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Abstract The ULF magnetospheric indices Sgr , Sgeo , Tgr , and Tgeo are examined and correlated with solar
wind variables, geomagnetic indices, and the multispacecraft-averaged relativistic-electron flux F in the
magnetosphere. The ULF indices are detrended by subtracting off sine waves with 24 h periods to form Sgrd,
Sgeod, Tgrd, and Tgeod. The detrending improves correlations. Autocorrelation-function analysis indicates that
there are still strong 24 h period nonsinusoidal signals in the indices which should be removed in future.
Indications are that the ground-based indices Sgrd and Tgrd are more predictable than the geosynchronous
indices Sgeod and Tgeod. In the analysis, a difference index ΔSmag≈ Sgrd � 0.693 Sgeod is derived: the time
integral of ΔSmag has the highest ULF index correlation with the relativistic-electron flux F. In systems-science
fashion, canonical correlation analysis (CCA) is used to correlate the relativistic-electron flux simultaneously
with the time integrals of (a) the solar wind velocity, (b) the solar wind number density, (c) the level of
geomagnetic activity, (d) the ULF indices, and (e) the type of solar wind plasma (coronal hole versus streamer
belt): The time integrals of the solar wind density and the type of plasma have the highest correlations with
F. To create a solar wind-Earth system of variables, the two indices Sgrd and Sgeod are combined with seven
geomagnetic indices; from this, CCA produces a canonical Earth variable that is matched with a canonical
solar wind variable. Very high correlations (rcorr=0.926) between the two canonical variables are obtained.

1. Introduction

The ULF indices Sgr, Sgeo, Tgr , and Tgeo are 1 h resolution measurements of the amplitude of magnetic field
fluctuations in the 2–8min timescale as determined by ground magnetometers in the dawn-dayside sectors
(Sgr and Tgr) and as determined by spacecraft in geosynchronous orbit (Sgeo and Tgeo).

From a systems science point of view, long-term parameters (indices) that describe the state of the
magnetospheric system are valuable. Systems science of the magnetosphere has largely relied on the use of
geomagnetic indices to describe the reaction of themagnetosphere to the solar wind [cf. Vassiliadis, 2006; Valdivia
et al., 2013]; these various geomagnetic indices are indicators of the intensity of latitude currents (AE, AL, AU, polar
cap index (PCI)), the strength of magnetospheric convection (Kp, midnight boundary index (MBI)), and plasma
pressure in the inner magnetosphere (Dst, Dst*). Recently, the ULF indices have been proposed as such systems-
science parameters [Romanova et al., 2007; Kozyreva et al., 2007; Romanova and Pilipenko, 2009; Singh et al., 2013].

The ULF index is also relevant to the evolution of the outer electron radiation belt [Kozyreva et al., 2007;
Romanova et al., 2007; Romanova and Pilipenko, 2009], since there is a well-known statistical connection
between the amplitudes of ULF waves and the energization and radial diffusion of relativistic electrons in the
magnetosphere [Rostoker et al., 1998; Mathie and Mann, 2000; Friedel et al., 2002; Nakamura et al., 2002;
Elkington et al., 2003; Degeling et al., 2011].

In this report we will explore the ULF index and incorporate it into a composite Earth variable composed of
multiple geomagnetic indices plus the ground-based and geosynchronous ULF indices. Detrended ULF
indices Sgrd, Sgeod, Tgrd, and Tgeod will be produced by subtracting off universal time sine wave functions.
Correlations between the ULF indices and the solar wind will be explored, correlations between the ULF
indices and solar wind driver functions for the magnetosphere will be examined, correlations between the
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ULF indices and other geomagnetic indices will be investigated, and correlations between the ULF indices
and relativistic-electron fluxes will be explored. To examine the driving of the ULF indices by the solar wind
and to investigate the connections of the ULF indices to other geomagnetic indices, the mathematical
technique of canonical correlation analysis (CCA) will be utilized. CCA is useful for exploring global correlation
patterns in multivariable data sets such as the combined solar wind, geomagnetic index, ULF index, and
radiation belt data set. One pattern repeatedly found involves differences between the ground-based ULF
index and the geosynchronous ULF index. This will lead to the definition and analysis of a differential ULF
index ΔSmag≡ Sgrd� 0.693Sgeod. The ULF indices will be integrated into the data set of geomagnetic indices to
form an Earth data set, and the global correlations between the Earth data set and the solar wind data set will
be explored with CCA. CCA will generate a single time series Earth variable E(1) and CCA will generate a solar
wind driver function S(1) for that Earth variable. For times when the ULF indices are not available, formulas for
generating proxies to the ULF indices will be developed.

This paper is organized as follows. In section 2, the ULF data sets are described and the sine wave detrending of
the ULF indices is performed. Section 3 describes cross correlations of the ULF indices with the solar wind, with
solar wind driver functions, and with geomagnetic indices. Section 4 analyzes autocorrelation functions of the
ULF indices and compares them with autocorrelation functions of the solar wind and geomagnetic indices.
Section 5 uses canonical correlation analysis to investigate the connections of the ULF indices to the solar wind,
to geomagnetic indices, and to the relativistic-electron flux in the magnetosphere. In section 6, the ULF indices
are combined with the geomagnetic indices to form an Earth data set and canonical correlation analysis is used
to connect that Earth data set to the solar wind data set. The findings of this study are summarized in section 7.
Section 8 contains a discussion of some of the properties of the ULF indices and of future work including future
improvements to the ULF indices. In Appendix A, proxy formulas for the ULF indices are given.

2. The ULF Wave Indices

The ULF indices Sgr , Sgeo, Tgr , and Tgeo are measurements of the spectral power of magnetic field fluctuations
within the magnetosphere in the 2–7 mHz (143–500 s) frequency band. The S index refers to “signal” power
and the T index refers to “total” power: The S index is created from the T index by subtracting off a noise floor
in a Fourier transform [cf. Kozyreva et al., 2007].

The ground ULF indices Sgr and Tgr are created from measurements from ground-based magnetometers in the
5–15 LT sector (dawnside and dayside) and in the 60°–70° region of magnetic latitude in the Northern
Hemisphere. The geosynchronous ULF indices Sgeo and Tgeo are created from magnetic field measurements on
board the GOES spacecraft [Singer et al., 1996] in geosynchronous orbit (6.6 RE) in the equatorial magnetosphere.

Two additional ULF indices in the solar wind will be utilized in the present study: Timf and Tden. Timf is the
spectral power of magnetic field fluctuations (in the spacecraft frame) in the 2–7 mHz frequency range
constructed from magnetic field measurements in the solar wind upstream of the Earth. Tden is a measure of
solar wind number-density fluctuations (in the spacecraft frame) in a broader frequency range constructed
from density measurements in the solar wind upstream of the Earth.

All six ULF indices Sgr , Sgeo, Tgr , Tgeo, Timf, and Tden are available at 1 h time resolution in the years 1991–2004 at
http://virbo.org/Augsburg/ULF [cf. Kozyreva et al., 2007; Romanova et al., 2007].

In the present study, themagnetospheric ULF indices Sgr , Sgeo, Tgr , and Tgeo are each detrended by subtracting
a sine wave in universal time UT from each index. The sine waves were determined by regression fitting the
entire 1991–2004 databases of Sgr(UT), Sgeo(UT), Tgr(UT), and Tgeo(UT) values. Those detrended indices Sgrd
and Sgeod are given by

Sgrd ¼ Sgr � 1:065� 0:07957 sin 2π UTþ 16:784½ �=24ð Þ (1a)

Sgeod ¼ Sgeo þ 0:1415þ 0:07563 sin 2π UTþ 5:676½ �=24ð Þ (1b)

and the detrended indices Tgrd and Tgeod are given by

Tgrd ¼ Tgr � 0:87889� 0:08391 sin 2π UTþ 16:097½ �=24ð Þ (2a)

Tgeod ¼ Tgeo þ 0:3732� 0:07292 sin 2π UTþ 6:072½ �=24ð Þ (2b)

where the universal time UT is given in hours and where the sine functions operate on radians. (Further UT
trends in the indices are discussed in section 8.2.)
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In Figure 1, 122,736 hourly values of the
detrended index Sgeod are plotted in
black as a function of Sgrd. A 300-point
running average of Sgeod is plotted in
blue. The running average highlights
the trend underlying the black points.
The blue curve is fairly straight,
indicating an approximately linear
relationship between Sgeod and Sgrd
under the noise. As indicated on the
figure, the Pearson linear correlation
coefficient [Bevington and Robinson,
1992, equation (11.17)] between Sgeod
and Sgrd is rcorr= 0.664. This means that
rcorr

2 = 44% of the variance of Sgeod can
be described by the variance of Sgrd, or
conversely that 44% of the variance of
Sgrd can be described by the variance of
Sgeod. Note that the linear correlation
coefficient between the nondetrended
indices Sgr and Sgeo is rcorr= 0.639, which
have only 41% of the variance
in common.

A plot of Tgeod versus Tgrd looks very similar to the plot of Figure 1, with a linear correlation coefficient of
rcorr=0.640. For the nondetrended values, the correlation between Tgeo and Tgr is rcorr= 0.618. Note that the
correlation between Tgrd and Sgrd is rcorr= 0.986 and the correlation between Tgeod and Sgeod is rcorr=0.985.

3. Cross Correlations With the ULF Indices

In this section, linear correlations between the four detrended ULF indices Sgrd, Sgeod, Tgrd, and Tgeod and solar
wind and geomagnetic variables are examined.

3.1. Correlations With the Solar Wind

In Table 1, the Pearson linear correlation coefficients rcorr are collected between various solar wind quantities
and (a) the detrended ground ULF index Sgrd, (b) the detrended geosynchronous ULF index Sgeod, (c) the
detrended ground ULF index Tgrd, (d) the detrended geosynchronous ULF index Tgeod, and (e) the difference
ULF index ΔSmag= Sgrd � 0.693Sgeod. For the majority of the solar wind quantities, the correlations are
calculated using the OMNI2 [King and Papitashvili, 2005] hourly averaged solar wind values for the years
1991–2004; for the O7+ to O6+ and the C6+ to C5+ charge-state density ratios of the solar wind plasma, hourly
averaged values from the ACE Solar Wind Ion Composition Spectrometer (SWICS) instrument [Gloeckler et al.,
1998] in the years 1998–2004 are used. In Table 1, the values of the ULF indices are evaluated at the same
hour as the solar wind parameters. The notation<X>3 means a 3 h average of the quantity X using the hour
of the ULF indices and the two prior hours. In general, for magnetic field orientation quantities, correlations
are much higher if a 3 h average is used [cf. Borovsky, 2013a].

In the first and third columns of Table 1, it is seen that the ground-based ULF indices Sgrd and Tgrd are relatively
strongly correlated with the solar wind speed vsw, the proton temperature Tp, the ram pressure nvsw

2, and
with the clock angle function <sin2(θclock/2)>3 and they are relatively strongly anticorrelated with <Bz>3.
The correlations of the ULF indices with vsw and Bz have been reported before [Romanova et al., 2007;
Kozyreva et al., 2007] and the correlation between ULF activity and vsw is well known [e.g., Singer et al., 1977;
Mathie and Mann, 2001; Pahud et al., 2009]. Since vsw and Tp are strongly correlated in the solar wind
(rcorr= 0.63), it is likely that the correlation of the ULF index with Tp is a proxy for correlation with vsw (i.e., it is
likely that Tp and the ULF indices are not causally related to each other). In Table 1, Sgrd and Tgrd are modestly
correlated with <δBvec>3 and <Timf>3, where <δBvec>3 is the amplitude of the fluctuation of the magnetic

Figure 1. Hourly averaged values of the detrended geosynchronous ULF
index Sgeod are plotted as a function of the hourly averaged values of the
detrended ground-based index Sgrd.
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field vector of the solar wind. Owing to the intercorrelations of the solar wind variables, correlation with
<δBvec>3 (and with <Timf>3) could be a proxy for correlation with vsw, Bmag, and/or nvsw

2 [cf. Borovsky and
Funsten, 2003].

The values in the second and fourth columns of Table 1 show that the geosynchronous ULF indices Sgeod and
Tgeod are relatively strongly correlated with vsw, Tp, log(nv

2), and Bmag and they are modestly anticorrelated
with<Bz>3. Sgeod and Tgeod are also strongly correlated with<δBvec>3 and modestly correlated with<Timf>3

and <Tden>3.

