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Assessing exceedance of ozone standards: a
space-time downscaler for fourth highest
ozone concentrations†

V. J. Berrocala, A. E. Gelfandb* and D. M. Hollandc

The US Environmental Protection Agency is required to monitor, regulate, and set the national ambient air quality
standard for ozone. To investigate ozone exposure, the Environmental Protection Agency utilizes monitoring devices along
with estimates of gridded ground level ozone concentration produced by a deterministic air quality model, the Commu-
nity Multiscale Air Quality Model. These two sources of information enable inference regarding spatial exceedance of the
national ambient air quality standard (NAAQS) for ozone, which is given in terms of the level of the annual fourth highest
ozone concentration.
Here, we extend previous downscaling work to propose a spatial fourth highest extreme value downscaling model to
assimilate annual fourth highest ozone concentration data at geo-coded locations with estimates at grid cell level derived
from the Community Multiscale Air Quality Model model output. The resulting inference enables us to make probabilistic
statements, with associated uncertainty, about the spatial variation in the chance of exceeding the standard. We apply our
approach to data in the Eastern USA during years 2001–2008 and compare its predictive performance to that of downscaler
models based on Gaussian processes applied to daily data. Copyright © 2014 John Wiley & Sons, Ltd.

Keywords: change of support; data fusion; hierarchical modeling; Markov chain Monte Carlo; national ambient air quality
standards (NAAQS); r-th largest order statistic distribution

1. INTRODUCTION
Under the Clean Air Act, the US Environmental Protection Agency (US EPA) establishes air quality standards to protect public health
and welfare. Through this legislation, the charge to the US EPA is to monitor, set, and revise the national ambient air quality standards
(NAAQS) for ozone and five other principal air pollutants that have been found to be harmful to the environment and human health. The
preponderance of epidemiological studies have shown that exposure to elevated levels of ground level ozone is associated with increased
risks of cardiovascular and respiratory diseases (Bell et al., 2004; Zhu et al., 2003; Zanobetti and Schwartz, 2008). Thus, starting from 1979,
the EPA has set the NAAQS for ozone based on extreme levels of ozone concentration. The current NAAQS for ozone, revised in 2008,
states that the annual fourth highest daily 8-h maximum ozone concentration, averaged over three consecutive years, should not exceed 75
parts per billion (ppb).

Currently, exceedances of the ozone NAAQS are determined using monitoring sites data. Thus, information on ozone exceedances exists
only at monitoring sites sparsely located throughout the USA. To investigate the spatial and temporal variability in exceedance of the NAAQS
for ozone over the Eastern USA, in this paper, we extend previously developed methodology (Berrocal et al., 2012) and introduce a spatio-
temporal process model for the annual fourth highest ozone concentration. Working within a Bayesian hierarchical modeling framework, we
obtain posterior exceedance probabilities with regard to the foregoing standard. In particular, taking advantage of our previous experience
with downscaling (Berrocal et al., 2012), we employ a smoothed downscaler to fuse two data sources and obtain improved predictions, with
associated uncertainty, of the annual fourth highest ozone concentration. This allows us to generate probabilistic maps of the attainment of
the NAAQS for ozone and better identify areas in the Eastern USA that are very likely to exceed the EPA standard. To our knowledge, this
is the first model that combines ozone monitoring data with air quality model output to directly predict the variable related to the NAAQS
for ozone; previous efforts inferred this variable using models for daily ozone concentration.

The US EPA uses two sources of spatial information to track progress of ozone air pollution: measurements taken at monitoring sites,
which essentially provide the true daily ozone concentration but are available only at sparse locations, possibly not every day, and estimates
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of ozone concentration obtained from deterministic air quality models such as the Community Multiscale Air Quality model (CMAQ)
(http://www.cmaq-model.org/). By numerically solving systems of partial differential equations representing various diffusion,
chemical, and atmospheric processes, air quality models yield estimates of the average daily ozone concentration over grid cells covering
the spatial domain with no missingness. However, they might present calibration concerns. To address shortcomings in both data sources, in
recent years, considerable effort has been devoted to develop statistical models that combine the two sources of information and explicitly
address the difference in spatial scale (grid cells versus point locations) between the two sources.

Two main approaches have emerged to “fuse” the monitoring station data with the air quality model output while solving the “change of
support” problem (Cressie (1993); Cressie and Wikle (2011); Gotway and Young (2002); Banerjee et al. (2004), chapter 6): (i) Bayesian
melding, (Fuentes and Raftery, 2005; McMillan et al., 2010) which is a form of upscaling and (ii) downscaling through spatial regres-
sion modeling approaches (Guillas et al., 2008; Berrocal et al., 2010a, 2010b; Liu et al., 2012). Downscaling has been shown to be
computationally feasible for large numbers of grid cells over space and time, and to generate better predictions of daily ozone concentration
than other geostatistical interpolation methods (Berrocal et al., 2010b).

