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Abstract Long-lived (weeks) plasmaspheric drainage plumes are explored. The long-lived plumes occur
during long-lived high-speed-stream-driven storms. Spacecraft in geosynchronous orbit see the plumes as
dense plasmaspheric plasma advecting sunward toward the dayside magnetopause. The older plumes have
the same densities and local time widths as younger plumes, and like younger plumes they are lumpy in
density and they reside in a spatial gap in the electron plasma sheet (in sort of a drainage corridor).
Magnetospheric-convection simulations indicate that drainage from a filled outer plasmasphere can only
supply a plume for 1.5-2 days. The question arises for long-lived plumes (and for any plume older than about
2 days): Where is the plasma coming from? Three candidate sources appear promising: (1) substorm
disruption of the nightside plasmasphere which may transport plasmaspheric plasma outward onto open
drift orbits, (2) radial transport of plasmaspheric plasma in velocity-shear-driven instabilities near the
duskside plasmapause, and (3) an anomalously high upflux of cold ionospheric protons from the tongue of
ionization in the dayside ionosphere, which may directly supply ionospheric plasma into the plume. In
the first two cases the plume is drainage of plasma from the magnetosphere; in the third case it is not.
Where the plasma in long-lived plumes is coming from is a quandary: to fix this dilemma, further work and
probably full-scale simulations are needed.

1. Introduction

When the Kp index becomes elevated, a plume of plasmaspheric plasma is seen at all L shells in the dayside
magnetosphere [Chappell et al., 1971; Spiro et al., 1981; Carpenter et al., 1993; Elphic et al., 1997; Goldstein and
Sandel, 2005; Sandel and Denton, 20071. This cold plasma is convecting sunward [Borovsky et al., 1998; Matsui et al.,
1999; Borovsky and Denton, 2008] and will flow into the dayside reconnection site [Borovsky et al,, 1997; Su et al,,
2000; McFadden et al., 2008] where it can play an important role in mass loading the dayside reconnection rate
during geomagpnetically active times [Borovsky and Steinberg, 2006; Borovsky and Denton, 2006a; Walsh et al., 2013,
2014; Borovsky et al., 2013; Borovsky, 2014]. The plasmaspheric plume is also the site of enhanced pitch angle
scattering of radiation belt electrons during geomagnetically active times [Spasojevic et al,, 2004; Fraser et al., 2006;
Bortnik et al,, 2006; Yahnin and Yahnina, 2007; Millan and Thorne, 2007; Jordanova et al., 2007; Borovsky et al., 2014].
On the first day of a storm (when Kp is initially elevated) the plasmaspheric plume is very wide in local time as
the outer plasmasphere surges toward the dayside magnetopause [Chen and Wolf, 1972; Goldstein, 2006; Denton
and Borovsky, 2008; Borovsky et al,, 2013], and the plasmaspheric plume narrows after the first day. The expectation
is that this plume is composed of plasma being drained from the reservoir of plasmaspheric plasma that had
been residing in the near-Earth magnetosphere [Grebowsky, 1970; Chen and Wolf, 1972; Elphic et al., 1996;
Weiss et al., 19971]; i.e., it is thought that the plasmaspheric plume is drainage from the outer plasmasphere.

As will be seen in this report (and seen also in Borovsky et al. [2013]), the plasmaspheric drainage plume exists
in a spatial (local time) gap in the electron plasma sheet in the dayside magnetosphere. And as is well known,
the plasma of the plume is highly structured (lumpy) [Spasojevic et al., 2003; Goldstein et al., 2004; Borovsky
and Denton, 2008; Matsui et al., 2012], to the point of being irregular. For these two reasons, an improved
name for the “plasmaspheric drainage plume” might be “plasmaspheric drainage corridor” (C. R. Chappell,
private communication, 2014). Both terminologies will be used here.

A survey of plasmaspheric plumes during the first 3.5 days of high-speed-stream-driven storms found that it
is common for plasmaspheric plumes to last 3.5 days [cf. Borovsky and Denton, 2008, Figure 7]; this was the
maximum length of time over which they were surveyed. An example of a plasmaspheric plume lasting
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Figure 1. (left) In red are times when the 72 h average of Kp is greater
than or equal to 4.0. (right) A 6 month running average of the sunspot
number is plotted. Large concentrations occurred declining phases of the
solar cycles of the 1950s, the 1970s, and the 1990s, perhaps following the
22 year magnetic solar cycle.

7 days can be seen in Figure 13 of
Borovsky et al. [2013]. Plumes lasting
this long (and longer) raise questions
about how long it takes to completely
drain the outer plasmasphere and
whether these long-lived plumes have
the same properties as younger plumes.
In the present paper an analysis of
these long-lived plumes will raise the
question about where the plasma in
the long-lived plumes comes from:
whether it is drainage of plasmaspheric
plasma that has been residing in the
magnetosphere or whether it is fresh
ionospheric outflow. It turns out that
the question applies to all plumes
lasting more than about 2 days.

As will be demonstrated in this
report, whenever Kp is elevated, a
plasmaspheric plume of sunward
flowing cold plasma can be found
crossing geosynchronous orbit in the
dayside magnetosphere. Typical high-
speed-stream-driven storms have
durations of a few to several days,
depending on the duration of the
high-speed coronal-hole-origin solar
wind that follows the corotating
interaction region. There are, however,
long-duration storms with Kp elevated
for a week or two; during these long-
durations storms long-lived plumes
can be found.

During the declining phase of the solar
cycle, equatorward extensions of
coronal holes on the Sun can have
geometries that result in long-lived
high-speed wind at Earth [e.g., McAllister
etal., 1996]. If the toward away nature of
the magnetic field in this coronal hole is
Russell-McPherron effective [McPherron
et al., 2009], Kp can remain elevated for
a week or more. In Figure 1 (left) times
of long-term elevated Kp are plotted

as a function of solar rotation for the
years 1932-2011 (see also Figure 15 of

Borovsky and Denton [2006b]); intervals where the 72 h running average of Kp is above 4.0 are indicated
in red. In Figure 1 (right) the sunspot number is plotted. As can be seen, the long-duration red regions
can be present during all phases of the solar cycle but are infrequent during solar minimum and are
particularly prominent during the declining phase of the solar cycle. Note in Figure 1 (left) that every
other declining phase appears well organized (e.g., 1950s, 1970s, 1990s), forming a 22 year pattern
where the long intervals of Kp are more prevalent. During these intervals, very long lived plasmaspheric

plumes can be found.
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Figure 2. For a long-duration geomagnetic storm in May 1994 that hasa  Performed to determine how long it
calm before the storm, a drainage plume lasting 11 days is shown. (top) takes to drain the outer plasmasphere
The Kp index (green) and PCl (red) are plotted and the times of substorm  during a storm. In section 5 three
injections are denoted with blue dots. (bottom) The cold-ion density and
hot-electron density measured by the spacecraft 1989-046 in geosyn-
chronous orbit are plotted (logarithmically). The times at which 1989-046

Day of 1994

potential sources for the plasma in the
long-lived plumes are explored.

crosses local noon are indicated by the orange dots, and the times at Section 5.1 investigates the question of
which it crosses 18 LT are indicated by the black dots. The plume crossing ~ whether the plasma in long-lived
number is indicated by the black number. plumes could be coming from radial

diffusion out of the inner plasmasphere.
Section 5.2 investigates the question of whether the plasma in long-lived plumes could be the result of
substorms disrupting the nightside plasmapause. Section 5.3 investigates the question of whether the plasma
in long-lived plumes could be coming from radial transport out of the inner plasmasphere by interchange
instabilities. Section 5.4 investigates the question of whether the plasma in long-lived plumes could be coming
from radial transport by velocity-shear-driven instabilities. In section 5.5 estimates are performed to determine
whether enhanced plasmaspheric refilling rates above the tongue of ionization in the high-latitude dayside
ionosphere could be directly feeding plasma to the plumes The results are summarized in section 6, a brief
discussion about previous results is made in section 7, and a call for new research is made in section 8. In the
Appendix A the question is addressed: Could convection be strengthening with time during the storms?

