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Abstract

This paper provides a dynamic analysis of the bond refunding problem in an effi­
cient market setting with corporate taxes and transaction costs. A new methodology is
developed to analyze the optimal exercise problem in the presence of imperfections. This
analysis enables prediction of the effect ofchanges in corporate tax lawson the refunding
decision. It also explains the empirical observation that bonds are often called when the
bond price is below the call price.

I. Introduction

The literature on bond refunding can be broadly classified into two catego­
ries: (1) static models (e.g., Bowlin (1966), Ofer and Taggart (1977), Yawitz and
Anderson (1977), Lewellen and Emery (1980», and (2) dynamic models (e.g.,
Bierman (1966), Brennan and Schwartz (1977), Kalymon (1971), Kraus (1973),
Pye (1966), Weingartner (1967». Static models do not consider whether it is more
profitable to wait and refund at some future period; that is, they do not address
optimal refunding time. These models implicitly assume that the option to call ex­
pires if unexercised in the period under consideration. Dynamic models, on the
other hand, address the optimal refunding time. Unlike the static models ofOfer
and Taggart (1977), Yawitz and Anderson (1977), and Lewellenand Emery (1980)
that use an efficient market setting (a Modigliani-Miller world with taxes) and
shareholder wealth maximization to derive refunding criteria, the dynamic mod­
els (except Brennan and Schwartz (1977» derive their criteria based on "debt­
cost" minimization. If markets are efficient, debt-cost minimization is not
consistent with shareholder wealth maximization. Moreover, the dynamic models
(except Kraus (1973» do not explicitly use the efficient markets assumption.
Also, all of the dynamic models (including Brennan and Schwartz (1977» ignore
the impact of corporate taxes on the refunding decision.'

.The authors thank Anand Desai for advice on computational aspects and M. Nimalendran for
assistance with the graphics software. They also thank two anonymous referees for their extensive
comments, while retaining responsibility for any errors.

'Constantinides and Grundy (1987) analyze the optimal call policy of convertible bonds in a
world of corporate taxes. They do not, however, consider stochastic interest rates.
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This paper integrates the approaches of these two classes of papers by pro­
viding a dynamic analysis of the bond refunding problem in an efficient market
setting with corporate taxes and transaction costs. As in the static models, share­
holder wealth maximization is used as the firm's objective. Unlike previous dy­
namic models, the efficient market assumption is fully exploited to simplify the
analysis. The efficient market assumption allows relaxation of the risk-neutrality
assumption that is employed in most dynamic models. Moreover, the refunding
criterion is shown, in principle, to be independent ofthe type ofstochastic process
followedby interest rates (or other state variables).2 This is achieved by stating the
refunding criterion in terms ofthe current prices ofthe securities instead of inter­
est rates, since in efficient markets current prices reflect all information regarding
investors' expectations about future interest rates.

Taxes affect the refunding decision through interest tax shields and the call
premium tax shield. The corporate tax rate is found to have little effect on the crit­
ical interest rate (the rate at or below which it is optimal to refund) at longer times
to maturity. At shorter times to maturity, a decrease in the tax rate reduces the
critical interest rate. Thus, ceteris paribus, firms that do not expect to pay taxes in
the near future are less likely to refund a bond.

When imperfections like taxes and transaction costs are considered, the value
of the bond at the critical interest rate need not equal the call price. This is consis­
tent with Vu (1986) who finds that few bonds are priced at the call price one
month before the call. Most of the bonds in his sample are priced below the call
price one month before the call.

This paper provides a methodology for solving problems involving optimal
exercise of options when there are imperfections such as taxes and transaction
costs. The current optimal call policy depends on the value of the bond and the
value of imperfections conditional on the current call decision. Since the condi­
tional values of the bond and the imperfections at any point depend only on the
state variables, time, and the optimal future call decisions, they can be valued like
any security if future call policy (as a function of the state variable) is known.
Therefore, the conditional values of the bond and the imperfections are deter­
mined using future call policies and these values are used to determine simultane­
ously the current call policy and the (unconditional) value of the bond. This
methodology differs from that of Brennan and Schwartz (1977) in its use of syn­
thetic securities representing the conditional values ofthe bond and the imperfec­
tions, and it is more general as it can accommodate imperfections." It can be used
for any optimal exercise problem (like valuing put options or American calls) in­
volving imperfections that depend on the optimal exercise policy.

