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Cutaneous T-cell lymphoma: 2014 Update on diagnosis,
risk-stratification, and management

Ryan A. Wilcox*

Disease overview: Cutaneous T-cell lymphomas are a heterogenous group of T-cell lymphoproliferative
disorders involving the skin, the majority of which may be classified as Mycosis Fungoides (MF) or S�ezary
Syndrome (SS).
Diagnosis: The diagnosis of MF or SS requires the integration of clinical and histopathologic data.
Risk-adapted therapy: TNMB (tumor, node, metastasis, and blood) staging remains the most important
prognostic factor in MF/SS and forms the basis for a “risk-adapted,” multidisciplinary approach to treatment.
For patients with disease limited to the skin, expectant management or skin-directed therapies is preferred,
as both disease-specific and overall survival for these patients is favorable. In contrast, patients with
advanced-stage disease with significant nodal, visceral or blood involvement are generally approached with
biologic-response modifiers or histone deacetylase inhibitors prior to escalating therapy to include systemic,
single-agent chemotherapy. Multiagent chemotherapy (e.g., CHOP) may be employed for those patients with
extensive visceral involvement requiring rapid disease control. In highly selected patients, allogeneic stem-
cell transplantation may be considered.
Am. J. Hematol. 89:838–851, 2014. VC 2014 Wiley Periodicals, Inc.

� Disease Overview
Primary cutaneous lymphomas are a heterogenous group of extranodal non-Hodgkin lymphomas, which, by definition, are largely confined to

the skin at diagnosis. The European Organization for Research and Treatment of Cancer (EORTC) and World Health Organization (WHO) pub-
lished a consensus classification for cutaneous lymphomas in 2005 [1]. In contrast to nodal non-Hodgkin lymphoma, most of which are B-cell
derived, �75% of primary cutaneous lymphomas are T-cell derived, two-thirds of which may be classified as Mycosis fungoides (MF) or S�ezary
Syndrome (SS) [1–3]. The incidence of cutaneous T-cell lymphomas (CTCL) has been increasing and is currently 6.4 per million persons, based
on Surveillance, Epidemiology, and End Results registry data, with the highest incidence rates being reported among males (male:female incidence
rate ratio 1.9) and African-Americans (incidence rate ratio 1.5) [2]. While CTCL may occur in children and young adults, this is very uncommon
and often associated with histopathologic variants of MF [4–6]. The incidence of CTCL increases significantly with age, with a median age at diag-
nosis in the mid-50’s and a four-fold increase in incidence appreciated in patients over 70 [2,6].

Epidemiological studies have failed to consistently identify environmental or virally associated risk factors for most CTCL subtypes, with the nota-
ble exception of HTLV-1 infection in adult T-cell leukemia/lymphoma [7]. Recent studies, however, have suggested that medications may induce an
antigen-driven T-cell lymphoproliferation or dyscrasia [8,9]. A recent case series examined a subset of hypertensive MF/SS patients using hydrochlor-
othiazide. When compared with hypertensive MF/SS patients not using hydrochlorothiazide, these patients were more likely to have Stage I disease,
and were less likely to have a clonal TCR gene rearrangement [9]. More importantly, in a subset of these patients, a complete or partial response was
observed upon discontinuation of hydrochlorothiazide. In three patients, CTCL recurred upon reinitiating hydrochlorothiazide, and subsequently
receded with its discontinuation. While these findings could be interpreted as a drug reaction, more specifically a drug-induced pseudolymphoma,
the authors of this single center study speculate that hydrochlorothiazide may be associated with antigen-driven T-cell lymphoproliferation and could
serve as a trigger for MF. Consequently, a therapeutic trial off hydrochlorothiazide may be warranted in selected patients. Moreover, as a variety of
other medications may initiate a reaction mimicking MF, a careful medication history should be performed in these patients with a trial off any sus-
pected offending drug. Individual genetic features have also been implicated in the development of CTCL. Rare reports of familial MF and the detec-
tion of specific HLA class II alleles in association with both sporadic and familial MF suggest that host genetic factors may contribute to MF
development [10–12]. While the role of environmental and host genetic factors in CTCL pathogenesis remains unclear, significant insights into dis-
ease ontogeny, molecular pathogenesis, and disease-associated immune dysregulation have been realized.

Cell of origin

The overwhelming majority of skin-resident T cells are CD45RO1 memory T cells expressing the skin-homing addressin CLA, which binds E-
selectin on postcapillary venules in the skin and is required for lymphocyte rolling [13]. Skin-resident T cells highly express the chemokine
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receptors CCR4, CCR6, and CCR10, among others, that are required
for their migration into the skin [13–15]. In contrast to central mem-
ory T cells (TCM) expressing CCR7 and L-selectin, that are required
for lymph-node homing and circulation in the peripheral blood,
effector memory T cells (TEM) form a persistent population of tissue-
resident cells capable of rapidly responding to antigenic rechallenge
and comprise 80% of T cells residing in normal skin [13]. Immuno-
phenotyping studies demonstrate that malignant T cells in patients
with leukemic CTCL variants (SS) express CCR7 and L-selectin,
resembling TCM, while the malignant clone in MF lesions resembled
TEM [16]. This fundamental difference in the putative cell of origin
between SS (TCM derived) and MF (TEM derived) is consistent with
their distinct clinical behavior, as TCM may be found in both the
peripheral blood, lymph node, and skin and are long-lived cells resist-
ant to apoptosis, while skin-resident TEM cells fail to circulate in
peripheral blood, remaining fixed within the skin [16]. The conten-
tion that MF and SS originate from different T-cell subsets is consist-
ent with comparative genomic hybridization (CGH) and gene-
expression profiling data demonstrating that these CTCL subtypes are
genetically distinct [17,18].

Regulatory T (Treg) cells expressing the transcription factor FoxP3
are important in the maintenance of self-tolerance and form a minor
subset of skin-resident T cells. Heid et al. demonstrated that the
malignant T cells in a subset of S�ezary patients may be derived from
Treg cells, as the malignant clone in these patients not only expressed
FoxP3 and suppressed conventional T cells, but possessed a demethy-
lated FoxP3 promoter [19]. Uncertainties remain as to whether or
not a subset of S�ezary patients harbor a clone that is derived from
bona fide skin resident Treg cells, or whether these cells aberrantly
acquire a Treg phenotype during disease evolution [20]. For example,
immature dendritic cells, which are prevalent in CTCL [21], may
upregulate FoxP3 expression in malignant T cells [22]. Therefore, a
subset of SS patients appears to harbor a Treg-derived (or “Treg-
like”) clone, although the prognostic and therapeutic implications of
this observation remain to be defined.