2. Observations of Long-Lived Plasmaspheric Plumes

An example from May 1994 of a plasmaspheric plume lasting 11 days is shown in Figure 2. The event is
associated with high-speed solar wind emanating from an equatorward extension of a large southern polar
coronal hole [cf. McAllister et al., 1996]. In Figure 2 (top) the Kp index is plotted for 17 days as the green curve and
the polar cap index (PCl) is plotted as the red curve. The times of substorm injections of energetic electrons into
geosynchronous orbit, as determined from the multisatellite Synchronous Orbit Particle Analyzer (SOPA)

data set [Belian et al., 1992; Cayton and Belian, 2007], are plotted as the blue dots, with one blue dot per injection
event. During Days 117-120 geomagnetic activity is low (the calm before the storm). During the first half of Day
121 geomagnetic activity rises from calm levels to storm levels. From Day 121.5 to Day 132.2 geomagnetic
activity remains elevated at Kp =3 or above. On Day 132.2 activity decreases to quiet levels.

In Figure 2 (bottom) the cold-ion density at geosynchronous orbit as measured by the Magnetospheric
Plasma Analyzer (MPA) instrument [Bame et al., 1993; Thomsen et al., 1999] on the spacecraft 1989-046 in
geosynchronous orbit is plotted in blue for the same 17 days in 1994. Note that the vertical axis in Figure 2
(bottom) is logarithmic. During Days 118-120 the outer plasmasphere is filled out to geosynchronous orbit
and beyond, as indicated by dense cold plasma seen at all local times as the spacecraft travels in
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Figure 3. A local time cut each day of the 11 day long plume as seen by MPA. (left) Eleven-point smoothed. (right) Not smoothed.

geosynchronous orbit [e.g., Sojka and Wrenn, 1985; Lawrence et al., 1998; Su et al., 2001a]. This is the filling of
the outer plasmasphere during the calm before the storm [Borovsky and Steinberg, 2006; Borovsky and
Denton, 2009a]. During the end of each UT day for Days 121-132, the plasmaspheric plume is crossed by the
spacecraft 1989-046 traversing the dayside magnetosphere: this is the brief spike of high-density cold
plasma seen in the plot each day. Each daily crossing of the plume is indicated by the number in black on the
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Figure 4. The cold-ion flow velocity measured within the long-lived plasmaspheric plume of Figures 2 and 3 is plotted. The
red points are the GSM v, values, and the blue points are the GSM vy values. The Kp index is plotted in green, and the plume
crossing number is indicated in black.

plot. In Figure 2 (bottom) the time at which 1989-046 crosses local noon is marked by an orange dot and the time
at which it crosses 18 LT is marked by a black dot. A plasmaspheric plume is expected to lie between local
noon and 18 LT [Borovsky and Denton, 2008]: these 11 crossings of the plume are in that expected local time range.
In this long-duration storm, the plasmaspheric plume is seen for 11 days. In Figure 2 (bottom) cold plasma is
seen at the end of Day 132 when geomagnetic activity has subsided, but here it is seen at 18 LT; this is a crossing of
the dusk bulge of the plasmasphere [cf. Chappell et al., 1970; Higel and Wu, 1984; Moldwin et al,, 1994].

Also plotted (logarithmically) as the red curve in Figure 2 (bottom) is the number density of the electron
plasma sheet as measured by MPA on board the spacecraft 1989-046 in geosynchronous orbit. Note that the
upward spikes of the plasmaspheric density (blue) are colocated with downward dropouts of the hot-electron
density (red). The plasmaspheric plume resides in a dayside gap of the electron plasma sheet [cf. Borovsky et al.,
2013]. The plasmaspheric plasma in this gap highlights the concept of a plasmaspheric drainage corridor.
Note that this electron plasma sheet gap differs from the dayside electron trough [Thomsen et al., 1998],
which is a gradual decrease in the hot-electron number density going from the nightside around dawn to
the dayside on days with weaker geomagnetic activity. Rather, the gap represents a region from which the
warm plasma sheet electron drifts are excluded, i.e., a closed drift zone forbidden to open drift trajectories
from the geomagnetic tail.

In Figure 3 the local time profiles of the 11 plume crossings during the May 1994 storm by the spacecraft
1989-046 are shown. Figure 3 (left) plots (logarithmically) the cold-ion number density versus local time for
all 11 crossings, and Figure 3 (right) plots the density of every other plume crossing. Figure 3 (right) plots the
density with the 86 s time resolution of the MPA instruments, and Figure 3 (left) plots 11 point running
averages of the 86 s measurements of the density. An 11-point running average is a 15.8 min running
average. During the first day of elevated geomagnetic activity the local time width of the plasmaspheric
plume is wider: here in the top panels of Figure 3 it is seen to be about 4 h wide. In the later days it is 2-3 h
wide at geosynchronous orbit. The peak number density and the width both fluctuate from crossing to
crossing; however, the plume remains robust. Note the crossing of Day 132 (the eleventh day of the plume) in
the bottom panels of Figure 3: the plume has a number density at geosynchronous orbit of ~100 cm ™.

Note in Figure 3 (right) that the plume seen with 86 s time resolution is quite lumpy in density. Strong density
inhomogeneity seems to be a basic property of plasmaspheric plumes [cf. Spasojevic et al., 2003; Goldstein
et al., 2004; Borovsky and Denton, 2008; Matsui et al., 2012], and long-lived plumes are no different.

In Figure 4 the cold-ion flow velocity (in GSM coordinates) as measured by MPA on board 1989-046 is plotted
before, during, and after the interval of long-lived plasmaspheric plumes. The flow velocity is only plotted if
the measured cold-ion number density is above 10cm 3. Also plotted in green is the Kp index. As can be
seen, the flow velocity is low on Days 117-120 when the outer plasmasphere is filled; the pattern seen
represents the corotation of the outer plasmasphere with deviations caused by the noncircular E x B drift
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Plasma Flow Vectors of the 11 Plume Crossings
May 1994

orbits. The cold-ion flow velocity of
the plasmaspheric plume can be
seen on Days 121-132 when Kp is
1 elevated; in this interval the plume
crossing number is marked in black.
—————— Noon ™ ™=~~~_ geosynchronous Note that the flow velocity in the
“~._ orbit plume fluctuates significantly from
N measurement to measurement
D [cf. Borovsky and Denton, 2008]. On
; 10 km/s RN day 133 where Kp is at quiet levels
' \ and the plasmaspheric bulge is
/ \ seen, the cold-ion flow velocity is

low with little variability.

In Figure 5 is a sketch of the
equatorial plane of the
magnetosphere with the mean flow
vector for each of the 11 plume
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Figure 5. Mean velocity vector for each of 11 plume crossings and the loca-

tion of the center of the plume along geosynchronous orbit. The plume . .

crossing number (from Figure 4) is indicated in red near each velocity vector. crossings of the May 1994 storm laid
out with the origin of each vector

placed onto geosynchronous orbit
where the midpoint of the plume was encountered by 1989-046. The vectors are to scale (see the 10 km/s
length indicator on the sketch). The plume (drainage channel) is repeatedly encountered in the postnoon
sector, as expected, and the plasma flow is toward the dayside magnetopause. The mean flow speed varies
from crossing to crossing and, in general, is strongly correlated with Kp at the time of crossing [cf. Borovsky
and Denton, 2008].