2While the stochastic process the interest rates follow does not affect the principle behind the re­
funding criterion, it certainly affects the implementation. See the Appendix for details.

3Dunn and Spatt (1986) use a similar methodology in their paper. Their model, however, ignores
taxes. Brennan and Schwartz (1977) do not consider any imperfections in their paper.
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Setting

All bonds are assumed perpetual. Callable bonds issued by firms can be
called only at discrete points in time, that, for convenience, are assumed to be the
points when interest payments are due. At each point the firm pays the interest
due that period; it then has the choice of exercising its call option. If the firm for­
goes its option to call in any period, it must wait until the next period to exercise
that option again. If the firm does call the bond, paying the call price, it replaces
the old issue with another bond issued at par,"

The face value ofthe new bond, and hence the total amount raised, depends on
what is called the capital structure objective of the firm. Some capital structure ob­
jective is needed to analyze the refunding problem with corporate taxes. If the anal­
ysis is done under the assumption of perfect capital markets (as in Brennan and
Schwartz (1977», there is no need for any such objective since capital structure is ir­
relevant. Ideally, the refunding operation should optimize the capital structure.
However, since the solution to the optimal capital structure problem is still elusive,
researchers tackle the refunding problem under various capital structure objectives,
the most commonly employed of which are: (a) keeping the face value of the debt
constant (see, for example, Ofer and Taggart (1977»; (b) keeping the interest pay­
ments the same (see Yawitz and Anderson (1977), Lewellenand Emery (1980»; and
(c) increasing the face value just enough to pay,above the face value ofthe old issue,
the call premium and any refunding costs (see Bierman (1966), Ofer and Taggart
(1977». The merits of the various capital structure objectives are not discussed
since such a discussion is futile without a formal theory ofoptimal capital structure.
For the analysis here objective (c) is chosen with a slight modification. The face
value of the replacement bond is assumed to equal the call price of the original
bond and the transaction costs involved in the refunding process are assumed to be
paid from internal funds. The refunding criterion using objective (b) is analyzed in
the next section and it is shown that it is a simpler version of the criterion using ob­
jective (c). Since the price of the callable bond equals the call price if refunding is
optimal, the use of objective (c) ensures that the market value of debt is unaffected
by refunding. Therefore, the effects of refunding are not confounded by the effects,
if any, of changes in the market value of debt.

Markets are assumed to be efficient. The capital structure objective of the
firm is further assumed to be common knowledge. Since the bond refunding deci­
sion is based on published information (on market parameters such as rate of in­
terest and on bond parameters such as coupon rate, call premium), the efficiency
assumption implies that rational bond refunding decisions do not affect share­
holder wealth. 5

4Ifthe replacement bond is not issued at par it only complicates the algebra without any impact on
the results.

"I'hat rational refunding decisions do not affect stockholder wealth does not imply that bond re­
funding decisions are irrelevant. Incorrect refunding decisions can decrease stockholder wealth (see
also Ofer and Taggart (1980».
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The analysis holds regardless of whether the replacement bond is callable.
Since a noncallable bond is a special case of a callable bond, refunded bonds are
assumed to be replaced by callable bonds (which is closer to reality since most
bonds are callable).

Notations

The notations employed in the paper are summarized below.?

D, = the price of the callable bond at time t before the option to call
at t expires; time is measured from the date of issue ofthe exist­
ing bond;

D; = the price of the callable bond at time t after the option to call at
t expires; i.e., D; is the price of a bond similar to the existing
bond except that the earliest it can be called is at (t + 1);

B, = the price at time t ofa noncallable bond that is similar to the ex-
isting callable bond in every other respect;

C = the call price of the existing bond;?
F = the face value of the existing bond;
C = the coupon rate of the existing bond;
ri = the coupon rate ofthe new issue if refunding takes place at time

i:,
v"t = the value ofthe firm at time tifit is financed only by equity;

Rc., OCt' KCt = present values of interest tax shields, future call premium tax
shields, and current and future after-tax transaction costs, re­
spectively, if the firm calls the existing bond at time t and fol­
lows the optimal refunding policy in the future;

Rnt,ont,Knt = present values of interest tax shields, call premium tax shields,
and after-tax transaction costs, respectively, if the firm does not
call the existing bond at time t and follows an optimal refund­
ing policy in the future;

r = corporate tax rate;
(Y)q = cash flow of Y dollars at time q;
(Y)i = cash-flow stream of Y dollars per period starting a time t and

ending at time q;
[a,b)/ = set of all integers between a and b where a,b E I, the set ofinte­

gers; and
PV = present value.

