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Abstract The southward component (Bs) of the interplanetary magnetic field (IMF) is a strong driver of
geomagnetic activity. Well-defined solar wind structures such as magnetic clouds and corotating interaction
regions are the main sources of long-duration, large-amplitude IMF Bs. Here we analyze IMF Bs events
(t > 1 h, Bz < −5 nT) unrelated with any well-defined solar wind structure at 1 AU using ACE spacecraft
observations from 1998 to 2004. We find that about one third of these Bs events show Alfvénic wave
features; therefore, those Alfvén waves in the solar wind are also an important source of long-duration,
large-amplitude IMF southward component. We find that more than half of the Alfvén wave (AW)-related
Bs events occur in slow solar wind (Vsw < 400 km/s). One third of the AW-type Bs events triggered
geomagnetic storms, and half triggered substorms.

1. Introduction

The relationship between the interplanetary magnetic field (IMF) and the Earth’s magnetospheric activities
has been observationally studied extensively since Fairfield and Cahill [1966] found that the southward com-
ponent of the IMF (IMF Bs) is associated with ground magnetic disturbances on Earth while the northward
component corresponds to quiet geomagnetic conditions. The observation of IMF Bs is also evidence for
solar coronal activity and provides a tool to study it [Lindsay et al., 1999; Hochedez et al., 2005]. Thus, IMF Bs

is a key parameter to understand Sun-Earth relationship.

However, based on the classic Parker theory of the IMF alone [Parker, 1958], there is no meridional magnetic
field component. In particular, for an observer in the ecliptic there is no significant, long-lasting component
perpendicular to the ecliptic plane (e.g., IMF Bs) except for transients propagating outward from the Sun
observed in the interplanetary medium as interplanetary coronal mass ejections (ICMEs) [Klein and Burlaga,
1982; Lindsay et al., 1995], interplanetary small-scale magnetic flux ropes (ISMFRs) [Moldwin et al., 2000; Feng
et al., 2010; Zhang et al., 2012], and stream interaction regions (SIRs) [Rosenberg and Coleman, 1980].

In a recent study to understand the sources of IMF Bs, we defined IMF Bs events as continuous IMF Bs inter-
vals with varying thresholds of Bs magnitude and duration and categorized their association with different
solar wind structures, including magnetic clouds (MCs), ISMFRs, ICMEs without MC signature (ejecta), stream
interacting regions (SIRs), and shocks, as well as events unrelated with well-defined solar wind structures
[Zhang and Moldwin, 2014]. We found that for strong Bs events (t > 1 h, Bz < −5 nT, observed by WIND at 1
AU ), ∼28% were not associated with any well-defined solar wind structure shown in published event lists.
The mystery about the source of these geoeffective, long-duration, large-amplitude Bs events that are not
related with any well-defined solar wind structure motivates this study.

Alfvénic fluctuations represent another possible source of long-duration Bs in the solar wind. Borovsky [2008]
presented a flux tube solar wind model in which the large spread in magnetic field orientations at 1 AU is
due to a braiding of magnetic flux tubes about the Parker spiral direction. He suggested that the Alfvén-like
discontinuities at the boundaries of the flux tube are due to reconnection at the foot of the flux tubes. Tian
et al. [2010] also proposed that Alfvénic fluctuations are observed in periods consistent with flux rope signa-
tures and called them Alfvén wave trains. It was also suggested that a torsional wave could be generated by
distortions within a flux rope previously ejected from the Sun [Gosling et al., 2010]. In contrast, turbulence in
the solar wind [Ragot, 2006] or undamped Alfvén waves [e.g., Burlaga et al., 1982] have also been proposed
to be the source of angular variations of the solar wind magnetic field about the Parker spiral direction.
These Alfvén fluctuations are the focus of this study.
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Alfvén waves were first observed by Coleman [1967] based on comparison with an ideal, uniform solar wind
model with a wide period range (102 to 5 × 104 s in the spacecraft frame) in the interplanetary medium.
The cross helicity (Alfvén effect ratio) was first put forward by Matthaeus and Goldstein [1982] as one of the
rugged invariants of 3-D ideal incompressible MHD turbulence theory. Riley et al. [1996] used this quan-
tity to describe the “Alfvénicity,” a measure of the correlation between variations of velocity and magnetic
field. If the cross helicity is close to unity, the fluctuations of the solar wind are purely Alfvénic, and if it is
close to zero, the fluctuations are non-Alfvénic; that is, the interplanetary medium is dominated by the
convection of static structures [e.g., Tu and Marsch, 1992]. The Alfvén ratio was also introduced by Matthaeus
and Goldstein [1982] to present the ratio between the kinetic and magnetic fluctuation energy. Tu and
Marsch [1993] showed that as the heliocentric distance increases, the normalized cross helicity and Alfvén
ratio decrease, from near 1 at 0.3 AU in high-speed solar wind to substantially less than 0.5 at 1 AU.

