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ABSTRACT: Genome-wide association studies (GWAS) that draw samples from multiple studies with a mixture of relationship
structures are becoming more common. Analytical methods exist for using mixed-sample data, but few methods have been
proposed for the analysis of genotype-by-environment (G×E) interactions. Using GWAS data from a study of sarcoidosis
susceptibility genes in related and unrelated African Americans, we explored the current analytic options for genotype
association testing in studies using both unrelated and family-based designs. We propose a novel method—generalized least
squares (GLX)—to estimate both SNP and G×E interaction effects for categorical environmental covariates and compared
this method to generalized estimating equations (GEE), logistic regression, the Cochran–Armitage trend test, and the WQLS
and MQLS methods. We used simulation to demonstrate that the GLX method reduces type I error under a variety of pedigree
structures. We also demonstrate its superior power to detect SNP effects while offering computational advantages and
comparable power to detect G×E interactions versus GEE. Using this method, we found two novel SNPs that demonstrate
a significant genome-wide interaction with insecticide exposure—rs10499003 and rs7745248, located in the intronic and 3’
UTR regions of the FUT9 gene on chromosome 6q16.1.
Genet Epidemiol 38:430–438, 2014. © 2014 Wiley Periodicals, Inc.
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Introduction

Most genome-wide association studies (GWAS) of chronic
diseases have used case-control samples of unrelated
individuals—however, family-based designs can also be use-
ful to test for both linkage and association. “Mixed” sam-
ples result from combining data from both case-control and
family-based sampling methods, or where family sampling is
incomplete. Such samples present analytic challenges due
to correlation between individuals. There are three com-
monly used approaches that model the association between
genotypes and disease status for mixed samples: the Effi-
cient Mixed-Model Association eXpedited (EMMAX) [Kang
et al., 2010] method; WQLS [Bourgain et al., 2003] and MQLS

[Thornton et al., 2007]; and generalized estimating equations
(GEE), recommended by Gray-McGuire et al. [2009] as well
as Chen and Yang [2010] in their GWAF R package.

The EMMAX approach models phenotypes using a linear-
mixed model with fixed and random effects; fixed effects in-
clude the candidate single nucleotide polymorphism (SNP)
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and covariates such as gender and age, while random effects
are based on a phenotypic covariance matrix. Linear-mixed
models assume the phenotype is a continuous variable. Al-
though Kang et al. [2010] suggest that the same model can
be used for dichotomized variables, the resulting estimates
of the linear coefficients may not provide meaningful in-
terpretation, as the estimated proportion difference is used
less commonly than odds ratios or relative risks for the ef-
fect size estimation. The same problem exists for WQLS and
MQLS, in which the test statistics are constructed by quadratic
forms with the genotype data treated as a linear outcome. In
these methods, different choices of symmetric weight matri-
ces in the quadratic form are used to accommodate different
population and pedigree structures; in particular, the WQLS

statistic [Bourgain et al., 2003]—which uses the Kinship ma-
trix calculated from pedigree data—was proposed for related
individuals without additional population structure. Neither
EMMAX or WQLS/MQLS can be easily extended to genotype-
by-environment (G×E) analyses; specifically, the multiplica-
tive interaction term cannot be directly estimated because
both methods treat the categorical data (case-control sta-
tus or genotype data) as a continuous outcome. Conversely,
the GEE model in the GWAF package uses an independent
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working correlation structure, with each family being a clus-
ter in the robust variance estimate to test association between
the phenotype of interest and each SNP. This method offers
flexibility by modeling binary outcome with different link
functions (e.g., identity or logit link) and the G×E effect can
be tested by including an interaction term. However, the use
of the independent working correlation and the computation
burden for GWAS data makes the GEE approach less efficient.

We propose an extension of the GSK method originally
developed by Grizzle et al. [1969], which has been used for
categorical data analysis in traditional observational studies.
It assumes that the hypotheses of interest can be expressed
in terms of an underlying (S × R) contingency table, with S
representing the cross-classification of a limited number of
discrete covariates (e.g., case/control status), and R identify-
ing the number of multinomial response profiles (e.g., geno-
types). This approach retains flexibility to model marginal
proportions, marginal logits, mean scores, and cumulative
logits with increased power and computation efficiency ver-
sus competing methods.