6Values of items subscripted by t may also depend on the level of interest rates at time t. For
notational simplicity, this dependence is not explicitly stated. In the Appendix, where the algorithm to
solve the refunding problem is developed, the dependence on interest rates is clearly stated.

"For notational simplicity, it is assumed that the call price is independent of the time to maturity.
In practice, many callable bonds have call prices decreasing over time. The refunding criterion and the
accompanying algorithm are easily adapted to varying call prices.
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If the firm forgoes its right to call the existing bond at time t, the value of the
equity is

(1)

On the other hand, if it decides to call the bond at time t, the value ofthe equity is

~t - C + RCt + 1"(C - F) + 8ct - KCt
(2)

since in this case the market value of the bond equals the call price CS Refunding
the bond at time t is optimal if and only if

or

While computation of the present values of the interest tax shields on the
right-hand side ofequation (3) appears to be difficult, considerable simplification
is possible if the risk ofthe interest tax shield cash flows is assumed to be the same
as the risk ofthe bondholder cash flows. This assumption is common in the corpo­
rate finance literature and is used by Ofer and Taggart (1977) and Lewellen and
Emery (1980) to analyze bond refunding. Consider Rn, the present value of inter­
est tax shields if the firm's optimal decision at time t is not to call. To compute
Rn., first write ~'as:

~'= PV {(cF)~1' (C)q}, q E: [t + 1,00][

= PV {(cF)~1' v, C):~1' (C\ )qd, q E: [t + 1, 00L. a, E: [q + 1, 00][

= PV {(cF)~1' (rq C):~1' (rq, C\):~+I' ...}, q E: [t + 1, oo]/, a, E: [q + 1,00][

q2E: [qt + 1, 00][

The first equation states that D;is the present value of(q - t) periodic interest pay­
ments and the call price in period q if the current issue is called in period q, where

8It is implicitly assumed that the value of the equivalent all-equity firm, J;;" is not affected by the
refunding decision. This is a reasonable assumption since J;;, represents the present value of the oper­
ating cash flows. This does not mean that interest rate realization (which underlies the refunding deci­
sion) has no bearing on the value ofthe firm's assets. Any such effect is already incorporated in J;;,.
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q takes integer values greater than or equal to (t + 1).9 The second equation
rewrites C, the call price ofthe current bond and the face value ofthe first replace­
ment bond, as the present value of its (ql - q) periodic interest payments rqC and
its call price C1 in period qI' if it is called in period qI' where qI takes integer values
greater than or equal to (q + 1).The third equation simply extends this argument
to all possible future refunding decisions. Since Rn, is clearly "C times the right­
hand side of the last equation, it is equal to "CD;. By using the same argument it is
easy to show that Ret = "Cc. 1O

Condition (3) can now be rewritten as

(4)

Ifit is optimal to call the bond, the bond is priced at C; ifnot, it is priced at D;. Cri­
terion (4) has a simple interpretation. The first term on the right-hand side is the
present value of after-tax savings in interest payments from refunding and the sec­
ond term is the current call premium tax shield. The left-hand side represents the
difference in future call premium tax shields and transaction costs between not re­
funding and refunding. Thus, it is optimal to call if the sum ofthe present value of
after-tax savings in interest payments and the current call premium tax shield ex­
ceeds the sum of the present values of incremental transaction costs and future
call premium tax shields.

Refunding criterion (4) is recursive. To implement it, the value ofa compara­
ble callable bond with one-period call protection needs to be computed. But the
evaluation of this comparable bond is based on the optimal call policy of that
bond, which in turn depends on the valuation ofyet another callable bond, and so
on. That is, a series of callable bonds must be valued and their optimal call poli­
cies simultaneously determined. This can be done (in principle) by backward in­
duction, starting from the period just before maturity.