In contrast to Treg cells, which represent a minority of skin-
resident T cells, the majority of effector T cells in the skin are effector
T cells and produce cytokines characteristic of distinct effector T-cell
subsets, including Th1, Th2, and Th17 cells. This effector T-cell het-
erogeneity raises the possibility that future studies may subclassify
CTCL based on these T-cell subsets [23]. Of note, MF/SS is associated
with the expression of Th2-associated genes (e.g., GATA-3) and the
production of Th2-associated cytokines (e.g., IL-4, IL-5, and IL-13),
raising the possibility that a significant subset of patients may harbor
Th2-derived clones [24–28]. Alternatively, recurrent mutations acti-
vating specific signaling pathways (e.g., NFAT, NFjB, and JAK/
STAT) may promote the acquisition of a particular phenotype inde-
pendent of the cell of origin [29]. T-cell differentiation is associated
with considerable plasticity. Therefore, the phenotype of malignant T
cells may be both heterogeneous and highly dependent upon cues
within the microenvironment [22,30]. As the genetic landscape and
the putative cell of origin are further defined in subsets of CTCL,
including MF/SS, one may anticipate that this data may have a signif-
icant impact on the classification, risk-stratification, and treatment of
these diseases.

Immunopathogenesis

The establishment of long-term CTCL cell lines is challenging, as
these cells frequently undergo spontaneous cell death during in vitro
culture [31,32] (and personal observation). Therefore, the resistance
to apoptosis observed in vivo is unlikely due to an intrinsic resistance
to apoptosis alone. Rather, extrinsic factors present within the tumor
microenvironment likely contribute to the growth and survival of

malignant T cells, a contention supported by the observation that
cytokine supplementation or the provision of T-cell costimulatory sig-
nals supports the growth of malignant T cells in vitro [31,33,34].
Both gene-expression profiling and immunohistochemistry-based
studies have recently highlighted the important contribution of non-
malignant cells, including monocyte-derived lymphoma-associated
macrophages, in the pathogenesis of both Hodgkin and non-Hodgkin
lymphomas [35–37]. Similarly, malignant T cells in the skin are fre-
quently associated with dendritic cells and immunohistochemistry-
based studies have clearly demonstrated an abundance of both
lymphoma-associated macrophages and dendritic cells, many of
which may be actively recruited into the tumor microenvironment by
tumor-derived chemokines [21,38]. These monocyte-derived cells pro-
mote tumorigenesis both directly, by the production of factors, which
promote tumor cell growth and survival, and indirectly, by supporting
tumor angiogenesis and suppressing host antitumor immunity [39].
For example, monocyte-derived dendritic cells supported the long-
term survival of malignant T cells during in vitro culture [32]. More
recently, peripheral blood monocytes (and their progeny) were shown
to support the growth of malignant T cells in vitro, confer resistant
to chemotherapy, and promote tumor engraftment in immunodefi-
cient mice [21]. Lymphoma-derived IL-10, which is upregulated in
patients with advanced-stage, refractory disease [40], impairs the mat-
uration of lymphoma-associated dendritic cells, rendering them
immunologically incompetent, thus promoting escape from host anti-
tumor immune surveillance. In addition, lymphoma-associated den-
dritic cells were observed to express the T-cell coinhibitory ligand B7-
H1 (PD-L1 and CD274), which directly inhibits the proliferation of
tumor-specific T cells, and indirectly impairs antitumor immunity by
promoting the induction of suppressive Treg cells [41]. Therefore,
lymphoma-associated macrophages and dendritic cells appear to play
an important role in CTCL while contributing to the evasion and
suppression of host antitumor immunity.

In addition to the tumor microenvironment’s role, widespread
impairment of cellular immunity—the tumor “macroenvironment”—
has long been appreciated in CTCL and contributes to the significant
morbidity and mortality associated with infectious complications
observed in CTCL. Approximately 50% of patients with CTCL, par-
ticularly those with advanced-stage disease, will ultimately succumb
to infectious complications [42–44]. Both quantitative and qualitative
defects in natural killer (NK) cell [45,46], dendritic cell [47], and T
cell-mediated [48–50] immunity are observed in CTCL. In addition,
CTCL is associated with a significant loss of the T-cell repertoire,
analogous to that observed in HIV infection. T-cell receptor (TCR)
diversity within multiple TCR beta-variable (Vb) families was ana-
lyzed using complementarity-determining region 3 (CDR3) spectra-
typing and combined with a quantitative analysis of TCR-Vb usage
by flow cytometry [51]. In patients with advanced-stage disease, and
half of patients with limited-stage disease, a dramatic loss of TCR
diversity was observed. Whether this observation may be explained
by tumor-mediated suppression of non-malignant T cells, diminished
thymic output of na€ıve T cells and compensatory homeostatic expan-
sion of oligoclonal peripheral T cells, or some other mechanism, is
unknown [40]. As lymphopenia is an adverse prognostic factor in
many hematologic malignancies [52–57], and undoubtedly contrib-
utes to the infectious complications observed in CTCL, improved
understanding of the causative mechanism(s) leading to this dramatic
loss of T-cell diversity may have significant therapeutic implications.

Molecular pathogenesis

Recurrent chromosomal translocations involving the IgH gene on
chromosome 14 lead to the aberrant expression of antiapoptotic (e.g.,
Bcl-2) and oncogenic (e.g., cyclin D1, Myc) proteins in B-cell
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lymphomas. These recurrent translocations arise in peripheral B cells
undergoing class-switch recombination and somatic hypermutation.
In contrast, the TCR gene loci, while involved in recurrent chromo-
somal translocations in precursor T-cell lymphoblastic leukemias/lym-
phomas, are rarely involved in recurrent translocations in mature T-
cell lymphoproliferative disorders [58,59]. With the exception of
translocations involving the interferon regulatory factor 4 (IRF4) gene
(also known as MUM1) in a subset of cutaneous anaplastic large cell
lymphomas, recurrent chromosomal translocations are infrequently
observed in CTCL [60–64]. Despite this, a number of signaling path-
ways regulating cell-cycle progression and survival have been impli-
cated in CTCL pathogenesis.

The NF-kB family of transcription factors (i.e., c-rel, p65/RelA,
RelB, p50/p105, and p52/p100) plays an important role in normal
lymphocyte development, activation and differentiation via the regula-
tion of target genes involved in cell growth, survival, and cytokine
production. Multiple mechanisms, well described in B-cell lympho-
mas, lead to constitutive NF-kB activation, promoting lymphomagen-
esis [65]. In a similar fashion, NF-kB is constitutively activated in
CTCL [66–68]. Immunohistochemical analysis of MF cases demon-
strated nuclear localization of p65/RelA in over 90% of the cases
examined [66]. Furthermore, pharmacologic NF-kB inhibition in
CTCL cell lines decreases NF-kB DNA binding activity, thus promot-
ing cell death [66–69]. While the molecular mechanisms leading to
constitutive NF-kB activation in CTCL are poorly understood, the
observation that IKK inhibition downregulates NF-kB activity impli-
cates upstream IKK-activating elements [67,68].