Recently, Berrocal et al. (2012) have introduced a smoothed downscaler model that regresses the monitoring station data on a derived
regressor obtained by smoothing the entire air quality model output with weights that are random and spatially varying. This downscaler
provides improved out-of-sample predictions relative to the initial downscaler model at the daily scale and is currently being used to obtain
surfaces of daily ozone concentration over the Eastern USA (http://www.epa.gov/esd/land-sci/lcb/lcb_faqsd.html).

We see an inherent limitation to extrapolating spatial surfaces associated with the standard using daily data, and the problem is illuminated
in the comparison between our model and the daily extrapolation approach. In simple terms, if you want to interpolate a particular variable,
why not model it directly? This is particularly true when the variable of interest is not a linear function of the daily data such as the fourth
highest daily 8-h maximum. More precisely, if we interpolate (average) the daily values and then extrapolate a fourth highest value (like
taking a maximum), we achieve something smaller than if we obtain the set of fourth highest values (like taking a maximum) and then
interpolate (average) because the maximum of averages is less than or equal to averages of maxima. Furthermore, both the downscaler and
the smoothed downscaler model (Berrocal et al., 2010b, 2012) were developed for daily ozone concentration (in fact, daily 8-h maximum
ozone concentration) and assume that the monitoring station data, conditional on the air quality model output, is a realization of a Gaussian
process. This distributional assumption might be appropriate at daily scales but not for directly modeling the annual fourth highest ozone
concentration. If we model this variable, we should work with a process model for the fourth order statistic.

We note recent related work by Reich et al. (2013). However, Reich et al. (2013) focuses more on calibration of CMAQ model output
(in fact, driven by the explicit specification of the so-called reduced form CMAQ model) and on evaluation of emission control programs
for ozone. Conversely, we focus directly on fusing observations and computer model output of annual fourth highest daily maxima to
study exceedance probabilities. Additionally, while Reich et al. (2013) investigate local quantiles of a generalized Pareto distribution, in
other words the distribution of daily exceedances using a random local exceedance threshold for a single year, we look at the behavior of
exceedance of the NAAQS over an 8-year window. Finally, we consider a region that is three times the size of that in Reich et al. (2013) who
examined the portion of the Eastern USA delimited by the states of Virginia, Kentucky, Alabama, and Georgia, and we obtain predictions
using a single model rather than adopting a computational approximation by fitting in two stages. Other recent work on spatial exceedances
appears in French and Sain (2013) who, working with rainfall data, threshold a Gaussian process to obtain an exceedance region of a
specified probability.

In this paper, we work with a fourth largest order statistic model that we label as the fourth highest extreme value (FHEV) distribution
(drawing on Coles (2001), p. 68-69). Using this model, we follow Sang and Gelfand (2009) and assume that, conditionally on three latent
Gaussian processes, the annual fourth highest ozone concentrations at point locations are independent and distributed according to FHEV
distributions with spatially varying parameters. The interpretation of this assumption is that the centering/location process for the fourth
highest concentrations is smooth and the observed point-level fourth highest are realizations of this process subject to measurement error
through the FHEV. The FHEV parameters are assumed to depend on the smoothed estimated annual fourth highest ozone concentration
derived from the air quality model output, where the smoothing is motivated above and is obtained, as in Berrocal et al. (2012), through
random and spatially varying weights. We call this model the FHEV smoothed downscaler model.

The paper is organized as follows. In Section 2, we present the ozone concentration data used in our study, while in Section 3, we present
the FHEV theory and introduce the FHEV smoothed spatial downscaler drawing from our previous contributions (Berrocal et al., 2010b,
2012). In Section 4, we show results on the predictive performance of the FHEV smoothed downscaler model, and finally, in Section 5, we
conclude with a brief discussion.

2. OZONE CONCENTRATION DATA
In the USA, ozone concentration is monitored at over 1000 locations over the conterminous US in a variety of urban, suburban, and rural
environments. Daily 8-h maximum ozone concentration (henceforth, daily ozone concentration) is observed mostly during the summer
months when ground level ozone concentration tends to be higher and thus more harmful to public health. The EPA supplements the
information collected at monitoring sites with the information contained in the outputs of numerical air quality models. In our application, we
will use the output of the Models-3/Community Multiscale Air Quality (CMAQ) model (Byun and Schere, 2006), a deterministic numerical
model that estimates ozone concentration over grid cells of prespecified dimensions by simulating various chemical and physical processes,
such as horizontal and vertical advection, emission injections, deposition, and plume chemistry effects. In particular, we will use CMAQ
outputs of average daily ozone concentration over 12 km � 12 km grid cells covering the Eastern USA for every day between 1 January
2001 and 31 December 2008.
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The extent of the spatial domain covered by CMAQ has changed over the course of our study time period: in 2001, the CMAQ output
covered longitudes 67ı10W to 100ı30W and latitudes 25ı90N to 48ı70N and consisted of 40; 044 12 km � 12 km grid cells arranged in 188
rows and 213 columns. From 2002 to 2006, the CMAQ output rose to 66; 960 grid cells, arranged as 240 rows by 279 columns. And in 2007–
2008, the domain was extended, covering longitudes from 65ı40W to 111ı00W and latitudes from 23ı00N to 51ı20N, yielding 137; 241 grid
cells, arranged as 299 rows by 459 columns. In order to employ a common set of grid cells across the years, we have set our spatial domain
S to be the 2001 CMAQ domain, and we have utilized daily ozone concentration data only from monitoring stations and CMAQ grid cells
that lie in this domain.