"The calculation of the expected cash flow involves a set offuture call probabilities that has not
been explicitly included in the present value expression for notational simplicity. The appropriate dis­
count rate(s) (which are determined partially by the call probabilities) are not mentioned since they are
not consequential to the analysis as long as they reflect the risk of both the bond cash flows and the in­
terest tax shields.

lOSuch simplification in the evaluation ofRn, and Rc, is possible only because the firm's capital
structure objective specifies that the face value of the replacement bond equals the call price of the
original bond. If, on the other hand, the firm's capital structure objective is to keep the face value of
the debt constant, the present value of the interest tax shields is

Rn, = t X PV {(CF)~+I' (rqF)ql , •.. }
q+1

This expression is more difficult to evaluate. The above expression cannot be written as t times the
present value of a callable bond with call price equal to F, since such a callable bond has associated
with it a set ofcall probabilities that is different from the call probabilities ofthe existing bond (unless
the call premium on the existing bond is zero).
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Suppose the capital structure objective is to keep interest payments con­
stant.!' Equations (I), (2), and (3) still hold, but now Rn, = RCt since interest pay­
ments do not depend on the refunding decision. Therefore, refunding is optimal if
and only if

(5)

The only difference between criteria (4) and (5) is that the reduction in after­
tax interest payments from refunding is now greater «D; - C) instead of (D; - C)
(I - 't)). To hold interest payments constant, the firm issues more debt than it re­
funded. This results in additional interest tax shields, increasing the advantage of
refunding.

As stated earlier, it is immaterial whether the new issue is callable since a non­
callable bond is equivalent to a callable bond with an infinite call price. Equations
(1), (2), and (3) hold regardless of whether the new issue is callable. The relation­
ships 'tD; = Rn, and 'tC = RCt are still valid since they do not depend on any spe­
cific set ofcall probabilities. Just as the interest tax shield ofa noncallable bond is
lower than that of a callable bond because of lower coupon payments, so are the
discount rates. Therefore, the present value of the interest tax shield of a noncall­
able bond is equal to that of a callable bond. Also, OCt = 0 if the replacement bond
is noncallable. Hence, the refunding criterion is to call if and only if

(D; - C)(l - t) + 't(C - F) > Sn, + KCt - Kn, (6)

If the decision horizon of the firm is infinite, the assumption that all bonds
are perpetual can also be relaxed. The difference between bonds offinite and infi­
nite maturities is that the former might not be called during its lifetime. If that
happens, suppose the firm replaces the bond with another ofequal face value. It is
easy to show in this case that the value of the current bond can be written as the
present value of a series of interest payments. It follows that the present values of
the interest tax shields, RCt and Rn., are again 'tD; and 'tC, respectively. Therefore,
finite maturities do not affect the refunding criterion.

In perfect markets, if the interest rate equals the critical interest rate (the low­
est rate at which it is optimal to call), shareholders are indifferent between calling
and not calling, since the value ofthe bond equals the call price in either case. This
is not true in the presence of imperfections such as taxes and transaction costs. To
see this, consider the case where the replacement bond is noncallable. The refund­
ing criterion, given by equation (6), can be rewritten as follows:

D; > C + [-'t(C - F) + Sn, + KCt - Kntl/(l - r) (7)

"Under this capital structure objective, excess funds are available after the refunding operation
since a higher face value ofdebt can be supported at the lower interest rate. Following other refunding
papers, the excess funds so generated are assumed to be invested in a zero net present value project.
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Since the replacement bond is assumed to be noncallable, the call premium tax
shield and transaction costs occur only once. Therefore, because ofthe time value
of money, KCr > Kn, and 1:(C - F) > Sn; If the effect of the call premium tax
shield dominates that of the transaction costs, (7) reduces to D; > C - e, where
e > O. Suppose D; = C - e. Then, stockholders are indifferent between calling and
not calling. If they decide to call, the bond is valued at C; otherwise, the bond is
valued at D; < C. In this case, where calling and not calling are equally probable,
the bond is valued at (D; + C)/2 < C before the decision; i.e., the bond is priced
below the call price just before a call. Similarly, if transaction costs dominate the
call premium tax shield, the bond is priced above the call price just before a call.
Vu (1986) finds evidence that bonds are priced both above and below the call
price one month before the call, though the majority of the bonds in his sample
are priced below the call price before the call, indicating that the effect of the call
premium tax shield dominates that of transaction costs on average.

