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A weighted cumulative sum (WCUSUM)
to monitor medical outcomes with
dependent censoring

Rena Jie Sun, John D. Kalbfleisch*' and Douglas E. Schaubel

We develop a weighted cumulative sum (WCUSUM) to evaluate and monitor pre-transplant waitlist mortality
of facilities in the context where transplantation is considered to be dependent censoring. Waitlist patients are
evaluated multiple times in order to update their current medical condition as reflected in a time-dependent
variable called the Model for End-Stage Liver Disease (MELD) score. Higher MELD scores are indicative
of higher pre-transplant death risk. Moreover, under the current liver allocation system, patients with higher
MELD scores receive higher priority for liver transplantation. To evaluate the waitlist mortality of transplant
centers, it is important to take this dependent censoring into consideration. We assume a ‘standard’ transplant
practice through a transplant model and utilize inverse probability censoring weights to construct a WCUSUM.
We evaluate the properties of a weighted zero-mean process as the basis of the proposed WCUSUM. We then
discuss a resampling technique to obtain control limits. The proposed WCUSUM is illustrated through the
analysis of national transplant registry data. Copyright © 2014 John Wiley & Sons, Ltd.
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1. Introduction

Control charts are used to continuously monitor outcomes of a process and hence to guide improvement
in quality by providing timely feedback. Cumulative sum (CUSUM) control charts have been suggested
to monitor the performance of medical providers by measuring the rate of deaths or other outcomes after
a surgical procedure. This approach enables early detection of an unacceptable number of deaths, for
example, and can help with timely identification and correction of problems.

Steiner et al. [1,2] developed a risk-adjusted one-sided CUSUM procedure based on the likelihood
ratio in a logistic model for binary outcomes. The authors proposed a graphical method for identifying
either a substantial or consistent change in risk-adjusted mortality. Axelrod et al. [3,4] demonstrated the
utility of the one-sided CUSUM method for tracking and analyzing 1-year binary mortality outcomes
using a cohort of transplanted patients at multiple centers. However, a built-in 1-year lag is necessary
in this approach. Biswas and Kalbfleisch [5] developed a risk-adjusted one-sided CUSUM procedure
constructed on a continuous time scale to monitor transplant survival outcomes sequentially by incor-
porating exposure and failures as soon as they occur. They compared the observed number of deaths at
a given center to the expected number of deaths at that center assuming that the center has the same
adjusted death rates as the overall national average. A sequential probability ratio test forms the basis of
the one-sided CUSUM, which examines whether there is evidence that could lead to rejection of the null
hypothesis that the center’s rates are the same as the expected value in the overall national experience in
favor of ‘worse than expected’ (or ‘better than expected’) performance.

Each method listed in the preceding paragraph was developed based on the assumption of indepen-
dent censoring. This would be violated in many cases, especially in medical settings where preventive
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approaches are applied selectively on high-risk patients. For example, in such settings, pre-treatment
mortality is dependently censored by the receipt of treatment. In particular, the methods we propose in
this article were motivated by the evaluation of mortality among patients waitlisted for liver transplan-
tation. Patients on the liver transplant waitlist are regularly evaluated to assess their current medical
condition. One particularly important summary measure is the Model for End-Stage Liver Disease
(MELD) score, computed as a log-linear combination of serum creatinine, bilirubin, and international
normalized ratio (INR) of prothrombin time. Waitlisted patients with higher MELD score have a higher
risk of death and consequently are given priority to receive liver transplants when available. The ‘cen-
soring time’, through receiving a transplant, is therefore correlated with the patients’ unobserved time of
death on the waitlist that would have occurred had the patient been left untransplanted. To evaluate trans-
plant center-specific waitlist mortality, it is important to take the dependent censoring (transplantation)
into consideration; failing to do so may yield substantially biased results.

In this article, we discuss a weighted CUSUM (WCUSUM) to account for dependent censoring. Moti-
vated by the waitlist mortality issue for liver transplant centers, we present the method to address this
case directly. However, the proposed methods could be adapted to monitor other data sets where depen-
dent censoring is present. For example, the methods would be generally useful in dealing with transplant
data and evaluating the survival on the waitlist, at least in any transplant situation in which the chance
of transplant depends on a time-dependent risk factor for mortality. Another application could be in
patients with prostate cancer where some interventions depend on the current value of a measurement
of the prostate-specific antigen. In order to investigate survival without the intervention, one could use
these methods. This could be useful in assessing overall survival in a particular region of the country or
in comparing treatment centers.

We assume all centers follow a standard liver transplantation guideline on donor allocation, which
can be described by a transplant model. We then make use of inverse weights in order to obtain
adjusted CUSUMs (or WCUSUMs) that take account of the dependent censoring, where the weights
are determined by the time-dependent MELD scores and their relationship to transplant. The resulting
WCUSUMs are designed to compare the waitlist mortality at a center to the overall national average,
having adjusted for patient mix and dependent censoring through the MELD score. We utilize a
resampling technique to obtain control limits for the WCUSUM.

In the following sections, we introduce some basic notation before constructing a WCUSUM, where
the weights and the hazard of death are obtained using an inverse probability of censoring approach [6].
We then describe the signaling rules for the WCUSUM, illustrated by a case study on waitlisted liver
transplant mortality.

2. A weighted Observed - Expected (O-E) CUSUM

2.1. Notation

Assume patient i from a given facility F of interest enters the cohort at calendar time S; (e.g., time of
initial listing on the transplant waitlist). Let D; denote the time to death since entry and C; the time to
transplant since entry. Let X; = min(D;, C;) be the observed event time since entry to either death or
transplant, whichever occurs first. The calendar time of the observed event is 7; = S; + X;. Finally,
Zi(x),0 < x < X;, denotes the set of time-dependent covariates (e.g., MELD scores), and V; is a set of
baseline covariates measured at the time of entry. Typically, V; includes Z; (0).

