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Summary. Motivated by a study exploring geographic disparities in test scores among fourth
graders in North Carolina, we develop a multivariate mixture model for the spatial analysis of
correlated continuous outcomes.The responses are modelled as a finite mixture of multivariate
normal distributions, which accommodates a wide range of marginal response distributions and
allows investigators to examine covariate effects within subpopulations of interest. The model
has a hierarchical structure incorporating both individual and areal level predictors as well as
spatial random effects for each mixture component. Conditional auto-regressive priors on the
random effects provide spatial smoothing and allow the shape of the multivariate distribution to
vary flexibly across geographic regions. By integrating over this distribution, we obtain region-
specific joint, marginal and conditional inferences of interest. We adopt a Bayesian modelling
approach and develop an efficient posterior sampling algorithm that relies primarily on closed
form full conditionals. Our results show that students in the central and coastal counties of North
Carolina demonstrate higher achievement on average than students in the other parts of the
state.These findings can be used to guide county level initiatives, such as school-based literacy
programmes, to improve elementary education.

Keywords: Areal data; Bayesian analysis; Conditional auto-regressive prior; Education data;
Finite mixture model; Multivariate spatial analysis

1. Introduction

In 2002, the US Congress enacted the No Child Left Behind Act requiring states to adminis-
ter annual standardized tests to all students in federally funded schools (http://www2.ed.
gov/policy/elsec/leg/esea02/index.html). In North Carolina, these tests are
known as end-of-grade (EOG) tests. The EOG tests measure student performance on grade-
based goals, objectives and competencies as set forth by the state’s education department (North
Carolina Department of Public Instruction, 2006). In particular, the mathematics tests measure
competency in areas such as arithmetic operations, measurement and geometry, whereas the
reading tests measure competency in areas such as vocabulary and reading comprehension. The
raw EOG scores are subsequently categorized into four achievement levels:

(a) insufficient mastery;
(b) inconsistent mastery;
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(c) consistent mastery;
(d) superior performance

(North Carolina Department of Public Instruction, 2007, 2008). Results of EOG tests have
important implications for both individual schools and school districts, as they may affect state
and federal funding levels.

Because scores can vary across geographic areas, there has been growing interest in examining
regional differences in test scores, both at the national and at the state level. North Carolina,
like many other states, is working to close the gap between low performing schools and those
meeting No Child Left Behind Act standards. Despite this goal, relatively few studies have
examined geographic disparities in EOG performance in an effort to identify high and low
performing schools and school districts. In fact, we found only one related study examining
gender differences in test performance across large national census divisions (Pope and Syd-
nor, 2010). Thus, there remains a need for a comprehensive study of varying test performance
across a refined geographic scale. By pinpointing schools that fail to meet adequate yearly
standards set forth by the No Child Left Behind Act, state and local education officials can
develop targeted interventions to improve school performance in the areas of most need. Di-
rected efforts such as these provide new opportunities to close the achievement gap in EOG test
scores.

With these goals in mind, researchers from Duke University and the University of Michigan
have conducted a study to understand better the factors influencing variation in EOG scores
among elementary school children from across North Carolina. As a first step, the investigators
obtained mathematics and reading test scores for fourth graders from all 100 countries in the
state following completion of the 2008 school year, the most recent year for which such data were
available. The data were then georeferenced by residential address and subsequently linked at
the county level to data from the 2005–2009 American Community Survey (US Census Bureau,
2010). The aims of the study were to examine statewide variation in EOG test scores and to
identify individual and county level predictors of EOG performance.

From an analytic perspective, the EOG data posed several unique challenges. First, mathe-
matics and reading scores tend to be highly correlated measures; we therefore needed a flexible
spatial model that could account for both within-subject and within-county associations. We
also wanted a model that could yield accurate predictions of average student performance for
each county while inducing spatial smoothing among sparsely populated counties where pre-
dictions may be less reliable. And, finally, we wanted a model that was robust to region-specific
departures from normality in light of the skewness that is observed in the data. This paper de-
scribes a new multivariate spatial mixture model specifically designed to address these multiple
aims.

Our proposed model capitalizes on recent developments in spatial modelling of multivariate,
areal-referenced data, i.e. data in which the spatial units consist of discrete regions of space such
as counties. Modelling of such data typically proceeds by introducing a set of region-specific
random effects, which are then linked via a multivariate conditionally auto-regressive (CAR)
prior distribution (Mardia, 1988). Previous applications of joint spatial models for areal data
have focused on normal responses (Gelfand and Vounatsou, 2003), count responses for disease
mapping (Carlin and Banerjee, 2002; Jin et al., 2005; Zhang et al., 2009; Congdon, 2010) and
categorical responses (Gelfand and Vounatsou, 2003; Wall and Liu, 2009).

In many applications, the response variables are continuous but non-normally distributed,
either because of multimodality, heavy skewness or both. In such cases, mixture models can
provide a flexible framework for modelling the response distribution and can improve model fit.