Another example of a long-lived plasmaspheric plume preceded by a calm before the storm appears in
Figure 6. This plume occurred in October 2003 when there were six MPA spacecraft operating in
geosynchronous orbit, so the temporal continuity of the plume can be monitored. The locations of the six
spacecraft carrying MPA plasma instruments are shown in Figure 7, which indicates the local time positions of
the six spacecraft at 0 UT. As can be seen, the six spacecraft are spread in longitude. This constellation of
spacecraft corotates with the Earth; each day there are six MPA passes across the dayside magnetosphere to
monitor the plasmaspheric plume. In Figure 6, 16 days of measurements are plotted. The blue solid curve at

24

6 MPA Spacecraft 080
01A

n
=)

Local Time [hr]

-
N

0
282 288 290 292 294 296

Day of 2003

Figure 6. For a long-lived plasmaspheric plume in October 2003, the local times at which six geosynchronous spacecraft
measure cold-ion number densities exceeding 20 cm 3 are plotted in six colors. At the bottom the Kp index is plotted in
blue. The horizontal colored curves indicate the availability of MPA data from the six spacecraft.
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MPA Instrumentation in Geosynchronous Orbit
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Figure 7. For the long-lived plumes examined in the year 2003,
the constellation of six MPA spacecraft in geosynchronous orbit
is sketched at 0 UT. The pattern corotates with the Earth.

the bottom of the figure is the Kp index. The
figure is shaded in gray for times when Kp > 2,
and it is shaded in brown for times when Kp <2.
As can be seen, on days 282-285 there is a calm
before the storm. On day 286 magnetospheric
convection onsets and the Kp index rises and
remains elevated for 8 days. In the upper
portion of Figure 6 the local time positions of
the six MPA spacecraft are plotted in six
different colors when the cold-ion number
density that they measure exceeds 20 cm™>.
The two horizontal black dashed lines in the
figure indicate 12 LT and 18 LT: a plasmaspheric
plume is expected to reside in this range of local
times between the two dashed lines. In the
middle of Figure 6 the six horizontal curves of
different colors indicate the availability of data
on the six MPA spacecraft. Note in particular an
MPA data gap for all six spacecraft on day 293.
During the calm before the storm, plasmaspheric

plasma is seen by all six spacecraft at a wide range of local times. This indicates the presence of a filled
outer plasmasphere during the calm before the storm. As Kp rises on day 286 a broad surge of plasmaspheric
plasma is seen across the afternoon sector. In about 1.5 days this narrows into the classic plasmaspheric plume.
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Figure 8. For a long-duration geomagnetic storm in April 1994 that does not have a calm before the storm, a drainage
plume lasting 15 days is shown. (top) The Kp index (green) and PCl (red) are plotted, and the times of substorm injec-
tions are denoted with blue dots. (bottom) The cold-ion density and hot-electron density measured by the spacecraft
1989-046 in geosynchronous orbit are plotted (logarithmically). The times at which 1989-046 crosses local noon are
indicated by the orange dots, and the times at which it crosses 18 LT are indicated by the black dots. The plume crossing

number is indicated by the black number.
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Plasma Flow Vecto;\sp?ifl t1h9%15 Plume Crossings As can be seen in the local time plotting in the

upper portions of Figure 6, the plume is
continually seen by the six spacecraft making
their passes across the dayside magnetosphere.
AT e T . geosynchronous Note that when Kp drops in magnitude (e.g., on

~. orbit

o day 290), the position of the plasmaspheric

\I/ AN plasma shifts toward dusk.
/ 10 km/s .

/ % 3. Long-Lived Plasmaspheric Plumes
/ i Without a Calm Before the Storm

“. An example of a long-lived plasmaspheric plume
4
! Dusk @ Dawn |} during a storm that does not have a calm before

the storm appears in Figure 8. This April 1994
Figure 9. For a storm without a calm before the storm and with-

; event is from the same equatorward extension of
out a filled outer plasmasphere, the mean velocity vector for each

of 15 plume crossings, and the location of the center of the plume a large southern polar coronal hole [McAllister
along geosynchronous orbit. et al, 1996] as the May 1994 event of Figures 2-5.

In Figure 8 (top) the Kp index (green) and PCl
(red) are plotted as functions of time for 23 days and the times of substorm injections of energetic electrons into
geosynchronous orbit are marked with blue dots. In Figure 8 (bottom) the cold-ion number density (blue) and
hot-electron number density (red) as measured by the MPA instrument on board 1989-046 in geosynchronous
orbit are plotted, with dots marking the times that 1989-046 crosses through local noon (orange) and 18 LT
(black). On the Days 87-91 before the storm geomagnetic activity is quiet but not extremely calm; on those
days the geosynchronous satellite 1989-046 cuts through the duskside plasmaspheric bulge at about 18 LT
each day. For this storm without a well-developed calm before the storm, the plasmasphere is not filled out to
geosynchronous orbit at the storm’s onset. As Kp rises at the beginning of Day 92, a plasmaspheric plume forms,
and as Kp remains elevated, the plume persists. This plume is seen in the Figure 8 (bottom) as the daily spike
of cold-ion density in the dayside magnetosphere between local noon (orange dot) and 18 LT (black dot).
The daily plume crossing is numbered in the Figure 8 (bottom); as can be seen the plume persists for 15 days
during this long-duration storm.

Since there was not a calm before the storm, there was not a filled outer plasmasphere at the onset of the
storm. Hence, the plasmaspheric plume in this case cannot be the drainage of an extended outer
plasmasphere, at least not one extended beyond geosynchronous orbit. Note each day in Figure 8 (bottom)
the dayside gap in the electron plasma sheet coincident with the position of the plasmaspheric plume.

In the sketch of Figure 9 the mean flow velocity vector for each of the 15 plume crossings are placed onto the
locations along geosynchronous orbit where the midpoint of the plume was encountered by 1989-046. During
this long-duration storm the long-lived plume is seen for 15 days in the postnoon sector flowing sunward.

A second example of a long-lived plasmaspheric plume that occurs without a calm before the storm is
shown in Figure 10; this plume occurred in November 2003 when the six MPA spacecraft were operating

in geosynchronous orbit. The format of Figure 10 is the same as the format of Figure 6, and the six-spacecraft
constellation appears in Figure 7. The Kp index is plotted as the solid blue curve in the bottom of Figure 10
with tan shading for times when Kp < 2. Kp rises on day 313 and remains at sustained levels for 10 days. Prior
to day 313 the magnetosphere is alternately calm and active; the local time positions of the spacecraft where they
see the cold-ion number density exceeding 20 cm ™ indicate that the outer plasmasphere is not filled (compare
with Figure 6). Nevertheless, on day 313 when activity has reached high levels a plasmaspheric plume is seen
between 12 LTand 18 LT. Throughout days 313-323 the six spacecraft continually see the plasmaspheric plume as
they make their passes across the dayside magnetosphere, six crossings per day. Note from the six horizontal
colored curves in the middle of Figure 10 that all six spacecraft have MPA data dropouts beginning on day 323.

4, Can the Long-Lived Plumes be Drainage From the Outer Plasmasphere:
Advection-Refilling Simulations

To estimate the time that it takes to completely drain the outer plasmasphere (and to get an idea about the
effects on plumes of refilling from the ionosphere), computer simulations are run. The Dynamic Global Core
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Figure 10. For a long-lived plasmaspheric plume in November 2003, the local times at which six geosynchronous space-
craft measure cold-ion number densities exceeding 20 cm 3 are plotted in six colors. At the bottom the Kp index is
plotted in blue. The horizontal colored curves indicate the availability of MPA data from the six spacecraft.

Plasma Model (DGCPM) is used [Ober et al., 1997; Liemohn, 2004]. This model advects cold-plasma-filled flux
tubes about the Earth using the local E x B drift velocity [Chen and Wolf, 1972; Rasmussen et al., 1993] in a
dipole magnetic field. Equatorial density values are obtained from the volume average of the total flux tube
content. The electric field from a variety of sources can be implemented via a coupling of DGCPM with the
Space Weather Modeling Framework [Téth et al., 2005; Dodger and Ridley, 2014]. For this study, the simple
Kp-driven Volland-Stern potential model [Volland, 1973; Stern, 1975] is selected, as it has been shown to be
appropriate for capturing storm time plasmasphere dynamics [Dodger and Ridley, 2014]. The reader is
reminded that, contrary to claims in the literature [e.g., Pierrard et al., 2009], these simulations are not MHD
simulations: there is no self-consistency associated with the motion of the plasmaspheric plasma (inertial,
diamagnetism, or field-aligned currents) nor any feedback on the fields. However, even with their lack of
sophistication, such advection models do well at predicting the locations of plasmaspheric boundaries as
seen by spacecraft in geosynchronous orbit [e.g., Lambour et al., 19971.