Assume we have a population model on time to mortality (in the absence of censoring) since entry
with a hazard function «; (x) = a(x; V;) for subject i, where

a;i(x) = lim P{D; € (x,x + A)|D; = x, Vi}/A. 6]

Let dA;(t) = I(t > Si)a;(t — S;)dt define the hazard or failure intensity function for subject i at
calendar time 7.

Suppose that survival over a 1-year period is of interest and refer to a death that occurs at time D; < 1
as a ‘qualifying death’. Note that 1-year survival is often used as a critical endpoint in assessing transplant
centers, but the methods could be used to assess mortality over other windows of time, such as 3-year
survival, with minor adjustment. Individual i is at risk of a qualifying death at time 7 if Y;*(r) = 1,
where Y;*(t) = I{S; <t <min(T;, S; + 1)}. Let §; = I(D; = X;) be the failure indicator and N;*(t)
count the observed number of qualifying failures in the chronological time interval (0, ¢] for subject i:
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0 t<S;;
N¥(t)=3 SI{Ti<t<Si+1} Si<t<S+1;
Ni*(Si +1) t>S;+ 1.

Note that N;*(¢) is either O or 1. It takes the value 1 if the i th individual enters at a time S; < ¢ and has a
qualifying failure before time ¢. The observed number of qualifying failures in (0, ¢] for the center F is

N*(t) = ier N7 (D).

2.2. Definition and properties of the weighted O-E CUSUM

In this section, we first state the key assumption regarding the dependent censoring mechanism. We then
consider the case of independent censoring and the unweighted O-E CUSUM. Taking the dependent cen-
soring into account, we construct a weighted O-E CUSUM that provides an estimate of the underlying
true CUSUM. We show the weighted O-E CUSUM has mean zero and evaluate its variance function.
The components of the O-E CUSUM form the foundation to the weighted one-sided CUSUM that is
described in the following section.

Assume the cause-specific hazard for censoring is Aic (x| Z;(x),V;) = lima_o P{C; € (x,x +
A)|D; = x,C; = x,Zi(x),V;}/A, where Z;(x) = {Zi(s5),0 < s < x}. The key assumption needed to
construct the WCUSUM is

A€ (6|Zi@), Vi) = Jim PG € (xox + A)IGi 2 %, Zi(v). Vio Di = y}/A, @

for all y > x. It says that all information about the rate of dependent censoring at time x is con-
tained in Z;(x) and the fact that the individual is surviving and uncensored at time x. This rate is not
changed by the additional knowledge of the future value of D; = y > x or the additional information
on {Z;(v), x <v < y}. Under this assumption, it follows that

PAC: > x|Vi. Zi(y). Dy = y} = exp {—/ A @ Zs (o). Vi) 3)
0

for all 0 < x < y. This assumption (2) and its consequence (3) are essential for the inverse weights
arising from the process Z; (x) to fully correct for bias due to dependent censoring [6].

Let N;(¢) represent the underlying counting process of qualifying failures in the absence of depen-
dent censoring, so that N;(t) = I(S; + D; <t < S;+1)ift < S; +1and N;(t) = N;(S; + 1)
if t > S; + 1. Similarly, let Y;(¢) denote the underlying at-risk indicator in the absence of dependent
censoring, Y;(#) = I{S; < t < min(S; + D;, S; + 1)}. It follows that E(dN;(t)|Y;(¢),V:,Si) =
Yi(@)a; (1 — Si)dt = Yi(1)dAi (7).

Without any censoring, the O-E CUSUM at center F would compare the observed number of
failures O(1) = N(t) = ) ;cr Ni(t) with the expected number of failures E(t) = A(t) =
Dicr fot Yi(u)dA;(u), and O(t) — E(t) is a zero-mean process if center F has the same mortality
rates as the reference population. A plot of O(¢) — E(t) versus ¢ provides a tracking of the outcomes
from this facility as compared to the reference rates described by dA;(z),i = 1,2,.... When this plot
trends upwards (downwards), the observed failure rates in this center are higher (lower) than those in
the reference population, and so these plots provide a useful descriptive tool. Further discussion can be
found in [7] or [8]. See also [9].

Consider now the situation where the center F has the same mortality rates as the reference popula-
tion but is subject to dependent censoring as described earlier. We aim to develop a process analogous
to O(t) — E(t) that is adjusted for the dependent censoring but retains the zero-mean property when the
death rates in the facility F correspond to the reference rates. Let dM* (1) = dN*(t) = Y;*(t)dA; (t) =
Y*(t)[dN;(t) —dA;(t)]. Note that Y;* () = Y; (t)I(C; >t — ;) so that

E[dM(t)] = E {E{dM}(1)|Yi (1), dN; (1), Zi (t — Si), Si, Vi}}
= E{E{I(C; > 1 —S)|Yi(t),dN; (1), Zi(t — Si), Si, Vi }Yi (O[dN; (t) — dA; ()]} .
Under assumption (3), it follows that E{I(C; > t — S;)|Y;(t),dN;(t), Zi(t — Si). S;, V;} = P{C; >
t—8i|Di >1—S8;i. Zi(t — ;). Si. Vi} = exp {_ TSEC | Zi (), Vi)du}, so that
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The expression (4) shows that the M*() process does not in general have mean zero under the reference
distribution. However, (4) also indicates how to obtain a zero-mean process.

E[dM(t)] = E [

t—S;
Yi(t)[dN;(t) —dA;(t)] exp {—/0 A | Z;(w). V;)du

First, we define the weights in chronological time so that w/(t) = w;(t — S;) = exp { fot i Aic

W|Z;(u), Vi)du}. It is now easy to see that

E[wi ()dM;" ()Yi (1), Vi, Si] = E[Y; ()[dN; (1) — dAi (D] Yi (). Vi, Si}] = 0. ®)

This equation (5) shows that the difference between the weighted cumulative observed failures NiW () =
fot w} (u)dN;*(u) and the weighted cumulative hazards AIW 1) = f(; w’(u)Y;*(u)dA;(u) is a zero-mean
process, for any subject i.