IV. Outline of the Methodology

To illustrate the important ideas ofthe methodology, refunding criterion (6),
which is derived under objective (c) by assuming that the replacement bond is
noncallable, is implemented. If transaction costs are ignored, (6) reduces to

(D; - C)(1 - 1:) + 1:(C - F) - Sn, > 0 (8)

In fact, the method developed here can easily accommodate transaction costs if
they are either certain or a function of interest rate and time.

The outline ofthe methodology is as follows. D; and Sn, are values ofthe bond
and the call premium tax shield, respectively, if the bond is not called at t. Their
values depend on r, t, and future call decisions. Thus, they can be valued on a
recursive basis starting at maturity when the call decision is simple, i.e., do not
call the bond. Once D; and (jn rare computed, the refunding criterion is used to de­
termine the current call policy. Then, using the rule that the value of the bond is C
if it is optimal to call and D; if it is not, the value of the bond is computed.

The complete methodology is provided in the Appendix. The key difference
between this methodology and that ofBrennan and Schwartz (1977) is the waythe
value of the callable bond is calculated. They use the finite difference approxima­
tion to calculate Dr' forcing it to the call price if it exceeds the call price. In con­
trast, the methodology presented here computes Dr by the condition "Dr equals C
if optimal to call, and equals D; otherwise." This subtle difference, however, ena­
bles the methodology to include corporate taxes and transaction costs. The
Brennan and Schwartz methodology cannot be similarly extended because they
use the boundary condition Dr = Cto force the value ofthe callable bond down to
C. This condition always holds in efficient markets regardless ofwhether the firm
pays taxes, or whether transaction costs are involved. The methodology of calcu­
lating D; and using the appropriate refunding criteria between equations (4) and
(8) to calculate the critical interest rate and Dr is more general and can accommo­
date taxes and transaction costs.
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The critical interest rate and the value of a callable bond with 8 percent an­
nual coupon and fifteen years to maturity are calculated using the methodology
described in the Appendix. The critical interest rate is computed as a function of
the time to maturity for various values of a2 , C, and 'to Results are shown in Fig­
ures I-III. Figure I shows the impact of the call price on the critical interest rate.
As expected, the critical interest rate decreases as the call price increases. The
more interesting result is that when the call price is greater than the face value, the
critical interest rate is a decreasing function of time to maturity for long maturi­
ties but an increasing function of time to maturity for short maturities. However,
if the call price equals the face value, the critical interest rate is a monotonically
decreasing function of time to maturity. It is well known that the option value in­
creases with time to maturity. This option value is lost at the time of call; to make
the call worthwhile, the underlying asset (the equivalent noncallable bond) must
be sufficiently valuable. Therefore, as the option value decreases (as maturity ap­
proaches), a smaller drop in the interest rate makes the equivalent noncallable
bond sufficiently valuable to make calling optimal. This effect dominates at larger
maturities and hence the critical interest rate increases as maturity approaches.
Near maturity, the value of the equivalent noncallable bond is very close to its
face value. If the call price is greater than the face value, the premium paid to ob­
tain this underlying asset through a call is justified only ifthe interest rate is suffi­
ciently low.The shorter the maturity is, the lower the probability is that the value
of the equivalent noncallable bond is significantly different from the face value.
This effect dominates close to maturity and the critical interest rate drops as ma­
turity approaches. If there is no call premium, the second effect is absent and the
critical interest rate increases monotonically as maturity approaches.

Figure II shows the effect of changes in the volatility of interest rates on the
critical interest rate. As a increases, the value ofthe option increases and the criti­
cal interest rate decreases. Not surprising, this effect is more pronounced the
longer the time to maturity.

