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Dental care costs in the United States exceed $100 billion annually.
Personalized medicine efforts in dentistry are driven by potentially
compelling clinical utility and cost-effectiveness prospects in the major
diseases of periodontitis, caries, and oral cancers. This review discusses
progress and challenges identifying genetic markers and showing clinical
utility in dentistry. Genome-wide association studies (GWAS) of chronic
periodontitis (CP) identified no significant variants, but CDKN2BAS
variants on chromosome 9 were significantly associated with aggressive
periodontitis. Stratifying patients by interleukin (IL)-1 gene variants,
smoking and diabetes differentiated CP prevention outcomes. Dental caries’
GWAS identified significant signals in LYZL2, AJAp1, and KPNA4; and
efforts are ongoing to identify genetic factors for multiple caries phenotypes.
Trials of molecularly targeted therapies are in progress for oral, head, and
neck squamous cell carcinomas (OHNSCC) and results have been promising
but limited in their effectiveness. Current opportunities and challenges for
molecular targeting for OHNSCC are discussed.
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Dental care is a substantial cost to healthcare, involving
500 million office visits annually and exceeding $100
billion (1). The primary diseases in terms of demand
for care and costs are dental caries and periodontal
disease, and new oral cancers are estimated to exceed
500,000 annually (2) with substantial morbidity and
mortality. Personalized medicine as proposed in den-
tistry involves the use of genetic information after an
initial clinical diagnosis to guide treatment decisions
for oral cancers, moderate to severe periodontitis, and
severe caries, to better manage differential responses
to standard therapies. Genetic information also may
be used to guide more aggressive prevention protocols
for severe chronic periodontitis (CP) and severe caries.

This narrative review provides perspective on current
evidence supporting use of genetics to stratify patients
for improved prevention and treatment of major oral dis-
eases. Details of the search strategies for periodontitis
and dental caries and uses of the relevant papers iden-
tified to inform the overviews are provided in Appendix
S1, Supporting Information.

Periodontitis

Chronic periodontitis

CP, a bacterially-induced chronic inflammatory disease,
destroys bone and connective tissues supporting teeth.
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CP affects 47% of United States adults with 8.5% having
severe disease (3). Moderate/severe periodontitis leads
to tooth loss; elevated inflammatory mediators (4); and
risk for other diseases (5). Adult dental prophylaxis,
primarily for CP prevention, is among the most widely
used healthcare services (6).

Bacteria initiate periodontitis, but genetic and envi-
ronmental factors influence CP severity (7), with
approximately 50% of severity variance attributable to
genetics (8).

Practical challenges complicate the study of CP
genetics:

(1) Few data sets have sufficient subjects with both
periodontitis and genetic parameters.

(2) Periodontitis classification systems, developed for
epidemiology or treatment needs assessments are
not ideal for genetic exposure studies. For example,
extraction of severely diseased teeth may reduce
patients’ severity classifications and exclude cases
completely if protocols require minimum teeth num-
bers.

Systematic reviews limited to a few candidate genes
have addressed association with CP. Two genome-wide
association studies (GWAS) have been reported (9, 10).
Both used well-defined case criteria, adjusted for con-
founders, and were modestly powered [4504 (9); 3365
(10)]. Neither found variants with GW significance. Six
loci with suggestive evidence of association in Divaris
et al. (9) were not associated in Teumer et al. (10). In
Divaris (9), additive effects of all genome-wide SNPs
explained 18% of severe periodontitis heritable vari-
ance, which increased to 52% when smoking interac-
tions were considered. Moreover, novel pathways were
tagged and warrant further exploration. In Teumer et al.
(10), additive effects of risk alleles together explained
34% of disease variance, supporting concepts that com-
plex traits are cumulative result of alleles with weak
effects.

Approximately 38 disease-associated markers have
been reported from CP candidate gene studies, most
of which were underpowered and not replicated. A
small subset of variants are supported by meta-analyses,
including in IL1A, IL1B, IL1RN, IL6, IL10, FcγR,
TLR4, and MMP1 genes, but most studies were under-
powered which may propagate type I errors. Some ade-
quately powered studies support CP association for IL1
variants (11, 12) but another (13) did not support asso-
ciation for any genes implicated in meta-analyses. IL-1
gene variations are the most commonly studied associ-
ations with severe/progressive CP, due in part to early
reports of association (14). Functional IL1 variants have
allele-specific differences in transcription factor binding
(15), white cell IL-1β expression (16), and gingival fluid
IL-1β levels (n= 900) (17). Because elevated IL-1β lev-
els are implicated in CP progression (18), including pri-
mate model evidence that IL-1 blocking drugs reduce
periodontitis (19), the role of IL1 variants in severe CP
has biological plausibility.