The signal transducers and activators of transcription (STATs) are
a family of six transcription factors which become phosphorylated by
one of four upstream receptor-associated Janus kinases (JAKs) follow-
ing cytokine stimulation. Nuclear localization and DNA-binding of
phosphorylated STAT3 has been convincingly demonstrated in CTCL
[70,71]. Following nuclear translocation, STAT3 directly regulates a
number of target genes in CTCL, including regulators of apoptosis
(e.g., Bcl-2/Bax), cytokines (e.g., IL-5 and IL-13), and suppressors of
cytokine signaling (e.g., SOCS). In addition, STAT3 indirectly regu-
lates gene expression by inducing the expression of DNA methyl-
transferase 1 (DNMT1), which promotes the epigenetic silencing of
tumor suppressor genes [72]. Not surprisingly then, pharmacologic
inhibition of STAT3 promotes apoptosis in CTCL [70,73–75]. Cyto-
genetic gains involving STAT5A and STAT5B or their activation in
response to cytokines present within the tumor microenvironment
suggests a pathogenic role for other STATs [76–78].

Normal T cells undergo a controlled process of activation-induced
cell death following antigen-dependent activation and proliferation,
thus maintaining lymphocyte homeostasis. Extrinsic death receptors,
including Fas (CD95), play an important role in regulating this process.
A number of mechanisms, including promoter methylation [79–81],
gene mutations [82], and loss of the long arm of chromosome 10 [83]
result in diminished Fas expression in CTCL and reduced sensitivity to
apoptosis. In addition, promoter methylation and epigenetic instability
leading to the inactivation of many tumor suppressor genes, including
those involved in the induction of apoptosis, appear to be commonly
employed mechanisms of lymphomagenesis in CTCL [84].

In addition to multiple defects in apoptosis, aberrant cell-cycle reg-
ulation, including inactivation of the CDKN2A-CDKN2B locus, is fre-
quently observed in CTCL [85,86]. Cyclin upregulation, including
cyclinD1, and loss of RB1 have also been described [87]. As gene-
expression profiling and next-generation sequencing technologies are
employed, additional pathogenic pathways, including those involving
transcription factors regulating T-cell differentiation [27,28], c-MYC
[88,89], RAS/RAF/MEK signaling [90], among others [83,91], may be
identified in subsets of CTCL. For example, a gain of function muta-
tion (S345F) in the phospholipase C, gamma 1 (PLCG1) gene was

recently observed in 19% of CTCL cases [29]. This mutation was
associated with NFAT activation, and suggests that calcineurin inhibi-
tors may be a rationale therapeutic approach in these patients.

� Diagnosis
Mycosis fungoides

The definitive diagnosis of MF, particularly patch/plaque stage dis-
ease, is challenging, as many of its clinical and pathologic features are
nonspecific. Many patients will have had symptoms attributed to
eczema or parapsoriasis for years prior to obtaining a definitive diag-
nosis. The median time from symptom onset to diagnosis in retro-
spective series is 3–4 years, but may exceed four decades [92–94].
Given the importance of clinicopathological correlation in the diagno-
sis of MF and the variable association of specific histologic findings
with the diagnosis, biopsy reports are not infrequently “suggestive of”
the diagnosis. This occasional uncertainty implied in biopsy reports
and apparent lack of a more definitive histopathologic diagnosis may
be a source of frustration for clinicians unfamiliar with the challenges
associated with rendering a pathologic diagnosis of MF. While a
definitive diagnosis of MF may be made on the basis of clinical and
histopathologic features alone, determination of T-cell clonality and
assessment for the aberrant loss of T-cell antigen expression by
immunohistochemical staining for CD2, CD3, CD5, and CD7 are
useful ancillary studies in the diagnosis of MF (and SS). PCR-based
methods are able to detect clonal rearrangements of the TCR in
formalin-fixed, paraffin-embedded biopsy specimens [95,96]. PCR-
based methods, while sensitive, should be interpreted with caution, as
clonal TCR gene rearrangements may be detected in normal elderly
individuals and in patients with benign dermatoses or other disease
states [97–101]. However, detection of identical clones from two dif-
ferent sites is quite specific for MF [102]. The extent to which MF/SS
may be preceded by a premalignant state, analogous to monoclonal
B-cell lymphocytosis or monoclonal gammopathy of undetermined
significance, is debatable and poorly defined [103]. The malignant
lymphocytes in MF/SS are usually CD31CD41 and CD82, but fre-
quently lose the expression of other pan-T-cell antigens. Therefore,
demonstration of a significant population of cells lacking CD2, CD5,
and/or CD7 expression, either within the entire lesion or the epider-
mis alone, is highly specific (specificity >90%) for MF in most
reported series [104,105]. Clinically, patch/plaque stage MF is fre-
quently characterized by persistent and progressive lesions that
develop in a “bathing suit” distribution and vary in size, shape, and
color. These lesions are frequently large (>5 cm), pruritic and multi-
focal in “classical” MF. However, a broad range of MF variants have
been described with differences in tropism (e.g., follicular MF), distri-
bution (e.g., palmoplantar MF), pigmentation (e.g., hypopigmented
and hyperpigmented variants) and focality (e.g., unilesional MF),
some of which are formally recognized in the WHO-EORTC classifi-
cation [1,106]. Given the need for uniform diagnostic criteria in MF,
the International Society for Cutaneous Lymphoma (ISCL) recently
proposed a point-based diagnostic algorithm, which integrates clini-
cal, histopathologic, and immunophenotyping data with an assess-
ment of T-cell clonality [107].

S�ezary syndrome

Traditionally, SS is defined as a leukemic form of CTCL associated
with erythroderma. A series of studies in the early to mid-20th cen-
tury, beginning with Sezary’s initial landmark observation in 1938,
identified a population of large lymphocytes in the peripheral blood
with grooved, lobulated (i.e., “cerebriform”) nuclei in patients with
MF or SS [108–113]. As in other chronic lymphoproliferative disor-
ders, the Sezary cell count is preferably expressed in absolute terms,
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with �1000 cells/ml classified as B2 disease in the current ISCL/
EORTC TNMB staging classification. The morphologic detection of
Sezary cells in the peripheral blood is not specific for CTCL, as Sezary
cells may be found in peripheral blood from normal donors and in
benign conditions [114–116]. The histologic findings in the skin often
resemble those observed in MF, with less prominent epidermotrop-
ism, while lymph node involvement is characterized by complete
effacement of the nodal architecture by infiltrating Sezary cells [117].