Regional Differences in Standardized Test Scores 739

There is a well-established literature on mixture models for non-spatial data (McLachlan and
Peel, 2000; Frühwirth-Schnatter, 2006). In the spatial setting, several researchers have proposed
mixture models for point-referenced data—i.e. data indexed by a set of specific geographic co-
ordinates. Gelfand et al. (2005) used a Dirichlet process mixture model to examine precipitation
measurements at fixed locations in southern France. Kottas and Sansó (2007) extended the ap-
proach by allowing the point locations to be random. Ji et al. (2009) used a similar Poisson point
process mixture model to identify cell abundance patterns from fluorescent intensity images of
lymphatic tissue. For multivariate point-referenced data, Reich and Fuentes (2007) proposed a
semiparametric mixture model specified through a stick breaking process. In the areal setting,
Green and Richardson (2002) and Lawson and Clark (2002) proposed univariate mixture mod-
els for mapping disease relative risks. More recently, Wall and Liu (2009) developed a spatial
latent class model for multivariate binary data and modelled the latent class indicators by using
a multinomial probit model with spatially correlated error terms.

We extend this work by developing a multivariate spatial finite mixture model for continuous,
areal-referenced data. We introduce spatial random effects for each mixture component, as
well as for the mixing weights, to allow the shape of the multivariate response distribution
to vary in flexible ways across geographic regions and covariate profiles. As such, our model
provides a practical approach to multivariate spatial density estimation. By integrating across
this mixture density, one can obtain region-specific inferences and model-based predictions of
interest. We adopt a Bayesian inferential approach and for posterior computation develop an
efficient Markov chain Monte Carlo (MCMC) algorithm that combines closed form Gibbs and
Metropolis steps.

The remainder of the paper is organized as follows: Section 2 describes the EOG testing data;
Section 3 outlines the model proposed and discusses prior specification, posterior computation
and model selection; Section 4 presents results from two simulation studies highlighting impor-
tant features of the model; Section 5 applies the method to the EOG data; and the final section
provides a discussion and directions for future work.

2. The end-of-grade data

Table 1 provides a summary of the EOG data. For our analysis, we restricted the sample to non-
Hispanic white and non-Hispanic black students because of small sample sizes in other race and
ethnicity groups and the effect of English as a second language on early school performance.
Of the 78380 students, roughly half were male, about a third were non-Hispanic black and just
over 43% received free or reduced price lunch at school through a federal subsidy programme.
The mathematics scores ranged from 319 to 373 with a median of 352, and the reading scores
ranged from 313 to 370 with a median of 346. Approximately three-quarters of the students
achieved consistent mastery or higher on the mathematics examination, and nearly 63% achieved
consistent mastery or better on reading.

Fig. 1 presents a bivariate histogram of the raw mathematics and reading scores (Fig. 1(a)) as
well as a histogram of the standardized residuals based on an ordinary least squares regression
that included as predictors gender, race, enrolment in a free- or reduced price lunch programme
and county median household income (Fig. 1(b)). The distribution of the residuals is skewed
towards lower values, particularly for reading, and the kurtoses in both directions are slightly
negative. The univariate Kolmogorov–Smirnov tests on the residuals rejected the null hypothesis
of normality (p < 0:01 for both outcomes), suggesting that the bivariate response distribution
might be better modelled as a low dimensional finite mixture of normal distributions rather
than as a single bivariate normal distribution.
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Table 1. Summary statistics for the EOG data .N D78380/

Variable Median (interquartile n (%)
range)

Mathematics score 352 (345, 358)
Reading score 346 (339, 353)
County median household income ($) 44319 (39676, 51110)
County sample size 443 (203, 874)

Male 39555 (50.47)
Non-Hispanic black race† 25219 (32.18)
Enrolled in free- or reduced price lunch

programme†
33959 (43.33)

Mathematics achievement level
Insufficient mastery (score �335) 4470 (5.70)
Inconsistent mastery (score 336–344) 15040 (19.19)
Consistent mastery (score 345–357) 37956 (48.43)
Superior performance (score �358) 20914 (26.68)

Reading achievement level
Insufficient mastery (score �334) 11439 (14.59)
Inconsistent mastery (score 335–342) 17618 (22.48)
Consistent mastery (score 343–353) 30879 (39.40)
Superior performance (score �354) 18444 (23.53)

†Non-Hispanic black race and free-lunch enrolment were coded as binary (yes–no) variables.

There is also substantial variation in test scores across the state. Fig. 2 shows the Studentized
ordinary least squares residuals averaged by county for both mathematics and reading. The
spatial pattern is similar for both mathematics and reading, with negative residuals clustering
in the interior north-east, along the eastern southern border and in the westernmost counties,
whereas pockets of positive residuals appear in the centre of the state and along the southern
border in the west. This pattern suggests positive spatial auto-correlation in the residuals, vio-
lating the ordinary least squares assumption of independently distributed errors. This points to
the need for a model that explicitly accounts for spatial dependence, since ignoring such spatial
structure could lead to biased inferences and inaccurate assessments of parameter uncertainty.

3. Spatial mixture model

3.1. Model specification
To develop the multivariate spatial mixture model, we focus on the bivariate case. It is concep-
tually straightforward to extend the approach to three or more outcomes.

