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Abstract

Painful vaso-occlusive crises (VOCs) are the hallmark of sickle cell disease (SCD); however, many patients

experience frequent daily pain that does not follow the pattern of typical VOCs. This pain of variable

severity, also referred as persistent pain in the SCD literature, contributes to significant morbidity and poor

quality of life and often fails to respond adequately to standard SCD therapies. In this article, we briefly

describe types of pain encountered in SCD with a special emphasis on persistent pain. We discuss altered

pain processing as a potential contributing mechanism, which may lead to development and maintenance

of persistent pain. We describe the advances in the non-SCD pain field that may help improve the

understanding of SCD pain. We highlight the need for further investigation in this area because some of

these patients with persistent pain may benefit from receiving adjuvant mechanism-based therapies used

successfully in other non-SCD chronic pain conditions.
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Pain in sickle cell disease

Sickle cell disease (SCD), an inherited hemoglobinopathy, is
characterized by the presence of hemoglobin S (HbS), which
results from the substitution of a valine for glutamic acid at
the sixth amino acid of the beta-globin chain on
chromosome 11 (1). Recurrent episodes of pain are the most
common morbidity associated with SCD and a leading cause
of visits to the emergency department (ED), hospitalizations,
and healthcare costs in SCD (2). Higher rates of admission
for pain are also associated with early mortality (3, 4). It is,
however, now recognized that chronic pain is highly preva-
lent in this population and is a major source of morbidity
(5). The Pain in Sickle Cell Epidemiology Study (PiSCES)
showed that adults reported pain at home during about 55
percent of the 31,017 days surveyed (5). Similarly, in a
study of children and adolescents with SCD, pain was
reported on 2,592 days of 18,377 diary days (6). In the Mul-
ticenter Study of Hydroxyurea in Sickle Cell Anemia

(MSH), at-home analgesics were used for SCD pain on 40
percent of diary days and during 80 percent of 2-week fol-
low-up periods, with oxycodone and codeine being used
most frequently (7).

Previous reviews of pain in SCD have generally described
four types of pain in the context of SCD such as acute
painful vaso-occlusive crises (VOCs), neuropathic pain,
chronic pain with identifiable cause, and chronic pain with-
out obvious pathology or persistent pain (8). This review
expands upon these characterizations with an emphasis on
the neurobiological mechanisms that may be contributing to
each of these types of pain.
Acute painful VOCs are the best characterized pain in

SCD which present as sudden onset of severe pain and are
often described as continuous and throbbing in nature. Acute
painful VOCs often lead to a visit to emergency department
or hospitalization and may be followed by other
complications such as acute chest syndrome, multi-organ
failure, or sudden death (9–11). The pathogenesis of VOC is
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multifactorial and includes sickling of the erythrocytes
caused by polymerization of sickle hemoglobin resulting in
vaso-occlusion, which leads to hypoxia, ischemia, and tissue
damage. Release of inflammatory mediators from injured tis-
sue, macrophages, mast cells, and platelets activates the
peripheral afferent nerves and leads to nociceptive pain (12–
15). Acute painful VOCs are treated with oral or parenteral
opioids and hydration and typically last for 4–7 days (8,
16). Pain-free periods between two consecutive episodes of
VOCs vary but appear to shorten with increasing age (17,
18). Risk factors for frequent VOC resulting in hospitaliza-
tions include older age, higher hematocrit, lower fetal hemo-
globin (HbF), and presence of alpha-thalassemia (19, 20).
Even though it is quite clear that vaso-occlusion can and

do cause pain, there is tremendous interindividual variability
in the pain experience across the individuals with SCD and
VOC (21, 22). A subgroup of patients are at increased risk
of high pain burden as shown by the Cooperative Study of
Sickle Cell Disease (CSSCD) where over 30% of pain epi-
sodes were experienced by 5% of patients (19). Additionally,
in some individuals, these acute episodes of pain are accom-
panied by clear evidence of hemolysis and other manifesta-
tions of active SCD, whereas in others there is no such
evidence of active disease (8). This disparity between the
degree of peripheral nociceptive input (in this case VOC)
and the presence or severity of pain an individual with SCD
is experiencing at any given point in time is currently not
understood.
In addition to acute VOCs, other end-organ damage can