More than one thousand monitoring stations, specifically 1035, are located within the boundaries of our spatial domain. Of these, 437 had
more than 25% missing data during the summer months in any year between 2001 and 2008 and thus were discarded from the analysis. This
proportion is arbitrary, and it may slightly bias downward the fourth highest daily maximum. However, it enables us to retain more than half
of the monitoring stations and comparison of CMAQ output on missing versus nonmissing days suggests that missingness is completely at
random. For each of the remaining 598 stations, we derived, for each year, the annual fourth highest ozone concentration, obtaining a total
of 598 time series, each with 8 time points. We randomly split the monitoring sites into two sets: a training set made of 550 stations and a
validation set made of 48 sites. Figure 1 shows the locations of the training and validation sites, while Figure 2(a) and Figure 2(b) display the
annual fourth highest ozone concentration observed in years 2001 and 2008, respectively. Figure 2(a) and Figure 2(b) reveal that the average
fourth highest ozone concentration decreased from 83:9 ppb in 2001 to 71:2 ppb in 2008. The figures also reveal a great deal of variability
across the spatial domain: concentrations are usually lower in the Southeastern and Northwestern parts of the domain while they are elevated
in the Northeast. However, the spatial gradient in the annual fourth highest ozone concentration is more striking in 2001 than in 2008. In
fact, the standard deviation for the annual fourth highest ozone concentration changed from 9:4 ppb in 2001 to 7:6 ppb in 2008.

Daily ozone concentration is usually modeled on the square root scale using a Gaussian distribution (Carroll et al., 1997; Sahu et al.,
2006, 2007; Berrocal et al., 2010a, 2010b, 2012) to encourage stable variance. We also work on the square root scale for the fourth highest
in order to provide more stable computation, converting back to the original scale to present inference displays.

For the CMAQ data, we proceeded similarly as for the monitoring data. Hence, for each CMAQ grid cell in S and for each year, we
derived the annual fourth highest ozone concentration as output by CMAQ. Spatial maps of the annual fourth highest ozone concentration
predicted by CMAQ for years 2001 and 2008 are displayed in Figure 3(a) and Figure 3(b), respectively. In agreement with the monitoring
data, CMAQ also estimates higher levels of extreme ozone concentration in the Northeast and lower levels in the Southeast for both years.

There is potential temporal misalignment between the day when the annual fourth highest is observed at a monitoring site and when it
occurs in the CMAQ grid cell where the site lies. Evidently, such misalignment will occur among the monitoring stations and among the
CMAQ grid cells themselves. This is a well known issue in multivariate modeling of extremes (Resnick and Rubinovitch, 1973). In any
event, with interest only in local prediction of the annual fourth highest using CMAQ, this may not be a concern. Moreover, in this regard,
we computed the correlation between the square root of the annual fourth highest ozone concentration observed at monitoring sites and the
square root of the estimated annual fourth highest ozone concentration at the CMAQ grid cells where the sites lie. We obtained moderate
correlation ranging from 0:49 (in 2001) to 0:70 (in 2008), suggesting benefit in using it in our proposed downscaler model. Formal evaluation
of the predictive gain obtained by incorporating the CMAQ output is carried out in Section 4 where we compare the predictive performance
of our FHEV smoothed downscaler model to that of other interpolation models using only the monitoring station data.

Figure 1. Training and validation sites used to fit the fourth highest extreme value smoothed downscaler model
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(a)

(b)

Figure 2. (a, b) Observed annual fourth highest ozone concentration in parts per billion (ppb) at monitoring sites (training and validation sites) in years 2001
and 2008, respectively

3. MODELING
We present our FHEV smoothed downscaler model for the fourth highest under the assumption that a generalized extreme value (GEV)
model holds for the maximum. In Section 3.1, we provide the FHEV distribution and its properties. Then, in Section 3.2, we detail our spatial
model using the FHEV. Finally, in Section 3.3, we discuss computational issues related to model fitting.