For the analysis of GWAS data in mixed samples, our
approach—the extended generalized least squares (GLX)—
extends the GSK approach by incorporating kinship into the
covariance matrix, as well as proposed different response
functions to estimate additive, dominant, and recessive ef-
fects and G×E interaction effects. We outline the proposed
approach and detail methods for genotype and G×E test-
ing. We also present simulation results comparing the GLX
method with the Cochran–Armitage trend test, ordinary lo-
gistic regression, EMMAX, WQLS, MQLS, and GEE (as imple-
mented in GWAF). Finally, the proposed method is applied
to GWAS data from a study of sarcoidosis susceptibility genes
in African Americans.

Methods

Extended Generalized Least-Squares (GLX)

We start with the notation of GLX under the setting for
individual SNP analysis. Let N subjects be categorized into
three possible genotype categories (R = 3) for a SNP (i.e., AA,
Aa, aa). Individuals with similar covariate values are grouped
into stratum s, s = 1, . . . , S. Let nsr, r = 1, 2, 3 represents
number of subjects within stratum s and genotype r, and ns

stands for total count of subjects within strata s.
Following the definitions of Grizzle et al. [1969], let the

expected cell probabilities be πsr and the observed cell prob-
abilities be psr = nsr/ns., r = 1, 2, 3. Define P t

s = [p s1 p s2 p s3]
as a vector of observed probabilities within stratum s, and
P t = [ P ′

1 . . . P ′
s ] as the long vector across strata; similarly,

define πt
s = [πs1 πs2 πs3] as a vector of expected probabili-

ties in stratum s, and πt = [ π′
1 . . . π′

s ] as the vector across
strata. Without loss of generality, assume that a response
function (e.g., F (π)) of the marginal probabilities is lin-
early related to the covariates X and parameter β (i.e.,
F (π)u×1 = X u×vβv×1), where X is a design matrix of rank
v(≤u) and u is associated with the choice of response func-
tion as illustrated in the following sections. The covariance
matrix of response function F can be estimated using the
delta method: V̂(F ) = Ĥ[V̂(P )]Ĥ ′, where Ĥ is dF t/dP , and
V̂(P ) is the estimated covariance matrix of observed proba-
bilities. The estimation of V̂(P ) is discussed in detail in the
following section. Therefore β is consistently estimated by
β̂ = (X ′[V̂(F )]–1X )–1X ′[V̂(F )]–1F̂ , using the inverse of V̂(F )
as the weight matrix and F̂ as the response vector. The co-
variance matrix of β̂ is V(β̂) = (X ′[V̂(F )]–1X )–1.

F (π) includes a wide range of possible functions; the most
commonly used can often be expressed in two families: (i)
linear functions F (π) = A × π; and (ii) log-linear functions
F (π) = K × log(A × π), where A and K are matrices of ar-
bitrary constants that formulate a specific response function.
For details, refer to Grizzle et al. [1969]. Examples for GWAS
are illustrated in the following sections.

Estimating the Covariance- V̂ ( P )

In the above model, in order to estimate the weight matrix
V̂(F ), we must estimate V̂(P ). In the case of SNP data, P t

can be expressed as C × Y where C is a block diagonal ma-
trix having Cs = 1/ns. × 1ns. ⊗ I3 on the diagonal, In is the
identity matrix of size n, 1n denotes a vector of size n with
all entries one and ⊗ is the Kronecker product. Y = 1ns. ⊗ Yi ,
in which Yi = [ Yi1 Yi2 Yi3 ] is the 3 × 1 vector of indicator
variables for genotypes for each subject i. Yig = 1 if Yi = g ,
and Yig = 0 otherwise, g = 1, 2, 3. Note that the covariance
of Y between a pair of individuals is� = cov(Yi, Yj )