also provide peripheral nociceptive input and cause pain.
Etiology of such chronic pain with an identifiable cause typi-
cally includes a ‘peripheral’ pathology such as avascular
necrosis of bone, infarcts of organs or tissues, and leg ulcers
(23, 24). This pain typically improves if the peripheral
pathology resolves (that is healing of an ulcer, surgical treat-
ment of avascular necrosis). Similarly, damage to or inflam-
mation of peripheral nerves resulting from vaso-occlusion
could provide ongoing peripheral nociceptive input and con-
tribute to pain also referred as neuropathic pain. There are
limited studies characterizing neuropathic pain in SCD,
which typically does not manifest itself until early or late
adulthood (25–28).
Finally, another type of pain that remains a challenge for

patients and physician alike is the intractable pain experi-
enced by the patients in between the episodes of VOCs.
For the purpose of this article, we refer it as chronic pain.
This type of pain, which does not appear to correlate with
the known markers of disease severity, is associated with
high somatic symptom burden (29) and responds poorly to
disease-modifying therapies such as hydroxyurea and
chronic red blood cell transfusions (8, 30). This type of
pain is often treated by patients at home with long- and
short-acting opioids without significant relief and leads to
intermittent ED visits or hospitalization for superimposed

acute episodes of pain (5). Occasionally, these patients
receive adjuvant therapies such as ketamine, gabapentin,
physical therapy, and acupuncture with variable relief
(31–33).

Recent advances in neurobiology of SCD pain

Efforts are being made to understand the pathophysiology
of persistent SCD pain, which remains incompletely
explained. Specifically, factors contributing to the transition
of pain from acute episodic nature of VOC pain typically
seen in children to persistent pain more common in adults
are not known. Preliminary studies support the role of
altered pain processing, a manifestation of neural plasticity,
in SCD pain.

Preclinical studies

Transgenic mouse model has provided new insights into
SCD pain. Mice expressing sickle hemoglobin exhibit pain
characteristics similar to those observed in patients with
SCD (34–36). Although some of the pain behaviors are
exaggerated by hypoxia/reperfusion (37), sickle mice also
appear to experience persistent pain in the absence of any
traumatic, vascular, or inflammatory insult (36). These
mice have increased sensitivity to nociceptive stimulus as
evidenced by heat and cold hyperalgesia and mechanical
hyperalgesia, which further increases with age. Further-
more, skin of sickle mice shows alteration in neurochemis-
try, nerve structure, and organization including fewer nerve
fibers and increased expression of calcitonin-gene-related
peptide (CGRP) and substance P (SP) along with up-regu-
lation of Toll-like receptor-4 (TLR4), interleukin-6 (IL-6),
STAT3, cyclo-oxygenase-2 (COX-2), and phospho-MAPK
and downregulation of l opioid receptor (MOR), changes
which have been shown to be associated with peripheral
and central sensitization (36, 38). In another study, Hillery
et al., showed that the transient receptor potential vanilloid
1 (TRPV1) channels, a mediator of thermal and mechani-
cal hyperalgesia, are functionally activated in the primary
afferents in skin–nerve preparations and in the isolated
dorsal root ganglia (DRG) of BERK sickle mice. A
TRPV1 channel antagonist A-425619 partially blocked the
behavioral hypersensitivity to mechanical stimuli and com-
pletely reversed the nociceptor sensitization (35). Interest-
ingly, substance P, which is known to sensitize TRPV1
channels, (39) is shown to be increased in the serum of
patients with SCD (40). These findings support the
hypothesis that various mechanisms including nociceptive,
neuropathic, and peripheral and central sensitization con-
tribute to SCD pain, and some of these mechanisms (neu-
ropathic and central and peripheral sensitization) could
contribute to pain in the absence of concurrent episodes of
hypoxia/vaso-occlusion.
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Clinical studies

Some of the findings of murine studies have been replicated
in humans, supporting the altered pain processing in patients
with SCD. Similar to murine model, children with SCD
demonstrated lower detection threshold and increased pain
sensitivity to both cold and heat compared with healthy
race-matched controls (34). In another study of quantitative
sensory testing (QST), children with SCD were less sensitive
to heat and cold detection at the thenar eminence and more
sensitive to cold pain at the forearm compared with healthy
children (41). These findings suggest the potential role of
altered pain sensitivity in SCD pain. Interestingly, similar to
the murine model, older age was associated with decreased
cold and heat pain thresholds. Epidemiologic studies have
long confirmed the increasing burden of pain with age for
the adults with SCD reporting pain 55% of time compared
with 9% in children with SCD (6, 17, 18, 20). This phenom-
enon likely indicates the neuroplasticity of nervous system
where functional and structural changes caused by repeated
nociceptive input from the VOCs occurring overtime result
in altered pain processing manifesting as increased pain
experience (38).