In SS, clonal T cells are generally CD31CD41 and CD82 by multi-
color flow cytometry [118–121]. As in MF, the aberrant loss of pan-
T-cell antigens, including CD2, CD3, CD4, CD5, and CD7 is fre-
quently observed [120,122,123]. Of these, the aberrant loss of CD7
expression is most common, being observed in approximately two-
thirds of cases [122,124,125]. Loss of CD26 expression is also useful
in the identification of Sezary cells, being observed in the majority of
cases [121,126–128]. More recently, the aberrant expression of the
MHC class I-binding, killer immunoglobulin-like receptor CD158j,
normally expressed by NK cells, was described in the majority of
patients examined with SS [129,130]. Molecular studies, including
detection of a clonal TCR gene rearrangement by PCR and the pres-
ence of a clonal cytogenetic abnormality, provide evidence of T-cell
clonality. An alternative approach to demonstrate T-cell clonality
incorporates multicolor flow cytometry using a panel of antibodies
specific for various TCR beta-chain variable region family members
(TCR-Vb) [131–133]. This approach is successful in identifying a clo-
nal population of T cells if this population is significantly higher than
the background frequency of polyclonal T cells harboring the same
Vb chain [131,132]. Clark et al. recently observed that lymphocytes
isolated from either peripheral blood or skin lesions of CTCL patients
contained a population of cells with high forward and side scatter
characteristics on flow cytometric analysis [134]. A similar population
of so-called high-scatter T cells (THS) was not observed in samples
obtained from patients with benign conditions. More importantly,
these high-scatter T cells, upon careful immunophenotyping and
analysis of clonal TCR-Vb chain expression, were convincingly
shown to represent the malignant T cell clone. While additional con-
firmatory studies are warranted, detection of high-scatter T cells may
be an easily performed method to detect a clonal T-cell population in
patients with limited-stage MF and to monitor the response to
therapy.

The currently proposed ISCL criteria for SS integrate clinical, his-
tologic, immunophenotyping, and molecular studies. In patients with
erythroderma, criteria recommended for the diagnosis of SS by the
ISCL include the following: absolute sezary count �1000/ml, a CD4/
CD8 ratio �10 (due to the clonal expansion of CD41 cells), aberrant
expression of pan-T-cell antigens, demonstration of T-cell clonality
by Southern blot or PCR-based methods, or cytogenetic demonstra-
tion of an abnormal clone [120]. At a minimum, the WHO-EORTC
recommends the demonstration of T-cell clonality in combination
with the above-mentioned criteria for the diagnosis of SS [1]. In addi-
tion to the ISCL criteria, the most recent WHO classification requires
erythroderma, generalized lymphadenopathy, and clonally related T-
cells (S�ezary cells) in the skin, peripheral blood, and lymph nodes.
On rare occasions, SS may be preceded by a prior history of classic
MF. The ISCL recommends that such cases be designated as “SS pre-
ceded by MF.” Conversely, patients with MF, but without erythro-
derma, may meet hematologic criteria for SS. In these cases, the
designation “MF with leukemic involvement” is recommended.

Non-MF/SS subtypes of CTCL

An important goal during a patient’s initial diagnostic evaluation is
to distinguish non-MF/SS CTCL subtypes from MF/SS, as the natural
history, prognosis, and treatment approach for each of the non-MF/
SS lymphomas is highly variable. A detailed description of these

CTCL subtypes is beyond the scope of this update, but the salient fea-
tures of each have been recently summarized [1,135].

� Risk-Stratification
Staging

In contrast to many other lymphoproliferative disorders in which
cytogenetic and laboratory findings play a prominent role in risk
stratification, TNMB (tumor, node, metastasis, and blood) staging
remains an important prognostic factor in MF/SS and forms the basis
for a “risk-adapted” approach to treatment. In 2007, the ISCL and
EORTC revised the TNMB staging of MF/SS [136]. Patients with
only patches and plaques have Stage I disease, but may be further
divided into Stage IA (<10% body surface area involved or T1) or
Stage IB (>10% body surface area involved or T2) based on the
extent of skin involvement. For practical purposes, the area of one
hand (including both palm and digits) represents �1% of body sur-
face area. Current staging and diagnostic recommendations do not
require a biopsy of clinically normal lymph nodes; however, an exci-
sional biopsy of any abnormal lymph nodes (�1.5 cm in diameter or
firm/fixed) is recommended, with preference being given either to the
largest lymph node draining an area of skin involvement or to the
node with the greatest standardized uptake value on FDG-PET imag-
ing. In current practice, two pathologic staging systems are used to
classify the extent of nodal involvement. In the Dutch system, lymph
nodes are pathologically graded based on the presence of large cere-
briform nuclei (>7.5 mm) and the degree of architectural effacement
[137]. In contrast, the NCI-VA classification uses the relative number
of atypical lymphocytes (not size), along with nodal architecture to
determine the extent of nodal involvement [138,139]. Patients with
patch/plaque stage disease (T1/T2) and architectural preservation of
any clinically abnormal lymph nodes are classified as Stage IIA. Col-
lectively, patients with Stage I and IIA disease have “limited-stage”
disease, as the overall survival in these patients is measured in deca-
des, with survival in patients with Stage IA disease resembling that of
normal age-matched controls [6,92,93]. At diagnosis, the majority of
MF patients will have limited-stage disease [6]. In contrast, patients
with tumor stage disease (T3), erythroderma (T4), nodal involvement
characterized by partial or complete architectural effacement (N3),
visceral metastases (M1), or significant leukemic involvement (B2)
have “advanced-stage” disease. Detection of a clonal TCR gene rear-
rangement by PCR, which has been incorporated into the revised
ISCL/EORTC node (N) and blood (B) staging classification, is an
adverse prognostic factor [6,140–143]. Unfortunately, median surviv-
als from �1–5 years are observed in these patients with more exten-
sive disease [6]. The revised ISCL/EORTC staging for MF/SS is
summarized in Table I.

A recently reported retrospective study, which included 1,398 MF
patients, 71% with patch/plaque stage disease and 104 SS patients has
validated the revised ISCL/EORTC staging classification [6]. On uni-
variate and multivariate analyses, the revised T, N, M, and B classifi-
cation were significantly associated with overall and disease-specific
survival. The median survival, disease-specific survival and risk of dis-
ease progression, by clinical stage, are summarized in Table I. In
addition to staging, male gender, increasing age, an elevated LDH
and the folliculotropic variant of MF were also independently associ-
ated with poorer overall and disease-specific survival. In contrast to
previous reports highlighting the aggressive clinical course associated
with large cell transformation [144–148], defined as the presence of
large, atypical lymphocytes comprising at least 25% of the total
lymphoid infiltrate, large cell transformation was not an independent
predictor of overall or disease-specific survival, but was associated
with a higher risk (hazard ratio5 3.32) of disease progression [6].
Given the importance of the TNMB classification in risk stratification
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and defining disease burden, the ISCL/EORTC recommends its use in
defining the initial, maximum, and current burden of disease, which
will ultimately play an important role in the selection of either skin-
directed or systemic therapies [136].