Alfvén waves are commonly observed in all types of solar wind flow [Belcher and Davis, 1971; Tu and Marsch,
1995, and references therein], and clearly, not all Alfvén waves lead to long-duration Bs events. However,
this study of Bs events shows that some of these southward turnings are consistent with long-period Alfvén
waves. Shorter-period Alfvén waves, small-amplitude waves, or waves which do not include strong fluctua-
tions in the Z component obviously would not be able to generate the long-duration Bs field intervals which
are the focus of this study.

Some previous studies have discussed the relationship between Alfvén waves and geomagnetic activity.
In particular, Alfén waves within high-speed streams have been related to substorm activity [e.g., Lee et al.,
2006]. Also, Tsurutani and Gonzalez [1987] showed that the high-intensity (AE > 1000 nT), long duration
(T > 2 days) continuous auroral activity (HILDCAA) events are induced by interplanetary Alfvén wave trains
propagating outward from the Sun, primarily in observations following geomagnetic storms. Those authors
suggested the HILDCAAs are caused by magnetic reconnection between the southward components of the
Alfvén wave magnetic fields and magnetospheric fields.

In this study, we analyze the magnetic field and plasma data with 64 s resolution from the ACE spacecraft
from 1995 to 2004 to study the detailed features of the IMF Bs events (duration > 1 h, Bz < −5 nT) that were
considered to be unrelated with any well-defined solar wind structures [Zhang and Moldwin, 2014] based on
previous published event lists.

2. Methodology

Zhang and Moldwin [2014] identified strong Bs events (t > 1 h, Bz < −5 nT) and associated them with
well-defined solar wind structures using published event lists [Jian et al., 2006b, 2011; Zhang et al., 2012]. In
this study, we examine the events that were found by Zhang and Moldwin [2014] to be unassociated with
structures in the published lists. We examine the 64 s averaged ACE magnetic field and plasma data at 1 AU
from 1995 to 2004 in order to study the source of these unassociated IMF Bs events (t > 1 h, Bz < −5 nT). We
first use the ACE data to determine if there are solar wind structures (ICME, shocks, and SIR) present which
were not captured by the published lists. For events which still show no association, we then look for Alfvén
wave features.

Our methodology is as follows:

1. Because the previous study was performed using WIND data and the present analysis was performed
using ACE, we compared the magnetic field data in GSE coordinates from WIND and ACE satellites to con-
firm that Bs events were seen with similar features by both satellites and to determine the boundary of the
Bs event observed by ACE.

2. Examine the ion moments and superthermal electron (STEA) pitch angle data from ACE for features
related to ICMEs, shocks, or SIRs during the intervals from (1) but not recognized in previous published
lists; if the measured proton temperature is significantly lower than the expected temperature based on
the solar wind speed during intervals not near the heliospheric current sheet [e.g., Gosling et al., 1973;
Richardson and Cane, 1995], or the STEA pitch angle in the energy channel of 272 eV shows a bidirectional
distribution not associated with Earth’s bow shock or a SIR [e.g., Zwickl et al., 1983; Gosling et al., 1987],
this interval is categorized as an ICME; if there is a sharp increase of proton density, speed, temperature,
and IMF magnitude, this event is considered shock associated; if there is a gradual increase of solar wind
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Figure 1. An example of an Alfvén wave-related Bs event observed by the ACE satellite at 1 AU. (a) Total interplanetary magnetic field (IMF) magnitude; (b) IMF
x, y, and z components in GSE coordinates; (c) solar wind speed and negative x component of solar wind velocity in GSE coordinates; (d) y and z components of
solar wind velocity in GSE coordinates; (e) solar wind proton density; and (f ) suprathermal electron pitch angle distribution at 272 eV.

speed from the background average value (∼ 400 km/s) to over 500 km/s, and decrease of proton density,

the event is labeled as a SIR.

