approaches, first based 

on variable elimination and the second on direct graph manipulation. The details of which can be 

found in [44]. 

 

5.3. Distributed Intelligent Sensing 

We propose a hardware accelerator that can be used to run the Sum-product inference 

algorithm or a Clique-tree message passing algorithm (a variant of Sum-product inference 

algorithm) [44] for arbitrary Bayesian networks. The Clique-tree message passing algorithm has 

been chosen as it can be very easily adapted for distributed intelligent sensing. A Clique or a 

group of cliques can be processed on a sensor node while message passing to cliques processed 

on other sensor nodes can be achieved over a wireless channel. 

 

Figure 79 shows a hypothetical complex Bayesian network example scenario. The proposed 

hardware accelerator can be configured to process the entire Bayesian network or a sub-part of it. 

For example as shown in the figure, the inertial sensor node on the ankle of a person can 

correspond to the highlighted portion in the entire Bayesian network and only the relevant 

information can be wirelessly transmitted to other parts of the network. The entire Bayesian 

network might be monitoring the health of a person and can make intelligent decisions based on 
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prior-knowledge of the subject and fusing it with the updated knowledge from the sensors. This 

allows intelligent as well as need-based sensing. The network can request an update from a 

sensor based on the computed probabilistic inference about an imminent healh concern and can 

possibly improve the computed confidence level on a decision. This then can be used for 

operating these sensor nodes in a completely unsupervised autonomous environments and even 

allowing them to actuate if necessary. 

 

 

 

Figure 79 Proposed distributed processing 

 

Bayesian Network
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5.4. Proposed Hardware Accelerator 

Figure 80 shows the simplified block diagram of the proposed architecture and its 

corresponding state diagram is shown in Figure 81. Scan chain is used to move the data in and 

out of the memory of the hardware accelerator. The accelerator is first configured into either 

Factor Product, Factor Marginalization or Factor Normlization mode using a configuration table. 

The accelerator can support maximum 1K entries in a factor at a time with a maximum support 

of 20 variables each taking 256 possible values. So the theoretical maximum limit of a factor that 

the proposed hardware accelerator can handle is 2
(8x20)=160

 entries.  

 



89 

 

 

 

Figure 80 Block Diagram 
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Figure 81 State Diagram 

 

A factor or multidimensional table with an entry for each possible assignment to the variables 

is stored as a flattened single array in the memory. For each variable its cardinality is stored and 

its stride (step size) in a factor is computed on the fly. For example as shown in Figure 75 the 

factor φ3 has variables A,B and C with cardinalities 3,2 and 2 respectively and we can represent 

the factor in memory by a linear array. Here the stride for variable C is 1, for B is 2 and for C is 

4. If we add a fourth variable, D, its stride would be 12. Now using the stride we can convert a 

variable assignment to a correspoding index into the linear factor array [44]. 
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One of the key tasks is indexing the appropriate entries in each factor for the operations to be 

performed. To compute the corresponding index for each factor operation, variable assignments 

are generated on the fly. This is accomplished by 20 cascaded counters, where each counter 

counting upto the cardinality of the corresponding variable. 

For numerical considerations, operations such as factor product involve multiplying many 

small numbers together, which can lead to underflow problems due to finite precision arithmetic 

[44]. This is addressed by renormalizing the factor after each operation. However, if each entry 

in the factor is computed as the product of many terms, underflow can still occur [44]. This is 

avoided by performing the computation in log-space, replacing multiplication with additions. 

However the factor marginalization operation requires summing entries. To avoid converting 

from log-space to linear-space and storing the result back into log-space, a look-up table for 

addition is used instead to speed up the operation.  

The factor product unit operates on two factors at a given time while the factor 

reduction/marginalization and renormalization unit operates on a single factor. 

 

5.5. ALARM Network 

For testing the proposed hardware accelerator, a medium-size Bayesian network is chosen for 

benchmarking the performance. Figure 82 shows the ALARM (A Logical Alarm Reduction 

Mechanism) network [74], it’s an expert system designed for hospital patient monitoring to 

reduce false alarm rate in a hospital setting. There are 9 observation variables in the network e.g. 

History, HR (Hear Rate), EKG and BP (Blood Pressure) etc. and 8 diagnostic variables. The 

network consists of 27 Cliques and the max number of variables in a clique is 5 while the 

maximum clique size is 144. 
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Figure 82 ALARM Bayesian network [74] 

 

For Clique tree message passing algorithm, the ALARM network is converted offline into its 

corresponding clique tree shown in Figure 83 by using HUGIN Expert software [75]. A Matlab 

simulation model is developed to evaluate the design tradeoff between accuracy and the bit-

resolution for log-space computation. The simulated bit-resolution was 6, 8, 16, 32 and 64 bits. 