Recognizing that the staging system used for MF/SS is less helpful
for non-MF/SS cutaneous lymphomas, a new TNM classification was
also proposed for these CTCL variants [149]. Due to the significant
heterogeneity of these lymphomas, this staging system does not pro-
vide prognostic information, but is intended to provide a uniform
description of the disease burden.

Cytogenetics

In contrast to some B-cell lymphoproliferative disorders, like
chronic lymphocytic leukemia and multiple myeloma, for which
gene-expression profiling and cytogenetic findings have important
prognostic implications, risk-stratification in CTCL based on cytoge-
netic findings has only recently been described, is poorly understood,
and consequently is not routinely performed in clinical practice.

Shin et al. performed a gene expression profiling analysis on
lesional skin biopsy specimens obtained from 62 CTCL patients and
identified three distinct gene expression clusters that were prognosti-
cally important [40], that were later confirmed by RT-PCR analysis
[150]. The first cluster was associated with the upregulation of genes
involved in T-cell activation, homing and tumor necrosis factor sig-
naling. This cluster conferred an inferior event-free survival when
compared with the other two clusters. The second cluster, associated
with the upregulation of genes involved in keratinocyte and epidermal
proliferation and differentiation, was comprised largely of patients
with limited-stage disease and was, not surprisingly, associated with
superior event-free survival. Cluster 3, associated with an event-free
survival intermediate between the first two clusters, was associated
with the upregulation of genes involved in keratinocyte function and
WNT signaling.

Array-CGH techniques have revealed chromosomal copy number
alterations that are prognostically relevant. First, an inverse associa-
tion between survival and the absolute number of copy number alter-
ations, reflecting genomic instability, has been observed in both
tumor-stage MF and SS [151,152]. For example, in a cohort of 28 SS
patients, the presence of fewer than 3 copy number alterations was
associated with a median overall-survival of 93 months, compared
with a median overall-survival of 67 months for those with 3 or more
copy number alterations [151]. In addition to genomic complexity,
specific chromosomal gains/losses have also been associated with infe-
rior survival. Unfortunately, many of these studies are small and hin-
dered by the inclusion of multiple histologies. For example, in a
cohort of 58 patients with transformed MF, SS, or cutaneous anaplas-
tic large cell lymphoma (cALCL), loss of the CDKN2A-CDKN2B
locus (at 9p21) was associated with inferior overall survival that was

highly significant. However, 9p21 loss was only found in a single
patient with cALCL. Therefore, when these patients were omitted
from analysis, the loss of 9p21 was associated with decreased overall
survival that approached, but did not reach, statistical significance
[86]. Despite this, the adverse prognostic significance of 9p21 loss is
supported by multiple patient cohorts including both MF and SS
[17,18,152]. Additional cytogenetic abnormalities, involving gains of
chromosomes 1q and 8q and losses of chromosome 10q, have been
associated with inferior survival [135].

� Treatment of Limited-Stage MF
As the majority of CTCL patients present with patch/plaque stage

MF and have an excellent prognosis, the initial goal of therapy is to
improve symptoms and quality of life while avoiding treatment-
related toxicity. For many patients, this may involve either expectant
management (i.e., “watch and wait”) or skin-directed therapies. A
randomized trial comparing early combined modality therapy, includ-
ing both radiation and multiagent chemotherapy (cyclophosphamide,
doxorubicin, etoposide, and vincristine), with sequential topical thera-
pies demonstrated that combined-modality therapy, while associated
with a superior complete response rate, did not translate into
improvements in disease-free or overall survival and was associated
with significant toxicity [153]. Therefore, patients with limited-stage
disease who require therapy are best approached with skin-directed
therapies, usually under the direction of a dermatologist and/or radia-
tion oncologist. Excellent reviews and treatment guidelines are avail-
able [135,154–159].

� Treatment of Advanced-Stage MF/SS
Overview

Patients with advanced-stage MF/SS require a multidisciplinary
approach, as various combinations of skin-directed therapies,
biologic-response modifiers, and ultimately the sequential use of sys-
temic chemotherapeutic agents are frequently employed in the man-
agement of these patients. As for limited-stage disease, multiagent
chemotherapy, with only few exceptions, is generally not appropriate
[153]. As summarized in Fig. 1, a “risk-adapted” stage-based
approach is adopted, with biologic-response modifiers (e.g., bexaro-
tene and interferon-alpha) and histone deacetylase (HDACs) inhibi-
tors (e.g., vorinostat) generally preferred prior to escalating therapy
to include systemic chemotherapy. Therapeutic decisions are indi-
vidualized and based on a patient’s age, performance status, extent
of disease burden, the rate of disease progression, and previous
therapies. The concise treatment algorithm provided in Fig. 1 is
consistent with published treatment guidelines and expert opinion
[154–159].

TABLE I. ISCL/EORTC Staging

Stage

TNMB classification

Median OS (years)

10-Year(6)

T N M B OS (%) DSS (%) RDP (%)

IA 1 0 0 0,1 35.5 88 95 12
IB 2 0 0 0,1 21.5 70 77 38
IIA 1,2 1 0 0,1 15.8 52 67 33
IIB 3 0–2 0 0,1 4.7 34 42 58
IIIA 4 0–2 0 0 4.7 37 45 62
IIIB 4 0–2 0 1 3.4 25 45 73
IVA1 1–4 0–2 0 2 3.8 18 20 83
IVA2 1–4 3 0 0–2 2.1 15 20 80
IVB 1–4 0–3 1 0–2 1.4 18 (5 year) 18 (5 year) 82 (5 year)

DSS: disease-specific survival; OS: overall survival; RDP: risk of disease progression.
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Bexarotene

The endogenous retinoids all-trans retinoic acid and 9-cis retinoic
acid (i.e., vitamin-A-derived compounds) regulate a diverse array of
biologic processes, ranging from embryonic development to cell
growth, differentiation and survival, upon binding two families of ste-
roid hormone receptors, the retinoic acid receptors (RAR) and reti-
noid X receptors (RXR). Upon forming homodimers or heterodimers,
these receptors recruit various nuclear corepressor or coactivator pro-
teins depending whether or not they are bound by ligand. Multiple
RAR retinoids have been used in MF/SS, either topically or systemi-
cally (reviewed in [160,161]), with response rates exceeding 50%.
However, in 1999 the oral RXR-selective “rexinoid” bexarotene was
FDA approved for CTCL and was later approved as a topical gel for-
mulation. Laboratory studies demonstrate that bexarotene promotes
cell cycle arrest and apoptosis in CTCL cell lines [162,163]. In a mul-
ticenter phase II–III study, 94 patients with advanced-stage CTCL

who had been previously treated with a median of five prior thera-
pies, the vast majority of whom had disease refractory to at least one
prior systemic therapy, received at least 300 mg/m2 of oral bexarotene
daily [164]. Among patients treated at the 300 mg/m2 dose, an overall
response rate of 45% was observed, only 2% of which were complete.
While an improved overall response rate was noted with the use of
higher doses, this difference was not statistically significant, and dose-
limiting toxicity was far more common (50 vs. 89%) in these patients.
While a dose-response relationship is likely, the 300 mg/m2 dose
appears to provide the optimal risk-benefit ratio. The most common
toxicities associated with therapy were hypertriglyceridemia (in 82%)
and central hypothyroidism (29%). Myelosuppression is infrequent
and usually uncomplicated. Pancreatitis secondary to hypertriglyceri-
demia may be rarely observed, but is reversible upon discontinuation
of treatment. Therefore, a baseline lipid panel and TSH should be
obtained prior to the initiation of therapy. In one retrospective study,