=

⎡
⎢⎣

f 4k0ij + f 3k1ij + f 2k2ij – f 4 2f 3qk0ij + f 2qk1ij – 2f 3q f 2q2k0ij – f 2q2

. 4f 2q2π0ij + fqk1ij + 2fqk2ij – 4f 2q2 2fq3k0ij + fq2k1ij – 2f q3

. . q4k0ij + q3k1ij + q2k2ij – q4

⎤
⎥⎦ , (1)

where f is the minor allele frequency, q = 1 – f and kmij is
the probability that two individuals i and j share m alleles
identity by descent (IBD) under a given relationship, m =

0, 1, 2. Thus, V̂(P ) can be estimated by C�̂C′. The “theo-
retical relationship IBD” statistics kmij can be inferred using
known pedigree structures. When errors of pedigrees exist,
the degree of relationship can still be robustly estimated us-
ing the genome-wide genotype data, which is known as the
“empirical relationship IBD.”

In this paper, we adopted the Kinship-based inference for
genome-wide association studies (KING) method proposed
by Manichaikul et al. [2010] to estimate kinship coefficient
and IBD statistics in the real data analysis. The allele frequency
f can be estimated by: (1) the sample frequency Ȳ/2; or
(2) the best linear unbiased estimator (BLUE), given by ˆf =

(1t
n�

–11n)–11t
n�

–1(Ȳ/2), where � is the kinship matrix and
as suggested by McPeek et al. [2004]. However, we have not
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found significant differences between the two estimates in the
simulations.

Association Testing Between SNP and a Binary Outcome

To test for association between a single SNP and a bi-
nary outcome (e.g., case-control), we developed a general
framework of the GLX method with several options for
response function F (π) that provides estimates based on
proportions. One is the linear response function F (πs ) =

0 × πs1 + 1 × πs2 + 2 × πs3, s = 1 (case) or 2 (control). We
can use the following design matrix such that F (π) = Xβ:

X = [ 1 –1
1 1 ], β = [β1, β2]t. V̂(F ) is estimated from C�̂Ct and

�̂ is estimated from equation (1). This parameterized model
allows for the estimation of genotypic means while account-
ing for the dependence between subjects. After estimation,
the value of β̂1 typically represents average effect of risk al-
lele of two groups, and β̂2 represents the differentially effect
of risk allele between two groups. The association test can
be constructed by the Wald test for β̂2. The Wald statistic is

computed as a ratio of β̂2 over its standard error
√

V(β̂). We
can assess the level of statistical significance using the nor-
mal approximation of the Wald statistic. Note that under this
model, V̂(F ) is reduced to J�J t, where J is a block diago-
nal matrix having 1/ns. × 1ns on the diagonal and � is the
kinship matrix.

Another option is the log-linear response function. Specif-
ically, one can choose the adjacent logit link function for
log-additive model, F (πs )t = [ log πs2

πs1
log πs3

πs2
], s = 1 or 2, if

the effect was expected to be additive on the log odds scale. In
matrix form, F (π) is constructed as F (π) = K × log(A × π)
with K = [ –1 1 0

0 –1 1 ] ⊗ I2 and A is an identity matrix with di-
mension of 6. We note that dominant or recessive effects can
similarly be tested for by modifying K appropriately. Recall
that F (π) = Xβ, β = [β1, β2, β3]t. In this situation, the design
matrix X is chosen as: ⎡

⎢⎢⎣
1 0 0
0 1 0
1 0 1
0 1 1

⎤
⎥⎥⎦ .

β1 and β2 are the intercepts for each response function across
groups. The effect of each copy of the second allele is β̂3 on
the log odds scale, corresponding to an odds ratio of exp(β̂3).

Similarly a Wald statistic z = β̂3/
√

var(β̂3) can be constructed
for testing the null hypothesis of β3 = 0 as described above.

More generally, a test of the hypothesis H0 : Lβ = 0 is pro-
duced by conventional methods of weighted multiple regres-
sion, where L is a matrix of full rank d. Given the model,
the test is produced by β̂tL t[L (X t[V̂(F )]–1X )–1L t]–1Lβ̂ that
is asymptotically a χ2 distribution with d degrees of freedom
under H0[Grizzle et al., 1969].