3.1. Fourth highest extreme value distribution

Extreme value theory establishes the limiting form of the distribution of rescaled maxima of independent univariate random variables.
Precisely, if Y1; Y2; : : : ; Yn are independent and identically distributed univariate random variables with a distribution F (not necessarily
known), and there exist two sequences of real numbers fang > 0 and fbng such that the limiting distribution G of the rescaled maxima
max .Y1;:::;Yn/�bn

an
is non-degenerate for n ! 1, then G must belong to a very specific family of distributions, the GEV distribution. The

GEV distribution depends on three parameters: the location, � 2 R, the scale, � > 0, and the shape parameter, � 2 R; its general expression
is given by
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(a)

(b)

Figure 3. (a, b) Annual fourth highest ozone concentration in parts per billion (ppb) as estimated by CMAQ in years 2001 and 2008, respectively

whence the support for y becomes fy W 1C �.y��/
� > 0g. Three distributions comprise the GEV family: the reverse Weibull (� < 0), the

Gumbel (� D 0), and the Fréchet .� > 0).
Following Coles (Coles, 2001, pp. 66–67), under the conditions that provide an asymptotic GEV distribution for the maximum, the
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Differentiation and some algebra provide the density (needed for likelihood evaluation in the modeling) as follows:
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which we refer to as the FHEV distribution. For instance, at � D 1, we obtain an inverse Gamma, IG.4; 1/. More generally, if ´ D w
1
� ,

then ´ � IG.4; 1/.

3.2. Fourth highest extreme value smoothed downscaler

As noted earlier, following modeling approaches for daily ozone concentration data (Carroll et al., 1997; Sahu et al., 2006, 2007; Berrocal et
al., 2010a, 2010b, 2012) and maxima of ozone concentration (Eastoe, 2009; Eastoe and Tawn, 2009), we apply a square root transformation
to the annual fourth highest ozone concentration. We denote with Yt .s/, t D t0; : : : ; T , the square root of the annual fourth highest ozone
concentration observed at site s 2 S in year t , while for t D t0; : : : ; T , we denote with fxt .Bk/ W k D 1; : : : ; gg the set of g D 40; 044
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values representing the square roots of the annual fourth highest ozone concentrations in year t in grid cells Bk ; k D 1; : : : ; g, as estimated
by CMAQ. We model the square roots of the annual fourth highest ozone concentrations at sites s 2 S as conditionally independent random
variables following a FHEV distribution.

A quite general model would take the form,

Yt .s/j�t .s/; �t .s/; �t .s/
ind
� FHEV .�t .s/; �t .s/; �t .s// t D t0; : : : ; T

where �t .s/, �t .s/, and �t .s/ vary in space and time.
First, we relate the location parameter �t .s/ to the CMAQ output for years t D t0; : : : ; T , by modeling �t .s/ as a Gaussian Process,

that is,

�t .s/ D ˇ0t C ˇ0t .s/C ˇ1t Qxt .s/ (1)

where the ˇ0t .s/ are independent mean zero Gaussian processes with exponential covariance functions having common marginal variance
�2� and a time-varying decay parameter ��t . The regressor Qxt .s/ in (1) is a smoothed version of the entire set of square roots of annual fourth
highest ozone concentrations fxt .Bk/ W k D 1; : : : ; gg derived from the CMAQ daily output. It is defined for each t D t0; : : : ; T , and s 2 S
as a weighted average

Qxt .s/ D
gX
kD1

wk.s; t / � xt .Bk/ (2)

where the weightswk.s; t / are random, spatially varying, and time-varying. As in Berrocal et al. (2012), the weightswk.s; t / are in turn con-
structed by mixing independent copies of a mean-zero, unit-variance latent Gaussian process (GP) provided with an exponential correlation
function with decay parameter �Q, with an exponential kernel.

More specifically, if frk W k D 1; : : : ; gg denotes the set of CMAQ grid cell centroids for B1; : : : ; Bg , and fQt .rk/ W k D 1; : : : ; gg are
realizations of the latent Gaussian processes Qt .r/ at the CMAQ centroids, then for k D 1; : : : ; g, t D t0; : : : ; T and s 2 S,

wk.s; t / D
K.s � rk I / � exp.Qt .rk//Pg
lD1

K.s � rl I / � exp.Qt .rl //
(3)

whereK.s�rk I / D exp.� ks�rkk/ is the exponential kernel with decay parameter . The decay parameter determines the magnitude
of the neighborhood of grid cells around s that contribute non-negligibly to the sum in (3). It is possible to estimate it from the data. However,
following Berrocal et al. (2012), during model fitting, we keep it fixed and equal to 0:08, corresponding to a neighborhood of three grid
cells. Essentially, only grid cells that are first, second, and third order neighbors to the grid cell where a site s lies, receive a nonzero weight
wk.s; t /. In model fitting, we keep �Q fixed and set a priori to be larger than  and equal to 0:12. This translates into a correlation that
decays to a value of 0.05 at 24 km, that is, at two 12-km grid cells. We find, in our analysis in Section 4, that this model is best among those
we consider. Berrocal et al. (2012) offer further discussion of the Qt .s/ surfaces and the induced wk.s; t /.