Thus, the weighted zero-mean process for center F is O% (1)—E"Y (1), where O% (1) = Dicr NiW ()
and EV (1) = Yier AlW (t). In fact, we are replacing O(¢) and E(¢) above with estimates that are
adjusted for the dependent censoring. We refer to O — EW as the weighted O-E CUSUM. In the case
of no dependent censoring, when all weights are equal to 1, this process reduces to the usual zero-mean
Martingale, with w (1)dM;* (t) = dN; (t)—Y; (t)dA; (t) = dM; () and O (1)—EV (1) = O(t)— E(¢).

The process O% (1) — EW (¢) has a jump discontinuity at any time ¢ where a qualifying failure is
observed to occur. If it is the ith individual who fails, the size of the jump is w/ (¢), which is the inverse
of the probability that individual i would be untransplanted at time ¢ given survival to that time. The
compensating process, E" (¢), makes the same adjustment to the conditional probabilities of failure
among those at risk at time 7. As before, when this process trends up (down), the observed failure rate in
center F is higher (lower) than the rate in the general population.

The variance of the process O% (1) — EW (¢) under the reference distribution and accounting for all
subjects at the center F is

Var” (1) = Var {OY (1) —EV ()} =) E |:/t{wi*(u)}2Yi* (u)dAi(u)} ,
0

i€EF

which is derived in the Appendix. The derivation of this result depends on a novel partition of the rele-
vant integrals that leads to this relatively very simple result. As compared to the O(¢) — E(t) process, the
weighted process, O% (t) — EW (¢), has an additional source of variation introduced by the weights. We
also consider a more general case in which the facility of interest has relative risk, r, so that each patient
has a hazard r; (x). In this case, the corresponding mean zero process is O% (t) — rE" (), which has
variance function

Var (1) = Z rE Uot{w;“(u)}zn*(u)dz\i(u)} . (6)

ieF
The variance of the processes is relatively easily calculated and could be used to assist in the construction

of appropriate stopping rules for the CUSUM. Further, the statistic {O% (1) — EW (¢)}/ \/ Var" (¢) pro-
vides a test statistic at time ¢ that could be compared to the N(0, 1) distribution. We will not pursue this
approach further in this article, as the resampling approach discussed in Section 3.2 provides a simpler
and more easily implemented approach for determining stopping rules.

3. One-sided WCUSUM chart

3.1. The one-sided CUSUM chart

Biswas and Kalbfleisch [5] proposed a one-sided CUSUM chart, applicable if censoring is indepen-
dent. At time 7, the null hypothesis is taken to be that the rates of qualifying deaths in F correspond
to those in the general or reference population. Thus, for individual i, the hazard function is r«;(x)
with » = 1. It is convenient to write 7 = exp(x), so that the hull hypothesis is Hy : © = 0. To con-
struct the CUSUM, they consider the alternative, worse than expected with a relative risk r = e > 1.
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Thus, the alternative hypothesis is H; : u = 6 for some suitably chosen 8 > 0 that typically rep-
resents a relative risk of clinical importance. In this paper, as in another similar work, we consider
6 = log?2 for the worse than expected case. In [5], it is shown that the logarithm of the likelihood
ratio of u = 6 versus u = 0 is proportional to ) ;[ON; (1) — {?4;(1)}] = 00(t) — {ef — 1E(1).
From this, they develop a one-sided CUSUM based on a sequential likelihood ratio test. This approach
involves plotting the function G;, which can be most easily defined in terms of its increments by
Giiqr = max{0, G, + 8dO(t) — (¢! — 1)dE(t)}, with Gy = 0.

The process G; remains at 0 until the first qualifying failure occurs when it has a jump discontinuity
of size 6. The process then drifts downward according to the term (e — 1)d E(¢) until it reaches 0 or
until the next qualifying failure, whichever occurs first. If another failure occurs, it jumps again by 6 and
then continues the downward trend. If it reaches 0, this constitutes a renewal, and the process remains
there until the next qualifying failure occurs. For quality monitoring purposes, the one-sided CUSUM
registers a signal of worse than expected when G; exceeds a predetermined control limit L > 0. Refer
to Figure 1 for an example chart designed to detect worse than expected signals, although this chart is
revised to accommodate dependent censoring. Note that a one-sided CUSUM can be designed to help
detect either a worse than expected performance with 8 > 0 or a better than expected performance with
0 < 0; see [7,10].

With the presence of dependent censoring, we utilize weighted cumulative failures and weighted
cumulative hazards defined in the last section. Thus, in place of O(z) and E(t), we use O" (¢) and
EV (t). The one-sided WCUSUM G (1) is defined in terms of its increments by

G 4 = max [0.G + 040" (1) - (¢ ~ )dEY (1)} %)

with GgV = 0. This gives rise to a plot that is very similar to the case discussed earlier with no
dependent censoring. In this case, however, the one-sided WCUSUM for worse than expected jumps
by 6/P(C; >t —S;) = Ow](t), where i represents the subject experiencing a qualifying failure at
time ¢. When there is no failure, the one-sided WCUSUM trends down by (ef — 1) times the accumulat-
ing hazards scaled by the w(¢)’s. In essence, an individual who is observed to have a qualifying failure,
but for whom the chance of being untransplanted at the time of failure is small, yields much larger jump
in the process GZW than a similar individual who fails, but who had a large chance of continuing to be
untransplanted at the time of failure. The one-sided WCUSUM for better than expected also follows
closely the corresponding CUSUMs in the case of no dependent censoring, as discussed in [7, 10].

The development of the O-E and one-sided WCUSUMs is straightforward. As in the case of no depen-
dent censoring, their implementation requires the definition of suitable control limits in order to detect
signals in a desirable way. In the next section, we consider this problem of specifying control lim-
its L for the one-sided WCUSUM for detecting worse than expected. It is also possible to develop
monitoring bands for the O-E WCUSUMs along the same lines as introduced in [7] in the case of no
dependent censoring. We illustrate both the one-sided WCUSUM and the O-E WCUSUM in monitoring
liver transplant centers in Section 4.