Crucial to DGCPM simulations are the ionospheric refilling rate and the atmospheric loss rate, set as a simple
source term:

ON/ot = (Nsze — N()) /76 — N(t)/Tioss. M

where N(t) is the time-dependent flux tube content, N, is the L-dependent saturation content of the flux
tube, g is the flux tube refilling time, and 745 time scale for plasma loss to the atmosphere. The L
dependence of Ny, is taken from equation (1) of Carpenter and Anderson [1992]. The first term on the right-
hand side of expression (1) represents dayside refilling to observed quiet time saturation values. While
Rasmussen et al. [1993] used a refilling constant zg; = 6.7 days, this study defaults to a much more aggressive
rate of 7, = 1.5 days to better match the rapid quiet time refilling rates observed at geosynchronous orbit.
The second term on the right-hand side of expression (1) represents nightside losses into the ionosphere.
In this study, 7,0 is set to 3 days.

To estimate the time scale required to drain the outer plasmasphere, synthetic storm events are simulated
wherein Kp is set to Kp =1 for 2 days, then elevated to a high level for an additional 5 days. Five simulations
are run with five different elevated-Kp levels. For these five simulations the plasmaspheric plasma density
around geosynchronous orbit is displayed as a local time/universal time map in the five panels of Figure 11:
the vertical axis is the local time position around geosynchronous orbit with local noon in the center, and the
horizontal axis is time since storm onset in days. The white shading shows the base-10 logarithm of the
plasma number density. For all five runs, g, = 1.5 days and 7)0ss =3 days are used. The middle panel of
Figure 11 is for Kp =5 during the storm: this Kp level is representative of the typical values observed during
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Figure 11. For five simulations with different values of Kp after storm onset, the plasmaspheric plasma density around geo-
synchronous orbit is plotted. Magnetic local time is on the vertical axis such that local noon is in the center, dawn toward
the bottom, and dusk toward the top. Time, in days, relative to storm onset is on the horizontal axis.

the actual long-lived plume events. Examining the middle panel, at time t =0, Kp is elevated from 1 to 5 and a
clear plume develops centered at about 15 LT. During the first 36 h of the storm the filled outer plasmasphere
feeds a broad, dense plume (the sunward surge of the outer plasmasphere [Chen and Wolf, 1972; Goldstein,
2006; Borovsky et al., 2013]). This surge decays quickly both in terms of number density and local time width.
In the following days, empty flux tubes advect on open drift paths from the nightside to the dayside and
begin to accumulate plasma from ionospheric refilling. When the flux tubes join the plume, ionospheric
refilling continues to feed plasma into the flux tubes. After 5 days, the plume is still discernable in the
simulation, though narrow in local time, and with a very low density.

In the five panels of Figure 11 Kp is elevated from Kp = 1 before storm onset to five different values after onset:
from Kp =3 (bottom frame) to Kp =7 (top frame), in increments of 1. The different storm strengths have
several effects on plume development. For higher Kp values, the plume shifts toward local noon; for lower Kp
values, the plume shifts toward dusk. At higher Kp the flux tubes that are advecting into the plume originate
from lower L shells on the dayside, which means a higher saturation density and therefore a faster refilling
rate. This would lead to a stronger mass contribution to the plasmaspheric plume. On the other hand, at
higher Kp, flux tubes have a shorter travel time before they reach the plume, so less plasma can accumulate.
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Figure 12. The maximum plasma density in the plume is plotted as a X . . .
function of time for the five different simulations of Figure 11, each with 36h is the time required to drain the
different storm strengths as designated by the level of Kp. Time, in hours, ~ Stored-up outer plasmasphere. With
relative to the time of storm onset is shown on the horizontal axis. the refilling time set to zg;=1.5 days in

Density (em ™)

Time from Storm Onset (days)

Figure 13. For six simulations with different values of the ionospheric refilling rate, the plasmaspheric plasma density
around geosynchronous orbit is plotted. Magnetic local time is on the vertical axis such that local noon is in the center.
Time relative to storm onset is on the horizontal axis. The six frames are arranged such that the topmost frame has the
slowest refilling rate and the bottom frame has the fastest refilling rate.
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plumes at geosynchronous orbit.

In Figures 13 and 14 a series of six simulations are run for Kp =5 storms with six different values of the
ionospheric refilling rate. The refilling rate varies from no refilling (zg); = <), and incrementally from slow
(zai = 2 days) to fast (z, = 0.25 days) refilling rates. Figure 14 shows that with no refilling, the plume decays to
negligible density values, dropping to ~5cm™ in 48 h. As refilling rates are increased, the late time plume
becomes denser and more pronounced. As can be seen in the lower panels of Figure 13, dawnward of the
plume density peak the plasma density spatially ramps up smoothly as flux tubes are mass loaded from the
ionospheric refilling.

Figures 11-14 demonstrate that a filled outer plasmasphere is drained away in about 36-48 h after the onset
of the storms. In the simulations, whatever plume remains after 36-48 h is owed to recent ionospheric
refilling into the flux tubes advecting sunward in the plume. The long-lived drainage plumes are not fed from
plasmaspheric plasma stored in the magnetosphere.

In Figure 15 an interval of the April 1994 event is shown with MPA measurements (black) of the cold-ion density
made for nine crossings of the long-lived drainage plume. A simulation with the DGCPM code is run driven by the
time-dependent Kp of the April 1994 event and with a refilling time zg;= 1.5 days. The number density in the
simulation at the location of the MPA spacecraft is plotted in blue in Figure 15. The location of the peak number
density of the plume in the simulation for each crossing is marked with a red vertical line. As can be seen, the
simulation predicts the location of the long-lived plume quite accurately but drastically underestimates the
number density of the long-lived plume. Note in Figure 15 that the simulation plume is wider than the measured
plume; this is undoubtedly owed to numerical diffusion on the computational grid with course spatial resolution.
At L =6.6, the azimuthal resolution of the spatial grid is 2200 km.

MPA, 1989-046

-3
1

Density [cm

Day of 1994

Figure 15. During the long-lived storm of April 1994, the number density of the long-lived drainage plume as measured
by the spacecraft 1989-046 is plotted for nine crossing of the plume (black). For a computer simulation of the April
1994 storm using the DGCPM code, the simulated number density of plasmaspheric plasma at the location of 1989-046
is plotted in blue.
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Figures 14 and 15 show that even with the fastest refilling rates used here, the model cannot account for
the observed high-density values of real-world long-lived plasmaspheric plumes. The maximum plume density
for the simulation with the fastest refilling rate is about 15 cm™> (red curve), which is still almost an order of
magnitude lower than observations. The results in Figure 14 do imply that ionospheric refilling might be
capable of qualitatively creating the observed long-lived-plume signatures, if the refilling rate is strong enough.

5. Potential Sources of the Long-Lived Plasmaspheric Plumes

In sections 5.1, 5.2, and 5.3 three potential sources for the plasma in the long-lived plasmaspheric plumes are
briefly explored.

It is taken that the strength of magnetospheric convection does not increase with time during these long-
lived storms. If convection was to steadily increase with time, then plasmaspheric plasma from lower and
lower L shells could be drained as time progressed, providing a long-lived source of plasma for the plume.
The issue of the strength of convection increasing with time is addressed in the Appendix A, with the
conclusion that it is not likely that convection is increasing with time.

5.1. Can the Long-Lived Plumes be Diffusing From the Inner Plasmasphere?

A possible source of plasma for the plasmaspheric plume is outward radial diffusion of cold plasma from
closed drift paths in the inner plasmasphere onto open drift paths carrying the plasma to the dayside
magnetopause [cf. Matsui et al., 2000; Adrian et al., 2004; see also Carpenter and Lemaire, 1997]. To estimate
the magnitude of this diffusion, two diffusion coefficients will be calculated: as an upper limit to the rate of
diffusion, diffusion by ULF fluctuations will be calculated, and as a lower limit to the rate of diffusion, Bohm
diffusion will be calculated.