The choice between linear and log-linear response func-
tions depends on data assumptions underlying the statistical
analysis. Linear response functions using simple proportions
assume that the theoretical distance between proportions
is equal. Log-linear response functions, on the other hand,

stretch out the distance between proportions. Therefore, the
results obtained based on log-linear functions interpret dif-
ferently from the results obtained from the linear model.

Interaction Between SNP and Environmental Factor on a
Binary Outcome

The proposed approach can be extended to test the in-
teraction for categorical outcome and environmental factors
(G×E). Consider, an environmental risk factor (E), a “high-
risk genotype” (G), and a disease of interest (D). In gen-
eral, statistical gene–environmental interaction is defined as
departure from additive or greater-than-multiplicative joint
effects of gene/environmental effects. Statistical interactions
are scale dependent; choice of measurement scale will affect
the assessment of G×E interaction. Ottman [1996] presents
a variety of definitions for gene–environment interactions
using relative risks and odds ratios under additive and mul-
tiplicative scales; for illustrative purposes, we focus on the
interaction based on odds ratios.

In order to apply the GLX test for the G×E multiplica-
tive effect, we first conduct the SNP association test within
each environmental factor stratum. Let β̂t and var(β̂t) rep-
resent the coefficient estimates and corresponding variance
for the association test between G and D within stratum t.
The adjacent logit link function, as described above, is used
here. The G×E effect then can be tested using Cochran’s Q
test [Cochran, 1954]. The test statistic consists of a weighted
sum of squared deviations around the mean of the effect.
Specifically for our G×E interaction testing, Q is defined
as

∑
wt(β̂t – β̄)2, where β̄ =

∑
wtβ̂t/

∑
wt is the weighted

mean of the log odds ratio. Here we choose the weight
wt = 1/var(β̂t), that is, the inverse of the estimated vari-
ance of log odds ratio in each strata. Under the null hy-
pothesis of no interaction, Q follows a χ2distribution with
T – 1 degrees of freedom, where T is the number of strata
in E.

Simulation Studies

We examined the type I error and power of the proposed
estimators in a variety of simulated pedigrees based on three
real datasets: the Ancestry Mapping of African genes of Sar-
coidosis Susceptibility study (AMASS) [Rybicki et al., 2011];
the multi-ethnic study of atherosclerosis (MESA) [Bild et al.,
2002]; and the Framingham Heart Study [Govindaraju et al.,
2008].

AMASS study data were compiled from three previously
conducted studies: (1) a multisite case-control study; (2) a
multisite affected sib-pair study; and (3) a single institution
family-based study. Of 2,494 genotyped specimens, 1,877 had
both genotype and environmental data. A total of 1,283 spec-
imens were collected from 475 pedigrees with 277 sibships
ranging in size from 2 to 6. The remaining 594 specimens
were from the case-control study.

MESA was a study of characteristics of subclinical car-
diovascular disease. One of its ancillary studies—the MESA
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Table 1. Simulation configurations for each data type

Type Total N N families N unrelated

AMASS 1,877 475 594
MESA 3,735 702 0
Framingham 6,870 765 435

Family Study—applied genetic analysis and genotyping
methodologies to delineate the genetic determinants of early
atherosclerosis. MESA pedigrees were more complex than
those in AMASS. Among 3,735 specimens, there were ap-
proximately 702 families with family size varying from 3 to
16; however, a majority of the MESA families consisted of
only parents and offspring.

The Framingham Heart Study included 6,870 individuals
in families of up to three generations, including over 900
pedigrees and 230 singletons. The pedigree sizes varied from
2 to 296, more complex than the AMASS and MESA studies.
Summary information for each study sample is provided in
Table 1 and ordered by complexity of pedigree structures. We
randomly selected 500 mixed families and singletons from
the MESA and Framingham studies for the simulation.