A very general specification of the bivariate spatial mixture model can be expressed as

yij|φi,ψi ∼
K∑

k=1
πijk N2.ηijk,Σk/,

ηijk =
(η1ijk

η2ijk

)
=Xijβk +Viαk +φik,

πijk = exp.x′
ijγk + v′

iδk +ψik/

K∑
h=1

exp.x′
ijγh + v′

iδh +ψih/

, i=1, : : : , n, j =1, : : : , ni, k =1, : : : , K,

.1/
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Fig. 1. Bivariate histogram of (a) the raw mathematics and reading scores and (b) ordinary least squares
standardized residuals for the 2008 fourth-grade EOG test scores
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(a)

(b)

Fig. 2. Quintiles of county-averaged Studentized residuals for the 2008 fourth-grade EOG scores: (a)
mathematics ( , �0.54– �0.19; , �0.18– �0.11; , �0.10– �0.03; , �0.02–0.08; , 0.09–0.42); (b)
reading ( , �0.39– �0.17; , �0.16– �0.10; , �0.09–0.00; , 0.01–0.06; , 0.07–0.39)

where yij = .y1ij, y2ij/′ denotes a 2 × 1 vector of mathematics and reading scores for the jth
student in the ith county;

Xij =
(

x′
ij 0
0 x′

ij

)

is a 2×2p matrix of subject level covariates with corresponding 2p×1 component-specific fixed
effects βk = .β′

1k,β′
2k/′;

Vi =
(

v′
i 0

0 v′
i

)

is a 2×2r matrix of county level covariates with corresponding 2r ×1 component-specific fixed
effectsαk = .α′

1k,α′
2k/′;φik = .φ1ik,φ2ik/′ is a 2×1 vector of component-specific spatial random

effects for the ith county, with φi = .φ′
i1, : : : ,φ′

iK/′; Σk is the component k 2 × 2 variance–
covariance matrix of yij, conditional on φik; γk and δk are p × 1 and r × 1 vectors of mixing
weight regression parameters withγ1 ≡0 andδ1 ≡0 for identifiability; andψik is a spatial random
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effect for county i and mixing weight k, where ψi1 ≡0 and ψi = .ψi1, : : : ,ψiK/′. Throughout, we
assume the same set of covariates for the component means and the mixing weights, although
in general this restriction is not necessary.

Model (1) is appealing because it allows the shape of the joint response distribution to change
flexibly across spatial units and covariate levels. In particular, the within-component linear
predictors (the ηijks) permit the locations of the mixture components to vary throughout the
population, whereas the mixing weight parameters allow the mass of the response distribution to
shift in unique ways between individuals and counties. Together, these features produce distinct
response distributions for each covariate profile and areal unit, thus allowing us to obtain county
level predictions of EOG performance.

3.2. Prior distributions
For parameter estimation, we adopt a fully Bayesian approach, assuming prior distributions
for all model parameters. First, to allow for spatial smoothing and borrowing of information
across counties, for each k, we assign component-specific CAR priors (Besag, 1974; Besag et al.,
1991) to the spatial random effects—a bivariate CAR prior for φik and a univariate CAR prior
for ψik:

φik|φ.−ik/,Λik ∼N2

(
ξk

∑
l∈@i

wil

wi+
φlk,Λik

)
, k =1, : : : , K, .2/

ψik|ψ.−ik/, τ2
ik ∼N

(
ζk

∑
l∈@i

wil

wi+
ψlk, τ2

ik

)
, k =2, : : : , K, .3/

where @i denotes the set of neighbours for county i, ξk and ζk are spatial smoothing parameters,
wil is an unnormalized proximity measure, wi+ =Σl∈@i wil, Λik =Λk=wi+ is a component-specific
scaled variance–covariance matrix forφik conditional onφ.−ik/ and τ2

ik =τ2
k =wi+ is a component-

specific scaled variance parameter for ψik. For the EOG study, we adopt intrinsic CAR priors
to provide maximal smoothing of sparsely populated regions:

φik|φ.−ik/,Λk ∼N2

(
1

mi

∑
l∈@i

φlk,
1

mi
Λk

)
, .4/

ψik|ψ.−ik/, τ2
k ∼N

(
1

mi

∑
l∈@i

ψlk,
τ2

k

mi

)
, .5/

where mi denotes the number of neighbours sharing a geographic border with county i. Fol-
lowing Brook’s lemma (see Banerjee et al. (2004)), priors (4) and (5) give rise to improper joint
distributions for φk and ψk:

φk|Λk ∝ exp
[

− 1
2
φ′

k{.M −A/⊗Λ−1
k }φk

]
, .6/

ψk|τ2
k ∝ exp

{
− 1

2τ2
k

ψ′
k.M −A/ψk

}
, .7/

where φk = .φ′
1k, : : : ,φ′

nk/′, ψk = .ψ1k, : : : ,ψnk/′, M =diag.m1, : : : , mn/ and A is an n×n adja-
cency matrix with aii = 0 and ail = 1 if counties i and l are neighbours, and ail = 0 otherwise.
Because .M−A/ is singular, the joint distributions in expressions (6) and (7) are overparameter-
ized and thus improper, although the conditional prior distributions given by equations (4) and
(5) are themselves proper. Propriety of the posterior, when a fixed effect intercept is included in
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the model, is achieved by using a sum-to-0 constraint on the spatial random effects (Banerjee
et al., 2004).