ULF fluctuating electric fields produce fluctuating E x B drifts that can move particles radially inward and
outward. It is well known that this can lead to radial diffusion of energetic particles in the magnetosphere
[Falthammar, 1965; Perry et al., 2005; Shprits et al., 2008]; the question is whether it can lead to radial diffusion
of cold plasma. For energetic particles which move by a combination of E x B drift and gradient-and-
curvature drift, a localized radial perturbation can transport the particles outward by E x B drift wherein they
can azimuthally gradient-and-curvature drift out of the perturbation before the localized fluctuation causes
particles to E x B drift radially inward. Cold plasma moves with the magnetic field lines, which do not have a
net outward transport during the fluctuations. Energetic particles are also subject to violation of adiabatic
invariants during ULF fluctuations, whereas cold-plasma particles are not. Hence, radial transport of cold
plasma by ULF radial diffusion is probably inefficient. To estimate an absolute upper limit to the spatial
diffusion coefficient associated with ULF electric field fluctuations of time scale 7.5, the diffusion coefficient
D, will be taken to be [Nicholson, 1983]

Dy = SXZ/ZT , 2)

which represents a stepsize dx every time 7. During one period 7 of a sinusoidal ULF wave there will be two
steps: one in and one out. Hence, the time 7 in expression (2) is 7 =7/2. The stepsize dx is given by an ExB
drift of speed cdE/B,, of duration /4, which is

X = (céE/Bo) Tu|f/4 s (3)

where JE is the electric field amplitude of the ULF fluctuations and B, is the ambient magnetic field strength.
Using expression (3) for dx along with 7 =17¢/2, expression (2) becomes

Dyx = C*0E?7y/8Bo> . (4

Using the values of JE as a function of L from the standard deviation curve in Figure 7 of Matsui et al. [2003] for
B, < 0 (replotted in green in Figure 16), taking B, for a dipole (plotted in purple in Figure 16), and taking
=300 as typical, the ULF diffusion coefficient for cold plasma is plotted as a function of L in blue

in Figure 16.

An important mechanism in plasma physics is Bohm diffusion, which represents diffusion via the disruption
of particle gyroorbits. In laboratory experiments, cross-field gradients are often observed to spread at the
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Figure 16. (left) Using ULF electric field for B, < 0 in Figure 7 of Matsui et al. [2003], a spatial diffusion coefficient is derived and
compared with the coefficient for Bohm diffusion of plasmaspheric plasma. (right) After 1 day of diffusion, the transport distance
is plotted for ULF diffusion and Bohm diffusion.

Bohm diffusion rate [Bohm et al., 1949; Rynn, 1964]. In various situations the mechanism underlying Bohm
diffusion has been attributed to electromagnetic fluctuations [Lin et al., 1980], field line wandering [Chu et al,
1978], stochastic E x B drifts [Taylor and McNamara, 1971], microturbulent electric fields [Pecseli and Mikkelsen,
1985], and drift waves [Wakatani and Hasegawa, 1984]. Bohm diffusion acts with a stepsize on the order of a
particle gyroradius and a time step on the order of a particle gyroperiod; for a hydrogen plasma with an ion
temperature of T, the Bohm diffusion coefficient D is given by [e.g., Krall and Trivelpiece, 1973, equation (1.14.5)]

DB:ckBT,»/16eBO. (5)

Taking T;=1 eV for plasmaspheric plasma [Farrugia et al., 1989; Kutiev et al., 2004] and taking B, to be the
dipole field (purple curve in Figure 16), the Bohm diffusion coefficient (expression (5)) for plasmaspheric
plasma is plotted as a function of L shell as the red curve in Figure 16. As can be seen, the (lower limit)
coefficient for Bohm diffusion is about 3 orders of magnitude smaller than the (upper limit) coefficient for
ULF radial diffusion. Note that Coulomb scattering will also produce a (Braginskii) diffusion of plasmaspheric
ions across the magnetic field [Braginskii, 1965]. For this diffusion, the ion stepsize is the ion gyroradius
but the step time is the 90° deflection time 7, for a thermal ion owing to Coulomb scattering by ions and
electrons. Taking n=100cm™> and T;=T, =1 eV, equation (6.4.11) of Krall and Trivelpiece [1973] yields
74=6.7x10%s=112min. At L =4 (B=480 nT), the proton gyroperiod is 0.14 s. Hence, the Braginskii diffusion
coefficient for Coulomb scattering is a factor of about (0.145)/(6.7 X 10°s) =2 x 10> smaller than the Bohm
diffusion coefficient and Coulomb scattering transport can be ignored.

As a gauge of the effectiveness of the diffusion, the spatial transport AX by the diffusion in a time t is given by
AX = (Dt)"? ©6)

where D is the appropriate diffusion coefficient. Taking D,y from expression (4) for the ULF electric fields of
Matsui et al. [2003] and taking t=1 day, the value of AX for 1day is plotted as the blue curve in Figure 16
(right). For the ULF upper limit, values of AX=1 R are found for all L values from 4.5 to 6.5. If the ULF
fluctuations were to produce diffusion of the cold plasma, the observed ULF electric field fluctuations are
sufficient to produce transport by random motions to distances of ~1 R in 1 day. However, it was pointed out
above that the ULF radial diffusion of cold plasma is likely to be very inefficient, and so it is likely that the
value of AX=1 Rgin 1day is a great overestimation. If this diffusive transport does act on the cold plasma
of the plasmasphere, it may contribute to move cold plasma from regions of closed E x B trajectories to
regions of open E X B trajectories where the material plume. Taking Dg from expression (5) for Bohm diffusion into
expression (6) and taking t= 1 day, the value of AX for 1 day of Bohm diffusion is plotted as the red curve in
Figure 16 (right). For the Bohm diffusion lower limit, values of AX~0.03 Rz~ 200 km are found for the L values
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from 4.5 to 6.5. (See also Horwitz [1983] for similar values.) If there is no radial diffusion of cold plasma from the
ULF fluctuations, so only Bohm diffusion acts, then the diffusion from the inner magnetosphere to open drift
shells will be very small and will not account for the plasma in the plasmaspheric plumes.

5.2. Can the Long-Lived Plumes be Supplied From the Substorm Disruptions of the Plasmapause?

Substorms can disturb and distort the nightside plasmasphere as the fast, short-lived earthward flow
from the magnetotail comes into the dipolar portions of the magnetosphere. Azimuthal distortions of
the plasmapause are commonly observed [cf. Moldwin et al., 1994; Goldstein et al., 2002; Spasojevic et al.,
2003; Gallagher et al., 2005; Darrouzet et al., 2009]. The simulations of Spiro et al. [1981] demonstrated
that distortions associated with the occurrence of a substorm can pull “tails” of plasmaspheric plasma
out from the nightside plasmasphere onto open drift trajectories wherein this cold plasma convects
from the nightside magnetosphere to the dayside magnetopause [see also Chen and Wolf, 1972;
Grebowsky and Chen, 1976].

The following estimate indicates that the substorm disruption of the plasmasphere could move enough
plasma out of the plasmasphere to feed the plasmaspheric plume.

At geosynchronous orbit near midnight, the perpendicular (to B) electric field of a substorm expansion phase
is on the order of 5 mV/m westward for a duration of a few minutes [cf. Shepherd et al., 1980, Figures 3a
and 3b]. For a 100 nT magnetic field at geosynchronous orbit [Borovsky and Denton, 2010], this 5 mV/m
westward electric field corresponds to a 50 km/s E x B drift radially toward the Earth: time integrating this
50 km/s drift for a few minutes yields an earthward radial transport of about 1 R for E x B drifting cold plasma
at geosynchronous orbit. Away from midnight the substorm expansion phase electric field corresponds to
a weaker radially outward convection [Spiro et al., 1981; Birn et al., 2004; Birn and Hesse, 2014; see also
Moore et al., 2013]. Closer to the Earth than geosynchronous orbit, the radial inward and outward
displacements will be smaller. For the purpose of estimation, a 0.5 R outward displacement of plasmaspheric
plasma at some local times near midnight associated with the occurrence of a substorm is taken. In Figures 2
and 8 the times of substorm injections at geosynchronous orbit are marked as the purple dots. During
these two long-lived drainage plumes there are on average 8.6 substorms occurring per day. As the Earth
rotates, the plasmaspheric plasma that is on the nightside changes; with approximately eight substorms
occurring per day, approximately every longitude of the plasmapause will receive an inward/outward radial
displacement of on the order of 0.5 Rg each day.