3.2. Obtaining control limits by resampling

Biswas and Kalbfleisch [5] and Sun and Kalbfleisch [7] conducted simulations to determine suitable
control limits. For a given center size, they set a false-positive rate over a certain period, so that each
center is subject to the same error rate if it has failure rates that correspond exactly to the reference or
national rates. For example, Biswas and Kalbfleisch [5] used a false-positive rate of 8% over a 3.5-year
period; these values were chosen to be comparable to the flagging rates in use by the Scientific Reg-
istry of Transplant Recipients (SRTR) in monitoring transplant centers. This approach of controlling
the false-positive rates for all centers yields control limits that are lower for smaller centers and higher
for larger centers. Simulations were performed using a Poisson process for subject arrivals, with each
patient having an exponential failure distribution at the reference failure rate (of the national average). In
this way, appropriate limits could be obtained for each center according to its size (in terms of average
number of arrivals per year). It should be noted that these limits are not adjusted for the particular patient
characteristics at the center, although simulations suggested that moderate variation in patient character-
istics did not change much the false-positive rate. In the situation with dependent censoring and inverse
weights, a similar simulation approach could be used. In addition to an assumption about the failure
model, however, one would also need to model the time-dependent model for the dependent censoring
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mechanism and so generate patient characteristics and a time-dependent risk score as well as a suitable
censoring model. This seemed very complicated to execute, and the sensitivity to model assumptions
would always be a concern. It therefore seemed better to seek a more empirical approach that would
require fewer assumptions.

Gandy et al. [10] considered an alternative approach to selecting control limit in the independent cen-
soring case. They defined a revised time scale, s = E(¢), and noted that, in terms of this time scale,
the counting process of qualifying failures, O*(s) = O(E~!(s)), is a homogeneous Poisson process
with rate 1. They showed that the average run length (ARL) in control on this new time scale can be
obtained analytically through constructing a Markov chain. This ARL is equal to the expected number
of events until stopping on the original scale if the center’s death rates correspond to the reference or
national norm. In practice, one can calibrate L to obtain a desired ARL on the transformed time scale;
this is equivalent to setting L to correspond to the level needed to achieve a certain average number of
qualifying failures at the signal on the original time scale. This approach would have the same limits
apply to all centers with the disadvantage that small centers would be subjected to a smaller risk of
a false-positive signal over any given period, whereas the largest facilities would have a much higher
probability of a false positive in a given interval. The choice between criteria is a policy decision. In the
case of dependent censoring, however, there is no time scale that would map the process O (¢) into a
Poisson process. This approach does not apply in the dependent censoring case.

In order to circumvent these problems, we utilize a resampling technique to calibrate control limits
for a center of given size. In effect, this approach could be used any time that the reference is deter-
mined by a large national or regional population and whether particular facilities have outcomes that are
outside of the national norm is of interest. The idea is to draw patients at random from the population
to repeatedly compose a center of given size m and, for each such draw, obtain the corresponding one-
sided WCUSUM. In the repetitions, this gives a realistic picture of the natural variation in the population
of interest. The approach has the decided advantage that the time-dependent censoring is automatically
included in the variation. Various rules could be used to determine appropriate control limits for the
center of interest (i.e., of size m). For example, we could choose the limit L so that the resampled or
simulated patients would lead to a signal at a given proportion of the time over an interval of specified
length. This is analogous to the approach taken in [5,7]. Alternatively, we could choose the control limit
L in order to fix the average time until a signal occurs for a given center size, assuming the reference
population stably spans over a long enough period. If we are interested in 1-year mortality outcomes,
a 1-year lead-in period to reach equilibrium is important in calibrating the control limit L and in con-
structing the WCUSUM. The WCUSUM can then be operated continuously under the same L and still
maintain a comparable type I error rate.

We develop the first of these ideas more specifically. Suppose that the criterion we wish to implement
is that there would be an 8% chance of a false-positive signal over a 3.5-year period. We set this criterion
when the process is in equilibrium. To do this, we would simulate the process with new arrivals start-
ing at time O and extending over a 4.5-year period. If the qualifying failure must occur within 1 year
since entry, the G; process would be in equilibrium by the beginning of year 1. We first estimate the
weights and true hazards by constructing a dependent censoring model and a weighted death model
using the population data. Consider, for example, a center that admits 30 patients per year. To eval-
uate this, we select at random and with replacement a sample of size 135 from the population from
the patients who arrive during a 4.5-year period. For this sample, we construct a one-sided WCUSUM,
which we begin to observe at year 1 and follow for an additional 3.5 years and record the maximum
value, G™* = max{G; : 1 <t < 4.5} that this WCUSUM achieves. Over a large number of B rep-
etitions (e.g., B = 1000), we find G;“a",i =1,..., B and choose L so that 8% of these B runs have
a maximum one-sided WCUSUM value larger than L; that is , 8% gives a false-positive signal. This
approach can be repeated for various facility sizes.

This resampling technique can also be used in the case of independent censoring and should give
results similar to those obtained by the approach in [5,7].

4. Case study

4.1. Data description

We consider mortality rates for liver transplant patients who have been waitlisted for a liver trans-
plant using data obtained from the SRTR. We consider a 3.5-year cohort of patients waitlisted between
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1 January 2005 and 30 June 2008 from one of 11 regions in the USA. In this example, the region is being
considered as the population in our model. Patients recorded as status 1 or 1A at the time of waitlisting
have acute liver failure at waitlisting and are not included in the analysis. In addition, we exclude patients
who were waitlisted in error, who changed to kidney/pancreas transplants, or who had a previous liver
transplant. Given that pediatric patients follow a different scheme of transplant, we only include adults
of age at least 18 years at the time of waitlisting in the analysis. Two centers with fewer than five patients
waitlisted over this 3.5-year span are excluded. In the final data set, 2578 patients from a single region
with seven centers and five organ procurement organizations are included.