To ensure a well-identified model, we assign weakly informative proper priors to the remaining
model parameters. For the within-component fixed effects, we assume exchangeable normal
priors: β1k and β2k ∼ Np.μβ ,Σβ/, α1k and α2k ∼ Nr.μα,Σα/ for k = 1, : : : , K. For the fixed
effects within the mixing weights, γk and δk, we assign Np.μγ ,Σγ/ and Nr.μδ,Σδ/ priors
respectively, for k =2, : : : , K. Throughout, we assume that the prior hyperparameters (μβ , Σβ ,
etc.) are identical across components, but in general this is not required. To complete the prior
specification, we assign conjugate inverse Wishart IW.κ0, S0/ and IW.ν0, D0/ priors respectively
to Σk and Λk, and a conjugate inverse gamma IG.g, s/ prior to τ2

k .k =2, : : : , K/.
The model proposed accommodates a wide range of dependence structures. First, Σ12k, the

off-diagonal element of Σk, controls the component-specific within-subject association between
outcomes. In the EOG study, for example, a positive value for Σ12k implies that, for component
k, students with high mathematics scores also tend to have high reading scores conditional on
the county level random effects. Similarly, Λ12k, the off-diagonal element of Λk, accounts for
the component-specific, between-subject or within-region association between outcomes. In the
EOG study, Λ12k > 0 implies that, for component k, counties with higher mean mathematics
scores tend to have higher mean reading scores, adjusting for observed covariates. And, finally,
the CAR priors on φik and ψik capture associations between counties, implying that adjoining
counties behave similarly with respect to their response distributions. Numerous submodels
can be obtained by setting one or more of these association parameters to 0. For example,
setting Λ12k =0 ∀k implies no between-subject or within-county association in responses. This
is tantamount to assigning separate univariate CAR priors to φ1ik and φ2ik. Further restricting
Σ12k to 0 for all k would imply that there is no within-subject association between responses,
and hence the outcomes are uncorrelated at all levels of the model.

3.3. Posterior computation and model comparison
Posterior inference proceeds via data augmentation by introducing a discrete latent labelling
variable Cij that takes the value k .k=1, : : : , K/ with probability πijk defined in equation (1). Let-
tingθk ={βk,αk,φk,Σk,Λk}denote the within-component parameters andυk ={γk,δk,ψk, τ2

k }
denote the mixing weight parameters, the joint posterior is given by

π.θ1, : : : ,θK,υ2, : : : ,υK|y/∝
K∏

k=1

{
n∏

i=1

ni∏
j=1

{πijkN2.yij;ηijk,Σk/}I.Cij=k/

× exp
[
− 1

2
φ′

k{.M −A/⊗Λ−1
k }φk

]
π.βk/π.αk/π.Σk/π.Λk/

}

×
K∏

h=2
exp

{
− 1

2τ2
h

ψ′
h.M −A/ψh

}
π.γh/π.δh/π.τ2

h / .8/

where I.·/ denotes the indicator function and the π.·/s represent the prior distributions for their
respective parameters, as described in the previous section.

For posterior computation, we propose an MCMC algorithm that combines draws from
full conditionals with Metropolis-based updates. After assigning initial values to the model
parameters, the algorithm iterates between the following steps:

(a) for k =2, : : : , K, update γk and δk by using random-walk Metropolis steps;
(b) for k =2, : : : , K and i=1, : : : , n, update ψik by using random-walk Metropolis steps;
(c) for k =2, : : : , K, update τ2

k from its closed form full conditional distribution;
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(d) for all .i, j/, sample the mixture component indicators from a discrete distribution taking
values {k = 1, : : : , K} with posterior probabilities {pij1, : : : , pijK} as described in Ap-
pendix A;

(e) for k = 1, : : : , K, sample the component-specific parameters β1k, β2k, α1k, α2k, Σk, Λk

and φik .i=1, : : : , n/ from their closed form full conditionals;
(f) at the end of each MCMC iteration, apply a sum-to-0 constraint to φk .k =1, : : : , K/ and

ψk .k =2, : : : , K/.

Explicit details of the algorithm are provided in Appendix A. An appealing feature of the MCMC
algorithm is that the within-component regression parameters and spatial effects have conve-
nient closed form full conditionals, leading to straightforward and efficient posterior sampling.
Only the mixing weight parameters require Metropolis-based updates.

Convergence is monitored by running multiple chains from dispersed initial values and per-
forming standard Bayesian diagnostics, such as trace plots and evaluation of the Brooks–
Gelman–Rubin statistic (Gelman et al., 2004). Careful attention to such diagnostics is especially
important for complex latent variable models to ensure parameter identifiability. In our expe-
rience, the MCMC algorithm proposed is generally robust to choices of initial values, with the
possible exception of the mixing parameters γ and δ, which can be slow to converge for poorly
chosen starting values. One way to choose initial values for these parameters is to perform a
K-level cluster analysis, to fit a multinomial logit regression to the resulting cluster indicators
and to use the ensuing parameter estimates as starting values.