Comparing the values in the Sgrd and Tgrd columns with the values in the Sgeod and Tgeod columns of Table 1, it
is seen that geosynchronous ULF amplitudes Sgeod and Tgeod are more strongly correlated with n, log(nv2),
Bmag, <δBvec>3, and <Tden>3 than are the ground-based ULF amplitudes Sgrd and Tgrd. Conversely, the
ground-based amplitudes Sgrd and Tgrd are more strongly correlated with vsw, <Bz>3, and <sin2(θclock/2)>3

than are the geosynchronous amplitudes Sgeod and Tgeod.

Note in Table 1 that the correlations for Sgrd and Sgeod are in general larger than the correlations for Tgrd and
Tgeod. This indicates that the signal ULF indices Sgrd and Sgeod are more accurate (and perhaps more
fundamental) than the total ULF indices Tgrd and Tgeod.

In the final column of Table 1 are the correlation coefficients rcorr for the difference ΔSmag= Sgrd� 0.693Sgeod.
The strengths of the correlations with ΔSmag are weaker than the strengths for Sgrd or Sgeod. The strongest
correlations for ΔSmag are for <sin2(θclock/2)>3 and for vsw.

3.2. Correlations With Solar Wind Driver Functions

In Table 2, the Pearson linear correlation coefficients rcorr between the ULF indices Sgrd, Sgeod, Tgrd, Tgeod, and
ΔSmag= Sgrd � 0.693Sgeod and seven solar wind driver functions in the literature are collected. The first three
driver functions are based on the solar wind electric field, the fourth and fifth driver functions are derivations
of the dayside reconnection rate, and the last two driver functions are reconnection drivers with viscous
drivers added. More or less, the correlation coefficients increase going down the table. The first row (with the
poorest correlation coefficients) is for �vswBz [Rostoker et al., 1972] (with Bz in GSM coordinates), the second
row is for vswBs [Holzer and Slavin, 1982] (where Bs=�Bz for Bz< 0 and Bs= 0 for Bz≥ 0, again in GSM), and the
third row is the Newell function vsw

4/3B⊥
2/3sin8/3(θclock/2) [Newell et al., 2007] where B⊥= (By

2 + Bz
2)1/2. In the

Table 1. Collected Pearson Linear Correlation Coefficients Between Five ULF Indices and Various Solar Wind Parametersa

Sgrd Sgeod Tgrd Tgeod ΔSmag

n �0.019 +0.211 �0.018 +0.205 �0.186
vsw +0.527 +0.444 +0.540 +0.437 +0.359
log(nv2) +0.331 +0.531 +0.340 +0.518 +0.034
Tp +0.366 +0.357 +0.368 +0.349 +0.212
α/p �0.103 +0.138 +0.109 +0.139 +0.033
Bmag +0.295 +0.478 +0.295 +0.470 +0.022
Bx �0.033 �0.026 �0.033 �0.025 �0.023
By �0.034 +0.005 �0.040 �0.002 �0.050
<Bz>3 �0.427 �0.320 �0.393 �0.301 �0.320
<sin2(θclock/2)>3 +0.471 +0.310 +0.434 +0.292 +0.387
<θBn> 3 �0.039 +0.095 +0.028 +0.090 +0.024
θtilt �0.034 +0.005 �0.040 �0.002 �0.050
MA �0.089 �0.076 �0.083 �0.077 �0.056
vA +0.222 +0.222 +0.222 +0.222 +0.122
log(Sp) +0.325 +0.184 +0.326 +0.181 +0.288
log(C6+/C5+) �0.253 �0.208 �0.262 �0.206 �0.175
log(O7+/O6+) �0.228 �0.108 �0.230 �0.108 �0.220
F10.7 �0.002 +0.090 +0.007 +0.109 �0.075
<δBvec>3 +0.395 +0.532 +0.395 +0.521 +0.116
<δBvec/B>3 +0.237 +0.219 +0.236 +0.211 +0.147
<Timf>3 +0.338 +0.385 +0.342 +0.383 +0.150
<Tden>3 +0.114 +0.346 +0.115 +0.339 +0.115

aHere ΔSmag ≡ Sgrd � 0.693Sgeod. Note that Sp is the proton-specific entropy of the solar wind Tp/n
2/3.
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fourth row, Rquick is the simplified “quick” derivation of the reconnection control function Rquick = n1/2vsw
2

sin2(θclock/2) MA
�1.35 [1 + 680MA

�3.30]�1/4 [Borovsky and Birn, 2014] (where MA is the Alfven Mach number of
the upstream solar wind flow) and in the fifth row, R2 is the full derivation of the reconnection control
function [Borovsky, 2013b]. In the last two rows of Table 2, G stands for the reconnection-coupled MHD
generator, which mathematically accounts for polar cap potential saturation in the coupling between the
solar wind and the magnetosphere, and B is a viscous interaction driver function based on Bohm diffusion
[Borovsky, 2013a]. The NL in the last row indicates that the driver function is nonlinear, having been
parameterized to account for the nonlinear mathematical relationship between the strength of
magnetospheric convection and the strength of solar wind driving.

In all cases in Table 2, there is a 1 h lag between the evaluation of the solar wind driver function with
measured solar wind parameters and the values of the ULF indices (with the ULF indices evaluated the hour
after the solar wind). This is noted in the column labels by the subscript 1. This 1 h lag is demonstrated in
Figure 2 where the correlation coefficients rcorr between the ULF indices Sgrd and Sgeod and the seven driver
functions are plotted three times: once for 0 h time lag (green), once for 1 h time lag (red), and once for 2 h
time lag (blue). For all seven drivers and for both ULF indices, the 1 h lag produces greater correlations than
the 0 h or 2 h lags. Plots for Tgrd and Tgeod look almost identical to the Sgrd and Sgeod plots of Figure 2. This 1 h
time lag is interpreted as the reaction time of the ULF indices to the solar wind. Most geomagnetic indices
also respond to the solar wind with about a 1 h time lag [cf. McPherron et al., 1986; Borovsky, 2008].

In the first four columns of Table 2 and in Figure 2, there is a wide range of correlation coefficients rcorr
between the solar wind driver functions and the ULF indices Sgrd, Sgeod, Tgrd, and Tgeod. This wide range is also
true when the driver functions are compared with geomagnetic indices [cf. Borovsky, 2013a]. The most

Figure 2. The Pearson linear correlation coefficients of (left) Sgrd and (right) Sgeod are plotted for seven different solar wind
driver functions. The green curves are for no time lag between the ULF indices and the driver functions, the red curves are
for the ULF indices lagged 1 h behind the driver functions, and the blue curves are for the ULF indices lagged 2 h behind the
driver functions.

Table 2. Collected Pearson Linear Correlation Coefficients Between Five ULF Indices and Seven Different Solar Wind
Driver Functions for the Magnetospherea

Sgrd1 Sgeod1 Tgrd1 Tgeod1 ΔSmag1

1 �vswBz 0.375 0.285 0.344 0.267 0.278
2 vswBz 0.451 0.451 0.430 0.432 0.254
3 Newell 0.569 0.542 0.545 0.521 0.341
4 Rquick 0.582 0.588 0.561 0.568 0.321
5 R2 0.588 0.596 0.567 0.576 0.322
6 G;+B 0.684 0.682 0.670 0.660 0.384
7 NL(G+B) 0.710 0.691 0.696 0.670 0.411

aThe ULF indices are lagged by 1 h from the time of the solar wind.
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commonly used driver functions �vswBz and vswBs produce poor correlations. The amount of variance in the
ULF indices that can be described by the driver function is rcorr

2: For the�vswBz driver, the rcorr
2 values for Sgrd,

Sgeod, Tgrd, and Tgeod are range from 0.071 to 0.118: This is only 7.1% to 11.8% of the variance of ULF indices
that can be accounted for by the driver function�vswBz. In contrast, for the NL(G+B) driver function the rcorr

2

values with Sgrd, Sgeod, Tgrd, and Tgeod are from 0.670 to 0.710: This is 44.9% and 50.4% of the variance of the
ULF indices that can be accounted for by the driver function NL(G+B). The relatively high correlations
between the superior driver functions and the ULF indices imply that there is a relationship between the
reconnection driving of the magnetosphere and the amplitudes of ULF waves measured at geosynchronous
orbit and on the ground.

Again in Table 2, the correlation coefficients of Sgrd and Sgeod are larger than the correlation coefficients of Tgrd
and Tgeod. This again implies that the signal indices Sgrd and Sgeod are more accurate (and perhaps more
fundamental) than are the total indices Tgrd and Tgeod.

The final column of Table 2 contains the correlation coefficients rcorr between the difference ΔSmag1 = Sgrd1
� 0.693Sgeod1 and the solar wind driver functions. The correlations with ΔSmag1 are weaker than the
correlations for Sgrd1 and for Sgeod1.

3.3. Correlations With Geomagnetic Indices

In Table 3, the Pearson linear correlation coefficients rcorr between the ULF indices Sgrd, Sgeod, Tgrd, Tgeod, and
ΔSmag= Sgrd � 0.693Sgeod and eight geomagnetic indices are collected. In Table 3, there is no time lag
between the value of the geomagnetic index and the value of the ULF index. Zero time lag produces the best
correlations between the ULF indices and AE, PCI, AL, AU, and Kp. A 1 h time lag between MBI and the ULF
indices produces the best correlations, with MBI measured the hour following the ULF indices. A 1 h time lag
between Dst* and the ULF indices produces the best correlations, with Dst* measured the hour following the
ULF indices. And a 2 h time lag between Dst and the ULF indices produces the best correlations, with Dst
measured 2 h following the ULF indices. Longer time lags forDst are typical asDst has a slow response to solar
wind driving [cf. Smith et al., 1999].

The correlation coefficients between Sgrd, Sgeod, Tgrd, and Tgeod and the geomagnetic indices in the first four
columns of Table 3 are fairly strong. The coefficients are particularly strong for the two geomagnetic indices
Kp and MBI, in the range 0.711–0.759. Kp and MBI are both measures of the depth of penetration of the
electron plasma sheet into the dipolar regions of the magnetosphere on the nightside [Gussenhoven et al.,
1983; Thomsen, 2004], which are measures of the strength of plasma convection in the magnetosphere. Note
that the correlation coefficient between the ground-based ULF index Sgrd and the geosynchronous orbit ULF
index Sgeod is rcorr= 0.664 (cf. Figure 1); hence, these two ULF indices are each correlated to Kpmore strongly
than they are correlated to each other. Likewise for Tgrd and Tgeod, they are each correlated to Kp more
strongly than they are correlated to each other.

In Table 3, the correlation coefficients of Sgrd, Sgeod, Tgrd, and Tgeodwith the set of indices AE, AL, AU, and PCI are
also fairly strong, in the range 0.583–0.710, with AU being the poorest. These four indices are measures of the
strengths of high-latitude currents (with AE algebraically defined as AE=AU � AL).

Table 3. Collected Pearson Linear Correlation Coefficients Between Five ULF Indices and Eight Geomagnetic Indices and
the Relativistic Electron Flux F

Sgrd Sgeod Tgrd Tgeod ΔSmag

Kp 0.736 0.759 0.724 0.739 0.389
–MBI 0.729 0.732 0.711 0.714 0.401
–Dst 0.490 0.482 0.482 0.472 0.276
–Dst* 0.553 0.611 0.550 0.598 0.265
AE 0.710 0.652 0.685 0.630 0.438
–AL 0.683 0.606 0.659 0.583 0.439
AU 0.605 0.602 0.585 0.583 0.338
PCI 0.626 0.584 0.603 0.565 0.378
F 0.061 �0.143 0.061 �0.152 0.191
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The correlation of Sgrd, Sgeod, Tgrd, and Tgeod with Dst* is also fairly strong in Table 3. Dst* is a measure of the
plasma diamagnetism in the inner magnetosphere [Dessler and Parker, 1959], produced by ions with orbits
trapped in the dipolar magnetosphere [Sckopke, 1966] and by plasma flowing past the dipole from the
nightside to the dayside [Liemohn et al., 2001]. Note in Table 3 that the correlations of the ULF indices with the
pressure-corrected index Dst* are significantly higher than with the uncorrected Dst index. Here the formula
Dst* =Dst � 20.7Pram + 27.7 [Borovsky and Denton, 2010a] is used to produce Dst* from Dst, where the solar
wind ram pressure Pram =mpnvsw

2 is in units of nPa.