The following baseline covariates are considered: gender, race, age, diagnosis categories, diabetes,
previous malignancy indicator, body mass index, blood type, and hospitalization and intensive care unit
status. All these covariates as well as baseline MELD score (see succeeding discussions) and sodium
value are included in both the transplant (censoring) model and the mortality model. Further discussion
of the data and models can be found in [11].

Time-dependent variables consist of the MELD score, inactive period, and sodium value. MELD is a
function of measurements on serum bilirubin, serum creatinine, and the INR for prothrombin time, and
allocation MELD score is used in practice as the main determining factor in the allocation of livers from
deceased donors. For analyses reported here, we record MELD using 12 binary indicators for whether
the score is in 6-8, 9-11, 12-14, 15-17 (as the reference level), 18-20, 21-23, 24-26, 27-29, 30-32, 33-35,
36-39, 40+, and status 1 or 1A. Assuming that a patient is being monitored sufficiently by the clinician,
it is reasonable to assume that the lack of a MELD score update implies that, to a reasonable approxima-
tion, the patient’s MELD score has not changed. MELD is updated frequently when a patient’s score is
increasing because it is important to the center to make this known to increase the chance of a transplant,
and MELD only rarely decreases. This suggests that coding MELD score as a step function (i.e., last-
value carried-forward) would be appropriate. Waitlisted patients are sometimes declared inactive and
so temporarily removed from the waitlist; this may be due to a temporary sickness or other event that
makes transplant impossible for a period. Inactive patients should not receive transplant offers. Inactive
status is tracked with a time-dependent indicator variable that takes the value 1 if the patient is inactive.
Alternative approaches of handling inactive time were used by Zhang and Schaubel [12]. The inactive
indicator is also included in the set of time-dependent covariates along with MELD and sodium value
in the dependent censoring model. Patients are sometimes permanently removed from the waitlist for
reasons such as medical condition, refusing transplant, improved or deteriorated condition, or being
inactive on the program for more than 2 years. Without over-assumption, we treat removed patients as
right truncation.

We consider death within 1 year since waitlisting as the outcome of primary interest in our analy-
sis, although other periods could clearly be considered as well. A patient is considered as dependently
censored if he or she experienced any type of deceased donor transplant or died during a deceased donor
transplant procedure. A patient is independently censored if he or she is lost to follow-up, removed from
the waitlist, or received a living donor transplant, which typically is not predicted by MELD score.

4.2. Modeling and control limits

We first generate a suitable population model based on the totality of the regional data for both the depen-
dent censoring process (transplant) and mortality. We will then use these models to construct WCUSUMs
for each facility under consideration. Appropriate control limits for the one-sided CUSUM s are obtained
by resampling the population and defining levels that, on resampling, give rise to prespecified operating
characteristics. It should be noted that all centers within a region share the same rules for transplan-
tation (depending on MELD) and so share the same censoring mechanism. This also means that the
relatively large sample will allow fairly precise estimation of the censoring distribution and associated
with weights.

In order to develop a suitable model for the transplant (dependent censoring), we consider a
time-dependent Cox model with hazard function,

AC(xX|Zi(x), Vi, Di > x) = A§ (x) exp{y© Zi (x) + BC Vi1, (8)

where /\Oc(x) is an unspecified baseline hazard function, Z; (x) = {Z;(5s),0 < s < x}, and V; is a set
of baseline covariates. In the censoring model, Z; (x) is a vector of time-dependent covariates including
MELD, inactive period, and sodium level for subject i, with Z; (0) indicating the baseline values of these
variables. V; is the set of baseline covariates and includes Z; (0). The rate of transplantation is taken to
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depend only on the current value (most recent measurement) of Z;, which corresponds to the policy that
utilizes MELD score as the main determinant of priority for transplantation.

Fitting the model to the dependent censoring data using standard techniques, we obtain estimates 7,
BC, and /A\Oc(x), where the last is an estimate of Ag (x) = fox AOC (u)du.

With the model for censoring developed, estimation of mortality rates on the waitlist is the second part
of the population model needed to implement the WCUSUM techniques. As above, we assume that the
hazard of death in the absence of censoring is again a Cox model but conditioned only on the baseline
covariates, V;. Thus, the model for the hazard «; (x) in (1) is

i (x) = Ao(x) exp(BVi). €))

Appropriate estimation of the parameters in (9) requires appropriately accounting for the dependent
censoring, which we do through an analysis, stratified on centers, where the individuals in the risk
sets are appropriately weighted with stabilized inverse probability censoring weights (IPCW) weights.
(Stabilized weights are briefly discussed in Section 4.4.) The weights are being used to control for
the confounding variable of censoring. Because these confounders are controlled by the weights rather
than by inclusion as covariates in the Cox models, this approach avoids the problem that such con-
founders could also be intermediate on the causal pathway to the outcome of death. Once estimates of
the regression parameter § are obtained from the model stratified on center, an estimate of an appropriate
population level baseline hazard function is obtained by using a nonstratified model of the form (9) with
exp(BV;) taken as an offset.

With appropriate models for censoring and mortality now in place, we construct CUSUM charts for
each of the facilities in the study. In fact, to use the CUSUMs prospectively, we would use the estimates
to monitor new events as they occur on the weight list in each facility in the region and so use the meth-
ods for prospective monitoring of the mortality rates in the centers. For the purpose of this illustration,
however, we develop CUSUMs over the period 1 January 2005 to 30 June 2008. We focus attention
on I-year mortality and begin monitoring each facility 1 year earlier in January 2004. If the facility
is in accordance with the overall average performance in mortality and transplant, the 1-year period in
advance should lead to a process that is approximately in equilibrium. We construct WCUSUMs for each
center. The one-sided WCUSUM defined in (7) requires the specification of a suitable target relative risk
for the alternative hypothesis, and we select ¢? = 2. Thus, the WCUSUM is being constructed so as to
be particularly sensitive to a relative risk of 2 for waitlist death rates at the center level, as compared to
the overall regional data.