Personalized medicine opportunities in CP

Evidence suggests opportunities for patient stratification
using genetic plus non-genetic information to improve
prevention/management of severe generalized CP, which
occurs in 8–15% of adults (3). Of patients treated for
CP, disease progression continues in 20–25% (20), and
limited evidence supports twice yearly preventive care
for adults without periodontitis (21). Uses for diagnosis
of a symptomatic patient or prediction of CP are not
envisioned.

No randomized controlled trials have assessed genetic
influences on different preventive/treatment approaches,
but multiple studies have longitudinally monitored
post-treatment outcomes and retrospectively evaluated
influences of smoking, diabetes and limited genetic
variants. Clinical impact of these risk factors is probably
actionable by more rigorous bacterial control and certain
anti-inflammatory agents.

To date, clinical utility studies of CP genetics have
involved primarily IL1 gene variations together with
smoking and diabetes. Using a claims database, 5117
adults with no periodontitis history were stratified by
pre-defined criteria, and those negative for three risk fac-
tors (smoking, diabetes, IL-1 genotype) were not less
likely to lose teeth over 16 years with two cleanings/year
compared to one (p= 0.092), but patients with ≥1 risk
factor benefited from two cleanings/year compared to
one (p= 0.002) (22). This is consistent with a 10-year
prevention study in which tooth loss was associated with
smoking and IL-1 genotype (23). Genetic influence on
long-term outcomes of treated CP patients is less clear
(24–26). Contrary to prediction of complex diseases, use
of genetic information as in the above CP prevention
study (22), has shown strong clinical value in discrim-
inating responses to prevention/treatment of some com-
plex diseases (27, 28).

Pre-requisites for clinically useful CP genetic fac-
tors include: markers validated in adequately powered
studies involving severe/progressive CP, consideration
of non-genetic risk factors, i.e. smoking and diabetes;
evidence of allele-specific biological effects with plau-
sible role in CP; and association of pre-defined risk
strata, including genetic and non-genetic factors, with
long-term studies of CP severity/progression or impact
on prevention/treatment outcomes.

IL-1 genes were not identified in the CP GWAS. Pos-
sible explanations are: (i) prior IL-1 associations with
severe CP were false, (ii) IL-1 risk-associated genotypes
include multiple promoter haplotypes not tagged by
any single SNP, as generally used in GWAS, and (iii)
IL-1 gene effects are dependent on gene–environment
interactions. Some challenges to CP genetic studies
are characteristic of complex diseases. The discov-
ery/validation phase requires well-defined phenotypes,
and markers in LD with causal variants often vary
across populations thereby complicating validation.
Other challenges are specific to periodontitis. Bacte-
rial exposure alone is sufficient for CP initiation, but
long-term bacterial exposure measurements are rarely
available. Because risk factors, including genetics,
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influence CP severity/progression, some genetic effects
may be undetectable in populations with low bacterial
exposure.

Aggressive periodontitis

Aggressive periodontitis (AgP) refers to uncommon
forms of bacterially-induced periodontitis not associated
with known systemic conditions or genetic syndromes
that substantially modify susceptibility and/or progres-
sion of disease (29). AgP is generally responsive to
anti-microbial therapies but differ from CP with earlier
onset age, more rapid progression, and often less clinical
inflammation and bacterial mass. Prevalence of AgP is
less than 1% (30) but is enriched in certain populations
(31).

An AgP GWAS found GWA with an intronic SNP
in the glucosyltransferase gene GLT6D1, for which
the associated risk allele showed substantially reduced
binding of transcription factor GATA3 in cell models
(32). The non-coding RNA ANRIL (CDKN2BAS;
chr.9p21.3), is among best replicated risk genes for
atherosclerosis. Multiple SNPs in this region have
been validated for AgP association, making ANRIL
the best replicated AgP risk gene to date (13, 33–35).
CDKN2BAS markers associated with CP in a Dutch
population were not replicated in a larger German sam-
ple after multiple testing correction (35). Type II errors
are difficult to exclude in such studies because of limited
sample sizes and strong age and life-style influences on
this phenotype.