The Kp index is at a level of about 4 during the long-lived plumes of Figures 2 and 8. The Kp index and MBI
(Midnight Boundary Index) [Gussenhoven et al., 1983] are highly correlated, and MBI can be estimated as
MBI =65.27°-1.07 Kp [Borovsky and Denton, 2009b]. At Kp = 4, this gives MBI =61°. MBI is the magnetic latitude
of the inner edge of the electron plasma sheet at local midnight, which is also the magnetic latitude

of the plasmapause at local midnight. A dipole latitude of 61° corresponds to L =4.25. In the Gallagher
plasmasphere model [Gallagher et al., 1995], the plasmaspheric density at r=4.25 R at local midnight is
370 cm ™ (which is equivalent to using the Carpenter and Anderson [1992] number density formula
n=28022 1072314 for | =4.25). Note that there is a considerable spread in the values of the plasmaspheric
number density in the literature: Figure 4 of Grew et al. [2007] yields n=150-2000cm > at L =4, whereas
Figure 4 of Darrouzet et al. [2004] yields n=100cm > at L=4.5 and Figure 3 of Decreau et al. [2005] yields
n=150cm™> at L =4.5. These latter two values seem low in light of the fact that the plasmaspheric
number density can exceed 100 cm™2 at L =6.6 [Sojka and Wrenn, 1985; Su et al,, 2001a]. An annulus in the
equatorial plane that is 0.5 R; wide (from 4.0 Rg to 4.5 Rg) has an area of 5.4x 10'® cm? At L =4.25, a dipole
flux tube that has a cross-sectional area in the equatorial plane of 1cm? has a volume of 4.9 x 10° cm?.
Hence, the dipole volume of the 0.5 R¢ wide annulus is 2.6 x 102 cm>. In the Gallagher model at 370 cm 3,
the number of plasmaspheric ions in this volume is 9.7 x 10°% ions. If half of these ions are released
onto open drift trajectories per day by the nightside substorms hitting the corotating plasmasphere, then
the plasmaspheric plume could have a flux of 9.7 x 10%° ions/day (which is 16 t of protons per day).

This estimate of 4.9 x 103 ions/day corresponds to 5.5 x 10%° ions/s, which falls within the range of plume fluxes
measured in the plume survey of Borovsky and Denton [2008] (cf. the top panel of Figure 14 of that survey).

This estimate indicates that the perturbation of the nightside plasmasphere by the occurrence of substorms
is probably an important contributor to the long-lived plasmaspheric plumes during long-duration storms.
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More realistic calculations based on numerical simulations with realistic substorm dynamics [cf. Birn and
Hesse, 2013, 2014] are needed to better quantify this substorm effect to determine whether or not it is the
dominant source of plasma for the long-lived plumes. A further issue to settle is how rapidly the outer layer of
the plasmasphere can be refilled from the ionosphere if the substorm transport is depleting it.

Note that smaller-scale flow channels from the magnetotail may also contribute to substorm-like radial
transport of plasmaspheric plasma. Undulations of the morningside low-latitude boundary of the diffuse
aurora can be seen associated with omega bands [Jorgensen et al., 1999; Kavanagh et al., 2009; Henderson,
2012]. Although there are other suggestions for the cause of omega bands, these undulations may be
caused by transient flow bursts in the magnetotail plasma sheet perturbing the inner edge of the
electron plasma sheet [cf. Henderson, 2012], sort of a minisubstorm perturbation of the dipolar plasma
profiles. If the inner edge of the electron plasma sheet is perturbed, then the outer portion of the
plasmasphere is also perturbed.

5.3. Can the Long-Lived Plumes be Supplied by Interchange-Type Instabilities?

Interchange-type instabilities have been suggested to give rise to a broadening of the plasmapause
[Richmond, 1973; Lemaire, 1975; Huang et al., 1990], which would yield an outward radial transport of
plasmaspheric plasma [Lemaire and Schunk, 1992; Dandouras, 2013]. Dandouras [2013] estimate that the
quiet time outward radial flux of plasmaspheric protons is as large as the flux in storm time drainage plumes.
Interchange instabilities could be driven by the gravity-centripetal drift of plasmaspheric protons building
up charge density at the locations of azimuthal (longitudinal) gradients in the plasmaspheric number
density [cf. Newcomb, 1961] or it could be driven by pressure gradients associated with plasma density
gradients [cf. Southwood and Kivelson, 19871.

In the equatorial plane, the inner boundary of the electron plasma sheet is proximate to the plasmapause
[Horwitz et al., 1982; Elphic et al., 1999]. The electron plasma sheet is on drift paths originating in the
magnetotail and heading to the dayside magnetopause. The plasmasphere near the plasmapause may have
a number density ~100 cm > and a temperature ~1 eV, yielding ~0.02 nPa of particle pressure with an inward
pressure gradient at the plasmapause. The electron plasma sheet has a number density ~1cm™> and a
temperature ~2 keV, yielding ~0.3 nPa of particle pressure with an outward pressure gradient near the
plasmapause. If the inward pressure gradient of the plasmasphere were to be interchange unstable, it
would be stabilized by the proximate and much larger outward pressure gradient of the electron plasma
sheet [cf. Sonnerup and Laird, 1963]. The pressure gradient of the electron plasma sheet may be sufficient to
stabilize a centripetal-driven interchange of the plasmapause [e.g., Siscoe et al., 1981]. A further stabilizing
outward pressure gradient at the plasmapause would be owed to the warm plasma cloak ions in the electron
plasma sheet during active times, with a number density of 2-5 cm™> and a temperature of tens of eV [Chappell
et al., 2008; Borovsky et al., 2013]. All of these particle pressures are dominated at the plasmapause by the ion
plasma sheet with a number density ~1 cm™> and a temperature ~20 keV, yielding ~0.3 nPa of pressure. The
radial gradient of the ion plasma sheet is gradual and is not focused at the plasmapause. The ion plasma sheet
might drive interchange instabilities (which would transport plasmaspheric material radially), but these
interchanges would not be driven by or controlled by the plasmasphere. The azimuthal wavelength of
any ion-plasma-sheet-driven interchange would be related to the radially broad pressure gradient of the ion
plasma sheet. Interchange instabilities may still be driven by the gravity drift of plasmaspheric protons building up
charge density at the locations of azimuthal (longitudinal) gradients in the plasmaspheric number density.

Because the inner boundary of the electron plasma sheet is proximate to the plasmapause, the amplitude of
interchange instabilities on the plasmapause may be estimated by the amplitude of undulations of the low-
latitude boundary of the diffuse aurora. Such undulations are commonly seen during substorms, with larger
amplitudes in the dusk regions of local time [Lui et al., 1982; Kelley, 1986] and smaller amplitudes in the
postmidnight regions [Mendillo et al., 1989]. The postmidnight event described by Mendillo et al. [1989] had
an auroral undulation amplitude of 30-60 km in the upper atmosphere, corresponding to 0.1-0.2 R in the
equatorial plane. This estimated amount of radial transport is smaller than the amount estimated in
section 5.1 associated with ULF fluctuations.

Plasmasphere refilling-and-convection models [Pierrard and Stegun, 2008; Pierrard et al., 2009; Pierrard
and Voiculescu, 2011] that include the effects of gravitational-centripetal interchange instabilities have
been run for April 1994 and the May 1994 long-duration storm events on the European Space Weather
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Portal (http://www.spaceweather.eu/en/model_access_interface). In general, the results of the
simulations disagree with the observation reported here from geosynchronous orbit. In particular,
(1) during the calm before the storm of May 1994 (cf. Figure 2) where the outer plasmasphere fills
beyond geosynchronous orbit (6.6 Rg) the European Space Agency Space Weather Portal simulations
predict the plasmapause to be located at ~5 R in the equatorial plane with no plasmaspheric plasma
at 6.6 Rr and (2) during both long-duration storms, even though the code produces an irregular-shaped
plasmapause, it does not produce a steady drainage plume, only an occasional (approximately once
per day) burst of plasma moving sunward.

