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W E thank Mecholsky e al.' for their intense interest in
our paper and their appreciation of the great impor-
tance and novelty of our results. We are also grateful for this
opportunity to place our findings in a more comprehensive
context to better discuss their comments.

Orr? is normally credited with developing the now com-
monly used equation relating the strength of brittle materials
to the mirror radius at which ‘mist’ forms on fracture sur-
faces, oVR,= A, where R, is the mirror radius, o the
strength of the sample, and A4 the ‘mirror constant’. The idea
of investigating the limitations of Orr’s equation came to us
during the course of a decade of fractographic analyses per-
formed on a variety of brittle materials. It became apparent
to us that, for fracture surfaces of submillimeter-thick glass
plates, the mirror radius does not accurately predict the
experimentally measured stress at failure when using pub-
lished bulk values for ‘4’. In addition, flexural tests by four-
point bending (4PBT) and ring-on-ring (RoR) consistently
showed a relatively large, nonzero “residual stress”: the thin-
ner the sample, the larger the apparent residual stress. We
were surprised by this unexpected result until reading
Quinn’s paper® on fracture of glass plates subject to bi-axial
stresses. Quinn independently confirmed that annealed glass
plates fractured by RoR displayed a clear, positive y-inter-
cept (i.e., apparent residual stress) when plotted against 1/
VR... We recognized that the tangent to the ‘c vs. VR, curve’
would intersect the y-axis to produce a false apparent “resid-
ual stress” if the mirror constant were not truly a constant.

It is well-known that mist forms when a critical stress
intensity factor (SIF) is reached at the crack front. This SIF
depends on the local stress, the length of the crack (R,,), and
a shape factor, Y, related to the geometry of the crack front.
At the limit, a crack very shallow compared to the sample’s
thickness, H, in a sample loaded in bending (R,,,/H < 1) will
have a shape factor that is relatively uniform along the
nearly semicircular crack front. Importantly, a nearly identi-
cal shape factor applies to samples tested in uniaxial tension,
as in these cases the crack front is also nearly semicircular.
Conversely, a very long through-the-thickness crack in bend-
ing (Rn/H » 1) will have a significantly different shape factor
due to the elongated §eometry of the crack front. For
instance, Sherman et al.” observed a crack in bending with
an aspect ratio of c¢/a ~ 3.125. It is therefore clear that the
mirror constant of a given material, 4 =~ Kj,,/Y, must be
nearly equal for shallow cracks fractured in bending (R,,/
H < 1) and for samples fractured in uniaxial tension. On the
other hand, ‘4’ is expected to be larger for long through-the-
thickness cracks fractured in bending.
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Until recently, the majority of glass applications utilized
relatively thick geometries (> 1 mm). The strength of glasses
with untreated edges is normally on the order of 100 MPa
(i.e., Ry~ 0.3-0.4 mm) and hence R,/H < 1. In these cases,
no significant difference between the values of ‘4’ in tension
and ‘A’ in bending is expected, explaining the apparent
thickness independence of ‘A’ historically observed. Interest-
ingly, the 1966 work of Kerper and Scuderi® explored
the possibility that the sample’s thickness might have an
effect on ‘A4’, but regretfully the hypothesis was tested on
glass rods. This choice of sample geometry was unfortu-
nate, because the condition R, /H < 1 necessarily always
applies.

Having placed this discussion in a greater context, we can
directly address the comments by Mecholsky e al.' Their
main concern appears to be the validity of the data reported
in Fig. 2. The astute reader will note that our findings are
not in any way based on these data. As these data merely
provide a historical frame of reference, we did not emphasize
the minutiae of how the values were extracted from the liter-
ature. Nevertheless, we are pleased to now be given the
opportunity to provide the details needed for addressing this
apparent discrepancy.

Since the literature spans various authors and many dec-
ades of evolving knowledge, the mirror constants were origi-
nally extracted with a range of fitting equations presented in
an incoherent fashion. In order to provide the consistency
needed to compare across works, we therefore regressed the
raw data for each reference by using a single fitting equation.
In particular, these standardized values of ‘4> were obtained
as recommended by both ASTM C-158° and the NIST Rec-
ommended Practice Guide (NIST-RPG), Appendix D’ using
the equation

A
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For glass samples, both references require that the con-
stant C should not be forced to zero when C > 10 MPa. In
the case of Mecholsky et al.’ 4 = 1.9 MPa-Vm is obtained
by forcing C = 0, but 4 = 1.31 MPa-Vm, C = 18 MPa are
computed when complying with ASTM C-158 and the NIST-
RPG. Similarly, both Choi er al.” and Ruggero et al.'® incor-
rectly forced C = 0, although in both cases C > 10 MPa
(i.e., 13.4 and 15.0 MPa respectively when using Equation 1).
Table T in our paper'' clearly reports all values of ‘4’ and
the intercept extracted based on this fitting equation, consis-
tent with accepted standards.