Lessons from non-SCD pain conditions and

future directions

Chronic persistent pain is a prominent symptom of many
non-SCDs, ranging from disorders where there is known
nociceptive input (such as, osteoarthritis, rheumatoid arthri-
tis, neuropathic pain) to conditions where individuals have
severe pain without any easily identifiable nociceptive input
(e.g., fibromyalgia). In many of these painful conditions,
while the disease processes are different, an underlying uni-
fying mechanism for pain can be identified.
First, it is important to understand that there is no chronic

pain condition where objective peripheral factors (e.g., the
degree of joint damage, inflammation, and nerve damage)
correlate well with the presence or severity of ongoing clini-
cal pain. Perhaps, the best-known example of this is chronic
low back pain, where most clinicians are aware that there is
a tremendous disparity between radiographic or MRI find-
ings and the presence or severity of pain. This is not the
exception- it is the rule. The same is true of almost all of
the chronic pain conditions. In cross-sectional studies, the
degree of radiographic or MRI evidence of abnormalities
correlates poorly with the presence or severity of pain in
osteoarthritis. This is also true of rheumatoid arthritis and
neuropathic pain. Most are unaware that in neuropathic pain
states such as painful diabetic peripheral neuropathy, less
than half of those who have objective evidence of neuropa-
thy experience pain. In fact, many diabetics with identifiable
neuropathy on nerve conduction studies have decreased sen-
sation rather than pain (42). Thus, in individuals with SCD,

we should not be surprised that even when there is an identi-
fiable peripheral nociceptive input (e.g., active disease and
likely VOC, avascular necrosis), some individuals will expe-
rience disproportionately higher or lower degree of pain.
The current thinking in the pain field suggests that these
large interindividual differences in pain sensitivity are lar-
gely responsible for these disparities. In both human and
animal studies, within any species, there are large interindi-
vidual differences in pain sensitivity that appear to be pri-
marily mediated by differential central nervous system
processing of nociceptive input.
Genetic and environmental factors are known to affect

sensitivity to pain and therefore pain experience. Temporal
influence of environmental ‘stressors’ such as early life
trauma, physical trauma, certain infections, and emotional
stress has been shown to be associated with the development
of either fibromyalgia or chronic fatigue syndrome (43–45).
Although these ‘stressors’ can trigger the development of
fibromyalgia and/or chronic fatigue syndrome, it occurs only
in approximately 5–10% of the exposed individuals, suggest-
ing that certain individuals are at risk for developing chronic
pain state. In fact, emerging evidence suggests that individu-
als at risk of developing chronic pain may exhibit character-
istics, which broadly represent a ‘pain-prone phenotype’
(46), and are portrayed in Fig. 1 (47). Although question of
association vs. causality exists for some of these variables,
these risk factors likely also play a role in SCD pain. Twin
studies have reported the heritability estimates of pain rang-
ing from 30% to 57%. (48, 49). Variability in the genes
encoding for receptors, enzymes, or transporter channels
such as GTP cyclohydroxylase, COMT, TRPV1, and
KCNS1 has been implicated in non-SCD painful conditions
(50–55); some of which have been examined in SCD pain
(35, 56–60).
Pain associated with SCD is unique. While it dominates the

clinical picture of SCD, differences and similarities exist
between SCD and non-SCD pain. Unlike most non-SCD con-
ditions associated with pain, SCD is caused by a genetic muta-
tion, leading to the main underlying pathology of red cell
sickling which affects multiple organ systems. Certain dis-
ease-modifying therapies such as hydroxyurea and chronic red
blood cell transfusion can effectively reduce the disease bur-
den, and bone marrow transplant can be curative (61–64). The
symptoms of pain can start as early as 3–6 months of age,
which is rare in non-SCD painful conditions; however, stress,
negative mood, anxiety, and depression are associated with
both SCD and non-SCD pain (65, 66). Individuals with persis-
tent SCD pain also exhibit features such as hyperalgesia and
allodynia, and many patients experience disproportionate
degree of pain (19, 28, 30). We suggest that similar to some
other categories of diseases with recurrent pain, individual
patients with SCD may have variable pain mechanisms at
play, a hypothesis that is currently being proposed in studies
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of SCD pain (28). SCD pain especially in adults likely reflects
a mixed pain state. This term implies that individuals may
have markedly different reasons for their pain. Some individu-
als may have pain primarily due to peripheral nociceptive
input (sickling, vaso-occlusion, and release of mediators of
inflammation), whereas in others, neuropathy, peripheral sen-
sitization, and central nervous system factors (central sensiti-
zation via augmented pain processing in spinal cord and brain)
may be playing an equally or even more prominent role in
their pain experience. Central pain terminology was originally
used to describe the pain resulting from a lesion in the CNS.
Recently, the term has expanded to include the pain resulting
from CNS dysfunction or mechanisms, which might contrib-
ute to the development or maintenance of pain including
important contributions from psychosocial aspects of pain per-
ception (67). The term central sensitization in the context of