The brief analysis of this subsection does not conclude that interchange-driven radial transport can supply
the long-lived drainage plumes.

5.4. Can the Long-Lived Plumes be Supplied by Velocity-Shear-Driven Instabilities
in the SAPS Region?

It has been argued that velocity-shear-driven instabilities associated with the Sub-Auroral Polarization Stream
(SAPS)/subauroral ion drift (SAID) electric field can produce radial displacements of the plasma populations
in the duskside magnetosphere in the vicinity of the plasmapause [Kelley, 1986; Yamamoto et al., 1991,
1994; Goldstein et al., 2004; Henderson et al., 2010].

The inner edge of the electron plasma sheet is proximate to the plasmapause: if there are radial
displacements that are moving the plasmaspheric material, these radial displacements should be
visible as undulations of the lower latitude boundary of the diffuse aurora. In the premidnight to
afternoon sectors of local time, undulations of the inner edge of the diffuse aurora can have large
amplitudes: Lui et al. [1982] report amplitudes of 40-400 km in the atmosphere, Kelley [1986] report
amplitudes of 30-300 km in the atmosphere, and Biashev et al. [2010] report amplitudes of 100-150 km
in the atmosphere. The smaller of these amplitudes correspond to ~0.1-0.2 R radial displacements
in the equatorial plane. The largest of these amplitudes could correspond to radial amplitudes

of 1-2 Rg in the equatorial plane. Note that the larger of these amplitudes tend to occur at very large
values (5-8) of Kp, typically beyond the range of Kp values seen during long-duration high-speed-
stream-driven storms.

For the long-lived high-speed-stream-driven storms that give rise to the long-lived drainage plumes, with Kp
in the range of 4 to 5, radial displacements of ~0.5 Rg should be common in the duskside magnetosphere.
As was the case for the estimate of substorm disruptions of the nightside plasmasphere, the duskside
velocity-shear-driven instabilities may be an important mechanism for transporting plasmaspheric plasma
radially outward from closed drift trajectories onto open drift trajectories to feed the plume. Again, as was
the case for substorm disruptions, a secondary issue would be how rapidly the outwardly transported
regions could be refilled from the ionosphere.

5.5. Can the Long-Lived Plumes be the Signature of Anomalous Refilling From the Tongue
of lonization?

Locally in the plasmasphere, the plasmaspheric refilling rate depends on the density of the ionosphere at the
magnetic footpoint. In the literature plasmaspheric refilling rates have been measured by observing the
temporal filling of the plasmasphere after geomagnetic activity ceases [e.g., Park, 1974; Higel and Wu, 1984;
Sojka and Wrenn, 1985; Lawrence et al., 1998]. (An exception is Su et al. [2001a].) Hence, the refilling rates in the
literature correspond to outflow from the ionosphere during quiet times.

During geomagnetically active times enhanced convection brings high-density ionosphere to high
latitudes on the dayside; particularly dramatic is the “storm-enhanced density” plume and “tongue of
ionization” [Knudsen, 1974; Sojka et al., 1981; Foster, 1993; Hosokawa et al., 2010; Thomas et al., 2013],
which is a high-density region extending from lower latitudes up into the polar cap. With a higher-
density ionosphere at high latitudes during geomagnetic activity, the refilling rates for the outer
plasmasphere region will be higher than expected during geomagnetically active times. This will be
particularly true for the magnetospheric region that magnetically connects to the dayside tongue of
ionization. It has been established that the tongue of ionization and the plasmaspheric drainage
plume are approximately magnetically connected [Su et al., 2001b; Foster et al., 2002; Yizengaw et al.,
2008; Walsh et al., 2014].
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Figure 17. Using the International Reference ionosphere for (top) 21
March 2000 and (bottom) 21 December 2000, the proton number den-

sity at 1800 km altitude on the noon meridian (0° longitude) is plotted in
blue (left axis) as a function of latitude and the TEC for an altitude up to
2000 km is plotted in red (right axis) for the same meridian as a function
of latitude.

Theoretically, the plasmaspheric
refilling rate can be estimated from
the upward thermal flux of protons
in the topside ionosphere; the
refilling proton flux F from the
ionosphere can be estimated as
[cf. Gombosi, 1994]

F=025n, <v,>

= 0.25 n, (8ksT,/TIm,) "> (7)

where <v, > is the mean speed

of a proton in a population with
temperature T, in the topside
ionosphere. Using the International
Reference lonosphere (IRI) [Lincoln
and Conkright, 1981] to estimate

np and Tp, the proton flux of
expression (7) is calculated at an
altitude of 1800 km along the noon
meridian: it is plotted (left axis) as a
function of latitude as the blue dots
in Figure 17 (top) for no dipole tilt
(21 March 2000) and in Figure 17
(bottom) for dipole tilt (21 December
2000) in winter. Also plotted in red
(right axis) in both panels is the total
electron content (TEC) up to

2000 km calculated from IRI.

Examining TEC plots in the literature
for the storm time tongue of
ionization (e.g., Figure 1 of Coster
et al. [2007] or Figure 1 of Walsh

et al. [2014]), at high latitudes the
tongue of ionization can produces
an increase of TEC by almost a
factor of 10 over levels outside the
tongue. If the tongue is caused by
the convection of more sunlit
ionosphere from low latitudes into
high latitudes [Anderson et al., 1988;
Sojka et al., 1993], then the IRl plots

can be used to estimate the increase in topside ion flux F that accompanies the increase in TEC. In
Figure 17 (top and bottom), shifting plasma toward higher latitude produces fractional increases in F at
higher latitude that are larger than the accompanying fractional increases of TEC. Hence, a factor of 10
increase in F in the tongue of ionization might be reasonable [see also Hosokawa et al., 2010; Kitanoya
et al., 2011]. This means that plasmaspheric refilling rates that are a factor of 10 above commonly

accepted rates from the literature might also be reasonable.

Refilling rates at geosynchronous orbit (as determined from refilling during quiet times) range from 10 to
50cm > d ™" [Sojka and Wrenn, 1985; Song et al., 1988; Lawrence et al., 1998; Su et al,, 2001a] with refilling
times of a few days. (Theoretical estimates of the geosynchronous orbit refilling times are somewhat longer
than these values [cf. Rasmussen et al., 1993; Krall and Huba, 2013].) Boosting these 10-50 em 3 d™! filling
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rates by a factor of 10 (to 100-500cm™> d™') might be sufficient to supply the observed long-lived plumes
from open drift trajectory footpoints that spend a fraction of a day in sunlight.

6. Summary

Long-lived plasmaspheric plumes were found and explored. One plume that was examined lasted for 11 days
(Figure 2), and another plume lasted for 15 days (Figure 8).

The long-lived plumes are seen during long-lived high-speed-stream-driven storms. These types of storms
typically occur during the declining phase of the solar cycle. Long-lived plumes can occur in storms with
calms beforehand and in storms without calms.

It appears to be the case that as long as the Kp index remains elevated (i.e., as long as magnetospheric
convection is elevated), a plasmaspheric plume can be found.

As seen at geosynchronous orbit, the plume is dense cold (plasmaspheric) plasma advecting sunward in the
dayside magnetosphere toward the dayside magnetopause. Cold-plasma number densities from tens to
200cm > are seen.

After the initial broad (in local time) surge of cold plasma across the dayside of geosynchronous orbit in the
first day of a storm, the plasmaspheric plumes persist for many days and remain robust in number density.
The older plumes do not have any characteristics that would distinguish them from younger plumes. They all
are lumpy in density, and they reside in a dayside local time gap in the electron plasma sheet.

Magnetospheric-convection simulations indicate that the complete drainage of a builtup outer plasmasphere
to the dayside magnetopause should only take 1.5-2 days. After that time, the plasma in the plasmaspheric
plumes cannot be simply the drainage of a stored-up outer plasmasphere. Hence, the question arises for
long-lived plumes (and for any plume older than about 2 days): Where is the plasma coming from?