3. For the Bs events showing no features of ICME, shock, or SIR from (2), perform linear regression between

the magnetic field and velocity field for the x, y, and z components in GSE coordinates; if the slopes of

all three components have the same order (the difference between the largest and smallest value of

slope is no more than 100%), this event is considered Alfvénic wave related; if one or two components

change only slightly in both magnetic and velocity fields, while the other two or one components show

a good linear relationship, this event is also categorized as Alfvén wave related. For further confirmation,

we calculate the cross helicity and require it is > 0.5. If the fluctuation of the corresponding magnetic

field and the velocity vectors have positive/negative correlation when the longitudinal angle of the IMF is

negative/positive, the Alfvén wave is propagating outward; otherwise, it is inward.

4. Examine the geomagnetic activity indices (SYM-H, AE/AU/AL, and PC) starting from the same universal

time of the Alfvén wave-related Bs event from (3) and ending 75 min later than the Bs event and compare

with the results of our previous study [Zhang and Moldwin, 2014]. Based on the distribution of the aver-

aged solar wind speed of the Bs events associated with Alfvén waves, we estimated the arrival time of slow

solar wind from the Sun to the Earth and found that 75 min is enough to include the time shift and the

magnetospheric response.
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Figure 2. The linear regression of (top to bottom) x, y,
and z components between magnetic field and veloc-
ity for the event shown in Figure 1. The scattered dots
are observations from ACE, and the solid line shows
the linear regression result. The equation and correla-
tion coefficient of the linear regression are shown in
each panel.

3. Results

Figure 1 gives an example of an Alfvén
wave-related Bs event observed by the ACE satel-
lite at 1 AU on 19 November 2002. The time period
shown in the plot is 19:00–24:00 UT 19 November
2002, while the Bs event is from 20:30 to 22:50 UT
marked by the dashed lines. During this Bs event,
the magnitude of the total magnetic field and
Bx did not change significantly but averaged
about 11 and 3 nT, respectively. IMF By showed an
increase from −5 nT to 5 nT during the first half
of the Bs interval and then decreased to ∼ −10 nT
until the end of this interval. Between the dashed
lines in Figure 1c, the solar wind speed fluctuates
around 390 km/s, while the component in the
Sun-Earth direction varied simultaneously with
the magnitude. It is seen from Figure 1d that there
were sign changes of the z component of solar
wind velocity in the same direction as the corre-
sponding magnetic field component, which is also
seen in the y component of both the magnetic
field and solar wind velocity. We also examined
the solar wind conditions over the solar rotation
that covers this Bs event, showing that the solar
wind speed remained around 400 km/s for 3 days
before this event and a SIR occurred 2 days later.
The pitch angle distribution of suprathermal elec-
trons is peaked at 180◦, that is antiparallel to the
magnetic field over the whole interval, indicating
an inward IMF sector.

Figure 2 shows the linear regression of the x, y,
and z components (from top to bottom) between
magnetic field and velocity for the event shown
in Figure 1. The scattered dots are magnetome-
ter and velocity observations from ACE, and the
straight line shows the linear regression result. The
equation and correlation coefficient of the linear
regression are shown in each panel. The correla-
tion coefficients for x, y, and z components are
0.83, 0.90, and 0.95, while the slopes are 0.16, 0.17,
and 0.22, respectively. Combined with the fact that
the longitude angle of the IMF during this interval

almost stayed at −45◦, the observations are consistent with Alfvén waves propagating antiparallel to the
magnetic field, or antisunward within an inward polarity IMF sector. We also calculated the cross helicity as
0.78 for this Bs event (which is not shown in the plot).

Table 1. The Number of Bs Events (t > 1 h, Bz < −5 nT) During the Period of April 1998 to December 2004 in
Each Category of Solar Wind Structures From Our Previous Study [Zhang and Moldwin, 2014] and the Current
Study

MC Ejecta SMFR SIR Shock AW Unidentified

Previous study [Zhang and Moldwin, 2014] 64 209 5 149 13 – 172
Current study 64 237 5 151 15 57 83
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Figure 3. Histograms of mean values of the (a) IMF magnitude, (b) solar wind speed, (c) proton density, (d) Alfvénic
speed, (e) cross helicity, and (f ) correlation coefficient for the Alfvén wave-related Bs events.