In Table 3, the magnitudes of the correlation coefficients of Sgrd and Sgeod are larger than those of Tgrd and
Tgeod. This again implies that the signal indices Sgrd and Sgeod are more accurate (and perhaps more
fundamental) than are the total indices Tgrd and Tgeod.

In the final column of Table 3, the correlation coefficients between ΔSmag= Sgrd � 0.693Sgeod and the
geomagnetic indices are about half of the values of the correlation coefficients between Sgrd and Sgeod and
the geomagnetic indices.

In the bottom row of Table 3, the correlation coefficients betweenULF indices and themultispacecraft-averaged
logarithm of the 1.1–1.5MeV electron flux F at geosynchronous orbit are displayed. The fluxes were measured
by the Synchronous Orbit Particle Analyzer [Belian, 1999] in circular geosynchronous orbits at the geographic
equator. For each year of data, the 1.1–1.5MeV flux measurements on each of seven spacecraft in operation
were normalized so that all spacecraft had the same yearly averaged logarithm of the flux in the dawn sector.
Half-hour running averages of the measurements on each satellite were used to construct a multispacecraft
logarithmic average (sum of log fluxes divided by number satellites) of all the available fluxes at any time. The
multispacecraft-averaged flux F was cleaned by removing times of known solar-energetic-particle events. This
multispacecraft-averaged flux has been used in prior studies of the radiation belt dynamics [cf. Borovsky and
Denton, 2009a, 2010a;Denton et al., 2010]. In the bottom row of Table 3, the correlation coefficients between the
ULF indices Sgrd, Sgeod, Tgrd, Tgeod, and ΔSmag and the relativistic-electron flux F are quite low. In section 5.3, it will
be seen that the correlations between F and time integrals of the ULF indices can be quite high, especially for
the time integral of the difference ΔSmag= Sgrd � 0.693Sgeod.

4. Autocorrelation Functions of the ULF Indices

In this section, temporal autocorrelation functions of the ULF indices are examined and compared with
autocorrelation functions of various solar wind and geomagnetic quantities.

In Figure 3 (top), autocorrelation functions of Sgrd (blue) and Sgeod (red) are plotted. The autocorrelation
function is a measure of persistence in the time series. The autocorrelation function A(τshift) of a variable X(t) is

A τshiftð Þ ¼ ∫X tð ÞX t � τshiftð Þdt=∫X tð ÞX tð Þdt (3)

where τshift is a time shift in the data set. For τshift = 0, the autocorrelation function is unity. Note the local
peaks in the autocorrelation functions at multiples of 24 h, particularly for Sgrd. These peaks indicate the
presence in the time series of a signal with a 24 h period. Note in Figure 3 that sinusoidal signals with 24 h
periods were already subtracted off Sgr and Sgeo to make Sgrd and Sgeod (cf. expressions (1a), (1b), (2a), and (2b)).
The remaining signals with 24 h periodicity are not sinusoidal. Undoubtedly, fitting those 24 h signals and
subtracting them out of Sgrd and Sgeodwould produce ground-based and geosynchronous ULF indices with
less noise and higher correlations with solar wind parameters and with other geomagnetic indices. Those
improved ULF indices will also better correlate with the relativistic-electron flux in the magnetosphere.
Figure 3 shows peaks at 27 days: There is a well-known periodicity in the solar wind and in geomagnetic
activity at the solar rotation period of 27 days [cf. Borovsky, 2013a, Figure 13].

The rate of falloff of the autocorrelation function from unity is known as the autocorrelation time. To get the
autocorrelation times, here the 1/e method will be used, denoting the time shift τshift where the
autocorrelation function crosses 1/e= 0.368 as the autocorrelation time. Fitting Sgrd and Sgeod curves to
eliminate their first peaks at 24 h and taking the 1/e crossing time of the fitted curves, the autocorrelation
time for Sgrd is 11 h and the autocorrelation time for Sgeod is 14 h.

Also plotted in green in Figure 3 (top) is the autocorrelation function of the difference
ΔSmag= Sgrd� 0.693Sgeod, which is Sgrd* � 0.569Sgeod* where the asterisks denote a variable that has been
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standardized (dimensionless and
normalized), which will be defined in
section 5. As will be seen in section 5.3, this
difference produces the largest correlation
with the relativistic-electron flux F at
geosynchronous orbit. Note that the 24 h
periodic signal dominates the
autocorrelation function of ΔSmag. The
autocorrelation time (1/e method) of
ΔSmag= Sgrd � 0.693Sgeod is 3 h, which here
is a measure of the width of the 24 h peaks.

In Figure 3 (middle), the autocorrelation
functions of Sgrd (black) and Sgeod (gray) are
compared with the autocorrelation
functions of various solar wind parameters.
The solar wind velocity vsw (green) and the
logarithm of the proton-specific entropy Sp
(orange) have longer persistence times
relative to Sgrd and Sgeod, and the
interplanetary magnetic field (IMF) clock
angle θclock (blue) has a shorter persistence
time. The autocorrelation functions of the
solar wind number density n and the solar
wind ULF indices Tden and Timf have similar
behavior to the autocorrelation functions of
Sgrd and Sgeod. Note, of course, the absence
of a 24 h peak in the solar wind quantities.

In Figure 3 (bottom), the autocorrelation
functions of Sgrd (black) and Sgeod (gray) are
compared with the autocorrelation
functions of geomagnetic indices and the
multispacecraft relativistic-electron flux F.
Four curves have persistence times longer
than those of Sgrd and Sgeod: the relativistic-
electron flux F (74 h), Dst* (40 h), Kp (26 h),
and MBI (23 h). The geomagnetic indices AL
and PCI have autocorrelation times shorter
than those of Sgrd and Sgeod, both being
about 8 h. The autocorrelation functions of
AE and AU have behaviors quite similar to
the autocorrelation function of Sgrd, except
for the recurring 24 h signal in Sgrd.

In Figure 4, strong 24 h period signals in Sgrd
and Sgeod will be removed from the
autocorrelation functions to examine the
autocorrelation function of the ULF indices
without the periodic signals. Since the
autocorrelation function A(τshift) and the
power spectral density are Fourier transform

pairs [e.g.,Tennekes and Lumley, 1972, equation (6.4.20)], eliminating a 24 h periodic signal in the autocorrelation
function is equivalent to viewing an autocorrelation function where Fourier filtering of the time series has been
performed. In Figure 4 (top), the autocorrelation function of Sgrd is plotted in green. At integer multiples of 24 h,

Figure 3. Temporal autocorrelation functions are plotted (top) for the
ULF indices Sgrd, Sgeod, and ΔSmag, (middle) for various solar wind
variables, and (bottom) for geomagnetic indices and the geosyn-
chronous relativistic-electron flux in the bottom panel. In Figure 3
(middle and bottom), the autocorrelation functions of Sgrd and Sgeod
are replotted in black and gray.
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there are peaks in the autocorrelation
function with flat trough regions between
the peaks. The half-day values of the
autocorrelation function are plotted as the
red points in Figure 4 (top). These red
points indicate the temporal behavior of
the autocorrelation function in the absence
of the 24 h periodic signal. However, the
red-point autocorrelation function is not
normalized so that its value is unity at
τshift = 0. To obtain the normalization, the
red points are fit with an exponential
function over the first few days of τshift.
That exponential fit to the red points is
plotted in Figure 4 (top) as the purple
curve, which has the functional form 0.466
exp(�0.578τshift). At τshift = 0, the value of
this function is 0.466. Dividing the red-
point autocorrelation function by 0.466
yields the normalized autocorrelation
function with the 24h signal removed; this
cleaned autocorrelation function is plotted
in blue in Figure 4 (top). The cleaned
autocorrelation function of Sgrd has an
autocorrelation time of 42h.

In Figure 4 (middle), the process is repeated
for the autocorrelation function of Sgeod.
Looking at the original autocorrelation
function plotted in green in the figure, it
can be noted that instead of wide flat
troughs between the 24 h peaks there are
subpeaks. These subpeaks represent the
presence of a 12 h period signal in the Sgeod
time series. To avoid these subpeaks,
instead of taking the troughs to be located
at the half days, the troughs are taken to be
located at the quarter days. The quarter-
day points of the autocorrelation function
are plotted in red in Figure 4 (middle).
These red points are fit within exponential
function over the first few days of τshift and
that fit is plotted in purple in Figure 4
(middle): Its functional form is 0.551 exp
(�0.751τshift). Dividing the red-point
autocorrelation function by 0.551, the
normalized cleaned autocorrelation
function of Sgeod is plotted in blue in
Figure 4 (middle). This cleaned
autocorrelation function has an
autocorrelation time of 32h.

The process is repeated again for the difference ULF index ΔSmag= Sgrd � 0.693Sgeod in Figure 4 (bottom).
Again, the quarter-day values of the autocorrelation function are used for the troughs since the difference
index ΔSmag involves Sgeod which has the secondary peaks. Fitting the red-point autocorrelation with an

Figure 4. The removal of 24 h period and 12 h period signals from the
autocorrelation functions of (top) Sgrd, (middle) Sgeod, and (bottom)
ΔSmag is shown.
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exponential function over the first few
days of τshift (plotted in purple) yields
the functional form 0.268 exp
(�0.494τshift). Dividing the red-point
autocorrelation by 0.268 results in the
normalized cleaned autocorrelation
function of ΔSmag that is plotted in blue
in Figure 4 (bottom). The
autocorrelation time of the cleaned
autocorrelation function of ΔSmag is
49 h. In all three cases (Sgrd, Sgeod, and
ΔSmag), the autocorrelation times of the
cleaned functions are substantially
longer than the autocorrelation times
of the original functions, which were
11 h for Sgrd, 14 h for Sgeod, and 3 h for
ΔSmag: The autocorrelation times of the
original functions are strongly affected

by the autocorrelation time of the 24 h and 12 h periodic signals in the time series. Note in Figure 4 that the 27
day peaks of the cleaned autocorrelation functions (blue curves) are all substantially larger than the 27 day
peaks of the original autocorrelation functions (green curves).

In Figure 5 the cleaned autocorrelation functions of Sgrd (black with points), Sgeod (orange with points), and
ΔSmag (pink with points) are compared with some of the other autocorrelation functions around the 27 day
peak. Note in Figure 5 that all Earth-based measurements show a 1 day periodicity in their autocorrelation
functions and that solar wind measurements do not. Note the very large amplitude of the 27 day recurrence
peak in the relativistic-electron flux F (brown). A similar large amplitude is seen in the solar wind velocity vsw
(green) and nearly as large in the logarithm of the proton-specific entropy log(Sp) (blue). Note that the
magnitude of the 27 day peak in the cleaned autocorrelation function of ΔSmag is quite large, about the same
as the peak in the autocorrelation function of F and similar to the peaks for log(Sp) and vsw.

5. Investigating the ULF Indices With Canonical Correlation Analysis

Recently canonical correlation analysis has been used to statistically explore solar wind/magnetosphere
coupling (J. E. Borovsky, Canonical correlation analysis of the combined solar-wind and geomagnetic-index
data sets, submitted to Journal of Geophysical Research, 2013c; The coupling strength of solar-wind/
magnetosphere interaction through the solar cycle examined with an accurate driver function: No
dependence on the phase of the solar cycle, submitted to Journal of Geophysical Research, 2013d). In this
section, canonical correlation analysis will be utilized to compare various data sets to gain insights into the
properties of the ULF indices and their connections to solar wind variables, geomagnetic indices, and the
relativistic-electron flux in the magnetosphere.