Figure 1. Approach to treatment of advanced-stage MF/SS. Abbreviations: MTx: methotrexate; RIC: reduced-intensity conditioning; SDT: skindirected therapy;
TSEBT: total skin electron beam therapy. Clinical trial participation, whenever possible, is encouraged.
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all patients treated with bexarotene developed hyperlipidemia and
hypothyroidism, frequently within weeks of initiating treatment [165].
Consequently, use of lipid-lowering agents (e.g., fenofibrate) and low-
dose levothyroxine (e.g., 50 mg) prior to initiating bexarotene is gen-
erally recommended [166–168]. In clinical practice, bexarotene is fre-
quently initiated at a lower dose of 150 mg/m2 and subsequently
titrated to full doses after 4 weeks of therapy, depending upon patient
tolerability. Most responses occur within 2–3 months of treatment
initiation, but may be delayed. Therefore, in the absence of disease
progression or toxicity, treatment should be continued for up to 6
months. For responding patients, treatment should be continued until
disease progression and, depending upon the quality of the response,
adjunctive skin-directed therapies (e.g., PUVA, interferon) should be
considered [169]. Guidelines describing appropriate laboratory moni-
toring, supportive care, and safe clinical prescribing of bexarotene
have been recently published [168]. Future studies clarifying the opti-
mal use of bexarotene, either in combination or sequentially with
other agents, are needed.

HDAC inhibitors

HDACs catalyze the removal of acetyl groups from both histone
and nonhistone proteins. As histone acetylation is associated with an
open chromatin configuration associated with active gene transcrip-
tion, HDACs contribute to histone deacetylation and the epigenetic
repression of gene transcription. As HDACs regulate a wide variety
of processes involved in carcinogenesis, multiple mechanisms may
explain the clinical activity of HDAC inhibitors [170,171], including
altered gene expression of cell-cycle and apoptotic regulatory proteins
[172–176], acetylation of nonhistone proteins regulating cell growth
and survival [177–180], angiogenesis [181,182], aggresome formation
[183], and DNA repair [184]. In addition, HDAC inhibitors may
have important effects on the tumor microenvironment via reactive
oxygen species [185,186], enhanced antigen presentation [187], and
downregulation of immunomodulatory cytokines, like IL-10 [188].

Vorinostat (suberoylanilide hydroxamic acid, SAHA) and romidep-
sin (depsipeptide) inhibit class I and II HDACs (i.e., pan-HDAC
inhibitors), the former being widely expressed in various lymphoma
subtypes [189]. Early phase I studies of both vorinostat and romidep-
sin established their safety and potential efficacy in lymphoprolifera-
tive disorders, including CTCL [190], thus paving the way for larger
phase II studies. An earlier phase II study established 400 mg of oral
vorinostat once daily as the optimal dose that was investigated further
in 74 previously treated patients with CTCL, most of whom (>80%)
had advanced-stage disease [191,192]. The overall response rate was
�30% for patients with advanced-stage disease and was associated
with a median duration of response estimated to exceed 185 days.
Most responses were rapid (i.e., <2 months) and were also noted in
patients with tumor-stage disease and S�ezary syndrome [193].
Patients who failed to achieve an objective response appeared to
derive some clinical benefit, including stable disease, decreased
lymphadenopathy and pruritis relief, with treatment. The most com-
mon non-hematologic adverse events, observed in almost 50% of
patients, were gastrointestinal toxicities (nausea, vomiting, and diar-
rhea). Hematologic toxicities, including anemia or thrombocytopenia,
were observed in up to 20% of patients. Among responding patients,
long-term therapy with vorinostat appears to be well tolerated [194].
Prolongation of the QT interval was rarely observed, but monitoring
and appropriate electrolyte replacement is recommended for those
patients at risk for QT prolongation.

Romidepsin, administered as a 4-hr intravenous infusion (14 mg/
m2) days 1, 8, and 15 every 4 weeks, was evaluated in two phase II
studies, the largest of which included 96 patients, most with
advanced-stage disease [195,196]. The overall response rate was 38%
for patients with advanced-stage disease, with a median duration of

response that exceeded one year. A toxicity profile similar to that
described for vorinostat was observed. Intensive cardiac monitoring
in a subset of these patients failed to demonstrate any clinically sig-
nificant cardiotoxicity [197].

Additional HDAC inhibitors, including potent pan-HDAC inhibi-
tors, appear to have activity in CTCL [176,198,199]. Further studies
are needed to fully define the mechanisms of resistance to HDAC
inhibition in CTCL [176,200–204], enabling the development of
rational therapeutic combinations incorporating HDAC inhibitors in
CTCL [205,206].

Interferon-alpha

Interferon-alpha (i.e., interferon-alpha 2b), a Type I interferon
with immunomodulatory properties, has pleiotropic effects in CTCL
and is associated with an overall response rate of 50–70% and a com-
plete response rate of 20–30%, particularly in patients with limited-
stage disease [207–210]. While often considered as second-line ther-
apy for limited-stage CTCL, interferon-alpha, frequently at doses
ranging from 3 to 10 million units daily to three times weekly, is a
treatment to be considered in the first-line setting in patients with
advanced-stage disease. Responses, which may be achieved within a
few months, are observed in patients with tumor-stage MF and SS.
Furthermore, interferon-alpha may be successfully combined with a
number of other therapeutic modalities frequently used in the man-
agement of these patients, including PUVA, bexarotene, chemother-
apy, and ECP [211–224]. For example, in a cohort of 51, mostly
advanced-stage patients treated with single-agent, low-dose,
interferon-alpha, responses were observed in 34 (67%), including 21
(41%) with a complete response and 9 with a long-term remission
[210]. Similarly, in a cohort of 47 patients with Stages III/IV disease,
89% of whom had peripheral blood involvement, a response rate
exceeding 80% was observed in those treated with a combination of
ECP and interferon-alpha [224]. Interferon-alpha is associated with
myelosuppression, transaminitis, and dose-limiting flu-like side
effects, particularly at higher doses.