Figure III illustrates the effect of tax rates. While the higher the corporate tax
rate is the higher the critical interest rate, the effect of taxes is negligible at longer
maturities. Note that there are two tax effects: one due to the interest tax shield
and the other due to the call premium tax shield. The former reduces the advan­
tage of refunding (D; - C) by the factor (1 - t) (see equation (8». Concerning the
call premium tax shield, what really matters is 't(C - F) - ont , the difference be­
tween the present values of the call premium tax shields ifcalled now and ifcalled
(optimally) later. This difference is always positive since Sn, is the present value of
't(C - F), discounted from the time the bond is called in the future. Thus, the call
premium tax shield provides an incentive to refund. As maturity approaches, the
probability of being called in the future reduces and 8n

t
tends to zero. Thus, the

effect of the call premium tax shield is more pronounced as maturity approaches.
Moreover, since ~' - B, = F < C as maturity approaches (D; - C) is likely to be
negative, and the interest tax shield reduces the disadvantage of refunding by the
factor (1 - r). Therefore, as maturity approaches, tax effects increase the pro-
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bability of call, thus increasing the critical interest rate. At longer maturities,
t(C - F) =:: on/ at the critical interest rate since, if the bond is not called now, it
will almost surely be called in the near future. Hence, the effect of the call pre­
mium tax shield is negligible. Once this effect is eliminated, interest tax shields do
not affect refunding since (8) reduces to (D; - C) > O. Thus, at longer maturities
the critical interest rate is more or less unaffected by taxes.

VI. Comparison with Other Published Refunding Criteria

The fundamental differences between the refunding criteria stated in equa­
tions (4) through (6) and the previously published criteria become apparent when
they are compared under the Modigliani-Miller (MM) framework (perfect market
without taxes or transaction costs). Such a comparison abstracts from changes in
firm value due to capital structure changes during refunding and thus avoids the
controversy and complication of what constitutes "pure refunding" (see Yawitz
and Anderson (1977), Lewellen and Emery (1980». Under MM conditions, the
criteria in this paper reduce to "refund if D; > c."

The criteria in Ofer and Taggart (1977), Yawitz and Anderson (1977), and
Lewellen and Emery (1980) reduce under MM conditions to "refund if and only if
the price of an equivalent noncallable bond is greater than or equal to the call
price." In the notations of this paper, this criterion can be stated as B/ > C and it
coincides with this paper's criterion under MM conditions if and only if B/ = D;.
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This happens only if the call option expires at time t and the bond cannot be called
in subsequent periods. Hence, the previous models assume that the call option ex­
pires if the bond is not called in the current period, which is why they are called
static models.

It is easily verified that B, > C cannot be an optimal refunding criterion if the
call option does not expire at t. Suppose it is an optimal refunding criterion. IfB,
equals C at t, the market expects the bond to be called and prices it at C. Since
D; < Bt , with the strict inequality holding when the call option does not expire at
time t, D; < C. The stockholders now gain by not calling the bond. Once they de­
cide to forego their option to call, the bond price drops to D;, resulting in an
arbitrage gain of (C - D;) to stockholders. Since arbitrage is possible by following
an alternative strategy, the original refunding criterion B, > C cannot be optimal
(see also Livingston (1987».

To see the inconsistencies in the Kraus (1973) model, consider its decision
criterion one period before maturity, when it is essentially a static one. In a static
model, the bond is called if B, > C, and in the special case where the call price
equals the face value, it is called if the current interest rate is less than the coupon
rate. The Kraus model, however, does not automatically recommend refunding
under these circumstances, but argues that the refunding decision depends on the
expected future interest rate. Also, the Kraus model implies that, even in an MM
world, refunding a noncallable bond (by paying the market price) is a nontrivial
issue. But clearly this is not true in an MM world, where no financial transaction
can affect shareholder wealth. These inconsistencies are the result of the model's
objective function that minimizes "debt costs" instead' of maximizing share­
holder wealth. Given this objective, it is not clear why the firm issued any kind of
debt in the first place since debt costs can be eliminated by not issuing debt. (Since
there is no corporate tax in the Kraus model, it cannot be cited as an incentive for
issuing debt.) Finally, using a single risk-free rate of interest to discount cash flows
in different periods is inappropriate since the risk-free rate is stochastic.