As expected the RMSE (Root Mean Square Error) computed by comparing the quantized 

computations with infinite precision decreases with increased bit-resolution as shown in Figure 

84. A 6-bit resolution was chosen to reduce the silicon area to approximately 1 square mm for 
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the prototype chip. As seen in the graph the RMSE for 6-bit resolution is almost the same as for 

an 8-bit resolution. At such low resolution, the error is limited by overflow due to the small 

dynamic range. The silicon area is dominated by the look-up table logic which is a strong 

function of the bit-resolution chosen. To estimate area overhead for higher bit-resolution, to a 

first order approximation the look-up table logic area is estimated by approximately doubling the 

area for doubling the bit-precision as shown in Figure 84. It should be noted that the RMSE vs. 

resolution tradeoff shown in the figure is not only network dependent but also varies from 

variable to variable within a network. 

 

Figure 83 Clique tree ALARM network 
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Figure 84 Resolution, accuracy and area tradeoff 

 

5.6. Measured Results 

The prototype chip is fabricated in a 65nm CMOS process with an active area of 0.52mm
2
 

shown in Figure 86. The chip is operated at a Near-Threshold voltage of 0.5V to save power and 

improve energy efficiency while operating at maximum clock frequency of 33MHz.  The total 

active power is 218uW. The total energy computed for the ALARM network is 76.2nJ and is 

distributed among its constituent components as shown in Table 7 and the corresponding pie 

chart is shown in Figure 85. 

This energy computation doesn’t take into account the energy required for IO operations e.g. 

the energy spent moving the data in and out of the memory. 
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Table 7 ALARM network energy profile 

Network Initialization 12.2nJ 

Upward message passing 21.8nJ 

Downward message passing 20.1nJ 

Belief computation 21.3nJ 

8-Diagnostic variables query 0.7nJ 

 

 

 

Figure 85 Energy distribution for ALARM network 
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Figure 86 Die photo in 65nm CMOS 

 

There are 8-Diagnostic variables in the ALARM network; after the clique-tree algorithm is 

converged the network can be queried for the probabilistic inference. The energy required to 

compute the probabilistic inference is computed for each of the queried variables which is 86pJ 

for LV FAILURE, HYPOVOLEMIA, ANAPHYLAXIS, INSUFFANESTH, DISCONNECT, 

KINKEDTUBE, PLUMEMBOLUS and 99pJ for the variable INTUBATION. This is computed 

by taking into account the number of factor operations required for each inference times the 

energy required to perform each operation. 
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Chapter 6 

Conclusion 

An exponential growth in miniaturized sensors is imminent in the near future which will act as 

a driving fuel for pervasive and virtually invisible intelligent sensing. The sensor density around 

a person is expected to increase from a few hundreds to thousands which will correspond to 

roughly a trillion networked sensors on the planet. The microsystems encompassing these 

sensors will have to have high energy efficiency for computation, communication and sensing 

operations while keeping the form-factor and cost at minimum. This is mainly because many of 

these microsystems are expected to operate at the edge of the cloud with battery lifetime of 10+ 

years or batteryless operation from harvested energy while being deployed to a large number. 

This poses new design challenges and opportunities for circuit designers and especially for 

wireless communication ICs (Integrated Circuits) as they consume significant amount of power 

when active in a miniaturized microsystem. Different design tradeoffs can be made keeping in 

view the energy constrained design space. 



98 

 

In order to help realize the vision of Internet of Things (IoTs) and a trillion networked sensors, 

we have looked into the techniques as how to improve the energy efficiency of wireless 

communication and how the influx of sensor data can be fused for distributed intelligent sensing. 

Depending on the application, this can help reduce the overall wireless communication for the

entire network by avoiding the raw sensor data transmission over the wireless channel to a cloud 

server and hence making the network more energy efficient. 

The first technique studied to reduce radio power is compressed sensing for Ultra-Wide-Band 

(UWB) communication. Compressed sensing allows sparse signals to be sampled below their 

required Shannon-Nyquist sampling rate. Compressed sensing is proposed to relax the ADC 

sampling rate to save power. A 1.2GS/s Hadamard transform front-end is designed that allows an 

ADC to take compressed measurements. It is found that for radio communication it is better to 

perform matched-filtering in the compressed domain (smashed filtering) as compared to 

performing matched filtering after recovering the sparse signal from compressed measurements. 

This leads to a design tradeoff between the bit error rate performance and the compression ratio 

which is investigated in detail. 

The second technique explored for low-power radio architecture is to exploit the direct trade-

off between sensitivity and power and adapting the sampling rate of a digital baseband with 

respect to the quality of the communication channel. A short-range low-power Zigbee 

compatible radio is presented. The short-range is suitable for communication in the vicinity of a 

handheld device, sufficient for many IoT applications that place highest priority on power 

consumption. 
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The third technique relates to fusing the sensor data for distributed intelligent sensing while 

reducing the raw sensor data transmission over a wireless communication channel in a network. 

For this purpose a Near-Threshold hardware accelerator is presented for arbitrary Bayesian 

networks. The hardware accelerator can be used to run the Clique-tree message passing 

algorithm in a distributed sensor network.  

  It is expected that embedded machine learning will play a key role in realizing distributed 

intelligent sensing in a trillion networked sensors vision. Where intelligent sensors will not only 

learn from the raw sensor data, adapt to their surroundings and will be able to actuate in a 

completely autonomous and unsupervised environment. This will open tremendous design 

opportunities for circuit designers as well as software engineers to fully exploit the true potential 

of trillion networked devices capable of generating massive amount of data. 
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