Extracorporeal photophoresis (ECP)

During ECP pooled leukapheresis and plasmapheresis products are
exposed to 8-methoxypsoralen (8-MOP) prior to extracorporeal circu-
lation through a 1 mm thick disposable cassette exposed to UVA
radiation. The irradiated leukocytes, representing �5% of peripheral
blood leukocytes, are subsequently reinfused. Psoralen covalently
binds and crosslinks DNA following UVA exposure, leading to the
induction of apoptosis in the majority of treated lymphocytes by mul-
tiple mechanisms involving bcl-2 family members, disruption of the
mitochondrial membrane potential and extrinsic cell death pathways
[225–227]. In contrast, ECP leads to monocyte activation, including
significant changes in gene expression [228], and dendritic cell differ-
entiation, which is thought to culminate in enhanced antigen presen-
tation and the initiation of a host immune response [229]. In hopes
of prolonging the exposure time between monocyte-derived dendritic
cells and malignant lymphocytes undergoing apoptosis, investigators
have developed a modified ECP protocol (i.e., “transimmunization”)
whereby blood products are incubated overnight following UVA irra-
diation and prior to patient infusion [230]. This novel adaptation is
investigational and has not been widely employed given concerns
about infectious risks and lack of a proven increase in efficacy.

Following the landmark study by Edelson et al. describing
responses in 27 out of 37 patients with erythrodermic CTCL treated
with ECP, ECP was approved by the Food and Drug Administration
of the USA for the treatment of CTCL and is now considered the
treatment of choice in the first-line management of patients with
S�ezary syndrome in many centers [231]. While responses vary
between case series, overall response rates hover around 60%, with a
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complete response rate of �20% [232–235]. As current treatment
protocols no longer require the oral administration of 8-MOP, elimi-
nating nausea, ECP is safe and generally very well tolerated. While
alternative schedules have been investigated, ECP is generally per-
formed for 2 consecutive days every 2–4 weeks. While the precise
mechanism of action is incompletely understood, evidence suggests
that ECP has immunomodulatory effects, which may augment host
antitumor immunity. It is not surprising then that the median time
to response following the initiation of ECP is �6 months. Median
survival exceeding 8 years has been observed in ECP treated patients
and among complete responders, many experience durable responses,
which may permit, for some, weaning from CTCL-directed therapies
[232,236–238]. While patient- or disease-specific factors which may
predict a response to therapy are imperfect, patients for whom treat-
ment is initiated promptly after diagnosis who have circulating S�ezary
cells, but without significant nodal or visceral disease, may be more
likely to respond. In addition, patients without profound immune
deficiencies, reflected by normal or near-normal cytotoxic T-cell and
CD4/CD8 values and the absence of prior exposure to systemic
chemotherapy, may be more likely to respond to therapy
[232,234,237]. While effective as monotherapy, ECP has also been
combined with other therapeutic strategies, including interferon, bex-
arotene, and TSEBT [214,224,236,239–241].

Monoclonal antibodies

In contrast to many B-cell lymphoproliferative disorders, where
the incorporation of CD20-targeting monoclonal antibodies has
become the standard of care, additional studies are needed to identify
the optimal approach targeting T-cell specific antigens in advanced-
stage MF/SS. Alemtuzumab is a humanized IgG1 monoclonal anti-
body directed against CD52, an antigen widely expressed by B-cells,
T-cells, and monocytes [242]. In a phase II study in 22 patients with
advanced-stage MF/SS, overall and complete response rates of 55 and
32%, respectively, were observed, with a median time to treatment
failure of 1 year [243]. Given the significant risk of infectious compli-
cations, low-dose subcutaneous alemtuzumab was investigated in 14
patients with SS, most of whom had relapsed/refractory disease [244].
Most patients in this study received 3 mg of subcutaneous alemtuzu-
mab on day 1 followed by a 10 mg dose on alternating days until the
S�ezary count was <1000 mm3. With the exception of a single patient
whose best response was stable disease, 9 out of 10 patients treated in
this manner achieved a response, 3 of which were complete. For most
patients, the time to treatment failure exceeded 12 months. What is
notable, however, is that infectious complications were not observed
in patients treated with the lowest dose (i.e., 10 mg) of alemtuzumab.
Similar results, with no infectious complications, were recently
reported in a small cohort of patients treated with modified, low-
dose, subcutaneous alemtuzumab for six weeks [245]. In addition to
hematologic toxicity, conventionally dosed alemtuzumab in advanced-
stage MF/SS is associated with a high incidence of infectious compli-
cations [243,244,246–249]. Overall, infectious complications have
been observed in two-thirds of treated patients, most of which are
bacterial, including sepsis. Cytomegalovirus (CMV) reactivation is the
most common viral infection. In addition, Pneumocystis jirovecii
pneumonia and invasive fungal infections have also been observed.
Therefore, trimethoprim-sulphamethoxazole and acyclovir should be
routinely administered for PJP and HSV/VZV prophylaxis, respec-
tively, in patients receiving alemtuzumab. In addition, CMV surveil-
lance should be performed every 1–2 weeks by quantitative PCR and
suppressive therapy with ganciclovir or oral valganciclovir initiated in
response to viral reactivation. Low-dose, subcutaneous alemtuzumab
appears to be safe and efficacious in selected patients with advanced-
stage MF/SS provided with appropriate supportive care. Monoclonal
antibodies targeting additional T-cell specific antigens, including CD2

[250], CD4 [251], CD25 [252], and CCR4 [253–255] are being
explored and appear promising. Mogamulizumab (KW-0761) is a
humanized monoclonal antibody specific for the chemokine receptor
CCR4 that has been defucosylated and is consequently associated
with enhanced antibody-dependent cell-mediated cytotoxicity. In a
phase I/2 study, mogamulizumab was well tolerated and was associ-
ated with an overall response rate of 37%. A similar response rate of
29% (2/7), all partial, was observed in a phase II Japanese study
[255,256]. A randomized, phase III clinical trial comparing mogamu-
lizumab and vorinostat in relapsed/refractory CTCL is ongoing in the
US (NCT01728805). Brentuximab vedotin is an antibody-drug conju-
gate in which an anti-CD30 monoclonal antibody is linked with an
anti-tubulin agent (monomethyl auristatin E). In a phase II study, 19
patients with relapsed/refractory MF received brentuximab vedotin.
Among the 13 patients with Stages IB or IIB disease, a response rate
of 92% (all partial) was observed [257]. As a single partial response
was observed among the 6 patients with Stage IV disease, an overall
response rate of 68% for the entire cohort was observed. Interestingly,
quantitative image analysis for CD30 expression demonstrated CD30
positivity in all cases available for review, including those that were
deemed CD30 negative by conventional immunohistochemistry. The
response to brentuximab vedotin was not associated with CD30
expression in this cohort. As anticipated, neuropathy was the most
common toxicity observed. A randomized, phase III clinical trial
comparing brentuximab vedotin with an investigator’s choice (metho-
trexate or bexarotene) is ongoing (NCT01578499).