Canonical correlation analysis (CCA) mathematically finds patterns of correlation between two multivariate
data sets [cf. Muller, 1982; Johnson and Wichern, 2007; Gatignon, 2010; Nimon et al., 2010]. When applied to
Data Set 1 and Data Set 2, CCA creates a new set of variables A(1), A(2), A(3),… that are linear combinations of
the original variables from Data Set 1 and CCA creates a new set of variables B(1), B(2), B(3), … that are linear
combinations of the original variables from Data Set 2. The pair A(1) and B(1) are the “first canonical variables”
of the combined data set and the correlation coefficient r(1) between them is the “first canonical correlation”
between the two data sets. Likewise the pair A(2) and B(2) are the second canonical variables and the
correlation between them r(2) is the second canonical correlation. Variables A(2) and B(2) are completely
uncorrelated with variables A(1) and B(1); hence, the A(2) ↔ B(2) correlation in the combined data set is
completely unrelated to the A(1) ↔ B(1) correlation.

All variables going into the CCA processes must be standardized so that each is given the same weighting.
The standardization of the variables is performed by subtracting off the mean value of the variable and

Figure 5. The 27 day local maximum in the autocorrelation functions of
various quantities is examined.
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dividing by the standard deviation of the variable. This also makes the variable dimensionless. For example,
for use in CCA, the solar wind number density n will be transformed to n* = (n � 〈n〉)/σ(n) where 〈n〉 is the
mean value of n and σ(n) is the standard deviation of n. If the natural (base-e) logarithm of n is used, then log
(n) will be normalized into log(n)* = [log(n) � 〈log(n)〉]/σ(log(n)). For the variables used in the present study,
the formulas used to generate the normalized variables are collected in Table 4. The asterisk after each
variable indicates that that variable is standardized to have zero mean and a standard deviation of unity.
When the input variables are all dimensionless and normalized with zero mean and with standard deviations
of unity, then all of the canonical variables A(k) and B(k) will also be dimensionless and with zero mean and
standard deviations of unity.

With canonical correlation analysis, the number of simultaneous input variables is not limited, so the choice of
input variables can be quite complicated. Like simpler statistical methods, what you can interpret depends
on the input variables that you use and different sets of input variables yield different results and can be used to
study different problems. CCA tends to perform better with input variables that are Gaussian distributed [Hair
et al., 2010]. For positive-definite variables that have very skew distributions (such as n or AE), using the
logarithm of the variable generally produces higher correlation coefficients in the CCA process. Typically, the
variable is tried with and without the logarithm and the form that produces the higher correlation is chosen.

5.1. The ULF Indices and the Solar Wind

In this section, a ULF data set composed of the two variables Sgrd1 and Sgeod1 is compared with a solar wind
data set composed of the three variables vsw, log(n), and <sin2(θclock/2)>3. The ULF data set is composed of

Table 5. CCA Coefficients (Weights) for a Three-Variable Solar Wind Data Set Matched to a Two-Variable ULF Index Data Seta

Solar Wind Input Variables ULF Indices

Canonical Correlation Coefficient rvsw* log(n)* <sin2(θclock/2)>3* Sgrd1* Sgeod1*

First +1.57 +0.89 +0.91 +1.00 +0.78 0.742
Second �0.24 �0.87 +0.36 +1.00 �1.05 0.327

aThe first row is for the first canonical correlation and the second row is for the second canonical correlation.

Table 4. Formulas Used to Obtain the Hourly Averaged Dimensionless Normalized Variables From the Hourly Averaged
Variables in the Years 1991–2004a

Variable Units Formula

Sgrd nT Sgrd* = 2.114Sgrd � 0.00740
Sgeod nT Sgeod* = 2.573Sgeod+0.0614
Tgrd nT Tgrd* = 2.11Tgrd � 0.00717
Tgeod nT Tgeod* = 2.44Tgeod+0.00566
AE nT log(AE)* = 0.996 log(AE) � 4.91
AU nT AU* = 0.0136AU � 1.146
AL nT AL* = 0.00637AL+0.872
PCI PCI* = 0.961PCI � 1.071
Kp none Kp* = 0.723Kp � 1.618
MBI deg MBI* = 0.5685MBI + 35.77
Dst* nT Dst** = 0.0388Dst* + 0.676
vsw km/s vsw* = 0.00984vsw � 4.368
n cm�3 log(n)* = 1.496 log(n) � 2.523
nvsw

2 cm�3 k/s log(nvsw
2)* = 1.756 log(nvsw

2) � 24.278
Bmag nT Bmag* = 0.3134Bmag � 2.057
Bz nT Bz* = 0.2968Bz+0.0464
<sin2(θclock/2)>3 none <sin2(θclock/2)>3* = 3.949<sin2(θclock/2)>3 � 2.044
<θBn>3 deg <θBn>3* = 0.05717<θBn>3 � 3.022
Sp eVcm�2 Sp* = 0.2360Sp � 0.9412
MA none log(MA)* = 2.351 log(MA) � 4.805
F10.7 SFU log(F10.7)* = 2.704 log(F10.7) � 12.91
θclock deg θclock* = 0.02294θclock � 2.119
Timf Timf* = 2.751Timf+1.017
Tden Tden* = 3.117Tden+2.274

aThe variables marked by an asterisk have zero mean value and a standard deviation of unity.
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one ground-based index (Sgrd) and one geosynchronous index (Sgeod). The solar wind input parameters
explored here are chosen based on prior studies that showed that the amplitudes of fluctuations in the
magnetosphere are related to the solar wind velocity [Singer et al., 1977; Mathie and Mann, 2001; Romanova
et al., 2007; Kozyreva et al., 2007] and to the solar wind density [Menk et al., 2003; Takahashi and Ukhorskiy,
2008; Viall et al., 2009], with the clock angle function sin(θclock/2) included as a possible mediator of the
coupling. The CCA results appear in Tables 5 and 6: Table 5 contains the coefficients (weights) of the canonical
variables and Table 6 contains the correlation coefficients (loadings) rcorr between the individual variables
and the canonical variables. The two new ULF index canonical variables U(1) and U(2) are a sum of the two ULF
indicesU(1) = Sgrd1* + 0.78Sgeod1* and a difference of the two ULF indices U(2) = Sgrd1*� 1.05Sgeod1*. The sum U(1)
is described by the new solar wind canonical variable S(1) = 1.57vsw* + 0.89 log(n)* + 0.91<sin2(θclock/2)>3* with
a canonical correlation coefficient of 0.742 (Table 5, last column). As can be seen in the first column of Table 6,
the correlation of vsw with S(1) is 68.4%, the correlation of log(n) with S(1) is 4.3%, and the correlation of
<sin2(θclock/2)>3 with S(1) is 56.2%. There is almost no correlation between S(1) and log(n). S(1) is dominated by
vsw and sin2(θclock/2); hence, the ULF variable U(1) is dominantly driven by vsw and sin2(θclock/2). The
difference U(2) is described by (cf. Table 5) S(2) = �0.24vsw* � 0.87 log(n)* + 0.36<sin2(θclock/2)>3* with a
canonical correlation coefficient of 0.327 (Table 5, last column). The data set utilized is composed of
N= 64,910 hourly averages; correlation at the 95% confidence level occurs for a correlation coefficient with
a magnitude larger than 2/N1/2 = 0.0078 [Beyer, 1966; Bendat and Piersol, 1971], so a correlation of 0.327 is a
definite correlation. Note, however, with a coefficient of 0.327, this is not a strong correlation. The third
column of Table 6 shows that the correlation of the individual variables with S(2) is dominated by an
anticorrelation (�85.7%) with log(n). Hence, the ULF difference variable U(2) is driven by an anticorrelation
with log(n) of the solar wind.

The first canonical ULF variable U(1) resulting from the CCA process is U(1) = Sgrd1* + 0.78Sgeod1*. Note that the
coefficient 1.0 of Sgrd1* is larger in magnitude than the coefficient 0.78 of Sgeod1*. The CCA process finds the
combination of Sgrd1* and Sgeod1* that has the maximum correlation with the solar wind data set. This
combination emphasizes Sgrd1* over Sgeod1*. The interpretation of this emphasis is that there is more
predictability of Sgrd from the solar wind than there is for Sgeod. If a solar wind data set with many more solar
wind input variables is used in the CCA process, the resulting combination U(1) still relies more heavily on
Sgrd1* than on Sgeod1*.

If the CCA process is repeated using the total ULF wave power indices Tgrd1 and Tgeod1 instead of Sgrd1 and
Sgeod1, very similar results are obtained.

5.2. The ULF Indices and Geomagnetic Indices

In Table 7, the coefficients (weights) are displayed for a CCA comparing the ULF index data set composed of
Sgrd and Sgeod with a geomagnetic index data set composed of log(AE), Kp, and MBI. For the ULF index data

Table 7. CCA Coefficients (Weights) Collected for a Three-Variable Geomagnetic Index Data Set Matched to a Two-Variable ULF Index Data Seta

Geomagnetic Indices ULF Indices

Canonical Correlation Coefficient rlog(AE)* Kp* MBI* Sgrd* Sgeod*

First +0.60 +0.75 +0.35 +1.00 +0.74 0.844
Second +1.47 �0.86 �0.60 +1.00 �1.07 0.252

aThe first row is for the first canonical correlation and the second row is for the second canonical correlation.

Table 6. Corresponding to the CCA Case in Table 5, the Correlation Coefficients (Loadings) Between the Individual Solar
Wind and ULF Index Input Variables and the Canonical Variables

Correlation With S(1) Correlation With U(1) Correlation With S(2) Correlation With U(2)

vsw 68.4% 25.9%
log(n) 4.3% �87.5%
<sin2(θclock/2)>3 56.2% 42.4%
Sgrd1 93.1% 36.5%
Sgeod1 88.4% �47.6%
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set, one ground-based index (Sgrd) and one geosynchronous index (Sgeod) are chosen, and for the geomagnetic
index data set, a mix of high-latitude (log(AE)) and convective (Kp and MBI) indices is chosen. In Table 8, the
correlation coefficients (loadings) between the individual variables and the resulting canonical variables are
collected. As was the case of section 5.1 and Table 5, the two new canonical ULF variables U(1) andU(2) are a sum
and a difference: The coefficients of the variables U(1) = Sgrd* +0.74Sgeod* and U(2) = Sgrd* � 1.07Sgeod* are very
similar to the coefficients in Table 5 for the connection of the ULF indices to the solar wind data set. The two
corresponding canonical geomagnetic variables G(1) and G(2) are a sum of the three geomagnetic indices
G(1) = 0.60 log(AE)* + 0.75 Kp* + 0.35 MBI* and a difference G(2) = 1.47 log(AE)* � 0.86 Kp* � 0.60 MBI*. The first
canonical correlation between U(1) and G(1) is 0.844 and the second canonical correlation between U(2) and G(2)
is 0.252 with definite correlation at the level 2/(69410)1/2 = 0.0078. Examining the first column of Table 8, it is
seen that the individual geomagnetic indices log(AE), Kp, and MBI all correlate highly with G(1), with the
strongest correlation being with Kp. In the difference variable G(2), the geomagnetic index with a positive
coefficient is a “high-latitude” index log(AE) measuring the strength of high-latitude currents and the two
geomagnetic indices with negative coefficients are “convective” indices Kp and MBI measuring the strength of
plasma convection in the magnetosphere [Gussenhoven et al., 1983; Thomsen, 2004]. As can be seen by
examining the third column in Table 8, log(AE) is positively correlated with G(2) and Kp and MBI are negatively
correlated with G(2). In prior CCA that compared the geomagnetic-index data set to the solar wind data set
(J. E. Borovsky, submitted manuscript, 2013c), splitting of the set of geomagnetic indices between high-latitude
versus convective indices has also been seen. In the top line (first canonical correlation) of Table 7, the sum
Sgrd* + 0.74Sgeod* is described by a sum of convective plus high-latitude indices since the coefficients of log(AE),
Kp, and MBI are all positive. In the second line of Table 7 (second canonical correlation), the difference Sgrd* �
1.07Sgeod* is described by the strength of the high-latitude indicesminus the strength of the convective indices;
hence, the difference is statistically larger at times when the high-latitude indices are strong relative to the
convective indices.

As was the case for the correlation of the ULF indices with the solar wind in section 5.1 and Table 5,
U(1) = Sgrd* + 0.74Sgeod* has a larger coefficient for Sgrd* than it does for Sgeod*. CCA finds the maximum
correlation between the ULF indices and geomagnetic indices; the interpretation of the larger coefficient
for Sgrd* is that there is more predictability of Sgrd from geomagnetic indices than there is for Sgeod.