A well-known computational challenge for Bayesian finite mixture models is ‘label switching’
in which draws of component-specific parameters may be associated with different component
labels during the course of the MCMC run. Consequently, component-specific posterior sum-
maries that average across the draws will be invalid. As a solution, Stephens (2000) proposed a
post hoc relabelling algorithm based on a Kullback–Leibler divergence function. We apply this
approach for the analysis of the EOG data that are described in Section 5.

For model comparison, we adopt the deviance information criterion DIC that was proposed
by Spiegelhalter et al. (2002). DIC includes a goodness-of-fit term along with a penalty for model
complexity. Models with smaller DIC are considered preferable. For the EOG application, we
apply a modified version of DIC that was recommended by Celeux et al. (2006) for finite mixture
models. This modified DIC, termed DIC3, uses the posterior predictive density of y to estimate
the penalty term and is closely related to a measure put forward by Richardson (2002) to avoid
overfitting the number of mixture components.

Several approaches can be used to determine the number of classes, K. One pragmatic ap-
proach (and the one adopted here) is to impose an upper bound (say, Kmax) on the number of
classes, and then to use a model selection criterion such as DIC to choose the optimal value of
K =1, : : : , Kmax. In our application, we set Kmax =2 because we hypothesized the existence of
at most two latent classes within the student population (namely ‘high’ and ‘low’ performers),
and because inspection of the unimodal residual plot in Fig. 1(b) suggested that a low dimen-
sional mixture would adequately capture important features of the data. A more formal—albeit
computationally challenging—approach would be to treat K as a random variable and to em-
ploy either a dimension switching MCMC algorithm (Green, 1995) or to recast the model as
an infinite mixture vis-à-vis a stick breaking representation (Sethuraman, 1994). We consider
extensions to infinite mixtures further in Section 6.

4. Simulation studies

To examine the performance of our model, we conducted two simulation studies. For the first
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study, we generated 200 data sets from a basic two-component mixture model without covariates.
Our aims here were threefold:

(a) to evaluate MCMC performance,
(b) to ensure that we obtained reasonable parameter estimates under the true model and
(c) to highlight the model as a practical approach to spatial density estimation whereby the

shape of the response distribution is allowed to vary flexibly across spatial units.

To emulate the EOG data, we used the North Carolina county level adjacency matrix for the
simulation. This matrix contains 512 adjacencies between the 100 North Carolina counties. For
the purposes of the simulation, counties were labelled from ‘1’ to ‘100’. Because the .M − A/

matrix in equations (6) and (7) is singular, the spatial random effects cannot be simulated directly.
We therefore introduced the spatial smoothing parameters ξ and ζ, defined in equations (2)
and (3), and set them equal to 1 − 10−6. We then generated spatial random effects according
to joint distributions (6) and (7) augmented with the smoothing parameters. Next, for each
county, we simulated 80 mathematics and reading scores from the two-component mixture
model

yij|φi,ψi ∼
2∑

k=1
πijk N2

{(
β10k +φ1ik

β20k +φ2ik

)
,Σk

}
,

logit.πij2/=γ0 +ψi, i=1, : : : , 100, j =1, : : : , 80,

.9/

where πij2 denotes the weight for the second mixture component. For k = 1, 2 we assigned in-
dependent N.0, 1000/ priors to β10k and β20k, and IW.3, I2/ priors to Σk and Λk; for γ0, we
assigned an N.0, 1000/ prior; for φik = .φ1ik,φ2ik/′ and ψi, we assigned bivariate and univariate

Table 2. Average posterior estimates and 95% coverage probabilities across 200 simulated
data sets

Mixture Parameter Description Average posterior
component

True Mean 95%
value coverage

1 β101 Mathematics intercept 340 340.01 0.93
β201 Reading intercept 330 330.02 0.95
Σ111 var(y1ij |φ1i1) 20 20.10 0.96
Σ121 cov(y1ij , y2ij |φi1) 10 10.17 0.94
Σ221 var(y2ij |φ2i1) 36 36.34 0.95
Λ111 var(φ1i1) 9 8.77 0.96
Λ121 cov(φ1i1,φ2i1) 3 2.80 0.95
Λ221 var(φ2i1) 4 3.49 0.91

2 β102 Mathematics intercept 360 360.01 0.97
β202 Reading intercept 345 345.01 0.96
Σ112 var(y1ij |φ1i2) 50 50.04 0.96
Σ122 cov(y1ij , y2ij |φi2) 20 19.99 0.93
Σ222 var(y2ij |φ2i2) 40 40.10 0.96
Λ112 var(φ1i2) 4 3.53 0.93
Λ122 cov(φ1i2,φ2i2) 6 5.73 0.92
Λ222 var(φ2i2) 16 15.74 0.93

Mixing weight γ0 Mixing weight intercept 0.75 0.75 0.96
parameters τ2 var(ψi) 1 1.00 0.94
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Fig. 3. True and estimated posterior densities from a randomly selected data set from the first simulation
study (�, true component means: β01 D .340, 330/0 and β02 D .360, 345/0): (a) true simulated density for an
‘average’ county (random effects set equal to 0); (b) corresponding model-estimated density; (c) estimated
density for a county (county 31) in which the components split apart; (d) estimated density for a county
(county 100) in which the component locations shift towards higher values and more mass is concentrated
on the upper component

intrinsic CAR priors respectively; and, for τ2, the conditional variance of ψi, we assigned an
IG(0.01, 0.01) prior.