We only employ the set of fxt .Bk/ W k D 1; : : : ; gg to model the location parameter in the FHEV resulting in the GP model for �t .s/
above. Exploratory data analysis revealed lack of spatial variability in the estimates of �t .s/ and �t .s/†, and due to known difficulties in
estimating the shape parameter in GEV (hence, FHEV) models (Cooley et al., 2007), we hold �t .s/ fixed in space and time and equal to �,
while we let �t .s/ > 0 vary in time but not in space, with a lognormal distribution for each �t , t D t0; : : : ; T . In summary, the first two stages,
that is, the data model and the process model, of our hierarchical FHEV smoothed downscaler model are given by, for s 2 S, t D t0; : : : ; T :

Yt .s/j�t .s/; �t .s/; �t .s/
ind
� FHEV.�t .s/; �t .s/; �t .s//

�t .s/jˇ0t ; ˇ1t ; Qxt .s/; �2�; ��t � GP
�
ˇ0t C ˇ1t Qxt .s/; �2� � �.�; �I��t /

�
Qxt .s/ D

Pg
kD1

wk.s; t / � x.Bk ; t /

wk.s; t / D
K.ks�rkkI /�exp.Q.rk//Pg

lD1K.ks�rlkI /�exp.Q.rl //

Qt .s/j�Q
ind
� GP.0I �.�; �I�Q//

�t .s/ D �t

log.�t /
ind
� N.�t ; 	

2/

�t .s/ D �

Prior specifications are discussed in Berrocal et al. (2012).
If in (1), ˇ1t is set to 0 for all t D t0; : : : ; T , and s 2 S, then the FHEV smoothed downscaler model reduces to a geostatistical

interpolation model, which ignores the information in CMAQ. It incorporates spatial dependence in the spatially varying parameters of

†Since the � ’s and �’s in the FHEV are the same as those for the associated GEV, we can use standard software, the R package ismev version 1.3.8 developed by J.
E. Heffernan and A. C. Stephenson and maintained by E. Gilleland (http://www.ral.ucar.edu/�ericg/softextreme.php), on the maxima to look at
spatial and temporal variation in the � ’s and �’s.
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the FHEV distribution but assumes conditional independence in the square roots of the annual fourth highest ozone concentrations. The
predictive performance of this latter model, along with that of our smoothed downscaler model, is assessed in Section 4.

3.3. Model fitting

We fit the smoothed FHEV downscaler model using a Markov chain Monte Carlo (MCMC) algorithm. With a first stage likelihood given
by products of FHEV distributions, and with Gaussian process priors on the location parameter, the full conditionals for each n-dimensional
vector �t D .�t .s1/; : : : ; �t .sn//

0, t D t D t0; : : : ; T , are not available in closed form. Hence, to sample each �t , t D t0; : : : ; T , from its
posterior distribution, we used a Metropolis–Hastings algorithm with a multivariate normal proposal distribution (of dimension n) centered
around the current values of �t and with a scaled identity matrix for the covariance where the overall standard deviation was chosen to
yield acceptance rates between 20% and 40%. Similarly, to update the scale parameters �t , t D t0; : : : ; T , we used a Metropolis–Hastings
algorithm with a lognormal proposal distribution. Updating the spatially and time-varying weights also requires the use of a Metropolis–
Hastings algorithm because the full conditionals of the latent g-dimensional vectors Qt D .Qt .rk/ W k D 1; : : : ; g/, t D t0; : : : ; T are not
available in closed form.

Due to the large dimensionality of these vectors (g D 40; 044), we adopted the predictive process framework of Banerjee et al. (2008) and
Finley et al. (2009). Hence, we replaced each g-dimensional vector Qt , t D t0; : : : ; T , with its projection QQt , t D t0; : : : ; T , onto the lower
dimensional space spanned by the g?-dimensional vector (g?=648) Q?t D

�
Q
�
r?
l

�
W l D 1; : : : ; g?

�
where r?1 ; : : : ; r

?
g? , g? � g are knots

systematically selected from the CMAQ grid cell centroids every eight rows and eight columns. Six hundred forty-eight knots selected in a
space-filling fashion exceeds the typical number of knots adopted for this approximation.

Updating the parameters of the spatially varying location parameters �t .s/, t D t0; : : : ; T , of the FHEV distributions is straightforward.
With conjugate priors, full conditionals for ˇ0t ; ˇ1t ; �2�; �

2
� ; ��t and ��t , t D t0; : : : ; T , are available in closed form. Thus, sampling from

their posterior distributions is carried out through a Gibbs sampling update.