5.3. Relativistic-Electron Flux and Integrals of the ULF Indices

The relativistic-electron population of the outer electron radiation belt is dynamic, with rapid losses
[Freeman, 1964; Nagai, 1988; Onsager et al., 2002] and rapid recoveries [Borovsky and Denton, 2009a] and
with slow losses [Meredith et al., 2006; Borovsky and Denton, 2009b] and slow heating phases [Nagai, 1988;
Baker et al., 1990; Borovsky et al., 1998]. Using correlation analysis, the time derivatives (temporal changes)
of the radiation belt flux will be examined (Tables 9 and 10) and then the flux values themselves will be
examined (Figures 6 and 7). The analysis of the changes in the flux will provide insight into the direct
analysis of the flux.

The shorter-term versus longer-term behavior of the temporal changes of the relativistic-electron flux is
investigated in Tables 9 and 10. In Table 9, the coefficients (weights) of the CCA highest-correlation vector V(1)
are displayed and in Table 10 the correlation coefficients (loadings) rcorr (in percent) between the CCA
highest-correlation vector V(1) and the variables that constitute V(1). In the various rows of Tables 9 and 10, the
temporal change in the relativistic-electron flux F is compared with (a) the ULF indices Sgrd and Sgeod, (b) the
solar wind quantities vsw, n, log(Sp), and sin2(θclock), and (c) the geomagnetic indices log(AE) and Kp. The

Table 8. Corresponding to the CCA Case of Table 7, the Correlation Coefficients (Loadings) Between the Individual
Geomagnetic Index and ULF Index Input Variables and the Canonical Variables

Correlation With G(1) Correlation With U(1) Correlation With G(2) Correlation With U(2)

log(AE) 92.1% 38.8%
Kp 94.7% �24.4%
MBI 91.1% �13.6%
Sgrd 93.6% 35.2%
Sgeod 87.8% �47.9%
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proton-specific entropy of the solar wind Sp= Tp/np
2/3 has been added to the solar wind data set; it will be

found that the proton-specific entropy of the solar wind is an important factor for the radiation belt flux.
Rows 1–6 pertain to the 12 h change ΔF12hr in the value of the flux (shorter-term) and rows 7–12 pertain to
the 96 h change ΔF96hr in the flux (longer term). The column labels in Tables 9 and 10 all have the notation
<X>, meaning that the variable X in the column is averaged over the previous 12 or 96 h as appropriate for
ΔF12hr or for ΔF96hr. The final column in Tables 9 and 10 displays the canonical correlation coefficient r(1)
between ΔF and the maximum correlation vector V(1).

Table 10 provides information about which variables contribute information to the maximum correlation
vector V(1) with coefficients (weights) given in Table 9. (Before examining the individual correlations, note in
Table 10 that the canonical correlations (last column) are systematically lower for ΔF12hr (rows1–6) than they
are for ΔF96hr (rows 7–12).) Rows 1–6 for the 12 h change ΔF12hr in the flux will be examined first. Looking at
row 1 of Table 10, it is seen that the maximum correlation vector V(1) strongly favors Sgrd over Sgeod. In row 2, n
is the most favored solar wind variable. Note in row 3 that r(1) is equal to only 0.037 between the maximum
correlation vector V(1) and ΔF12hr: log(AE) and Kp provide essentially no information about the behavior of
ΔF12hr. As the various data sets are put together (rows 4–6), the resulting maximum correlation vector relies
most strongly on n of the solar wind. In particular in row 6, the highest correlation with the canonical variable
describing ΔF12hr is an anticorrelation with the solar wind density n with a correlation coefficient of �85.9%.
Note also in row 6 that Sgrd is favored over Sgeod in the variable V(1) for describing the variance of ΔF12hr, but

Table 10. For the Various Combinations of CCA Analysis in Table 9, the Correlation Coefficients (Loadings) Between the Individual Input Variables and the Canonical
Variables to Which They Belong

ULF Indices Solar Wind Geomagnetic Indices

<Sgrd>* <Sgeod>* <vsw>* <n>* <log(Sp)>* <sin2(θclock)>* <log(AE)>* <Kp>* rcorr

1 ΔF12hr 57.0% �1.4% 0.171
2 ΔF12hr 73.4% �93.2% 83.1% �0.9% 0.283
3 ΔF12hr 80.1% 99.2% 0.037
4 ΔF12hr 50.2% �1.2% 15.4% 19.1% 0.194
5 ΔF12hr 34.1% �0.8% 72.4% �92.0% 82.1% �0.9% 0.287
6 ΔF12hr 31.8% �0.8% 67.6% �85.9% 76.6% �0.8% 9.8% 12.1% 0.307
7 ΔF96hr 99.9% 85.4% 0.362
8 ΔF96hr 89.5% �53.2% 91.8% 26.9% 0.405
9 ΔF96hr 90.8% 99.9% 0.334
10 ΔF96hr 99.5% 85.0% 83.3% 91.6% 0.364
11 ΔF96hr 87.8% 75.1% 88.0% �52.3% 90.2% 26.4% 0.412
12 ΔF96hr 87.6% 74.9% 87.7% �52.2% 90.2% 26.4% 73.3% 80.7% 0.413

Table 9. Canonical Correlation Analysis Is Used to Compare the Temporal Change in the Relativistic Electron Flux With Data Sets of ULF Indices, Solar Wind
Variables, and Geomagnetic Indices, Separately and in Combinationa

ULF Indices Solar Wind Geomagnetic Indices

<Sgrd>* <Sgeod>* <vsw>* <n>* <log(Sp)>* <sin2(θclock)>* <log(AE)>* <Kp>* rcorr

1 ΔF12hr 1.72 �1.41 0.171
2 ΔF12hr 0.21 �0.67 0.26 �0.03 0.283
3 ΔF12hr �0.25 1.21 0.037
4 ΔF12hr 2.20 �1.19 �1.05 0.22 0.194
5 ΔF12hr 0.28 �0.32 0.26 �0.56 0.24 �0.06 0.287
6 ΔF12hr 0.66 �0.04 0.32 �0.58 0.22 0.22 �0.88 �0.04 0.307
7 ΔF96hr 1.09 �0.10 0.362
8 ΔF96hr 0.54 0.25 0.64 0.25 0.405
9 ΔF96hr 0.10 0.91 0.334
10 ΔF96hr 1.24 �0.08 �0.19 �0.01 0.364
11 ΔF96hr 0.25 0.19 0.07 0.13 0.70 0.07 0.412
12 ΔF96hr 0.36 0.32 0.09 0.08 0.67 0.10 �0.09 �0.20 0.413

aThe CCA coefficients (weights) are collected in the table for those various combinations. Rows 1–6 correspond to the 12 h change ΔF12hr of the flux and rows
7–12 correspond to the 96 h change ΔF96hr of the flux.
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that the correlation is nowhere near the
magnitude of �85.9% for n. We can speculate
that this strong anticorrelation between the
12 h change in the relativistic-electron flux ΔF12hr
and the solar wind number density n averaged
over those 12h represents, in part, rapid
dropouts of the electron flux when the solar
wind density increases to high levels [Onsager
et al., 2007; Borovsky and Denton, 2010a] and
rapid recoveries of the flux after the solar wind
density subsides [Borovsky and Denton, 2009a,
2011]. Note in rows 1–6 of Table 10 that the 12 h
change in the relativistic-electron flux is
uncorrelated with the IMF clock angle function
sin2(θclock/2) averaged over the previous 12 h.

Information about the 96 h change in the flux
appears in rows 7–12 of Table 10. Looking at the
r(1) values in the final column of rows 7–9, it is
seen that the ULF indices, the solar wind, and
the geomagnetic indices all make contributions
to describing the variance of ΔF96hr, with the
solar wind contribution being the strongest.
Note in rows 7–12 of Table 10 that Sgrd is
strongly favored over Sgeod for describing the
variance of ΔF96hr; it is difficult to interpret
whether (a) Sgrd is more physically fundamental
to ΔF96hr than Sgeod is or whether (b) Sgeod is
more noisy than Sgrd. When all the data sets are
combined (row 12), log(Sp) is the strongest
contributor to the maximum correlation vector.
The specific entropy Sp is an indicator of the
type of solar wind plasma: High Sp indicates
coronal-hole-origin plasma and low Sp indicates
streamer-belt-origin plasma. In row 12 of
Table 10, V(1) describing ΔF96hr has a high
correlation with vsw which can be interpreted as
heating of the radiation belt by high vsw, V(1)
describing ΔF96hr has a high correlation with Sgrd
which can be interpreted as energization of the
radiation belt by ULF waves, and V(1) describing
ΔF96hr has a high correlation with Kp which
could be interpreted as radiation belt
energization during high geomagnetic activity
(perhaps by substorm injection-driven waves).
But in row 12, the correlation with log(Sp) is the
highest, indicating an increase of the
relativistic-electron flux during intervals of
coronal-hole-origin solar wind plasma and/or a
decrease in the relativistic-electron flux during
intervals of streamer-belt-origin plasma: Both
the increase [Borovsky and Denton, 2010b] and
the decrease [Borovsky and Denton, 2009b] are
seen in superposed-epoch views of the

Figure 6. (top) Pearson linear correlation coefficients between
the relativistic-electron flux F and time integrals of various solar
wind parameters, geomagnetic indices, and ULF indices are
plotted as a function of the integration time into the past.
(middle) The coefficients (weights) of the CCA-generated vari-
able V(1) are plotted as a function of the integration time of the
input variables. (bottom) The correlation coefficients (loadings)
between the input variables and V(1) are plotted as a function of
the integration time of the input variables.
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transition from streamer-belt-origin
plasma to coronal-hole-origin plasma.

Note in rows 7–12 of Table 10 the
positive correlation between the 96 h
average of the clock angle function
sin2(θclock/2) and variable V(1) describing
the 96 h change in the relativistic-
electron flux ΔF96hr. This is the Russell-
McPherron effect [McPherron et al.,
2009] wherein growth of the radiation
belt fluxes is associated with long
intervals with the average value of the
IMF vector having a southward
component. This positive correlation
with sin2(θclock/2) is expected if the
energization or the source of the
radiation belt depends on geomagnetic
activity [e.g., Obara et al., 2000; Meredith
et al., 2002] and/or if the decay of the
radiation belt depended on a lack of
geomagnetic activity [e.g., Borovsky and
Steinberg, 2006; Meredith et al., 2006;
Borovsky and Denton, 2009b, 2011].

In comparing the sizes of the coefficients of the input variables in the composite canonical variables (the
“weights”) in Table 9 with the sizes of the correlation coefficients between the input variables and the canonical
variables (the “canonical loadings”) in Table 10, one of two effects can sometimes occur [cf. MacKinnon et al.,
2000; Nimon et al., 2010]. When the coefficient (weight) is anomalously small for an input variable compared
with its correlation coefficient (canonical loading), it is a sign that there is at least one “confounding” variable in
the input variables, with another input variable correlated with the confounding variable [Robins, 1989; Frank,
2000]; the variable with the anomalously small weight (which may be the confounding variable or may be a
confounded variable) has some of its contribution to the canonical variable shared by another input variable.
Hence, its weight is reduced. On the contrary, when the coefficient (weight) for an input variable is anomalously
large compared with its correlation coefficient (canonical loading), it is a sign that that input variable is playing a
“suppression” role; specifically, the variable is acting to cancel out (suppress) the irrelevant variance of other
input variables in order to improve the overall correlations [Conger, 1974; Tzelgov and Henik, 1991].

An example of suppression can be seen in row 1 of Table 9 where the coefficient (�1.41) of<Sgeod>* is large
relative to its correlation coefficient (�1.4%) in row 1 of Table 10. Since <Sgrd>* is the only other input
variable in row 1,<Sgeod>* is acting to suppress <Sgrd>*. Specifically,<Sgeod>* is being used to subtract off
variance in <Sgrd>* that is not related to the variance in ΔF96hr. Note that it is slow variance that is being
subtracted off since <Sgeod>* and <Sgrd>* are 12 h averages in row 1. This suppression effect can be seen
again for the coefficient of <Sgeod>* in rows 4 and 5 of Table 9.