In order to obtain an appropriate control limit for a center of interest, which admits on average m
patients per year, we use a resampling approach as described in Section 3.2. We select an appropri-
ate criterion and for this follow the recommendation of Biswas and Kalbfleisch [5] to obtain a type I
error rate of 8% over a 3.5-year period. For facility size m, we select at random 4.5m patients from
those entering the entire population over the 4.5-year period from 1 January 2004 to 30 June 2008
and, for this selection, construct a one-sided WCUSUM beginning in January 2005 and extending for
3.5 years. This process is repeated 1000 times, and the control limit L is chosen so that 8% of these 1000
WCUSUMs would yield a signal. The results of this process for facility sizes m = 30, 50, 100, 150, 200
are summarized in Table I.

4.3. Analysis results

Table I shows that as size increases, the control limit increases, and the weighted expected number of
failures and the variance of the weighted zero-mean process increase linearly. The weighted observed
number of failures and the weighted expected number of failures are very close.

Table I. Control limits for WCUSUM.

Size (per year) L o EW VarV
30 5.66 15.36 15.48 26.82
50 6.35 25.03 25.19 43.28
100 7.23 50.64 50.80 85.79
150 8.10 75.98 76.17 132.03
200 833 101.60 101.80 174.66

Copyright © 2014 John Wiley & Sons, Ltd. Statist. Med. 2014, 33 3114-3129
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Center A with 654 patlents waltlisted between January 1, 2005 and June 30, 2008
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Figure 1. The weighted one-sided CUSUM, with control limit, of center A over a 3.5-year period.

Center B with J68 patients waitlisted between January 1, 2005 and June 30, 2008
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Figure 2. The weighted one-sided CUSUM, with control limit, of center B over a 3.5-year period.

Given the estimated expected number of failures at a center, we used linear interpolation based on
values from Table I to find an appropriate control limit L. We apply the estimated control limits on the
7 centers in the selected region and one center is signaled during the period of interest. Figure 1 demon-
strates that the example Center A with 654 patients over the 3.5-year period operates at the reference
level for the entire period. Figure 2 shows Center B with 368 patients in the 3.5 year cohort. It has several
failures observed around the end of September 2006 in a short period and continues with a number of
observed failures, which leads to the signal at the beginning of July 2007.

In practice, the signal in Figure 2 should lead to a review by the center for possible issues in process
that might account for this signal and the apparent very high death rates in effect. Following this signal
and possible remedial action, it would be normal to restart the WCUSUM before continuing. There is
advantage to using a ‘head start’, whereby the CUSUM would begin at a position L /2 instead of 0. This
has the effect of increasing the chance of an additional signal especially if the process is currently out of
control as the CUSUM suggests. Head starts are discussed in [10, 13].

As noted earlier, an alternative presentation of CUSUMs was discussed in [7] in which the O-E
CUSUM is plotted with monitoring bands to indicate when the CUSUM yields a signal. Figures 3 and 4
present the weighted version 0" — EW along with the appropriate monitoring bands for CUSUM:s for
the same two facilities as in Figures 1 and 2. The dark path is the CUSUM and the broken path is the
monitoring band for a worse than expected signal. Figure 3 does not signal and Figure 4 signals at the
same time as the one-sided CUSUM in Figure 2. Note that the advantage of these plots is that when
the CUSUM trends up or down, it indicates that the rate of failure in the center is respectively higher or
lower than that in the general population.

- _______________________________________________________________________________________________|
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Center A with 654 patients waitlisted between January 1, 2005 and June 30, 2008
»
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Figure 3. The weighted O-E CUSUM for center A. The dotted line is the monitoring bound for a worse than
expected flag.

Center B with 368 patients waitlisted between January 1, 2005 and June 30, 2008
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Figure 4. The weighted O-E CUSUM for center B. The dotted line is the monitoring bound for a worse than
expected flag.

4.4. Unstabilized and stabilized IPCW weights

Under assumption (2), Robins and Finkelstein [6] have shown that we can estimate the true hazards A;
in the presence of dependent censoring, using the IPCW approach.

We assume a Cox model for the time to transplant (or dependent censoring) with hazard function (8).
Under this model and the assumption (2), the conditional probability of not receiving a transplant until
time x for subject i whose survival time exceeds Xx is,

K/ (x) = P{C; = x|D; > x, Zi(x), Vi} = exp {—Af (x)} . (10)

where Aic(x) = f(f exp{y€ Z;(s) + ,BCVi}dAg (s). This is estimated as Ieiv(x) by replacing y€,
BE and Ag with their estimated values. The commonly used (unstabilized) weights are defined as
i (x) = 1/K (x).

To reduce the variation in the weights, we can stabilize the weights by including a numerator K io (x)
obtained by using Z; (0) in place of Z;(s) in (10). Stabilized weights are then w;,(x) = 16? (x)/IeiV (x).
It can be seen that the stabilized weights also give unbiased estimating equations for the parameters of

the marginal death model, and these are often used to reduce the variability of the estimates as we have
done in Section 4.2.
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5. Simulations of 0% — EV

In this section, we describe an approach that we use to simulate data that satisfy the dependent censor-
ing models considered in this paper. These simulations are then used to evaluate the properties of the
O% — EW process.

Assume patients arrive at a given center according to a homogeneous Poisson process with rate 1
patients per year. We refer to o as the facility size. For each patient i, assume a baseline covariate V;
that is Bernoulli( p) variable, and a time-dependent covariate Z; (xx) that follows a Poisson process on the
follow-up time x with rate depending on V;; specifically, we assume Z; (x) ~ PP(,ueVDVi), where PP(
denotes Poisson process. Suppose we are interested in 1-year mortality. Patients are followed for one year
from entry and are censored at one year if they have not experienced either a failure or a transplant.