Mecholsky er al.' also assert that Zaccaria and Overend'?
had not corrected for large deflections and propose
A = 1.8 MPa-Vm, C = 0 as the appropriate regressing con-
stants. However, based on a recent personal communication
with Zaccaria,'® we learned that test dimensions of 20 and
40 mm were used for the loading and the reaction spans
respectively. Zaccaria'® indicated that the observed deflection
was in all cases less than 1 mm. Based on this span/deflection
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Table 1. Summary of Fitting Constants and Test conditions for Flexural Strength Data on Borosilicate (BSG), Sodalime (SLG),
Aluminosilicate (ASG), and Flint Glass.
H Orr eq. Proposed fit
Am Kim
Author Glass type (mm) (MPavm) Ac, (MPa) (MPavVm) Acy (MPa) Samples tested Test conditions
Dugnani BSG 0.3 1.19 88.0 2.18 £ 0.16 0.7 35 4PBT
Dugnani BSG 0.7 1.37 31.6 2.26 + 0.12 214 12 4PBT
Dugnani ASG 0.7 1.14 35.0 1.88 + 0.05 -12.1 28 4PTB
Gulati'® BSG 0.9 1.94 11.9 2.63 £ 0.08 -25.5 32 RoR
Dugnani ASG 1.0 1.48 34.1 2.37 £ 0.15 -15.6 140 4PTB
Ruggero® SLG 1.0 1.41 15.0 2.06 £ 0.12 -22.7 41 4PTB, annealed
Choi?! SLG 1.5 1.52 13.4 1.77 + 0.27 0.0 12 RoR, annealed
Mecholsky*?>  SLG 2.0 1.31 18.4 2.34 + 0.16 -19.5 22 4PTB
Gaume> SLG 2.2 1.47 19.5 1.90 + 0.17 0.0 24 4PTB
Mecholsky®*  BSG /silicate 2.5 2.13 8.7 2.62 + 0.43 -6.9 21 RoR
Zacaria™® Flint glass 3.0 1.37 11.0 n/a n/a 33 4PTB
Kerper® BSG 4.1 1.85 16.6 2.48 + 0.16 2.4 22 Flexure, rods
Schwartz'? SLG 4.8 1.84 10.3 2.53 +0.19 9.3 25 4PTB, annealed
Kirchner?® SLG 4.8 1.88 10.1 1.88 2.7 2 Flexure, rods
Kirchner’ Flint 5.0 1.88 25.0 2.09 + 0.16 26.3 25 Flexure, rods
Quinn?’ BSG 5.3 1.98 9.6 2.60 + 0.12 -5.0 45 RoR, annealed
Kirchner’ Flint 6.0 1.68 24.7 2.16 = 0.10 11.2 13 Flexure, rods
Kerper?® BSG 6.1 2.00 7.0 2.51 £ 0.16 0.3 20 Flexure, rods
Orr’ SLG 6.4 2.01 4.1 2.81 &+ 0.05 -12.8 46 RoR
Gaume?? SLG 7.9 1.92 6.9 2.22 + 0.29 0.0 25 4PTB
Kerper® BSG 9.9 1.78 8.1 2.17 £ 0.14 4.9 25 Flexure, rods
Shand?® BSG 11.6 2.23 35.1 2.59 £ 0.19 0.0 19 4PTB, annealed rods
Ball* SLG 12.5 1.80 1.4 2.11 £ 0.11 0.3 16 3PTB, annealed
Kerper® BSG 19.1 1.87 7.1 2.13 £+ 0.27 8.4 63 Flexure, rods
Kerper® BSG 254 1.98 6.9 2.53 +0.17 2.2 39 Flexure, rods
Kerper® BSG 38.1 1.77 9.1 2.28 + 0.25 4.8 39 Flexure, rods

ratio, a correction for large displacement is inappropriate,
and the original results valid, to the best of our knowledge.