Using Merlin [Abecasis et al., 2002] and pedigree struc-
tures from the real examples, we simulated 10,000 datasets of
genotype “G” data through gene dropping, with a minor allele
frequency of 0.2. The binary environmental factor “E” was
generated assuming that individuals within the same family
have the same environmental exposure—that is, it is more
correlated than exposure for individuals in different families.
The quantitative traits of all individuals in the pedigrees were
generated according to the linear-mixed model described be-
low. The phenotype of individual j in family i was generated
by:

Yij = β0 + β1G + β2E + β3G × E + ri + eij ,

where β0 is the population mean, β1 is the additive effect for a
SNP, β2 is the environmental main effect and β3 is the interac-
tion effect between G and E. To allow for correlation between
phenotypes within each family, we assumed a random fam-
ily effect ri that follows a multivariate normal distribution
N(0, σ2

f 2�i), where the elements of 2�i denote the kinship
coefficient between individuals in family i. The residual eij is
normally distributed with mean 0 and variance σ2

e . We con-
sidered σ2

f = 3 and σ2
e = 1, which corresponds to a heritability

value of 0.75. Dichotomous traits were then generated from
the Bernoulli distribution with probability pij , where pij is
calculated from the inverse logit function, logit–1(Yij ).

We set β0 to –3, representing a baseline disease risk of
approximately 5%, independently of G and E. Type I error
was estimated for testing H0 : β1 = 0 and H0 : β3 = 0, cor-
responding to no genetic effect and no G×E interaction,
respectively. For power analysis, we considered three types of
values for β1, β2, and β3. First, we set them to 0.405, 0, and
0, respectively, yielding an OR of approximately 1.5 for the
gene main effect. Second, we set β1, β2, and β3 to be 0.405,
0.405, and 0.69, respectively, yielding ORs of approximately

1.5 for the main effect of gene G, approximately 1.5 for the
main effect of the environmental factor, and approximately
2 for the G×E interaction effect. This model represents the
synergistic effect between G and E. Third, we set β1, β2, and
β3 to be 0, 0, and 0.69, respectively, yielding G×E interaction
effect without marginal effects.

GLX was compared to the Cochran Armitage trend test,
GEE with identity link, EMMAX, WQLS, and MQLS (for the
linear mean score model), ordinary logistic regression, and
GEE (for the log-additive effect model). The kinship coef-
ficient and IBD estimates were calculated from the known
pedigree structures. In the simulation, the allele frequency p
was estimated by the sample frequency Ȳ/2, as we did not
see a significant difference in the results using the sample
frequency or BLUE for allele frequency estimation.

An Example From a Study of Sarcoidosis

To examine the performance of our proposed method in a
real dataset, we applied GLX to the AMASS GWAS samples,
consisting of 1073 African-American sarcoidosis cases and
804 controls drawn from unrelated case-control and family
samples. Genotyping was performed on the Illumina Human
Omi1-Quad at the Oklahoma Medical Research Foundation
(Oklahoma City, OK) for 1.1 M SNPs across the genome. The
details of genotyping and quality control process have been
described in Adrianto et al. [2012].

After quality control processes, the final set comprised
887,296 autosomal SNPs. The SNP-based pairwise kinship
coefficients and identity-by-descent coefficients were esti-
mated using KING [Manichaikul et al., 2010]. Before ap-
plying the kinship estimates to the GLX method, a pair of
individuals with kinship coefficient (φ) less than 1/29/2 was
considered to be unrelated; the corresponding probability of
zero IBD-sharing (k0) was set at 1, and probability of one
IBD-sharing (k1) was set at 0. To test if the individual SNPs
had significant effect on the risk of sarcoidosis, we applied the
GLX method with both linear response function and adjacent
logit response function.

Rossman et al. [2008] found that carrying HLA-
DRB1∗1101 and exposure to workplace insecticides was as-
sociated with increased risk of developing sarcoidosis (P <

0.10), suggesting a potential G×E interaction. To illustrate
the proposed G×E test from the GLX method, we focus here
on evaluating the G×E interaction effects of SNP and insec-
ticide exposure on sarcoidosis risk.