Conditional on Z;(x) and V;, we generate (cause-specific) censoring and mortality accord-
ing to hazard functions A (x|Vi, Zi(x)) = A§ exp{y€Vi + BCZi(x)} and AP (x|Vi, Zi(x)) =
)L(? exp(yPV;) + BP Z;(x), respectively. As shown in the Appendix in Section A.2, the additive form
for the conditional mortality model yields a marginal form, after taking an expectation over Z; (x), that
is multiplicative with structure AiD x|Vi) = AP - ,u(e_ﬁDx — 1)]e1’DVi. This step in the simulation
allows us to generate a marginal mortality model within the proportional hazards class. This means that
an ordinary Cox model can be used to estimate the relative risks and baseline hazard. The degree of
correlation between the transplant hazard and mortality hazard is determined by the Z; (x) process. We
use a Spearman rank correlation coefficient to measure the correlation between the latent death time
and transplant time. In practice, we observe only one event among death, transplant and independent
censoring whichever occurs first.

We first conduct some simulations to verify the variance formulas given in (6). We consider the
following parameter setup: jo = 500, p = 0.5, u = 5, y? = log(2), A? = 0.01, y¢ = log(1.5),
BP =0.06 and B¢ = log(2). The simulation is conducted using 1000 repetitions.

For relative risks r = 0.5, 1 and 2, Table II reports the observed death rates, the dependent
censoring rates, and the Spearman rank correlation between latent death time and dependent censor-

ing time. In addition, Table II reports: the mean and standard deviation of the empirical variance of
oY (1)—rEY (1),

1 2
Var = Var {0" (1) = rEW (1)} =) {/ w}W)dNF (u) — rw! )Y w)dA; ()}
- 0
1
and the mean and standard deviation of the variance from equation (6),

1
Var = Gar 0" (1)~ £ (0} = X1 [ [wr @P ¥ adns .

It is expected that both variance estimators would have the same mean with Var having the smaller
standard deviation. Note that in all of these calculations, we are taking the weights w}(u) and
the intensity functions A;(u) are taken as given, their estimates in practice being based on a large
population sample.

Table II. Empirical verification of the properties of 0" (1) — rEW (1) under
simulations.

OEV Var Var

r Death (%) Censoring (%) Corr. Mean Var Mean SD Mean SD

0.5 11.1 0 0 —-0.27 554 554 68 557 25
8.6 324 0.13 —044 664 682 290 678 6.5

1 20.7 0 0 0.11 103.6 103.7 86 1038 4.5
16.3 29.6 0.17 =037 1252 1249 36.0 1255 12.6

2 36.3 0 0 —0.14 179.0 1812 10.7 1815 8.2
29.6 24.6 0.22 0.34 220.0 2168 393 216.1 21.8
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Table III. Recovery of underlying failures and risks in the case of dependent censoring.

Scenario 1 (indep) Scenario 2 (dep) Scenario 3 (dep)

Mean SD Mean SD Mean SD

Observed (0 or OW) 20.35 4.17 1921 563 1929 543
Expected (E or EW) 20.77 1.92 2072 214 2034  2.19
Variance of O — E or OW — EW 20.77 1.92 3477 536 3651 1047

Table II verifies that the O% (1) — rE" (1) has mean value close to 0 under all scenarios and that Var
and Var are both valid estimates of its variance. However, Var has much smaller variation than Var under
all scenarios.

In Table III, we compare the number of observed failures and the number of expected failures in
the independent censoring case (scenario 1) with the weighted observed failures and weighted number
of expected failures under dependent censoring (scenario 2). Again, the weights and the hazards are
assumed known or estimated precisely from a large sample. Note that we can never obtain the true
weights or hazards in practice. To mimic the practical implementation, we also compare with the results
obtained from the estimated weights and hazards (scenario 3), where we generate a separate large sam-
ple (or population) with 5000 subjects and run IPCW analysis to obtain the parameter estimates for the
censoring and mortality models. We consider the following parametric settings: o = 100, p = 0.5,
w=3,yP =1og(2), AP =0.01, A¢ = 0.05, y¢ = log(2), B2 = 0.1, and B¢ = log(2). The sim-
ulation is conducted using 100 repetitions. The 1-year cohort has 13.9% deaths and 39.3% dependent
censoring, while the latent death rate is 20.6%. Spearman rank correlation between latent death time and
dependent censoring time is 0.18.

Table III shows that in both scenarios 2 and 3, the mean of the weighted observed failures and weighted
expected failures in the dependent censoring case are close to those in the case of no censoring. Note,
however, that variance of O" — EW is inflated in the dependent censoring case because of the additional
uncertainty introduced by the weights. Weighted values using estimated weights and estimated hazards
in scenario 3 agree closely with those obtained using true weights and true hazards in scenario 2.

6. Discussion

The construction of a WCUSUM with IPCW weights requires assumptions of accurate information,
no unmeasured confounding, and correctness of the censoring model. Given these assumptions, the
weighted O-E process under the null hypothesis is a zero-mean process but with inflated variance as
compared to the CUSUM with no dependent censoring.

When the dependent censoring model is misspecified, a WCUSUM might give a variety of results
depending on the actual censoring pattern. It is important to have a correct dependent censoring model.
In our case, this does not present a problem because the transplant priorities are set nationally to depend
on current MELD score and should be strictly followed within each region depending primarily on the
MELD score. If the censoring varied across centers, it would still be possible to carry out separate esti-
mations within each center and utilize the corresponding censoring distribution in the WCUSUM. There
would be additional uncertainty in this case because of the potential error in the weights because of the
smaller sample, and one might wish to take that into account in specifying control limits.

We view the use of CUSUM s as primarily a quality improvement tool, and so they are used to provide
quick feedback to the medical providers so that they can monitor outcomes and review for possible prob-
lems when a signal occurs. These methods could also be used by an oversight organization to monitor
facilities under its purview. The control limits we obtained were with a view to the quality improve-
ment use, and control limits in the context of an oversight organization should depend on the purpose
of the flagging and the actions to be taken. For example, very different flagging criteria would be used
to suggest what centers might profit from an audit of procedures versus a situation in which the signal
would lead to financial penalties or censure.