For each simulation, we ran 2000 MCMC iterations in R version 2.14 (R Development Core
Team, 2011) using a burn-in of 1000, which was sufficient to ensure convergence based on
standard diagnostics. To avoid label switching, we simulated extremely well-separated mixture
components, effectively imposing the order constraints β101 <β102 and β201 <β202.

Table 2 presents the posterior means, averaged across the 200 simulations, along with 95%
coverage rates and the true parameter values used to generate the data. The posterior estimates
showed minimal bias, and the coverage rates were near the nominal values for all parameters.
Fig. 3 displays the bivariate densities from a randomly selected simulation study. Fig. 3(a) shows
the true (i.e. simulated) density for an ‘average’ county in which the random effects were set to
0. Fig. 3(b) displays the corresponding model-estimated density, and Figs 3(c) and 3(d) show
the estimated densities for two randomly selected counties. The white circles denote the true
component means: β01 = .340, 330/′ and β02 = .360, 345/′. As expected, the estimated average
density in Fig. 3(b) closely mirrors the true density. Fig. 3(c) shows a county in which the
mixture components diverge and there is a shift in mass towards the lower component. In Fig.
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Fig. 4. True and estimated bivariate densities for simulation study 2: (a) true 5 degrees-of-freedom bi-
variate skew t-distribution; (b) estimated density for an ‘average’ county (random effects set to 0) from the
two-component mixture model; (c) estimated density for an average county from the one-component model

3(d), the component locations shift towards higher mathematics and reading values and the
mass is concentrated on the upper component.

Whereas we expect the proposed mixture model to perform well for multimodal data, one
might wonder whether the same holds for unimodal but skewed data such as the EOG scores.
To address this question, we conducted a second simulation in which we generated data from
a 5 degrees-of-freedom bivariate skew t-distribution with location β0 = .350, 360/′, skewness
λ= .2, −2/′ and scale

Σ=
(

300 50
50 400

)
:

This parameterization yielded a bivariate distribution that is similar to the empirical histogram
of EOG scores shown in Fig. 1(b). As in the first simulation study, we used the North Carolina
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Fig. 5. Contour plots for (a) an ‘average’ county and (b)–(d) selected simulated counties ( , true
densities; , estimated contours from the two-component model): (b) county 18; (c) county 85; (d)
county 94

adjacency matrix and generated 80 observations from each of the 100 counties. Using bivariate
CAR random effects, we allowed the location and skewness parameters to vary across the
counties. We then fitted the two-component model given in equation (9). For comparison, we
also fitted a single-component bivariate normal spatial model, which might be regarded as a
conventional approach to analysing such data. We also computed DIC-statistics to compare
the one- and two-component models further.

Fig. 4 presents the true bivariate density (Fig. 4(a)) along with the estimated ‘average’ densities
(random effects set to 0) from the two-component (Fig. 4(b)) and one-component (Fig. 4(c))
models. Compared with the one-component model, the two-component model could reproduce
the true density reasonably well, although even the two-component model failed to capture fully
the kurtosis that is displayed in Fig. 4(a). The one-component model, in contrast, was unduly
influenced by the tails of the skew t-distribution; as a result, its mass is far more dispersed
than that of the two-component model. In terms of DIC, the two-component model vastly
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outperformed the one-component model (139487 versus 142566 respectively), confirming that
the method proposed provides a superior fit over the conventional approach even for unimodal
skewed data.

Fig. 5 presents contour plots comparing the true and two-component estimated densities, both
overall and for selected counties. As Fig. 5(a) indicates, the two-component model accurately
estimated the location of the true density, although with greater dispersion. In Figs 5(b)–5(d),
the two-component model identified the location shifts in the county-specific densities but could
not model the extreme skewness that is exhibited in Figs 5(c) and 5(d). Although a higher order
mixture might provide a better fit, identifiability problems could arise in attempting to fit a high
dimensional mixture to unimodal data. It is also possible that, with only 80 replicates per county
in the simulation study, there was insufficient sample size to capture all aspects of the county-
specific densities. Ultimately, however, mixtures based on multivariate normal disturbutions
may lack the flexibility that is required to model extremely skewed data. An alternative might
be to develop a model based on mixtures of skew elliptical distributions, such as skew normal
or skew t-densities. We consider this extension further in Section 6.