Simulation Results

Figure 1A and B present the estimated type I error rates and
power for a variety of SNP association tests. The GLX method
with either linear response or log-additive response functions
controls for Type I error rates when the nominal rate of sta-
tistical significance is P = 0.01. Ordinary logistic regression
performs similarly to the trend test, and both are anticonser-
vative under certain scenarios. This inflation of type I error
is expected from a method that ignores relatedness within
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Figure 1. Comparison of different methods for testing SNP association with risk of disease when minor allele frequency is 0.2. Nominal type I
error rate was set at 0.01. Point estimates and 95% confidence intervals of type I error and power were presented.

the mixed sample, consistent with the simulation results for
the trend test reported by Manichaikul et al. [2012] and Feng
et al. [2011]. When the related portion of the total samples is
small (as with AMASS), the type I error of a simple logistic
regression or trend test may not be greatly affected. But Type
I error is more severely inflated when the sample consists
of more complex pedigrees—for instance, using the MESA
study sample, the type I error rates under logistic regression
or the trend test are double those of the nominal level. Due to
above observations, power is not reported for ordinary logis-
tic regression and the trend test in Figure 1B. GEE models that
use robust variance estimation with an independent working
covariance control type I error for all three scenarios. The
same conclusion is made for the WQLS and MQLS tests.

However, GLX outperforms them in terms of power. The
power of GLX with an adjacent logit response function is 68%
± 1% (MESA) and 91% ± 0.3% (Framingham) for each study
sample configuration. The power of MQLS with logit link is
63% ± 1% (MESA) and 88% ± 0.3% (Framingham) sam-
ple configurations. We observe larger differences in power
between GLX, GEE, and WQLS when using the linear func-

tion: GLX has 65% ± 1% power compared to 62% ± 1%
(GEE with identity link), 44% ± 1% (WQLS), and 63% ±
1% (MQLS) in the MESA study; similar trends are seen using
the AMASS and Framingham study sample configurations.
Although GLX methods did not systematically show greater
power than EMMAX, both methods are comparable in most
of the scenarios.

Figure 2A, B, and C present the results of estimated type
I error rates and power for SNP-by-environment (SNP×E)
interaction tests for different methods. As we observe for the
SNP association testing, type I error is reasonably controlled
by both GEE and GLX for all sample configurations (Fig. 2A).
Logistic regression again demonstrates inflated type I error.
Type I errors rates are around 2% for both MESA and Fram-
ingham pedigrees when the nominal significance was set at
1%. For these two sample configurations, GEE and GLX
achieve nearly equivalent power (Fig. 2B). Both methods
have power of 47% ± 1% (MESA) and 71% ± 0.6% (Fram-
ingham) in these study sample configurations. The perfor-
mance of these three tests under the interaction-only model
leads to the same conclusions (Fig. 2C).
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Figure 2. Comparison of different methods for testing SNP-by-environment multiplicative interaction with risk of disease when minor allele
frequency is 0.2. Nominal type I error rate was set at 0.01. Point estimates and 95% confidence intervals of type I error and power were presented.
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Table 2. AMASS data results: SNPs associated with risk of Sarcoidosis with P-values passed genome-wide significance level

CHR SNP GLXlinear (GI = 1.10) GLXlog (GI = 1.05) OR 95% CI EMMAX (GI = 1.01) MQLS (GI = 1.15)

6 rs6931646 2.1 × 10–7 2.1 × 10–7 0.70 (0.61, 0.80) 1.1 × 10–7 1.1 × 10–6

6 rs2239804 1.7 × 10–7 1.8 × 10–7 0.69 (0.61, 0.79) 9.1 × 10–8 9.7 × 10–7

6 rs2239803 1.1 × 10–7 1.2 × 10–7 0.69 (0.60, 0.79) 5.4 × 10–8 6.0 × 10–7

6 rs6911419 1.3 × 10–7 1.4 × 10–7 0.69 (0.61, 0.79) 6.7 × 10–8 6.7 × 10–7

6 rs9268658 1.6 × 10–7 1.7 × 10–7 0.69 (0.61, 0.79) 8.2 × 10–8 4.5 × 10–7

GLXlinear, P-value for GLX method with linear response function; GLXlog, P-value for GLX method with log-additive response function; OR, odds ratio; 95% CI, 95%
confidence interval for OR; GI, genomic inflation factor.