Another example of suppression can be seen in row 6 of Table 9 where the coefficient (�0.88) of<log(AE)>*
is large relative to the correlation coefficient (9.8%) in row 6 of Table 10. Unlike the case of row 1, it is difficult
to discern what input variables <log(AE)>* might be suppressing.

An example of shared variance and reduced weights can be seen in row 9 of Tables 9 and 10 where the
coefficient (0.10) of <log(AE)>* is anomalously low compared with its correlation (90.8%).

In Figure 6 (top), some Pearson linear correlation coefficients between the multispacecraft-averaged
relativistic-electron flux F at geosynchronous orbit and various time integrals of the ULF indices Sgrd and Sgeod,
the solar wind parameters vsw, n, log(Sp), and sin2(θclock/2), and the geomagnetic indices log(AE) and Kp are
plotted in color as functions of the integration time. The time integrations are into the past with respect to
the time at which the relativistic-electron flux F is measured. For instance, an integration time of 1 h on vsw

Figure 7. For the years 1998–2004, the Pearson linear correlation coeffi-
cients between the relativistic-electron flux F and the time intervals of
various solar wind parameters, geomagnetic indices, and ULF and indices
are plotted as a function of the integration time into the past.
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uses the 1 h of vsw data at the same time as the flux; an integration time of 45 h on vsw uses the same hour of
vsw data plus the previous 44 h of vsw data to perform the integration on vsw, and that 45 h integration of vsw is
compared with the 1 h of flux to perform the correlation. The correlations with F all peak at integration times
of 30–120 h. The strongest correlation with F is for ∫log(Sp) dt integrated over the previous 72 h, where Sp is
the proton-specific entropy of the solar wind plasma. ∫log(Sp) dt for 72 h being high is an indicator that there
has been coronal-hole-origin plasma for the previous 72 h and ∫log(Sp) dt being low is an indicator that there
has been streamer-belt-origin plasma for the previous 72 h. Putting the quantities Sgrd, Sgeod, vsw, n, log(Sp),
sin2(θclock/2), log(AE), and Kp into CCA with F yields, for every integration time, a canonical correlation
vector V(1): The canonical correlation coefficient r(1) between V(1) and F is plotted in black in Figure 6 (top).
Note that the magnitude of r(1) exceeds the magnitude of any individual correlation. Note also in image
that there is a weak localized peak in all quantities at an integration time corresponding to the solar
rotation period of 27 days (648 h).

In Figure 6 (middle), the coefficients (weights) of the canonical vector V(1) are plotted as a function of the
integration time. The coefficients in Figure 6 (middle) can be related to the individual correlations in Figure 6
(top), but not always. For examples, note the difference in the behavior of the curves for ∫n dt and ∫Sgeod dt in
the two plots. Cross correlations between the various input variables weigh heavily on CCA’s choice of
coefficients for V(1). The canonical correlation coefficient r(1) between F and V(1) is also plotted as the black
dashed curve in Figure 6 (middle): r(1) peaks at a value of 0.695 at an integration time of 52 h. At 52 h, the
canonical variable V(1) that describes the flux is

V 1ð Þ ¼ 0:552∫52hrSgrd*dt � 0:593∫52hrSgeod*dt þ 0:764∫52hrvsw*dt

�0:049∫52hrn*dt þ 0:203∫52hr log Sp
� �

*dt

þ0:209∫52hr sin2 θclock=2ð Þ*dt þ 0:098∫52hr log AEð Þ*dt
� 0:258∫52hrKp*dt (4)

where the correlation coefficient between V(1) as given by expression (4) and the flux F is r(1) = 0.695.

In Figure 6 (bottom), the Pearson linear correlation coefficients (loadings) between the individual integrals
and the canonical correlation vector V(1) are plotted. These correlations are related to the correlations with
F in Figure 6 (top), but not exactly since CCA accounts for cross correlations of the integrals when choosing
the coefficients for V(1). Note in Figure 6 (bottom) that ∫n dt dominates the correlation with V(1) at integration
times of ~30 h and that ∫log(Sp) dt and ∫vsw dt dominate the correlation with V(1) at longer integration times.

If in the CCA process only the time integrals of Sgrd and Sgeod are given as input variables to match with the
instantaneous relativistic-electron flux, then the maximum canonical correlation is obtained for an
integration time of 69 h and the canonical variable V(1) that describes the flux is

V 1ð Þ ¼ 1:740∫69hrSgrd*dt � 0:990∫69hrSgeod*dt (5)

the canonical correlation coefficient between V(1) and the flux F is r(1) = 0.598 for the integration time of 69 h.
The quantity 1.740Sgrd* � 0.990Sgeod* is a constant times the difference quantity Sgrd* � 0.569Sgeod*: Using
the values in Table 4 to convert Sgrd* into Sgrd and Sgeod* into Sgeod, the quantity Sgrd* � 0.569Sgeod* can be
written as Sgrd � 0.693Sgeod. This is where the difference ULF index ΔSmag ≡ Sgrd � 0.693Sgeod is defined. For
the ULF indices Sgrd and Sgeod, the maximum correlation with F is with ∫69hr ΔSmag dt= ∫ 69hr(Sgrd� 0.693Sgeod)
dt. (Note that this maximum correlation for ∫69hr ΔSmag dt at an integration time of 69 h could be a
compromise between ∫Sgrd dt at one integration time minus ∫Sgeod dt at another integration time.)

In Figure 6 (middle), the largest correlations found with the relativistic-electron flux Fwere for integrals of the
proton-specific entropy Sp of the solar wind; likewise in Tables 9 and 10, the proton-specific entropy
dominated the correlations with the 96 h change ΔF96hr of the relativistic-electron flux. This can be
interpreted as the importance of intervals of solar wind type to the state of the relativistic-electron flux.

To further explore this, the correlations of the flux F with the heavy-ion charge-state ratios of the solar wind
are examined in Figure 7 and the identification of solar wind plasma by specific entropy and charge-state
ratios is examined in Figure 8. Hourly averages of the charge-state density ratios C6+/C5+ (=number density of
carbon 6+ ions in the solar wind divided by the number density of carbon 5+ ions in the solar wind) and
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O7+/O6+ (=number density of oxygen 7+
ions in the solar wind divided by the
number density of oxygen 6+ ions in the
solar wind) are available from ACE
SWICS starting in the year 1998. For
overlap with the ULF indices, the years
1998–2004 are examined in Figure 7. For
those years, the correlation coefficients
between the multisatellite-averaged
relative-electron flux F and integrals into
the past of�log(C6+/C5+),�log(O7+/O6+),
Sgrd, Sgeod, vsw, �log(n), log(Sp), Kp,
and log(AE) are plotted as functions of
the integration time. Note the
correlation behavior of �log(C6+/C5+)
and�log(O7+/O6+) are similar to that of
log(Sp), but their correlations with F are
not as strong.

In Figure 8, the proton- and alpha
particle-specific entropies of the solar
wind plasma (top) and the oxygen and
carbon charge-state ratios of the solar
wind plasma (bottom) are plotted as a
function of time in superposed averages
of 27 corotating interaction regions
(CIRs). The 27 CIRs from the years

2003–2008 are listed in Table 1 of Borovsky and Denton [2010c]. The CIRs were picked with three criteria: (1) that
they have a clear, dominant shear zone as seen in the local-Parker-spiral coordinate system [cf. Borovsky and
Denton, 2010c, section 3], (2) that they do not contain interplanetary shocks, and (3) that they are followed by
long (~3days or more) intervals of high-speed (>600 km/s) wind. For the superposed-epoch analysis of
Figure 8, the zero epoch for the averaging is triggered on the CIR stream interface, identified as themaximum of
the out-of-ecliptic-plane component of the plasma vorticity in each CIR [cf. Borovsky and Denton, 2010c, section 3].
The CIR stream interface is believed to map to the coronal-hole boundary on the solar surface separating
plasma of coronal-hole origin from plasma of streamer-belt origin [cf. Forsyth and Marsch, 1999; Gosling and
Pizzo, 1999; Crooker et al., 2010; Foullon et al., 2011], with the solar wind plasma after the stream interface being
of coronal-hole origin and the solar wind plasma before the stream interface being of either helmet-streamer-
origin plasma or pseudostreamer-origin plasma [Borovsky and Denton, 2013]. The plasma before the stream
interface can also be mixed with ejecta, which also has low specific entropy and high charge-state ratios; it is
expected that ejecta should appear near the magnetic field sector reversals [e.g., Mendoza and Perez-Enriquez,
1993; Srivastava et al., 1997; Foullon et al., 2011], which precede the stream interface [Gosling et al., 1978]. This
plasma transition at the stream interface is marked at the bottom of Figure 8 (bottom). In Figure 8 (top), the
proton-specific entropy Sp= Tp/np

2/3 (as measured with the Solar Wind Electron Proton Alpha Monitor plasma
instrument [McComas et al., 1998] on ACE) is plotted logarithmically in dark red and the alpha particle-specific
entropy Sα= Tα/nα

2/3 (as measured with the SWICS instrument [Gloeckler et al., 1998] on ACE) is plotted
logarithmically in red. Note the strong transitions in both curves from lower specific entropy in the streamer-
belt-origin plasma to the higher specific entropy in the coronal-hole-origin plasma. In Figure 8 (bottom), the
C6+/C5+ (green) and O7+/O6+ (blue) charge-state ratios (both measured with the SWICS instrument on ACE) are
plotted logarithmically. Note the strong transitions in both curves from higher charge-state ratios (indicating
hotter plasma at the Sun) in the streamer-belt-origin plasma to the lower charge-state ratios (indicating cooler
plasma at the Sun) in the coronal-hole-origin plasma.

Any one of the four quantities plotted in Figure 8 could be used as an indicator of the type of solar wind
plasma [e.g., Burlaga et al., 1990; Siscoe and Intriligator, 1993; Geiss et al., 1995; von Steiger et al., 2000;
Zurbuchen et al., 2002; Lazarus et al., 2003; Pagel et al., 2004; Zhao et al., 2009; Landi et al., 2012]. A better

Figure 8. For the superposition of 27 corotating interaction regions with
the zero epoch chosen to be the passage of the CIR stream interface, (top)
the superposed average of the alpha-particle and proton-specific entro-
pies are plotted as a function of time from the stream interfaces and
(bottom) the superposed average of the carbon-ion charge-state ratio
and the oxygen-ion charge-state ratio are plotted as a function of time
from the stream interfaces.
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(less noise) indicator would be log(Sp) + log(Sα) � log(C6+/C5+) � log(O7+/O6+). If the alpha particle
temperature or density is not available, then the quantity 2log(Sp) � log(C6+/C5+) � log(O7+/O6+) can be
used. Using log(A) + log(B) = log(AB), this latter expression can also be written as log(Sp

2C5+O6+/C6+O7+).
Defining the quantity

Ptype ≡2 log Sp
� �� log C6þ=C5þ� �� log O7þ=O6þ� �

(6)

as an indicator of the type of solar wind plasma, Ptype is high in coronal-hole-origin solar wind and the
quantity is low in streamer-belt-origin solar wind. In Figure 7, the correlation of the integral of Ptype = 2log(Sp)
� log(C6+/C5+)� log(O7+/O6+) with the relativistic-electron flux F in the years 1998–2004 is plotted in pink as
a function of the integration time. Note that the relativistic-electron flux F has the highest correlation with this
indicator of the type of solar wind plasma, peaking at rcorr=0.598 at an integration time of 64 h. The
interpretation is that the flux F tends to be high after an interval of coronal-hole plasma and the flux tends to
be low after an interval of streamer-belt-origin plasma.