4. RESULTS
4.1. Model comparisons

We evaluate the predictive performance of our FHEV smoothed downscaler model using the annual fourth highest ozone concentration data
described in Section 2. Again, we fit the model to n D 550 monitoring stations and generate predictions of annual fourth highest ozone
concentrations over years 2001 � 2008 at the m D 48 validation sites. We compare the out-of-sample predictive performance of the FHEV
smoothed downscaler model with that of other geostatistical interpolation and downscaler models with the goal of addressing the following
modeling questions:

1. Is CMAQ useful when predicting annual fourth highest ozone concentrations?
2. Does the information contained in the fourth highest ozone concentrations over a neighborhood of CMAQ grid cells improve prediction

at a site s compared with prediction using only the information contained in the CMAQ grid cell where the site lies?
3. According to �, which FHEV distribution (reverse Weibull, Gumbel, or Fréchet) as implied by the associated GEV is more appropriate

to model annual fourth highest ozone concentration?
4. As a straw man, how well does a Gaussian process model perform in predicting the annual fourth highest ozone concentration?
5. What happens if we predict the annual fourth highest ozone concentrations at sites s 2 S by modeling daily ozone concentration using a

Gaussian process and extrapolate levels of annual fourth highest ozone concentrations from predicted daily ozone concentrations?

To address the first three points above, we consider two additional models: (i) a FHEV downscaler model where the smoothed regressor
Qxt .s/, appearing in the mean function for the location parameter process �t .s/, is replaced by xt .Bk/ when s 2 Bk , that is,

�t .s/jˇ0t ; ˇ1t
ind
� GP

�
ˇ0t C ˇ1txt .Bk/; C

�
s; s0I �2�; ��t

��
t D t0; : : : ; T

where xt .Bk/ denotes the annual fourth highest ozone concentration estimated by CMAQ at grid cell Bk , and C.s; s0I �2�; ��t / indicates the
exponential covariance function with marginal variance �2�, decay parameter ��t—we call this model simply an FHEV downscaler model;
and (ii) an FHEV geostatistical interpolation model obtained from the FHEV smoothed downscaler by setting ˇ1t D 0 in (1) for each
t D t0; : : : ; T , that is, ignoring the CMAQ outputs.

Due to the challenges in learning about � as a model parameter, we considered selection of � as a model choice problem. We fit all three
models using different values of the shape parameter �. Based on exploratory data analysis and estimates of the shape parameter � obtained
by fitting a GEV distribution at each location independently, the set of values f� D �1:0;�0:5;�0:1; 0; 0:1; and 0:5g fully spans the range.
For each model, we investigate whether the scale parameter, �t , should be constant or varying in time.

To address questions 4 and 5, we consider the smoothed downscaler model developed by Berrocal et al. (2012). This latter model assumes
that the monitoring ozone concentration at sites s 2 S is a Gaussian process with mean �t .s/ as in (1), and with an exponential covariance
function along with a nugget effect. We fit this model to both daily ozone concentration data and also to the annual fourth highest ozone
concentration data. In the first case, predictions of annual fourth highest ozone concentration are derived from predictions of daily ozone
concentration. In the second case, we would not expect a Gaussian distribution to be appropriate for the annual fourth highest. A description
of all the models considered is provided in Table 1.
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4.2. Assessment

We evaluate the predictive performances of all models using an ensemble of out-of-sample criteria: their respective predictive mean squared
error (PMSE), predictive mean absolute error (PMAE), empirical coverage of the 95% predictive intervals, and average width of the 95%
predictive intervals. For the FHEV downscaler models and the FHEV geostatistical interpolation model, predictions at validation sites are
taken to be the median of the posterior predictive distributions (for all models, predictions are backtransformed to the original scale). We
also compare the various models with respect to their continuous ranked probability score (CRPS; Gneiting and Raftery (2007)), averaged
across time and validation sites. The CRPS is a strictly proper scoring rule that evaluates the fit of a predictive distribution to observations,
rewarding calibration subject to sharpness. It is defined as

CRPS.F; x/ D

Z 1
�1

.F.y/ � 1fy > xg/2dy

where F is the predictive distribution and x is the observation that materializes. It can be straightforwardly computed through Monte Carlo
simulations using the identity provided by Székely and Rizzo (2005)

CRPS.F; x/ D EF jX � xj �
1

2
EF jX �X

0j

where X and X 0 are independent copies of random variables with distribution F and finite first moments. As with the PMAE, the CRPS is
reported in the units of the observations and smaller values are better.

We first focus on the choice of �. Figure 4 shows plots of the PMSE, PMAE, empirical coverage of the 95% predictive interval,
average width of the 95% predictive interval, and average CRPS for the various FHEV models as the shape parameter � varies in the set
f�1:0;�0:5;�0:1; 0; 0:1; 0:5g.

As Figure 4 reveals, all models prefer � < 0, because the PMSE, PMAE, and average CRPS achieve the lowest values for all models when
� D �0:5. Additionally, Figure 4 shows that FHEV models with a time-varying scale parameter yield a better predictive performance than
FHEV models which assume a constant scale parameter.