Since D, = C whenever it is optimal to call, some textbooks (see Brealey and
Myers (1988» state that the optimal call policy is to call when D, = C Stating opti­
mal call policies in terms of the bond price D, is misleading for two reasons. First,
D, itself is determined by the call policy of the firm and therefore making the call
policy depend on D, leads to a circular argument. Second, in an efficient market
many call policies (not necessarily optimal) lead to the conclusion "call if D, = c."
For example, suppose a firm follows the policy of calling if B, > C, i.e., if the price
of a similar noncallable bond is greater than the call price. If at time t the state var­
iables take on values such that B, > C, the market realizes that the bond will be
called and prices it at C. If B, < C, the market knows that the bond will not be
called. The price of the callable bond is then less than or equal to B, since the call
option cannot have a negative value. It follows that the callable bond will be
priced strictly lower than C. Thus, even this call policy (which has been shown to
be suboptimal except when it is the last opportunity to call), can be restated as
"call if bond price equals call price." Moreover, because corporate bonds are
thinly traded, quoted prices often do not reflect true values. Therefore, it is more
meaningful to state the refunding policy in terms other than D t •
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In this paper the bond refunding decision is analyzed in an efficient market
as a dynamic optimization problem under the objective of shareholder wealth
maximization. The analysis also considers the effect of corporate taxes and trans­
action costs. Refunding criteria are derived under different capital structure ob­
jectives and an algorithm for implementing them using numerical techniques is
presented. Critical interest rates are calculated for a specific stochastic process of
interest rates. Comparative statics, illustrating the effect of call price, volatility of
interest rates, and tax rates on the refunding decision, are derived. The methodol­
ogy presented here is general enough to be adapted to different stochastic
processes.

Appendix

Imp~menmoonof~eMe~odomgy

The interest rate is assumed to follow a continuous-time stochastic process
and the pure (local) expectation hypothesis is assumed to hold so that the instan­
taneous expected return on default-free securities of all maturities equals the in­
stantaneous risk-free rate. The same stochastic process as in Brennan and
Schwartz (1977) is used for comparison:

dr = ro dz (AI)

where dz is a Gauss-Weiner process. Define the discount factor s == 1/(1 + r). Let
D(s, T), where T is the time to maturity, represent the value of a default-free
callable bond. Suppose this bond has a face value of one and a call price of C, and
pays coupon continuously at the rate of c.

Let G(s, T) represent the present value of a generic security that provides a
one-time future cash flow that occurs no later than T periods, and a continuous
coupon payment at the rate of c. Then, G(s, T) is the solution to a partial differen­
tial equation, the finite difference approximation of which is represented by the
set of equations

UG I .+ VG .. + WG+ 1 . = G . 1+ ck i = 1, ... , (n - 1),
1 I-.J ",J ",J I,J-

j = 1, ..., m, (A2)

and a set of boundary conditions that specifies the nature of the cash flow, where,

U; = -l/2cr2ki2(l - ih)2 + l/2cr2ki(l - ih)2

V; = cr2ki2(l - ih)2 + (1 - ih)k/ih + 1
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h = lin

G(s, T) = G(ih, }k) = Gi,}

hand k are discrete increments ofthe discount factor and time to maturity; i and}
are the indices to the discount factor and the time to maturity. i = n implies that
the discount factor is one (interest rate is zero), and i = 0 implies that the discount
factor is zero (interest rate is infinity). Similarly,} = 0 implies that the bond is at
maturity and} = 1 means that it is one period before maturity and so on. If the
value ofthe security as the interest rate tends to infinity is known, the set ofequa­
tions (A2) reduces to

i = 1, ..., (n - I),} = 1, ... , m, (A3)

where Uij' Vi}' and wijare functions of Vi' Vi' Wi' c, and Gi,}_I' Ifthe terminal value
and the zero-interest value of the security are known, the value of G for any inter­
est rate and time to maturity can be calculated by proceeding recursively. The ter­
minal value and the zero-interest value depend on the type of security.

For a noncallable bond B(s, T), the three boundary conditions (infinite inter­
est, zero interest, and terminal value), respectively, are:

BO,} = 0,

Bn,} = 1 + ckj,

Bi,o = 1,

}>o

}>O
i = 0, 1, ..., n

(A4)

(A5)

(A6)

Equation (A4) states that if the interest rate approaches infinity the bond value
approaches zero. Condition (A5) reflects that when the interest rate is zero the
bond value is the undiscounted sum of the face value and the coupon payments
till maturity. This follows from the stochastic process (AI), which implies that
once the interest rate hits zero it will stay at zero (r = 0 is an absorbing state). Con­
dition (A6) states that bond value equals face value at maturity.