chronic pain indicates increased sensitivity of CNS to periph-
eral afferent pain signals, which has been validated by newer
tools such as functional neuroimaging by providing objective
evidence of altered pain processing in many chronic pain con-
ditions (68, 69).
For several decades now, pain researchers have been sug-

gesting that it might be more appropriate to treat chronic
pain based on the underlying mechanism of pain in addition
to the disease that leads to the pain (70, 71). Using this type
of schema, pain can be mechanistically classified as periph-
eral/nociceptive, peripheral neuropathic/sensitization, and
central neuropathic/sensitization or centralized pain (Table 1)
(72). A point of emphasis is that any of these mechanisms
may be operative simultaneously in the same patient. To
treat the patient adequately, all potential mechanisms must
be identified in a given individual because the treatments

Pain prone phenotype (described in non-SCD disorders)
• Female gender
• Genetics
• Early life trauma
• Family history of chronic pain and mood disorders
• Personal history of chronic centrally mediated symptoms 

(fatigue, sleep disturbances, memory difficulties, psychological 
distress)

• Traits such as catastrophizing 
• Lower pain threshold and descending analgesic activity 

Exposure to stressors or acute peripheral nociceptive input 

Psychological and behavioral 
response to acute pain or 
stressor

New or different region of 
chronic pain Figure 1 Factors associated with risk of

developing chronic pain in non-SCD population.

With permission from Philips and Clauw (47).

Table 1 Mechanistic characterization of pain1

Peripheral/nociceptive Peripheral neuropathic/sensitization Central neuropathic/sensitization

Underlying mechanism Inflammation or mechanical

damage of tissues

Damage or dysfunction of peripheral nerves Altered central pain processing

Pain characteristics Throbbing, sharp, pounding, dull

Local

Burning, heavy sensation, or numbness along

the path of the affected nerve. Allodynia and

hyperalgesia

Hyperalgesia/allodynia

Diffuse pain

Response to therapy NSAID, opioid responsive Responds to both peripheral and centrally

acting pharmacological therapies,

gabapentinoids

Responsive to neuroactive

compounds altering levels of

neurotransmitters of pain

Classic examples Osteoarthritis

Rheumatoid arthritis

? SCD acute VOC

Diabetic neuropathic pain

Postherpetic neuralgia

SCD-related peripheral neuropathies

? SCD persistent pain

Fibromyalgia

Irritable bowel syndrome

TMJD

Tension headache

? SCD chronic pain

1Adapted from Phillips and Clauw with permission (72).
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that may work for these different types of pain are much dif-
ferent (68, 70, 71). It is possible that some individuals with
SCD have evidence of centralization of pain and may benefit
from adjuvant centrally acting treatments such as selective
serotonin and norepinephrine reuptake inhibitors (SSNRIs),
gabapentinoids, or tricyclics (73–75), whereas other individ-
uals may have peripheral contributions to their pain that
may respond well to therapies directed at lowering the poly-
merization of sickle hemoglobin and vaso-occlusion.
Recently, a phase I study of FDA-approved drug for treat-
ment of psychotic conditions, trifluoperazine, a known inhib-
itor of CaMKIIa implicated in neuropathic pain has shown
promising results in SCD (76).
In conclusion, the etiology of chronic pain in SCD is

likely multifactorial. We propose that similar to non-SCD
chronic pain, these patients may have additional mechanisms
of pain at play and may benefit from adjuvant-mechanism-
based therapy. However, as we adopt and borrow these con-
cepts from non-SCD pain research, it is crucial to validate
their applicability to SCD, which has an obvious etiology
for pain, caused by the presence of sickle gene and sickle
hemoglobin.
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