Table 3. AMASS data results: SNP by insecticide exposure interaction with P-values < 1E−5

Insecticide exposure No insecticide exposure
SNP CHR Position Alleles MAF Gene OR (95% CI) OR (95% CI) P-value (GI = 0.94)

rs6720972 2 98039926 G/A 0.07 0.46 (0.43, 0.50) 1.60 (1.48, 1.73) 5.35 × 10–6

rs13417566 2 111309077 A/C 0.35 ACOXL 0.76 (0.75, 0.78) 1.45 (1.42, 1.47) 7.85 × 10–6

rs10499003∗ 6 96611940 C/A 0.07 FUT9 2.06 (1.88, 2.25) 0.40 (0.37, 0.43) 1.47 × 10–8

rs7745248 6 96766835 A/G 0.08 FUT9 1.92 (1.76, 2.09) 0.38 (0.35, 0.41) 1.82 × 10–8

rs11156352 6 96794243 G/A 0.09 1.66 (1.55, 1.78) 0.50 (0.47, 0.53) 2.69 × 10–6

rs2341786 6 159848314 A/G 0.10 1.75 (1.65, 1.86) 0.55 (0.52, 0.58) 1.56 × 10–6

P-value: P-values for gene-by-insecticide-exposure interaction were obtained from GLX method with log-additive response function; OR, odds ratio; 95% CI, 95% confidence
interval for OR; GI, genomic inflation factor.

Exemplar Data Set

As a complement to the simulation studies, we analyzed
GWAS data from the AMASS study. The single-marker as-
sociation analysis using the GLX method with linear and
logit response function showed modest genomic inflation
factors (1.10 and 1.05). We further corrected the P-values
based on the genomic inflation factors for each method.
The six most significant SNPs are in the Major Histocom-
patibility Complex (chromosome 6p21); method-specific re-
sults are displayed in Table 2. The EMMAX analysis iden-
tified one SNP (rs2239803) approaching the genome-wide
significance level (P < 5 × 10–8, using Bonferroni cor-
rection). As expected, MQLS failed to control for popula-
tion stratification. Odds ratios and 95% confidence inter-
vals for the six SNPs were estimated using the GLX method
with log-additive response function. The P-values for test-
ing the odd ratios are slightly higher than the P-values
using the linear response function. Table 3 lists the six
SNPs that reach a suggestive significance level (P-values <

1 × 10–5) for a SNP-by-insecticide-exposure interaction.
Two of these passed the genome-wide significance level:
rs10499003 and rs7745248, both located in the FUT9 gene
on chromosome 6. The other two SNPs from chromo-
some 6 are neighboring SNPs in high linkage disequilibrium
(LD) with rs10499003 (r2 > 0.6). The estimated odds ra-
tio of sarcoidosis risk for each additional copy of allele C
at rs10499003 is 2.06 (95% confidence interval (CI): 1.88–
2.25) if exposed to insecticide. The risk decreases (OR =

0.40 (95% CI: 0.37–0.43) for those who were not exposed
to insecticide.

Discussion

Large association studies that collect both unrelated case-
control and family data have been conducted in several dis-
eases [Bild et al., 2002; Edenberg et al., 2005; Govindaraju
et al., 2008; Rybicki et al., 2011]. Motivated by a GWAS of
sarcoidosis susceptibility genes in African Americans, we pro-
posed an extended Generalized Least Squares approach to
test for the association between disease and genes, as well
as gene-by-environment interactions, when data comes from
mixed samples of family-based and population studies. This
method allows us to account for correlations among family
members by using kinship estimated from GWAS data or
known pedigrees. This approach is flexible in the sense that
many response functions under varying model assumptions
can be used, and corresponding effect size and confidence
intervals can be estimated.