Mecholsky er al.' state that we did not provide enough
details of our experimental measurements. However, Section
V of our manuscript indicates that all tests were done by
4PTB using articulated fixtures and loading rates complying
with ASTM C158-02. The sample dimensions are reported in
Table I. As explained in the paper,'' standard corrections for
large deflections were in some cases necessary using common,
commercially available Finite Element Analysis (FEA) soft-
ware. Neither raw data nor details on the FEA were included
in our original manuscript in light of the large number of
samples tested. We regret the opinion of Mecholsky er al.,!
because we believe the reference to ASTM C158-02 is suffi-
cient to allow anyone skilled in the field to easily replicate
the results obtained in our work.

250
[ © Balletal,1984 ® Dugnani- 0.3 mm
[ © Dugnani-0.7 mm o Dugnani- 1.0 mm
230 b 8 Gaumeetal-22mm @ Gaumeetal.- 7.9 mm
E # Gulati, 2004 x Kerper etal., 1966 - 4 mm
= Kerper etal, 1966 - 6 mm = Kerper etal., 1966 - 10 mm
210 [ o Kerperetal,1966-19mm @ Kerperetal, 1966- 25 mm
[ © Kerperetal,1966-38mm o Kirchner et al., 1979 - 5 mm -
1.90 [ © Kirchneretal,1979-6mm o Kirchner etal, 1987 o B
. % Mecholsky et al., 1979 + Orr, 1972 ‘Bm
[ & QuinnJB, 1999 4 Ruggero, 2003
1.70 F = Schwartz, 1973 A Shand, 1959
" Choi et al. - 1998 = = Proposed Trend o ()
3 o B
ss 1.50 £
= 5
130 ¢ Mecholsky et al. .
110 Metal-clad glass-fibers \“‘ LT~
B [ 8. 090 &
0.90
-------- -
0.70
0.50 © : : '
0.001 0.010 0.100 1.000 10.000
R, /H
Fig. 1. A, /K, vs. Ry/H adapted from Figure 4 of the original

manuscript to include glass-fiber data from Mecholsky er al."

Mecholsky er al.' allege that “the paper omits reference
data that contradict their results”, and selfreference works
describing two metal-clad glass-fiber composite samples frac-
tured by wrapping around a mandrel. We must respectfully
disagree with this statement. As explained in our original
manuscript,” and further discussed above, no differences in
‘A’ for flexural and tensile tests are expected when R,/
H < 1. Although our manuscript did not treat composite
materials, we believe their allegation might refer to the fact
that these two anisotropic samples may fall far from other
points on Fig. 2. Yet Fig. 2 is merely a survey of historical
data from the literature and was not used in deriving our
model. Figure 2 loosely follows a trend with the thickness H,
since often the values of R,, fall in the same range for most
data sets. Nevertheless, we invite Mecholsky et al. to include
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Fig. 2. Average mirror constant vs. the thickness of the glass
plates, H, as reported by various authors.
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these two additional results, along with the data from other
authors, in Fig. 4 to confirm that they follow the trend pre-
dicted by our crack evolution model rather nicely (see Fig. 1
in this response). They will find the assertion that our data
“disagrees with virtually all investigators” to therefore, be
entirely incorrect.

We appreciate the added comments by Mecholsky et al.!
that help define some subtleties, although we believe they are
largely editorial in nature and likely provide little additional
insight for the attentive reader. For example, we describe the
length ‘@’ as the ‘crack depth’ rather than the more restrictive
term ‘semi-minor axis’; we contend that our nomenclature is
not incorrect, but merely more general. In our original man-
uscript, we referenced Mecholsky and Freiman'* (Ref. [7] in
our original manuscript) to support our claim that the SIF is
not constant along the crack front (“Note that although the
mist appears at R, no mist is necessarily present at a,,, as
the stress intensity is not constant along the crack front”).
The length, a,,, was defined in Section I as the depth of the
crack when the half-width of the crack ¢ Ry, Clearly,
mist appearing at ¢ does not necessarily require mist to
appear at a,, as the SIF is often different at the two loca-
tions. The reference concerns the equation for the SIF at
branching (Equation 3 in Mecholsky and Freiman,'* Kg;
=0 Y(O)\/zj,-). These authors further discuss that the border
correction factor, Y(0), in the equation is necessary to
account for the fact that the stress intensity is not constant
along the crack front. We interpret these statements as indi-
cating that the SIF is not constant along the crack front and
therefore, we consider the citation valuable.

We also agree with Mecholsky er al.' that the SIF is con-
stant along the mirror-mist boundary. It is, therefore, not
clear to us where in our manuscript we may have stated
otherwise, hence we are unable to respond to this comment.
Finally, Mecholsky e al.' claim that the SIF at branching,
instead of at the mirror boundary, may also be used to pre-
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dict the strength of a sample, but our paper never investi-
gated the relative merits of one method over another.
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