Among the FHEV models, the FHEV smoothed downscaler model with time-varying scale parameter and with � D �0:5 has the smallest
PMSE, PMAE, and average CRPS and yields the shortest 95% predictive intervals with coverage close to nominal. From this first compari-
son, we conclude that there is useful information contained in the CMAQ output, particularly in the output relative to a neighborhood of grid
cells, and exploiting this information leads to improved predictions of the annual fourth highest ozone concentration.

Table 2 compares the PMSE, PMAE, empirical coverage of the 95% predictive interval, average width of the 95% predictive interval,
and average CRPS for the FHEV smoothed downscaler with � D �0:5 and time-varying scale parameter with the analogous summary
statistics for the smoothed downscaler models based on a Gaussian distributional assumption. Table 2 reveals that the Gaussian distribution
is not appropriate to model the annual fourth highest ozone concentration. Furthermore, applying the smoothed downscaler model to daily

Table 1. Description of the various downscaler and geostatistical interpolation models
compared

First stage Time-varying Smoothed
Model likelihood scale CMAQ CMAQ
label Model specification parameter output output

FHEV smoothed
QM1 downscaler FHEV No Yes Yes

FHEV smoothed
QM2 downscaler FHEV Yes Yes Yes

FHEV
M1 downscaler FHEV No Yes No

FHEV
M2 downscaler FHEV Yes Yes No

FHEV
K1 geostatistical FHEV No No No

interpolation model

FHEV
K2 geostatistical FHEV Yes No No

interpolation model

D1 Daily downscaler Gaussian — Yes Yes

Downscaler on annual
D2 fourth highest Gaussian — Yes Yes
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Figure 4. (a) Predictive mean squared error (PMSE), (b) predictive mean absolute error (PMAE), (c) empirical coverage of the 95% predictive interval,
(d) average width of the 95% predictive interval, and (e) average continuous ranked probability score (CRPS) for the various FHEV downscaler and FHEV

geostatistical interpolation models as the shape parameter � varies in the set f�1:0;�0:5;�0:1; 0; 0:5g
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Table 2. Predictive mean squared error (PMSE), predictive mean absolute error (PMAE), empirical coverage
of the 95% predictive interval, average width of the 95% predictive interval (PI) at validation sites, and average
continuous ranked probability score (CRPS) for the FHEV smoothed downscaler model with time-varying
scale parameter and shape parameter � D �0:5, the daily smoothed downscaler model and the smoothed
downscaler model applied to the annual fourth highest ozone concentrations

Empirical Average
coverage width Average

Model PMSE PMAE 95% PI (%) 95% PI CRPS

FHEV smoothed downscaler
with time-varying �t (� D �0:5) 21.36 3.63 95.26 21.98 2.66
Daily smoothed downscaler 30.15 4.43 56.25 9.62 16.63
Smoothed downscaler for annual
fourth highest ozone 27.65 4.16 97.40 24.61 2.96

Figure 5. (a, b) Predicted rolling average of the annual fourth highest ozone concentration in parts per billion (ppb) over years (a) 2001–2003 and (b) 2006–
2008, as yielded by the FHEV smoothed downscaler with time-varying scale parameter and shape parameter � D �0:5. (c, d) Posterior predictive standard
deviation of the rolling average of the annual fourth highest ozone concentration in parts per billion (ppb) over years (c) 2001–2003 and (d) 2006–2008, as
yielded by the FHEV smoothed downscaler with time-varying scale parameter and shape parameter � D �0:5. In panels (a) and (b), black dots indicate

major urban centers in the spatial domain S
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Table 3. Brier score for the predicted probability that a site exceeds the
NAAQS standard as predicted at validation sites by the FHEV smoothed down-
scaler model with time-varying scale parameter and shape parameter � D �0:5,
the daily smoothed downscaler model and the smoothed downscaler model
applied to the annual fourth highest ozone concentrations

Model Brier score

FHEV smoothed downscaler with time-varying �t (� D �0:5) 0.097
Daily smoothed downscaler 0.195
Smoothed downscaler for annual fourth highest ozone 0.114

Figure 6. Predicted probability of exceedance relative to the NAAQS for ozone as yielded by the smoothed FHEV downscaler with time-varying scale
parameter, shape parameter � D �0:5, over years (a) 2001–2003 and (b) 2006–2008. In both panels, the black dots indicate major urban centers located in

the spatial domain
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ozone concentration data to then derive predictions of the annual fourth highest ozone concentration leads to poor centering of the predictive
distributions and severe underestimation of prediction uncertainty. Such interpolation proceeds by kriging the daily models to new locations
and then taking the annual fourth highest, that is, averaging and then taking the fourth highest rather than taking the fourth highest and
averaging. Evidently, our concerns in Section 1 regarding the former interpolation are borne out.