Specific isoforms of ANRIL have been implicated in
regulation of fatty acid and glucose metabolism (34)
pathways that may influence pathogenesis. COX2 (36)
and IL10 genes (13), also have been associated with risk
for AgP in sufficiently powered case–control studies.

AgP is a heterogeneous genetic disorder with environ-
mental interactions. Currently known risk alleles have
a relatively high frequency that precludes use for pop-
ulation screening, because few who test positive will
develop this uncommon disease. Once AgP is diagnosed,
genetic information may help stratify patients by differ-
ent etiologies to guide therapy, but no current evidence
supports that use.

Dental caries

Dental caries, a common chronic disease, results from
specific tooth-adherent microbial biofilms that deminer-
alize tooth structure by metabolizing dietary sugars to
produce acid (37). Fermentable carbohydrates enrich
cariogenic bacteria, including Streptococus mutans, S.
sobrinus, and Lactobacillus species, in the biofilm lead-
ing to dental decalcification. Severe-early childhood
caries (S-ECC), affecting multiple smooth tooth sur-
faces before age 5, can lead to pain, abscess formation,
and loss of teeth. Although all age cohorts experi-
ence dental caries, children represent the primary health
concern. S-ECC is associated with more new cari-
ous lesions (38) and emergency room visits, increased

treatment costs (39), delayed development (40), and
diminished ability to learn (41). S-ECC prevalence varies
by socio-economic status, with one kindergarten group
exhibiting a 9.5% prevalence with 5.69 mean affected
teeth (42).

Although environmental factors, including dietary
composition, access to fluoride and dental care, and
oral hygiene practices influence S-ECC, host factors
including salivary composition, enamel structure, taste
preferences, and immune responses vary among chil-
dren and may be genetically determined (43). Childhood
caries has strong heritability, with strongest effect in
primary dentitions (44, 45). Inconsistent associations
have been reported for childhood caries and genetic vari-
ants involved in enamel/dentin mineralization, salivary
composition, and matrix metalloproteinases (46–48).

Of two GWAS of permanent dentition caries, one
found two significant loci, LYZL2 which involves
anti-bacterial defenses, and AJAP1 which may influence
tooth development, and the other found no significant
associations but both studies identified several novel
loci with non-significant associations (46, 49). No asso-
ciations overlapped in the two studies. Two childhood
caries GWAS have been reported. One found no variants
with significant associations, and suggestive associations
did not replicate in independent populations (50), and
the other found significant association between KPNA4
and replicated the association with AJAP1 (51).

Although one may envision risk stratification for
S-ECC at diagnosis of first smooth surface lesions
to guide intervention opportunities, investigators have
appropriately questioned the clinical utility of genetic
information in management of at-risk populations.

Personalized oral and head and neck oncology

Personalized cancer therapy has proven to be an effective
strategy for more than a decade (52, 53). As genomic
technology and genetic profiling advance identification
of gene expression patterns, new phenotypic details
will facilitate accurate matching of patient needs with
precision-based therapies (54, 55).

Approximately 500,000 new cases of oral and head
and neck squamous cell carcinoma (OHNSCC), are
expected to arise this year (2, 56). Many of these patients
will present with advanced stage disease at the time of
diagnosis. Despite improvements in therapy, strategies
designed to improve early diagnosis and minimize dis-
ease progression have remained elusive (57, 58).

Many systematic reviews have assessed the association
between specific candidate genes and risk for OHNSCC
(59, 60). This review is focused on the role of genomics
in guiding therapy for OHNSCC and will not address
genetic markers associated with presence of OHNSCC
in general.

Ongoing discovery efforts have revealed a wide range
of potential targets for tumor therapy. Examples include
among others, the tyrosine kinase inhibitor, imatinib
(Gleevec), in the treatment of chronic myelogenous
leukemia, Herceptin in breast cancer therapy and the
B-RAF kinase inhibitor PLX4032 in the treatment of
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melanoma (61–63). Despite rapid advances in ‘omics’
technology, the pace of progress in linking targeted
therapies with well-characterized patient profiling has
been slow to develop for OHNSCC (64, 65).