Some candidate sources for the plasma in the long-lived plumes were explored. In estimating the amount of
plasma that could be supplied to a long-lived drainage plume, three sources are promising.

The first promising candidate for the source of the plasma in long-lived plumes is distortions of the nightside
plasmasphere by the occurrence of substorms. Such distortions may result in the outward transport of
plasmaspheric material from closed drift orbits onto open drift orbits where the plume can be fed.

The second promising candidate for the source of the plasma in long-lived plumes is the outward transport
of plasmaspheric material owed to velocity shear instabilities near the duskside plasmapause.

The third promising candidate for the source of the plasma in long-lived plumes is an anomalously high
outflux of cold ionospheric protons from the tongue of ionization in the dayside ionosphere. The tongue of
ionization represents anomalously high-density ionospheric plasma that is transported to high latitudes
where the ionospheric density is normally low and proton-outflow rates are normally modest.

7. Discussion

The observation in the present study that the long-lived plasmaspheric plumes persist without decreasing in
density is contrary to the report [Borovsky and Denton, 2008] that plasmaspheric plumes “weaken with age.”
In the Borovsky-and-Denton survey of plumes, which examined plumes out to an age of 3.5days in a
collection of high-speed-stream-driven storms, it was observed statistically that as the plume age increases
the plume width decreases [Borovsky and Denton, 2008, Figure 8], the plume density decreases (Figure 10),
the plasma flow velocity in the plume decreases (Figure 11), the transported mass flux of the plume decreases
(Figure 14), and the local time position of the plume shifts duskward (Figure 8). Part of the statistical result of
Borovsky and Denton [2008] may be attributable to the transition from the early time plasmaspheric surge
during the first day of a storm to the more well developed narrow plume after the first day [cf. Goldstein, 2006;
Borovsky et al., 2013]; at a very early age the surge is wider and denser than the plume at later times

[cf. Borovsky et al., 2013, Figures 16 and 17]. Another factor in that Borovsky-and-Denton survey was that,
statistically, as the plume age increased the Kp index decreased; i.e., for that collection of storms Kp
weakened as the storms progressed. Kp is a measure of the strength of convection in the magnetosphere
[Thomsen, 2004]. A difference between the long-lived plumes explored in the present study and the
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collection of plumes surveyed by Borovsky and Denton [2008] is that for the long-lived plumes Kp is not
decreasing, rather it remains at elevated levels in the long-lived storms. It is entirely plausible that the
observations of temporal reductions of density, width, flow velocity, and ion flux in the Borovsky-and-Denton
survey were caused by the temporal reductions in Kp. Note that the local time location of the plumes in
that survey [cf. Borovsky and Denton, 2008, Figures 8 and 9] also increased toward 18 LT with increasing age:
this is a purely Kp-dependent property (cf. Figure 11).

8. Work Needed

Work is needed to gain an understanding of where the plasma in the long-lived plasmaspheric plumes is
coming from and to be able to predict the properties of these plumes.

If the plume’s plasma is coming from the plasmasphere, then a better understanding of the radial transport of
plasmaspheric plasma is needed and the question of whether the ionosphere can keep the plasmasphere
resupplied for many days needs to be answered. Among other mechanisms, the radial transport may come
from velocity-shear-driven instabilities, interchange instabilities, or ULF-driven radial diffusion; these may
involve distortions (undulations) of the plasmapause or a broadening of the plasmapause. More work is called
for to apply all of these mechanisms to the question of what the source of the long-lived drainage plume is.

If the plume’s plasma is not coming from the plasmasphere, then an understanding of how the ionosphere
directly supplies this plume is needed. It may be wise to explore mechanisms that can lead to anomalously
high refilling rates during geomagnetically active times, such as an enhanced thermal upflux of protons from
the tongue of ionization in the high-latitude dayside ionosphere.

Investigation of the disruption of the nightside plasmasphere by the occurrence of substorms is called

for. A quantification is needed of how much plasmaspheric material can be transported out to open drift
trajectories by the substorm electric fields, along with the refilling rates in the disrupted plasmasphere. Global
simulations with realistic substorm dynamics (rapid magnetic reconfiguration with the self-consistent electric
fields to support the accompanying flows) are needed.

Clues (or constraints) to what is going on may lie in the facts that (1) the plasmaspheric plume is lumpy (it has
great density irregularities) and (2) the plume resides in the narrow dayside gap of the electron plasma sheet.
If the plasma in the long-lived plumes is coming from anomalous ionospheric upflows, then there may be a
temporal-spatial difference to where cold-H* outflow can reach the equatorial plane and where cold-O*
outflow can reach the equatorial plane.

Appendix A: Could Convection be Strengthening With Time During the Storms?

A key precondition that leads to the dilemma “Where does the plasma come from?” is the assumption that
magnetospheric convection does not strengthen with time during these long-lived storms. If the convection
is weakening or staying constant, then the plume plasma cannot be coming from deeper and deeper in the
inner magnetosphere as time goes on.

This assumption that convection gets weaker with time is based on the Kp index, which is one measure of
magnetospheric convection [cf. Thomsen, 2004].

A more direct measure of the strength of magnetospheric convection is the Midnight Boundary Index (MBI)
[Gussenhoven et al., 1983; Madden and Gussenhoven, 1990], which directly measures the latitude of the
equatorward edge of the electron diffuse aurora, which is a measure of how deep into the dipole
magnetospheric convection brings the electron plasma sheet. The stronger the convection, the deeper into the
dipole and the lower the latitude. In the Figure 18 (top) the Kp index is plotted in black for 50 days in the year
1994; these 50 days contain both the April 1994 storm of Figure 8 and the May 1994 storm of Figure 2 which
are indicated the two blue arrows in the plot. A 12 h running average of Kp is plotted in red. In Figure 18 (middle)
MBI is plotted in black for the same 50 days with the two storms indicated by the two blue arrows. A 12 h running
average of MBI is plotted in red. When convection increases, the latitude of the edge of the diffuse aurora
decreases, so a decrease of MBI in the plot represents an increase of magnetospheric convection. According to
MBI (and to Kp), the storm in April has convection slowly weakening with time; after and initial very high level of
convection on Day 121, the storm in May has convection on average steady with time through the storm.
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Figure 18. For 50 days in 1994 encompassing the two storms in 1994 with long-lived drainage plumes, (top) the Kp index,
(middle) the Midnight Boundary Index, and (bottom) the dayside reconnection function Rquick are plotted. Ryyick is only
plotted when solar wind measurements are available.

Another gauge of the strength of convection is the strength of reconnection at the dayside magnetosphere.
This can be estimated from theoretical calculations of the reconnection rate based on solar wind parameters.
One formula is Ryuick =389 /2 m,""? ¢ ' 0?42 sin®(Ociock/2) Ma™'2° [1+ 680 M, [Borovsky and
Birn, 2014]; here m,, and c are the proton mass and the speed of light and the solar wind parameters are
number density (n), speed (vs,), Alfven Mach number (M,), and IMF clock angle (6¢jock)- In Figure 18 (bottom)
a 5 h running average of the dayside reconnection rate estimate Rqyick is plotted, where solar wind data
are available. Unfortunately, the solar wind data at Earth are sparse in 1994 owing to a lack of satellite
coverage. Nevertheless, it can be seen that there is a decline with time of Rqick during the portion of the
April storm that has solar wind data, and it can be seen that Rqick is approximately constant with time during
the May storm after the initial high-Rqick spike on Day 121.

The conclusion from Figure 18 is that it is unlikely that magnetospheric convection is not increasing with time
during these two long-lived storms.
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This is probably the case for most high-speed-stream-driven storms since they tend to have a “sawtooth”
shape in the temporal plot of Kp, with Kp rising quickly and then slowly decaying over the duration of the
storm. In most cases the decay of Kp is probably associated with the trailing edge of the high-speed stream
[Gosling and Pizzo, 1999; Burton et al., 1999] where the solar wind speed declines steadily with time.
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