5. Analysis of the end-of-grade data

Next, we fit the following two-component spatial mixture model to the EOG data:

yij|φi,ψi ∼
2∑

k=1
πijk N2

{(
η1ijk

η2ijk

)
,Σk

}
,

η1ijk =β10k +β11k ×Maleij +β12k ×NHBij +β13k ×Freelunchij +α11k ×Medinci +φ1ik,

η2ijk =β20k +β21k ×Maleij +β22k ×NHBij +β23k ×Freelunchij +α21k ×Medinci +φ2ik,

logit.πij2/=γ0 +γ1 ×Maleij +γ2 ×NHBij +γ3 ×Freelunchij + δ1 ×Medinci +ψi,

i=1, : : : , 100, j =1, : : : , ni, k =1, 2,
.10/

where yij is a vector of mathematics and reading scores for the jth subject in the ith county,
Male is a dichotomous indicator of male gender, NHB is a dichotomous indicator taking the
value 1 if the student is non-Hispanic black and 0 if non-Hispanic white, Freelunch is a dichoto-
mous indicator taking the value 1 if the student participated in a free- or reduced price lunch
programme and 0 otherwise, Medinc denotes county median household income (in thousands
of dollars) and πij2 denotes the weight for the second mixture component.

As in the simulation studies, we assigned a bivariate CAR prior to φik and a univariate CAR
prior to ψi. We assumed weakly informative proper priors for all other model parameters: for
β1k = .β10k,β11k,β12k,β13k/′, β2k = .β20k,β21k,β22k,β23k/′ and γ= .γ0,γ1,γ2,γ3/′, we assigned
conjugate N4.0, 1000I4/ priors; for α11k, α21k and δ1, we assigned N.0, 1000/ priors; for Σk and
Λk, we assigned IW.3, I2/ priors; and for τ2 we assigned an IG.0:01, 0:01/ prior. We ran two
initially dispersed chains for 20000 iterations each, discarding the first 10000 as burn-in. To
reduce auto-correlation, we retained every 10th iteration.

Model diagnostics indicated efficient mixing and rapid convergence of the chains. Fig. 6
presents the post-burn-in trace plots for four selected model parameters: β111, the component
1 mathematics coefficient for male gender; γ3, the mixing weight coefficient for Freelunch; τ2,
the variance of ψi; and Λ222, the variance of φ2i2. The chains overlapped substantially, with
no evidence of label switching within individual chains, and hence Stephens’s (2000) relabelling
algorithm converged rapidly. The component labels did require reordering across chains, but
the proper labelling was easily identified so that the chains could be combined for summary
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Fig. 6. Post-burn-in Markov chain Monte Carlo trace plots for four parameters from the proposed model
( , chain 1; , chain 2; , combined posterior mean): (a) β111, the component 1 mathematics coef-
ficient for male gender (Brooks–Gelman–Rubin upper credible interval 1.09); (b) γ3, the mixing weight
coefficient for Freelunch (Brooks–Gelman–Rubin upper credible interval 1.21); (c) τ2, the variance of ψi
(Brooks–Gelman–Rubin upper credible interval 1.13); (d) Λ222, the variance of φ2i2 (Brooks–Gelman–Rubin
upper credible interval 1.00)

purposes. For each of the four parameters, the Brooks–Gelman–Rubin upper credible interval
was 1.21 or less, indicating adequate convergence of the chains.

To evaluate the performance of our model, we compared our proposed model with three
submodels:

(a) a one-component version of the proposed spatial mixture model with a bivariate CAR
prior for φi (submodel 1),

(b) a two-component fixed effects model excluding φik and ψi (submodel 2) and
(c) a two-component model with component-specific φik but no ψi (submodel 3).

Table 3 provides the model comparison results for the various models. The two-component
random-effects models substantially outperformed submodels 1 and 2. Overall, the full model
had the best performance, suggesting that incorporating the random effects ψi in the mixing
weights provided a modest additional benefit relative to submodel 3.



752 B. Neelon, A. E. Gelfand and M. L. Miranda

Table 3. Model comparison statistics for analysis of the EOG data

Model description D̄ pD DIC3 Δ

One-component model 1068553 174 1068727 —
Two-component fixed effects model 1067255 28 1067283 1444
Two-component model excluding ψi 1065144 295 1065439 1844
Proposed model 1064990 328 1065318 121

Table 4. Posterior means and 95% credible intervals for the proposed model

Mixture Parameter Description Posterior 95% credible
component mean interval

1 (58%) β101 Mathematics intercept 349.25 [348.67, 349.77]
β111 Male −0.19 [−0.41, 0.05]
β121 NHB race −3.12 [−3.45, −2.77]
β131 Free or reduced lunch −2.50 [−2.83, −2.18]
α111 Median household income ($1000) 0.03 [−0.01, 0.08]
β201 Reading intercept 344.50 [343.84, 345.07]
β211 Male −1.74 [−1.98, −1.49]
β221 NHB race −2.95 [−3.31, −2.56]
β231 Free or reduced lunch −2.98 [−3.32, −2.62]
α211 Median household income ($1000) 0.05 [0.00, 0.09]
Σ111 var(y1ij |φ1i1) 57.58 [55.77, 59.34]
Σ121 cov(y1ij , y2ij |φi1) 35.26 [33.11, 37.19]
Σ221 var(y2ij |φ2i1) 67.56 [65.37, 69.63]
ρ1 corr(y1ij , y2ij |φi1) 0.57 [0.55, 0.58]
Λ111 var(φ1i1) 7.95 [5.36, 11.31]
Λ121 cov(φ1i1,φ2i1) 4.58 [2.58, 7.14]
Λ221 var(φ2iφ2i1) 5.04 [3.09, 7.61]