We presented a resampling technique to obtain the control limit for a center of a given size and over a
certain period. In doing this, it was essentially assumed that each center draws its patients and covariates
from the population, so that the future distribution of profiles in each center would mirror that in the
overall population. For our example, Figure 5 gives side-by-side box plots of the distributions of the
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Figure 5. Side-by-side box plots of the estimated relative risks (exp(8’V;)) of patients in the seven centers.

estimated relative risks for the seven centers. These suggest that there are no large differences in risk
profile and so provide some support for our approach. If these distributions were quite different, and
it seemed more reasonable to assume that each center would have risk distributions in the future that
looked like those in the past, then we could stratify the bootstrap approach so that bootstrap data for
each center would be obtained by sampling nearest neighbors. A lead-in period to reach equilibrium is
suggested. Our impression is that the control limits are not terribly sensitive to the risk profile, but a
systematic examination of this would be useful. The sampling approach to determining control limits
should also be investigated further because it provides a very simple empirical approach to this problem.
It would be useful, for example, to compare the results from this approach in the independent censoring
case to those obtained from the approach in [5, 10].

Appendix A

A.1. Variance of O% (t) — rEW (t) with relative risk r

We begin by examining the process

N - a0 = | WP )N ) / WP Y ) A )
0 0

for a given individual ;. We have already seen that this process has mean zero under the null hypothesis
that individual 7 has the same mortality rate as an individual with the same covariates in the reference
population. We now investigate the variance of this process.

Consider the more general case where the individual has a relative risk 7, meaning that the mortality
rate for this individual is a constant r times the mortality rate of a similar individual from the population.
The corresponding weighted zero-mean process is

NY @) —rAl (1) = / t w}u)dNF (u) —r / t wi W)Y w)dA; (u). (A.1)
0 0

The variance of this process can be evaluated through the following steps:

t 2
Var(N (¢) —rAlY (1) = E % / wrW)dNF (u) — rwi*(u)Yi*(u)dA,-(u)é
0

=E {/Ot[w?(u)]szi*(u)}—ZrE{/Ot wi*(u)le-*(u)/Ot W)Y (0)dA; ()

; 2
[ / w;‘(um*(u)dm(u)} } .
0
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The second term in (A.2) can be written as

2rE {/0 w; (u)Y; (u)dNi(u)[O w; (U)d/\i(v)}-i-zVE {[0 w; (u)dN,-(u)/u w; (v)Y; (v)dAi((UA) 3;

where we have used Y;* (u)Y;*(v) = Y;*(u) for v < u. Note that the second term in (A.3), which is an
integral over the range v > u, must be 0 because if ¥;*(v) = I, then dN;(u) = 0 for all v < v, and on
the other hand, if dN;(u) = 1, then Y;* (v) = O for all v > u. Under the hypothesis of a relative risk of
r, it follows that

EQY @) dN; ()Y (1), Vi, r. Si) = rY" (0)d A; (1)

Therefore, (A.3) reduces to
2r?E { /O t /0 uw,-*(u)w;"(v)Yi*(u)dN,- w)dA;(v) = 2r2E{ /0 t fo ’ wF(u)wr (v)Y* (u)dAi(u)dAl-(v)}

=r’E .

¢ 2
[ / w?‘(u)&*(u)dm(m}
0

Thus, the second and third terms in (A.2) cancel and
t
Var (NP (1) =¥ (0} = E [ w7 Pan; )
0
t
— £ [ i @Y A )
0

Consider now a center F in which each individual has a relative risk 7 compared to the overall average
mortality rate. In this case, O (1) = Y, » NiW (t)and EV (1) =Y e+ AlW (), and as individuals are
independent,

Var {0 (1) = rE¥ (1)} =r Y E /Ot [w w)]?Y* (u)dA; (u).

I€EF

In the special case of no dependent censoring, the variance reduces to r fot Yi(u)dA;(u) = rA;(t), which
is the usual martingale result. The special case r = 1, corresponding to the usual null hypothesis, is of
special interest.

A.2. Dependent censoring simulation background

For the simulations in Section 5, we utilized a joint model for the mortality and censoring mechanisms
as outlined in this section. In particular, we show that for an additive conditional mortality model given
Vi and Z;(x), the expectation of the hazards on Z;(x) results in a multiplicative form, which can then
be analyzed using a standard Cox PH model. Thus, this approach leads to both the time-dependent Cox
model for the dependent censoring and the Cox model with fixed baseline covariates for the mortality
model. The derivation follows that in [14].

Let V; represent the baseline covariate of interest, for example, treatment assignment, and suppose
that V; has a Bernoulli distribution with probability of success p. The time-dependent covariate, Z; (¢)
(e.g., MELD score) for subject i is generated as a Poisson process with intensity je”"i depending on
the value of V;. The time-dependent model for transplant or dependent censoring has hazard function

A7 (X1 Zi(x), Vi) = A5 exp {BC Zi(x) +y Vil
In an analogous way, the model for mortality given Z; (¢) has hazard function
AP (x1Zi(x), Vi) = A exp(yVi) + B Zi(x).
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Thus, the time-dependent covariate Z; (¢) induces a correlation between the death time and the censoring
time for the i th individual.
Following the derivations in [14], the marginal survivor function for mortality can be calculated as

(Vi) = E (S(xVi. Zi ) |Vi) = E {exp (—/O A2 4 8P Z,(w)] du) m-}

o0
exp{-Ag e ix} E %exp/ V(u)Z; (u)du|V,-} ,
0
=exp {~2g ¢""ix} exp{Kz(¥)}.
where ¥, (1) = —ﬂDl(u < x) and
X X X
Kz(y) = —/ pe’Vids +/ pe”Vi exp {[ I/I(U)dv} ds
0 0 K
= —pe?Vix 4 pe’Vi /x e BP9 g

0
1 e BPx

P

Therefore, the marginal hazard for mortality is

= pe?’Vi —Xx

dlog S(x|Vi) . p v 0Kz(¥)
W) = ———— =g - ———
(x|V3) i 0¢ ox
= I:)LOD —u (e_BDx — 1)] eV
= A5 (x)e”",

which is a standard Cox model with fixed covariates and baseline hazard, A3 (x) = A9 — M Px_ 1).
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