To implement refunding criterion (8), D'(s, T), the value of a one-period call­
protected bond, and on(s, T), the value of the call premium tax shield if the bond
is not called today but is called optimally in the future, need to be calculated. Ifthe
decision is to call, the value of the callable bond D(s, T) equals C. If the decision is
not to call, D(s, T) = D'(s, T). For clarity, refunding criterion (8) is restated in its
finite difference form:

(D'(j)i,j - C)( 1 - r) + t(C - 1) - on(j)i,j > 0 (A7)

In (A7), D'(j)iJ represents the value at (i,}) of a bond call protected for one period
from}, and on(j) . .represents the value ofthe call premium tax shield at (i,j) ifthe

',J
bond is not called at} but is called optimally in the future.

B ., the value of a noncallable bond at zero interest rate, equals (1 + ck}),
since the stochastic process (AI) has an absorbing state at i =n. Since Bn,} >­
D'(j) . if

n.j
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(B",J - C)(1 - r) + t(C - 1) < 0
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(A8)

it follows from (A7) that it is not optimal to call at) when the interest rate is zero.
Hence, it is not optimal to call at higher interest rates. Therefore, if (A8) holds, it
is not optimal to call the bond at), whatever the interest rate.

Define l as follows:

}" = min {j I (1 + ckj - C)(1 - r) + t(C - 1) > O}

For) < }", (A8) holds and it is not optimal to call. (For bonds with declining call
prices,j* = 0.)12 Hence, for these values ofj, Di,J = D'U)i,J = Bi,{' for all i. Bi'J can be
evaluated from (A3) using boundary conditions (A4) to (A6).

For j = i: D'U·>n,J. = Bn.j" = 1 + ckj', since the one-period call-protected bond is
called at all. Also, fmU·)i.j* = 0 for all i, since there are no future calls. (A3) and the
followingboundary conditions are used to evaluate D'U·)· .• for i = n - 1, ..., 1:

t.]

D'U·)n,J. = 1 + ckj'

D'(l)o,J. = 0

D'U·)i,J.-1 = Bi,J.-1

(A9)

(AIO)

(All)

(A9) is the zero-interest condition, (AIO) is the infinite-interest condition, and
(All) is the terminal-value condition. (All) follows from the fact that a bond,
protected from call for one period from}", is called in the future by the definition
of}".Thus, its value atj* - 1 is that ofa noncallable bond. OnceD'U·)· .• is known,

i.)

D' . .• is calculated using (A7).
t,}

For j > r. D'U)n,J = C + ck since the one-period call-protected bond will cer-
tainly be called next period if the current interest rate is zero. This is so since, by
definition, when) > }", (A7) is satisfied at zero interest rate. D' . is evaluated

i.]

using (A3), the boundary conditions (AlO), and:

D'U) .= C + ck
n.j

D'U)i,j_l = Di,J-1

(AI2)

(AI3)

(Al3) incorporates optimal future refunding. The value atj - 1 of a bond pro­
tected from call for one period from) is equal to that of an unprotected bond.

For) > j., onU)i,J is evaluated using (A3) and the following boundary
conditions:

(AI4)

12In practice, call prices usually vary with time, The common practice is to set the initial call pre­
mium equal to one year's coupon and then decrease it by a constant dollar amount each year such that
the call premium decreases to zero by the last year ofthe bond's life (sometimes the call premium is re­
duced to zero for the last few years ofthe bond's life). Thus, Cj , the call price atj, is always smaller than
I + ckj. This implies that j* = 0 for callable bonds with a decreasing call price.
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on(j)O,J = 0

on(j)j,J_1 = 't(C - 1), if Dj,J-I= C

(AI5)

(AI6)
= on(j - 1\,J-I' otherwise

(A14) states that at zero interest rate, if the bond is not called today it will cer­
tainly be called next period and hence the present value ofthe future call premium
tax shield is 't(C - 1). (A15) implies that when the interest rate is infinity the pres­
ent value of future call premium tax shields is zero. (A16) ensures that the tax
shield is valued on the basis ofoptimal refunding in the future. In the next period,
the call premium tax shield will be 't(C - 1) in those states in which it is optimal to
call. Therefore, in those states on(j)u_1 is forced to 't(C - 1), leaving its values in
all other states unaltered. Having computed D'(j)u and on(j\, (A7) is used once
again to determine D;,j" In this manner, the critical interest rat~, i.e., the rate at or
below which the bond should be called, and the value of the callable bond are de­
termined simultaneously.
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