We performed the above analysis on all of the unidentified events from the previous study. Table 1 shows
the number of Bs events (t > 1 h, Bz < −5 nT) during the period of April 1998 to December 2004 in each
category of solar wind structures from our previous study [Zhang and Moldwin, 2014] and the current study
(event list included as supporting information). It shows that there are 28 Bs events identified as ejecta, two
as SIRs, and two as shocks in this study that were not previously identified in published event lists. This study
again finds that most Bs events are associated with ejecta, while about 10% of Bs events are associated with
Alfvén waves where there are no other concurrent and predominant solar wind features. However, ∼14% of
Bs events are still not associated with any of these solar wind structures.
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Figure 4. Histogram of minimum (top to bottom) SYM-H (nT), max-
imum AE (nT), and maximum PC for all the Alfvén wave-related Bs
events (1998 April to 2004). The threshold of the duration and Bs
magnitude of the Bs events are 1 h and 5 nT. The intervals of ground
measurements start at the same universal time but end 75 min later
than the Bs events observed by ACE.

Figure 3 shows the histograms of the prop-
erties of the 57 Alfvén wave-related Bs

events. Figure 3a shows that for 62% of
these Bs events, the average IMF magni-
tude is less than 8 nT but that five events
have amplitudes greater than 12 nT. It is
indicated from Figure 3b that only 22% of
them propagated in solar wind with speed
of more than 500 km/s, while over half of
them occurred in solar wind with speed less
than 400 km/s. The velocity distribution is
peaked between 375 and 400 km/s. There
are data gaps in proton density for nine
events, so the total numbers of the counts
in Figures 3c–3e are 48. The histogram in
Figure 3c shows that three quarters of these
events have mean proton density smaller
than 8 cm−3, with a most probable density
of 6 cm−3. Based on the measurements of
magnetic field and proton density, we cal-
culated the Alfvén speed (VA) during the
intervals shown in Figure 3d and found that
75% have VA less than 80 km/s and peaked
at VA = 70–80 km/s. Using the definition
of cross helicity [Matthaeus and Goldstein,
1982], we show in Figure 3e that the abso-
lute value of the cross helicity is less than
0.6 for only one sixth of events and that the
most frequent occurrence is at 0.8. We plot
the correlation coefficients (CC) of the lin-
ear regression between the magnetic and
velocity fields for all three components of all
the 57 Bs events in Figure 3f. It is shown that
about 74% of these intervals have CC higher
than 0.7 between the two fields, which is
an important criterion for identifying Alfvén
waves in the solar wind.

Figure 4 shows the minimum SYM-H (nT),
maximum AE (nT), and maximum polar cap
index (PC) (from top to bottom) for all the

Alfvén wave-related Bs events (1998 April to 2004). The intervals of ground measurements start at the same
universal time as the Alfvénic events but end 75 mins later than the Bs events observed by ACE. The first
panel shows that about one third of these events are followed by an interval of SYM-H less than −50 nT,
indicating a geomagnetic storm. Around half of the events induce substorms, indicated by maximum AE
greater than 1000 nT. The third panel of Figure 4 shows that more than half of these Bs events are related
with PC index intervals larger than 4. PC index was proposed by Troshichev et al. [2011] to characterize the
variability of the polar cap magnetic field. Troshichev et al. [1986, and references therein] suggested that
PC∼2 is the threshold of a geomagnetic storm.