Various studies have directly or indirectly connected the dynamics of the relativistic-electron flux of the
magnetosphere with the velocity of the solar wind [e.g., Paulikas and Blake, 1979; Fung and Tan, 1998; Desorgher
et al., 1998; Vassiliadis et al., 2002; Borovsky and Denton, 2006; Reeves et al., 2011], with the number density of the
solar wind [Balikhin et al., 2011; Boynton et al., 2013], with ULF wave intensities in the magnetosphere [e.g.,
Rostoker et al., 1998; Mathie and Mann, 2000; Friedel et al., 2002; Nakamura et al., 2002; Kozyreva et al., 2007;
Romanova and Pilipenko, 2009], and with geomagnetic activity [Baker et al., 1999; Buhler and Desorgher, 2002;
Lam, 2004; Lam et al., 2009;McPherron et al., 2009]. In the paragraphs above, we have connected the relativistic-
electron flux to the type of solar wind plasma. Using the CCA technique, we will compare simultaneously all of
these connections to the relativistic-electron flux F for the years 1998–2004; since all variables will be
standardized, all of the connections will be on the same footing during the comparison. For the speed of the
solar wind, the integral ∫vsw dt has its highest correlation with F when the integration time is 68h (for the years
1998–2004). ∫log(n) dt has its highest correlation with F for an integration time of 27 h; ∫(Sgrd � 0.693Sgeod) dt
(=∫ΔSmag dt) has its highest correlation for 69 h; ∫log(AE) dt has its highest correlation for 98h; ∫sin2(θclock/2) dt
has its highest correlation for 80 h; and ∫Ptype dt has its highest correlation for 64 h. Putting these six integrals
into CCA with F, the resulting composite variable V(1) that describes F is

V 1ð Þ ¼ �0:489∫27hr log nð Þdt þ 0:330∫64hrPtypedt

þ0:207∫69hr Sgrd � 0:693Sgeod
� �

dt þ 0:142∫98hr log AEð Þdt
þ0:099∫80hr sin2 θclock=2ð Þdt þ 0:022∫68hrvswdt (7)

with a correlation coefficient r(1) = 0.704 between V(1) and F. Which variables make the strongest contribution
to the canonical variable V(1) is determined by the magnitudes of the correlation coefficients (loadings) rcorr
between the individual variables and V(1) [Johnson and Wichern, 2007]. From strongest correlation to weakest
correlation, those correlations are �85.2% for ∫27hr log(n) dt, 85.0% for ∫64hr Ptype dt, 81.8% for ∫68hr vsw dt,
80.5% for ∫69hr (Sgrd � 0.693Sgeod) dt= ∫69hr ΔSmag dt, 65.9% for ∫98hr log(AE) dt, and 24.6% for ∫80hr

sin2(θclock/2) dt. The 27 h integral of the logarithm of the solar wind number density makes the strongest
contribution and the 64 h integral of the type of solar wind makes nearly the same contribution. In any
combination of input variables used for CCA with F, the contribution of ∫27hr log(n) dt is greatest with the
contribution of ∫64hr Ptype dt a very close second. A simplified set of input variables that does nearly as well as
expression (7) at describing F is

V 1ð Þ ¼ �0:599∫27hr log nð Þdt þ 0:598∫64hrPtypedt

þ0:173∫80hr sin2 θclock=2ð Þdt (8)

which has a correlation coefficient of r(1) = 0.688 with F. For expression (8), the correlation of ∫27hr log(n) dt
with V(1) is �87.1%, the correlation of ∫64hr Ptype dt with V(1) is 86.9%, and the correlation of ∫80hr sin2(θclock/2)
dt with V(1) is 25.1%.

6. Integrating the ULF Indices Into the System of Earth Variables

To understand the full reaction of the magnetosphere to the solar wind, variables that describe the state of
the magnetospheric system are in demand. Combining the set of geomagnetic indices and the
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magnetospheric ULF indices, the following Earth vector of values (AE, AL, AU, PCI, Kp, MBI, Dst*, Sgrd, Sgeod) is
potentially available at every instant of time.

When comparing the multivariable Earth data set to the multivariable solar wind data set, canonical
correlation analysis yields a vector of coefficients that when dot producted with the Earth vector yields a
single composite Earth variable E(1) that maximizes the correlation with the solar wind data set. Likewise, CCA
yields another vector of coefficients that converts the vector of solar wind variables into a single composite
solar wind variable S(1) that has the highest correlation with E(1).

To produce this pair of variables E(1) and S(1), a large number of solar wind variables were utilized
simultaneously in the CCA process matched up with the Earth vector (AE, AL, AU, PCI, Kp, MBI, Dst*, Sgrd, Sgeod)
and solar wind variables were eliminated one by one if their contribution to the canonical correlation was
negligible. This results in a more manageable, more practical, and more significant solar wind variable.
Through this process of elimination, the following pair of variables resulted:

E 1ð Þ ¼ 0:176 log AE1ð Þ*þ 0:036AU1*þ 0:039AL1*þ 0:244PCI0*

þ0:166Kp1*� 0:235MBI1*� 0:236Dst2**þ 0:057Sgrd1*þ 0:048Sgeod1* (9a)

S 1ð Þ ¼ 0:752 log nv2ð Þ*� 0:535 log nð Þ*� 0:357Bz*þ 0:274<sin2 θclock=2ð Þ>3*

þ0:233∫22hrRquickdt*þ 0:189Bmag*þ 0:087<θBn>3*

�0:070 log MAð Þ*þ 0:064 log F10:7ð Þ* (9b)

with a canonical correlation coefficient of r(1) = 0.926 between S(1) and E(1) for the 1991–2004 data set of
hourly values. The asterisk after each variable in expressions (9a) and (9b) indicates that that variable is
standardized to have zero mean and a standard deviation of unity as evaluated in the 1995–2004 hourly data
set; note that the pressure-corrected Dst* index has two asterisks. In expression (9a), the subscript number
indicates the number of hours that the value of the geomagnetic index is lagged from the solar wind values.
In expression (9b), < >3 means a 3 h average using the hour at which all solar wind parameters are evaluated
plus the two previous hours (cf. J. E. Borovsky, submittedmanuscript, 2013d). With standardized variables going
into the CCA process, the solar wind variable S(1) and the Earth variable E(1) both have mean values of
approximately 0 and standard deviations of approximately unity.

In expression (9b), the term ∫22hr Rquick dt* is a time integral (into the past) of the reconnection driver function
Rquick = n1/2vsw

2 sin2(θclock/2) MA
�1.35 [1 + 680MA

�3.30]�1/4. The normalization is ∫22hr Rquick dt* = [∫22hr Rquick
dt�<∫22hr Rquick dt>]/σ(∫22hr Rquick dt), where for every hour of data in the data set, the integral of Rquick back
22 h is performed. This integral term in S(1) represents the past history of geomagnetic activity (without using
a geomagnetic index variable in the solar wind data set) and apparently acts to correct a slight hysteresis in
the solar wind driving of the magnetosphere. The inclusion of the ∫22hr Rquick dt* term in S(1) has two effects:
(1) It lowers the amount of Earth response at strong driving and (2) it prevents outlier values of S(1) from going
to very low values. This second effect reduces a common nonlinearity in the response of geomagnetic activity
to solar wind driver functions wherein as the value of the driver function goes to zero the geomagnetic
activity remains nonzero [cf. Borovsky, 2013a, Figure 7]. The integration time of 22 h was found to be optimal
to produce the maximum improvement of the canonical correlation coefficient between S(1) and E(1):
Adjusting the integration time from 1 h to 22 h reduces the unaccounted for variance 1 � r(1)

2 of E(1) from
16.1% to 14.2%.

In Figure 9, 64,910 hourly values of the Earth variable E(1) are plotted in black as a function of the hourly solar
wind variable S(1). A 300-point running average of the black points is plotted in blue; the running average
shows the relationship between E(1) and S(1) to be nearly linear. A least squares linear regression fit to E(1) as a
function of S(1) is plotted in red: That fit is

E 1ð Þpredicted ¼ 0:926S 1ð Þ � 7:77�10�5 (10)

which can be used as a predictor for E(1). With a correlation coefficient r(1) = 0.926 between S(1) and E(1),
rcorr

2 = 85.8% of the variance of E(1) can be accounted for from the variance of S(1), leaving only 14.2% of the
variance not predicted.
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The autocorrelation functions of the
Earth variable E(1) and the solar wind
variable S(1) are plotted in Figure 10. The
two autocorrelation functions have very
similar behaviors. This is unlike the
diverse autocorrelation functions of the
individual solar wind variables and
individual geomagnetic indices in
Figure 3. The 1/e autocorrelation times
for E(1) and S(1) are both 25 h.

In Table 11, the coefficients (weights) of
E(1) and S(1) from expressions (9a) and (9b)
are collected. Additionally, the
correlation coefficients rcorr (in percent)
of the individual Earth variables and
solar wind variables with the two
canonical variables E(1) and S(1) are
collected. Examining the correlation
coefficients of the individual Earth
variables with E(1) indicates the strength
of the contribution (loading) of each
individual Earth variable to E(1). As can
be seen in Table 11, the two convective
indices MBI and Kp make the strongest

contributions to E(1). Sgeod, Sgrd, and AU make the weakest contributions; these weak contributions may imply
a lack of predictability to Sgeod, Sgrd, and AU. Further detrending of Sgeod and Sgrd in future by removal of
periodic signals may improve their contributions to a canonical Earth variable. Examining in Table 11 the
correlation coefficients of the individual solar wind variables with S(1) indicates the strength of the
contribution (loading) of each individual solar wind variable to S(1). By this measure, log(n) makes essentially
no contribution to S(1); in support of this log(n) is also uncorrelated with the Earth variable E(1) (Table 11,
second column). Note, however, that the coefficient of log(n)* (Table 11, third column) is substantial: This is
an indication that log(n) is playing the role of a suppressor in the CCA process [cf. Nimon et al., 2010]. A

suppressor variable improves the
correlation between S(1) and V(1) by
canceling (suppressing) some of the
irrelevant variance in S(1).

The variable S(1) of expression (9b) can
also be used to predict the individual
geomagnetic indices and ULF indices
from the information in the solar wind.
As can be seen in Table 11, the Pearson
linear correlation coefficients between
S(1) and the various indices are 0.796 for
log(AE1), 0.702 for AU1, 0.746 for �AL1,
0.793 for PCI, 0.832 for Kp1, 0.876 for
�MBI1, 0.753 for �Dst*2, 0.772 for Sgrd1,
and 0.702 for Sgeod1.

7. Summary

Using cross-correlation analysis,
autocorrelation analysis, and canonical
correlation analysis, the properties of

Figure 10. The autocorrelation function of the canonical Earth variable
E(1) (expression (9a)) is plotted in green and the autocorrelation function of
the canonical solar wind variable S(1) (expression (9b)) is plotted in red. The
1995–2004 data set is used.

Figure 9. Hourly average values of the canonical Earth variable E(1)
(expression (9a)) are plotted as a function of hourly averaged values of
the canonical solar wind variable S(1) (expression (9b)).
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the magnetospheric ULF indices were investigated and their connections with solar wind variables, with
geomagnetic indices, and with relativistic-electron fluxes were explored. The list of findings of this study is
the following:

1. The signal ULF indices Sgr and Sgeo and the total ULF indices Tgr and Tgeo were examined and compared.
The signal and total indices are very similar, but the signal indices produce higher correlations with the
solar wind and with geomagnetic indices.

2. The ULF indices were detrended to remove 24 h period sine wave signals. The detrended indices are
denoted as Sgrd, Sgeod, Tgrd, and Tgeod. Detrending the ULF indices improves their correlations with each
other, with solar wind variables, and with geomagnetic indices.

3. Autocorrelation function analysis shows that there are still very strong 24 h period nonsinusoidal sig-
nals in Sgrd and Sgeod and a 12 h period signal in Sgeod. (See also the discussion in section 8.2.) The
24 h signal in Sgrd is the strongest. Removal of the 24 h period signal in the autocorrelation function
of Sgrd drastically changes the autocorrelation time of Sgrd and changes the amplitude of the 27 day
periodicity in Sgrd.

4. Research and removal of these nonsinusoidal periodic signals are recommended. Removal of these
signals will change the statistical properties of the Sgr and Sgeo indices and will improve their
correlations with solar wind parameters (which do not have 12 and 24 h periodicities in them). Removal
of these signals is discussed in section 8.2.

5. The ground-based index Sgrd is more predictable than the geosynchronous index Sgeod even though Sgrd
has a stronger 24 h periodic signal in it. This may mean that Sgrd has less noise in it than in Sgeod, or it may
mean that Sgrd is more physically fundamental than Sgeod.

6. The ULF indices Sgrd, Sgeod, Tgrd, and Tgeod react to changes in the solar wind with about a 1 h time lag, as
do most geomagnetic indices.