Systemic chemotherapy

Systemic chemotherapy is generally reserved for patients with
advanced-stage MF/SS who have either relapsed following therapy
with skin-directed therapies and the biologic-response modifiers
described above or have extensive disease with visceral organ involve-
ment. Multiple chemotherapeutic agents, including single-agent and
combination chemotherapy regimens, are associated with high
response rates in MF/SS and have been reviewed recently
[155,157,258]. While combination chemotherapy regimens (e.g.,
CHOP) are associated with response rates exceeding 70–80%, the
responses achieved are frequently short-lived and are associated with
significant myelosuppression and infectious complications [259–261].
Therefore, with the exceptions of refractory disease or in the setting
of extensive or rapidly progressive disease where a rapid treatment
response may be necessary, the administration of sequential, single-
agent chemotherapy, as summarized in Fig. 1, is preferred.

Low-doses of oral chemotherapy, including methotrexate (as used
for limited-stage CTCL), cyclophosphamide, chlorambucil, or etopo-
side, may be considered for patients with minimal disease burden
that is slowly progressive or for elderly patients with a poor perform-
ance status. For example, overall response rates of 58–76% (and 41%
complete response rate) have been observed in patients with MF/SS
treated with low-dose, oral methotrexate [262–265]. In contrast, for
patients with an adequate performance status, single-agent gemcita-
bine [266–270], pegylated liposomal doxorubicin [271–274], and pen-
tostatin [275–281] have been used. Gemcitabine, a pyrimidine
nucleoside analog, is associated with overall and complete response
rates of 50–70% and 10–20%, respectively, but is associated with neu-
tropenia and nonhematologic toxicities [282]. Zinzani et al. recently
reported long-term outcomes in a cohort of previously treated T-cell
lymphoma patients [270]. Among the 19 MF patients included in the
study, an overall and complete response rate of 48 and 16%, respec-
tively, was observed. Overall, 7 out of 9 complete responders remained
in continuous complete remission with a disease-free interval ranging
from 15 months to 10 years. In the largest prospective study of pegy-
lated liposomal doxorubicin, an overall response rate of 56%, with a
complete response rate of 20%, was reported [274]. Pegylated
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liposomal doxorubicin is generally well tolerated, with a lower inci-
dence of neutropenia than gemcitabine, but with occasional infusion-
related and mucocutaneous toxicities, including palmoplantar erythro-
dysesthesia. The most durable responses with pentostatin, a purine
antimetabolite, which inhibits adenosine deaminase, have been
reported in SS [281]. Pentostatin is associated with fewer complete
responses (�10–20%) and significant lymphopenia-associated immu-
nosuppression. Unfortunately, the duration of response with these
agents is frequently measured in months. Therefore, novel therapeutic
agents, either alone or in combination, are needed.

Pralatrexate, a novel antifolate with a high affinity for the reduced
folate carrier (RFC-1) and novel mechanism of resistance when com-
pared with methotrexate [283–285], was associated with an overall
response rate of 29% in the PROPEL study. This study was comprised
largely of peripheral T-cell lymphoma patients, most of whom had
refractory disease [286]. Notably, twelve patients with transformed MF
were included in the study [287]. Many of these patients had received
more than 5 prior systemic therapies, including CHOP or CHOP-like
regimens. With only a single exception, these patients were refractory
to their most recent therapy. Responses, as assessed by the study inves-
tigators, were observed in 58% of patients with a median duration of
response and progression-free survival of 4–5 months. Results of a
dose-finding study were reported in a larger cohort of CTCL patients
[288]. In this study, the optimal dose was identified as 15 mg/m2, given
weekly 3 weeks out of 4, and was associated with an overall response
rate of 43%. In an effort to reduce the incidence of mucositis, folic acid
and vitamin B12 supplementation is routinely provided in these
patients [289]. Additional agents, including bortezomib [290], are
being explored. As there is no standard of care for patients with MF/SS
requiring systemic chemotherapy and the decision to initiate therapy is
individualized, including consideration of responses and complications
related to prior therapies, participation in a well-designed clinical trial
is always worth consideration.

High-dose chemotherapy and hematopoietic stem cell
transplantation

The available experience with high-dose chemotherapy and autolo-
gous stem cell transplantation, largely confined to case series, suggests
that responses following treatment are frequently transient. In con-
trast, the durable remissions observed following allogeneic transplan-
tation may be explained by the graft versus lymphoma immune
response [291,292]. A retrospective analysis of 60 patients with
advanced-stage MF/SS who underwent allogeneic stem cell transplan-

tation was recently reported [293]. In this series, patients had received
a median of 4 prior therapies prior to undergoing either reduced-
conditioning (73%) or myeloablative (27%) conditioning prior to
related (75%) or matched-unrelated donor (25%) transplantation.
Nonrelapse mortality at 1 year was 14% for patients receiving
reduced-intensity conditioning or HLA identical/related donor stem
cells and 38–40% for those undergoing myeloablative conditioning or
receiving match-unrelated donor grafts. Transplantation during an
early phase of disease (defined as first or second remission or relapse
following 3 or fewer systemic therapies) was associated with lower
relapse rates (25 vs. 44% at 1 year) and a statistically insignificant
increase in 3-year overall survival (68 vs. 46%). Given the differences
in non-relapse mortality, both reduced-intensity conditioning and use
of matched-related donors were associated with superior overall sur-
vival (63% at 3 years). Seventeen out of 26 patients who relapsed
received donor-lymphocyte infusions. Of these, 47% achieved a com-
plete remission, thus providing evidence for a graft-versus-lymphoma
effect in MF/SS. In contrast to the experience with B-cell non-Hodg-
kin lymphomas, chemotherapy sensitivity prior to transplantation or
the extent of disease burden did not influence overall survival. The
estimated 3-year progression-free and overall survival were 34 and
53%, respectively. Given the possibility of complete and durable
remissions, allogeneic stem-cell transplantation may be considered in
highly selected patients [294].

Summary

Establishing a definitive diagnosis of CTCL, accurate disease stag-
ing and risk-stratification, and the selection of appropriate therapy
requires a multidisciplinary approach. While high response rates may
be achieved with systemic chemotherapy, these responses are fre-
quently short-lived and associated with significant toxicities. As treat-
ment of advanced-stage MF/SS is largely palliative, a stage-based
approach using sequential therapies in an escalated fashion is pre-
ferred. Participation in a well-designed clinical trial is encouraged, as
the introduction of novel agents will continue to expand the thera-
peutic options available in the management of CTCL.
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