4. Discussions

Marsch and Tu [1990] analyzed the magnetic field and plasma data from the Helios spacecraft between
0.3 and 1 AU near the quiet phase of solar cycle 21 and found that in the solar wind fluctuations with fre-
quency below 3 × 10−4 Hz are found in low-speed flows bordering the heliospheric current sheet and that
the fluctuation spectrum at low frequencies drops much faster in fast streams than in slow streams. In this
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study, we find that the distribution of the Alfvén wave (AW)-related Bs events duration is peaked at 2 h
(7.2 × 103 s or 1.4 × 10−4 Hz in frequency), which is in the low-frequency range of Alfvén waves. As shown in
Figure 3b, nearly 80% of these Bs events are embedded in solar wind slower than 500 km/s. We assume that
the low-frequency Alfvén waves carrying long-duration, large-amplitude Bs intervals in this study originate
as perturbations in the magnetic field on the Sun and propagate outward. If Alfvén waves in the solar wind
have different source regions in the solar corona, which in turn affect their efficiency in accelerating the solar
wind, the differences will be manifested in different spectra and plasma properties in the solar wind at far-
ther heliocentric distance. For a future study, we will extend the observations to other spacecraft, such as
STEREO and SOHO, and also combine with solar activity models to examine the source and evolution of the
perturbations on the Sun.

In this study, we examine the Bs events not related with any well-defined solar wind structure in the pre-
vious Zhang and Moldwin [2014] study using the ACE magnetic field and plasma data from 1998 to 2004.
There are often several features used to define a single solar wind phenomenon, but not all of the sig-
natures always occur for every event, which makes it difficult to define a solar wind structure based on a
fixed set of observational signatures. ICMEs in particular are very complex, with signatures such as bidi-
rectional electrons, low proton temperatures, circularly polarized IMF, and enhanced alpha particle fluxes
[e.g., Moldwin et al., 1995; Cane and Richardson, 2003; Jian et al., 2006b] often observed for only part of an
event. This study identified some additional ICMEs from the IMF Bs events not previously associated with
any well-defined solar wind structures [Zhang and Moldwin, 2014], based on the simultaneous occurrence
of bidirectional suprathermal electrons and low proton temperature from ACE observations at 1 AU. Sim-
ilar for SIRs, we identified additional SIRs based on the features of increasing solar wind flow speed and
decreasing proton density. Previous studies [Lindsay et al., 1995; Jian et al., 2006a] have used other criteria
to define a SIR, such as an increase of perpendicular solar wind dynamic pressure or increased tempera-
ture. We identified Alfvén waves as a source of long-duration, large-amplitude Bs intervals. Alfvén waves
may be present in well-defined structures as well. We did not investigate that here. However, we did find
that at times, Alfvén waves are the only apparent reason for southward turning of the field. There are still
Bs events not related to either solar wind structures or Alfvénic features that need more detailed study in
the future.

We analyzed the storm activity index SYM-H and found that about one third of the AW-type Bs events trig-
gered storms (SYM-H < −50 nT). However, compared to Bs events in other categories, the AW-type Bs events
are a weaker source for triggering geomagnetic storms. During the Bs events (t > 1 h, Bz < −5 nT) catego-
rized by Zhang and Moldwin [2014] and this study from April 1998 to end of 2004, 123 storms occurred,
40% due to ICMEs, 44% due to SIRs, 5% by shocks, 1% by SMFR, and 10% due to AWs. The differences of
the contribution to triggering magnetic storms among different solar wind structure-related Bs events are
their occurrence frequency and average solar wind speed [Zhang and Moldwin, 2014]. While AW-type Bs

events are geoeffective, it is hard to forecast the occurrence of these Bs intervals based on coronagraph
observations several days in advance. Thus, we need to study the mechanisms of the magnetic activity
on the Sun and how magnetic structures evolve in transit to the Earth using multispacecraft observations
and models.

5. Conclusions

In this study, Alfvén wave (AW)-related Bs events are defined primarily based on the linear correlation
between the magnetic field and velocity components and verified by the cross helicity. We also present
the geomagnetic field response to IMF Bs events related with Alfvén waves to analyze their geoeffective-
ness. We find that some long-duration, large-amplitude Bs intervals are identified as Alfvén waves in slow
solar wind. Perturbations on the Sun propagating outward may be the source of these low-frequency
Alfvén waves. We find that these AW-type Bs events are geoeffective but produce weaker geomagnetic
response than ICME- and SIR-related Bs events. However, it is very difficult to predict the occurrence of
Alfvén waves and their geoeffectiveness from coronagraph images or other solar images. Although this
study demonstrates an additional source of long-duration, large-amplitude IMF southward component,
there are still long-duration, large-amplitude Bs events with complex signatures in the magnetic field and
plasma parameters not associated with solar wind structures needing further study to attempt to determine
their source.
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