7. The ULF indices Sgrd, Sgeod, Tgrd, and Tgeod are well correlated with the speed of the solar wind, the IMF
clock angle of the solar wind, and the level of magnetic field fluctuations in the solar wind. The
geosynchronous indices are sensitive to the level of density fluctuations in the solar wind.

8. The ULF indices Sgrd, Sgeod, Tgrd, and Tgeod are all strongly correlated with geomagnetic indices. The
strongest correlations are with the indices Kp and MBI, which are measures of the strength of
convection in the magnetosphere.

9. In the correlative analyses, a difference index ΔS= Sgrd � 0.693Sgeod repeatedly arises. This difference
index produces the highest ULF correlation with the relativistic-electron flux F. The difference index is
anticorrelated with the solar wind number density and the difference index is positively correlated with

Table 11. For the Canonical Correlation Analysis Comparing the Earth Data Set With the Solar Wind Data Set (Expressions (9a) and (9b))a

Variable Coefficient in E(1) Correlation With E(1) Coefficient in S(1) Correlation With S(1)

Earth variables log(AE1)* 0.176 85.9% 79.6%
AU1* 0.036 75.8% 70.2%
�AL1* �0.039 80.6% 74.6%
PCI0* 0.244 85.6% 79.3%
Kp1* 0.166 89.8% 83.2%

�MBI1* 0.235 94.6% 87.6%
�Dst2** 0.236 81.3% 75.3%
Sgrd1* 0.057 78.0% 72.2%
Sgeod1* 0.048 75.9% 70.2%

Solar wind variables log(nv2)* 38.8% 0.752 41.9%
log(n)* �0.0% �0.535 �0.0%
Bz* �56.2% �0.357 �60.6%

<sin2(θclock/2)>3* 53.6% 0.274 57.9%
∫
22hr Rquick dt* 68.4% 0.233 73.8%

Bmag* 49.4% 0.189 53.3%
<θBn>3* 10.9% 0.087 11.8%
log(MA)* �21.9% �0.070 �23.7%
log(F10.7)* 13.3% 0.064 14.3%

aThe coefficients (weights) for the Earth variable E(1) are listed in the first column, the coefficients (weights) for the solar wind variable S(1) are listed in the third
column, the correlations between the individual input variables and the Earth variable E(1) are listed in the second column, and the correlations between the
individual input variables and the solar wind variable S(1) are listed in the fourth column.
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the strength of high-latitude geomagnetic indices minus the strength of convective geomagnetic
indices. The difference index ΔS has very different autocorrelation function properties than those of Sgrd
or of Sgeod.

10. The multispacecraft-averaged relativistic-electron flux F in the magnetosphere was correlated simulta-
neously with time integrals of (a) the solar wind velocity, (b) the solar wind number density, (c) the ULF
intensity, (d) geomagnetic activity, and (e) the type of solar wind plasma. A solar wind type-of-plasma
indicator Ptype≡ 2log(Sp) � log(C6+/C5+) � log(O7+/O6+) was defined. The integrals of the solar wind
number density ∫n dt and the type of plasma ∫Ptype dt always dominate the correlations with F. In particular,
the solar wind number density dominates the shorter-term behavior of the relativistic-electron flux and the
type of plasma dominates the longer-term behavior. The interpretation of the ∫Ptype dt positive correlations
with F is that the radiation belt flux F slowly increases during long intervals of coronal-hole-origin solar
wind and F slowly decreases during long intervals of streamer-belt-origin solar wind. The interpretation
of the ∫n dt negative correlations with F is that the radiation belt flux F rapidly drops out when the solar
wind density increases to high levels and the radiation belt flux rapidly recovers after the solar wind
density subsides.

11. The ULF indices Sgrd and Sgeod do not play a dominant role in the evolution of F. However, if in future the
nonsinusoidal periodic signals in universal time are removed from Sgrd and Sgeod, then these indices
might become dominant in the correlations with F.

12. The ULF indices Sgrd and Sgeod were combined with seven geomagnetic indices to produce an Earth
data set. With canonical correlation analysis, the Earth data set was correlated with the solar wind data
set. A canonical solar wind variable S(1) and a matching canonical Earth variable E(1) were produced.
The solar wind canonical variable S(1) can be used as a solar wind driver function to predict E(1) and to
predict individual geomagnetic indices and the ULF indices. In predicting hourly averaged values of E(1),
only 14.2% of the hourly variance of E(1) is unaccounted for by the hourly variance of S(1).

13. In the canonical Earth variable E(1), Sgrd and Sgeod play roles that are weaker, on average, than the roles
played by the various geomagnetic indices. Since CCA is acting to find the strongest correlation
between the Earth data set and the solar wind data set, the interpretation of this weaker role is that
there is less predictability in Sgrd and in Sgeod from the solar wind than there is for the various
geomagnetic indices.

14. In an appendix, proxy formulas are given to estimate the values of the ULF indices Sgrd, Sgeod, Tgrd, and
Tgeod from values of the geomagnetic indices when the ULF indices are not available.

8. Discussion

The ULF indices show some deficiencies that are probably related to the presence of nonsinusoidal universal
time periodic signals in the indices.

8.1. Properties of the Magnetospheric ULF Indices

Examination has found that the magnetospheric ULF indices Sgrd, Sgeod, Tgrd, and Tgeod are closely connected
to geomagnetic indices. In fact, for the ground-based index Sgrd and the geosynchronous index Sgeod, the
indices are more strongly correlated with some of the geomagnetic indices than they are with each other.

Several times in the investigation of the ULF indices a difference index arose; one such example is ΔSmag= Sgrd
� 0.693Sgeod, the time integral of which yields the highest ULF correlations with F. Canonical correlation
analysis found that the ULF index difference between Sgrd and Sgeod is related to the difference between the
magnitudes of high-latitude geomagnetic indices and convective geomagnetic indices. Perhaps this
difference in geomagnetic indices is related to the occurrence of substorms.

The correlations between the ULF indices and the multispacecraft-averaged relativistic-electron flux F are
weaker than the correlations between other parameters such as the solar wind velocity, number density, and
specific entropy and the relativistic-electron flux. This could mean that the ULF indices are, on average, less
important for the evolution of the outer electron radiation belt than other factors. Or the poorer correlations
could be the result of the 24 h period and 12 h period nonsinusoidal signals in the ULF indices. These periodic
signals represent uncorrelated noise in comparison with F, although the time integration of the ULF indices
will reduce that noise.
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The ULF indices Sgrd and Sgeod were
incorporated into an Earth data set with
seven geomagnetic indices. When that
Earth data set was matched to the solar
wind data set via CCA, the contributions
of Sgrd and Sgeod to the canonical Earth
variable E(1) were found to be modest.
CCA determines the coefficients of
these canonical variables that maximize
the correlation between the two
multivariate data sets. The limited size
of the contributions of Sgrd and Sgeod
implies that the ULF indices are not as
predictable from the solar wind as other
geomagnetic indices are. Removal of
the 24 h and 12 h periodic signals from
Sgrd and Sgeodwould undoubtedly make
the ULF indices more predictable by the
solar wind. Removal of these periodic
signals should boost their contribution
to the Earth data set.

8.2. Future Work

There are two obvious improvements
that can be made to the
magnetospheric ULF indices. The first is
removal of the 24 h period and 12 h
period nonsinusoidal signals that are in
the indices. In Figure 11, the hourly
values of Sgrd and Sgeod for the
1991–2004 data set are plotted in gray
as a function of UT, Sgrd in the top and
Sgeod in the bottom. The data are

repeated for the 24 h before and the 24 h afterward and then random numbers from�0.5 to +0.5 are added
to the integer UT values to spread the data points horizontally. Running averages of the gray points are also
plotted: 30-point running averages in yellow, 300-point running averages in blue, and 3000-point running
averages in red. There are about 5000 points per hour of universal time in the plot. The mean values of Sgrd
and Sgeod for each UT bin are plotted as the larger black points. As can be seen in Figure 11, there are universal
time trends to the mean values of Sgrd and Sgeod. Some of the repeating features of the mean values are
marked with the red arrows in Figure 11. There are larger mean value trends to Sgrd than to Sgeod and there are
more features. By examining the gray points, it can be seen that the standard deviation (vertical spread) is
also universal time dependent for both indices. One can suspect that the skewness and kurtosis of the Sgrd
and Sgeod distributions also have universal time trends. One straightforward correction to Sgrd and Sgeod
would be to subtract off the UT-dependent means from the data. A next step would be to consider
renormalizing the distribution of values at each UT so that all UT bins have the same standard deviations and
skewnesses. The first correction (mean subtraction) will undoubtedly improve the correlations of Sgrd and
Sgeod with solar wind parameters and with other geomagnetic indices. For Sgeod, one might also consider
performing these renormalizations separately for each of the GOES spacecraft used to construct the
geosynchronous ULF index.

The second improvement would be to expand the ULF index data set beyond the year 2004.

In the future, more work connecting the magnetospheric ULF indices to the evolution of the outer electron
radiation belt will be performed. In particular, correlations between the ULF indices Sgrd, Sgeod, and ΔSmag and
the number density nrb and temperature Trb of the radiation belt electrons at geosynchronous orbit [Denton

Figure 11. The detrended ULF indices Sgrd and Sgeod are plotted in gray
with random numbers �0.5 to +0.5 added to the integer values of UT.
The data are a repeated for the 24 h before and the 24 h afterward.
Running averages of the gray points are plotted: 30-point averages in
yellow, 300-point averages in blue, and 3000-point averages in red. The
mean values of Sgrd and Sgeod for each UT bin are plotted as the larger
black points.
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et al., 2010; Borovsky and Denton, 2011] will be performed. The number density nrb and temperature Trb are
indicators of the total number of electrons in the outer electron radiation belt and of the hardness of the
spectra of the radiation belt electrons [Cayton et al., 1989; Belian et al., 1996]. The relativistic-electron flux F
depends on both nrb and Trb [Cayton and Belian, 2007; Borovsky and Denton, 2010b], with different physical
processes acting on the evolution of nrb than the physical processes acting on the evolution of Trb.

Further work will involve the incorporation of the time derivatives ∂nrb/∂t and ∂Trb/∂t of the radiation belt
number density nrb and temperature Trb into the Earth data set with Sgrd, Sgrd, and the geomagnetic indices.

Appendix A: Proxy Formulas for the ULF Indices Sgr, Sgeo, Tgr, and Tgeo
In the absence of measurements of the ground and geosynchronous ULF indices, approximate values of the
indices can be obtained from values of the geomagnetic indices. Here formulas to generate proxy values of
the ULF indices are given.

For the Sgr and Sgeo indices, the proxy formulas are

Sgrd*≈0:139AU0*þ 0:023AL0*þ 0:095PCI�1*� 0:328Kp0*

þ0:027Dst�þ1*� 0:678 log AE0ð Þ*þ 0:211MBI0* (A1a)

Sgeod*≈ 0:092AU0*þ 0:018AL0*� 0:114PCI�1*þ 0:550Kp0*

þ0:135Dst�þ1*þ 0:114 log AE0ð Þ*� 0:317MBI0* (A1b)

Note that in general, AL, Dst*, and MBI are negative quantities. Using the formulas in Table 4, the values of
Sgrd* and Sgeod* can be converted into Sgrd and Sgeod; then using expressions (1a) and (1b), the expressions
for Sgrd and Sgeod can be converted into Sgr and Sgeo. The linear correlation coefficients between formula
values of Sgrd and actual values of Sgrd are rcorr = 0.813 and the linear correlation coefficients between
formula values of Sgeod and actual values of Sgeod are rcorr = 0.766.

Likewise, for the Tgr and Tgeo indices, the proxy formulas are

Tgrd*≈0:138AU0*þ 0:0061AL0*þ 0:108PCI�1*� 0:369Kp0*

þ0:047Dst�þ1*� 0:652 log AE0ð Þ*þ 0:208MBI0* (A2a)

Tgeod*≈ 0:090AU0*þ 0:031AL0*� 0:111PCI�1*þ 0:552Kp0*

þ0:141Dst�þ1*þ 0:098 log AE0ð Þ*� 0:336MBI0* (A2b)

The linear correlation coefficients between formula values of Tgrd and actual values of Tgrd are rcorr= 0.791 and
the linear correlation coefficients between formula values of Tgeod and actual values of Tgeod are rcorr= 0.745.
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