The FHEV smoothed downscaler model enables direct prediction of the variable related to the NAAQS for ozone. The NAAQS for ozone
states that the rolling average of the annual fourth highest ozone concentration over a period of three consecutive years should not exceed
75 ppb. Using our FHEV smoothed downscaler model, we can generate predictions of the rolling average of the annual fourth highest ozone
concentration over a 3-year period. We do this simply by averaging the three consecutive annual fourth highest interpolations. We obtain
predictions of rolling averages for the periods 2001–2003, 2002–2004, : : :, 2006–2008 at the 48 hold-out sites as well as over the entire
spatial domain S. Figure 5 presents the predicted rolling average of the annual fourth highest ozone concentration over years 2001–2003 and
years 2006–2008, along with their relative standard errors. As we can clearly see, the rolling averages present a decreasing trend over time
with most of the Western region of the domain below the threshold of 75 ppb. The standard error for the predictions is generally between 2
and 3.5 ppb, with significantly lower values at the monitoring sites, as expected.

Using the posterior predictive distribution of the rolling averages of the annual fourth highest ozone concentrations over years 2001–
2003, : : :, 2006–2008, we can derive the predicted probability that a site exceeds the NAAQS for ozone. We can evaluate the accuracy and
sharpness of the predicted probabilities at validation sites using the Brier score (Brier, 1950; Gneiting and Raftery, 2007), which is a strictly
proper scoring rule for binary variables defined as

BS D
1

n

1

m

mX
lD1

nX
iD1

.pil � oil /
2 (4)

In (4), pil denotes the predicted exceedance probability for site si relative to the NAAQS during the 3-year period l (l = 2001–2003;
: : :, 2006–2008) while oil indicates the observed event (1 if site si exceeds the NAAQS during the same time period, 0 if it does not). A
lower Brier score is better. Table 3 presents Brier scores for the FHEV smoothed downscaler model with time-varying scale parameter and
� D �0:5, the daily smoothed downscaler and the smoothed downscaler applied directly to the annual fourth highest ozone concentrations.
As observed earlier, the FHEV smoothed downscaler model yields better predictions at hold-out sites also for the probability that a site is
not in attainment of the NAAQS.

In an analogous way, we can generate maps of the predicted exceedance probabilities with regard to the NAAQS for sites in the Eastern
USA. Figure 6 shows probabilistic maps of non-attainment of the NAAQS for ozone for years 2001–2003 and 2006–2008. As already
revealed in Figure 5, most of the major urban centers in our spatial domain are very likely to exceed the NAAQS. However, comparing
Figure 6(a) and Figure 6(b), we can discern a noticeable improvement in the air quality over the Eastern USA.

5. DISCUSSION
Currently, assessment of exceedance of the NAAQS for ozone is only carried out at sites with available monitoring data. Thus, there is a need
to develop statistical models to provide optimal information for delineating areas of the US that exceed the ozone NAAQS. In this paper,
we try to establish a bridge between the regulatory and statistical communities by presenting a data fusion model that allows combination
of monitoring station data with estimates provided by a deterministic air quality model in order to obtain better predictions of annual fourth
highest levels of ozone concentration. The probabilistic maps of exceedance probabilities that our model allows us to derive could be useful
to air quality managers in constructing better emission control programs. We note that although the motivating application is related to
air quality and uses the fourth largest order statistic, the methodology proposed here can be applied to any situation where the interest
is in combining observational data on extreme order statistics with gridded estimates for these order statistics derived using output from
numerical models.

Our FHEV smoothed downscaler model allows us to obtain predictions of the probability that sites exceed the NAAQS for ozone by
directly modeling a variable related to the NAAQS. We have shown that other approaches to derive predictions of the annual fourth highest
ozone concentration based on Gaussian Process modeling assumptions, lead, in one case, to severe underestimation of prediction uncertainty
and, in the other, to predictions with larger biases and wider prediction intervals.

An assumption in our model is the hypothesis of conditional independence among sites, with the spatial dependence between the annual
fourth highest ozone concentrations being captured at the second modeling stage through the spatially varying location parameters of the
marginal FHEV distributions. A possible extension of this work would be to relax this assumption and allow for dependence among the
extreme levels of ozone concentration at various sites by using a copula approach as Sang and Gelfand (2010). Alternatively, one could
attempt to adapt max-stable models and approximate the multidimensional likelihood function using a pseudolikelihood approach as in
Ribatet et al. (2012).

We note that in our model, the location parameter process of the FHEV distributions has a mean function that depends only on the smoothed
CMAQ output. However, besides the computer model output, other covariates could be useful in predicting extreme ozone concentration at
point level, covariates such as meteorological data (though we would anticipate that the CMAQ model captures these effects), remote sensing
data, or land use information.

Finally, we have shown the ability of our modeling approach to identify regions at high risk of exceeding the NAAQS standard with
associated uncertainty. However, an important follow up would be to connect these risks to adverse health outcomes, for example, elevation
of suitably measured hospital admissions.
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