Targeted therapies for the treatment of squamous
cell carcinoma are being evaluated in a number
of clinical trials (64–70). These targets include
among others, oncogenes, biomarkers associated with
epithelial–mesenchymal transition, gene amplifications,
gene mutation, translocations and signaling pathways
that regulate cell growth, cell motility and survival (71).
Some of the more promising targets include the epider-
mal growth factor receptor (EGFR), vascular endothelial
growth factor (VEGF) and the intercellular signaling
pathways MAPK/Erk and phosphatidylinositol-3′ kinase
(PI3)/Akt/mammalian target of rapamycin (mTOR)
(72–76). The efficacy of current target-specific agents
are greatly enhanced and side effects are significantly
reduced when used in combination with chemoradiation
(66–69). This duel-targeting approach has proven to be
successful for the treatment of human papillomavirus
(HPV)-positive cancers of the head and neck (77).
However, results to date with targeted therapies for
the treatment of non-HPV-positive OHNSCC have had
mixed results (72). Despite these setbacks, current and
emerging genomics-based targeting strategies hold great
promise.

One of the earliest identified targets for the treat-
ment of patients with OHNSCC was the tyrosine kinase
receptor EGFR (78, 79). Upon binding to EGF and
tumor necrosis factor alpha (TNF-α), signaling path-
ways are activated with important downstream effects on
tumor growth, mobility, survival and therapeutic resis-
tance (78, 79). Whereas monoclonal antibodies to EGFR,
such as cetuximab, panitumab, nimotuzumab, and zalu-
tumumab and tyrosine kinase inhibitors have been shown
to disrupt downstream signaling they have limited clin-
ical utility when used as single agents (67–69, 80). In
contrast, when used in combination with conventional
radiotherapy or chemotherapy significant improvement
in loco-regional control has been reported (67–69).
Although EGFR is over expressed in the majority of
HNSCC, only a small subset of tumors has shown clin-
ical responsiveness to EGFR therapy (73, 81). Because
there are no biomarkers that predict clinical responsive-
ness the search for new targets with improved clinical
efficacy continues.

Another class of inhibitors that has received consider-
able attention are the PI3-Akt/mTOR pathway inhibitors
(58, 74, 75). Mutations in PI3ck and PTEN oncogenes
that activate the mTOR pathway are a feature of most
human malignancies (82, 83) and has been shown to
play a central role in tumor progression and therapeutic
resistance (75). Inhibition of mTOR by rapamycin and
less toxic derivative inhibitors have promising antitumor
activity when used alone or in combination with conven-
tional chemotherapy agents in clinical trials (75, 76, 84).

Angiogenesis inhibitors have long been proposed as an
effective therapeutic target for a wide variety of tumors
(85–87). The principal anti-angiogenic targets have been
introduced above, including VEGF and downstream

components of the signaling pathway that regulate
VEGF-mediated processes including angiogenesis, cell
survival and therapeutic resistance. As tumors adapt to
chronic stress, molecular chaperones associated with the
unfolded protein response can activate the angiogenic
switch and confer therapeutic resistance to tumors (88).
For example, bevacizumab, a humanized VEGF mono-
clonal antibody, inhibits angiogenesis and facilitates the
delivery of chemotherapeutic agents by increasing vas-
cular permeability (87). However, the effectiveness of
VEGF/VEGFR agents such as bevacizumab, sunitinib or
sorafenib when used as single agents or in combination
with chemoradiation has been limited and in some cases
their use discontinued because of life threatening side
effects (89–91).

As investigations into the genomics and unique molec-
ular architecture of cancers continue new therapeutic tar-
gets will no doubt be revealed. Biomarkers present in
saliva have already revealed a number of new genetic and
epigenetic targets (92, 93). New targeting agents such as
broad spectrum kinase inhibitors show great promise in
clinical trials (94, 95). Other potential targeting agents
include proteasome inhibitors, histone deacetylases, heat
shock proteins and other molecular chaperones (58,
72). Innovative approaches to therapy such as oncolytic
viruses and systemic immunotherapy among others may
prove to be a value in the near future (96). While many
challenges lie ahead new biomarkers will no doubt pro-
vide further insight into how to therapeutically navigate
and target with precision the molecular networks and
genetic mutations that drive neoplastic development and
progression.

Supporting Information
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