Insecticide exposure has been previously shown to be as-
sociated with sarcoidosis on both marginal and G×E in-
teraction levels [Newman et al., 2004; Rossman et al., 2008].
Using the GLX method, we found significant interactions be-
tween insecticide exposure and the FUT9 SNPs rs10499003
(intronic) and rs7745248 (3′UTR). The protein encoded by
this gene belongs to the glycosyltransferase family [Brito
et al., 2008]; recent human cell-line work suggests that the
FUT9 protein has an important role in the biosynthesis of
human E-selectin ligands [Buffone et al., 2013]. Sarcoido-
sis patients are known to have elevated levels of circulating
E-selectin in peripheral blood [Berlin et al., 1998; Hamblin
et al., 1994]. Furthermore, recent work in mice has shown that
E-selectin knockouts have a more severe grade of granuloma
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formation in lungs upon exposure to P. acnes versus wild-type
mice [Kamata et al., 2013]; in humans, a common E-selectin
polymorphism is associated with significantly reduced risk of
developing sarcoidosis in patients with erythema nodosum
[Amoli et al., 2004]. Although it is too preliminary to impli-
cate FUT9 in sarcoidosis pathogenesis, this finding demon-
strates the potential utility of the GLX method to uncover
provocative G×E interactions worthy of further study.

GLX has also shown advantages over other methods in
simulations. Traditional methods that assume independent
sampling are anticonservative if applied to mixed sample data
that is dominated by complex family structures, such as those
found in the MESA and Framingham studies. Another op-
tion for mixed sample data is GEE, which provides robust
inferences for most of the scenarios in our simulation; how-
ever, its computation time is relatively long. As a result, some
researchers run the association test using EMMAX or MQLS

first, then use a GEE model with logit link function on the
regions highlighted by EMMAX or MQLS to obtain the es-
timates of odds ratios and corresponding standard errors.
In contrast, the GLX method is computationally appealing
for its simpler, noniterative procedure. To scan 10,000 SNPs
for a study of sample size 4,000 using a 2.67 GHz Intel R©

Xeon R© CPU running Linux, it took 15.4 min for GEE and
just 1.3 min for GLX versus. In this case, GLX is 12 times
faster than GEE.

The current version of GLX was written in the R program-
ming language; GEE in the GWAF package was written in
C language and called by R. We are currently developing a
version of GLX implemented in C—we expect this to be even
more computationally efficient. More importantly, our sim-
ulations show that GLX has superior power to GEE under
linear and log-additive models for SNP association tests for
a number of scenarios. The final advantage to using GLX
rather than EMMAX or WQLS/MQLS is that GLX offers many
different forms of response functions that can be specified by
the user. Unlike EMMAX and WQLS/MQLS, which use linear
models on categorical data, the interpretation of the model
coefficient of the GLX method may be more meaningful than
these two methods and may be easily extended to test for
G×E interactions.

There are some limitations to this method. First, the behav-
ior of tests in small samples is unknown. Occasional small cell
counts may require adjustment of the data so that the weight
matrix is not singular. However, this problem is not unique
to our GLX test; in actual practice, SNP genotypes can be col-
lapsed into dominant or recessive coding. Second, the GLX
method is primarily developed for categorical data analysis.
Continuous covariates may be used by considering them as
categorical variables based on their unique values. However,
computational difficulties may arise if a continuous covariate
has a large number of unique values; in this case, we can still
use this method by discretizing the variables. Third, while the
proposed GLX method is an efficient method for accurately
estimating both main and marginal effects from family-based
data, effect estimates may not be generalizable to the general
population if ascertainment bias exists. Correcting for ascer-

tainment bias was beyond the scope of this study, but this issue
has been extensively addressed by others [Epstein et al., 2002;
Noh et al., 2005; Schaid et al., 2010]. And finally, population
stratification was not observed in the exemplar dataset, nor
was the GLX method assessed in the presence of population
heterogeneity with simulated data. However, our method can
be extended to account for population stratification by mod-
ifying the covariance matrix, similar to the approach used in
ROADTRIPS [Thornton and McPeek, 2010].

In summary, we propose a novel generalized least squares
(GLX) method to estimate both SNP and G×E interaction
effects in mixed samples. Our simulation results demonstrate
that this method improves upon existing methods used to
analyze these types of data, both in terms of type I error
and power under a variety of pedigree structures. Given the
computational efficiency of the GLX method and its ability to
be easily extended to test for G×E interactions, it should be
very attractive for analysis of genome-wide marker datasets
of mixed samples.
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