2 (42%) β102 Mathematics intercept 358.04 [357.69, 358.41]
β112 Male 0.91 [0.71, 1.13]
β122 NHB race −3.35 [−3.77, −2.96]
β132 Free or reduced lunch −2.71 [−3.03, −2.37]
α112 Median household income ($1000) 0.02 [−0.02, 0.05]
β202 Reading intercept 354.15 [353.77, 354.52]
β212 Male −0.37 [−0.60, −0.14]
β222 NHB race −3.55 [−3.96, −3.09]
β232 Free or reduced lunch −2.73 [−3.07, −2.37]
α212 Median household income ($1000) 0.05 [0.02, 0.08]
Σ112 var(y1ij |φ1i2) 36.08 [34.63, 37.53]
Σ122 cov(y1ij , y2ij |φi2) 21.76 [21.61, 22.93]
Σ222 var(y2ij |φ2i2) 40.52 [38.95, 42.17]
ρ2 corr(y1ij , y2ij |φi2) 0.57 [0.56, 0.58]
Λ112 var(φ1i2) 3.35 [2.00, 5.20]
Λ122 cov(φ1i2,φ2i2) 1.65 [0.71, 2.84]
Λ222 var(φ2i2) 1.69 [0.91, 2.84]

Mixing weight γ0 Mixing weight intercept 0.15 [−0.06, 0.37]
parameters γ1 Male −0.04 [−0.13, 0.04]

γ2 NHB race −1.26 [−1.39, −1.11]
γ3 Free or reduced lunch −0.89 [−1.01, −0.77]
δ1 Median household income 0.02 [0.01, 0.04]
τ2 var(ψi) 0.43 [0.25, 0.69]
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Table 4 presents the posterior means and 95% credible intervals CrI for the model parameters
proposed. The results suggest that there are two distinct mixing components, or ‘latent subpop-
ulations’ of students. Subpopulation 1 contained an estimated 58% of the overall population
and was characterized by comparatively low mean mathematics and reading scores for the ref-
erence group (β101 = 349:25 and β201 = 344:50). In addition, NHB race and free- or reduced
lunch enrolment were associated with lower mathematics and reading scores. Higher county
median income was associated with a slight increase in reading scores (α211 =0:05; 95% CrI =
[0.00, 0.09]). Subpopulation 2 contained the remaining 42% of the overall population and was
associated with roughly a 10-point increase in scores for the reference group compared with
subpopulation 1 (β102 = 358:04 and β202 = 354:15). In both groups, males had lower adjusted
reading scores than females (e.g. β211 =−1:74; 95% CrI = [−1.98, −1.49]); however, in subpop-
ulation 2, males had higher adjusted mathematics scores (β112 =0:91; 95% CrI = [0.71, 1.13]).
These findings are consistent with previous research on gender disparities in standardized test
scores, which has shown that boys tend to score lower than girls in reading but modestly higher
in mathematics and science, particularly in the upper tails of the test score distribution (Pope
and Sydnor, 2010). In terms of variability, subpopulation 1 displayed more individual level and
county level heterogeneity than subpopulation 2. Not surprisingly, the within-subject correla-
tions between mathematics and reading (captured by ρ1 and ρ2) were moderately high for both
subpopulations. In addition, the model accounted for almost all of the spatial association in
the data: Moran’s tests on the county-averaged residuals from the model yielded no evidence of
residual spatial correlation (p=0:99 for the mathematics residuals and p=0:84 for the reading
residuals).

Fig. 7 presents the predicted mathematics and reading scores by county for reference group
individuals (i.e. non-Hispanic white females not enrolled in a free- or reduced price lunch pro-
gramme). Here, the between-county variation reflects both observed differences in county me-
dian household income as well as the latent heterogeneity that is captured by the spatial random
effects. The spatial patterns of the predicted scores were similar to those for the ordinary least
squares residuals in Fig. 2, but with increased smoothing, particularly among the central ‘Pied-
mont’ and south-west counties. This feature is expected, since the CAR priors act as spatial
smoothers. In general, the north-eastern and central Piedmont counties had higher predicted
scores than those in the interior north-east, south central and south-western portions of the
state. The predicted mathematics scores for the reference group ranged from 352 to 356 across
the state (Fig. 7(a)). Outlined on the map are Union County (along the southern border), which
had the highest predicted mathematics score at 356.4 (95% CrI = [355.5, 357.5]), and Avery
County (in the north-west), which had the lowest predicted score at 352.1 (95% CrI = [350.2,
354.4]). There was also modest variation in the predicted reading scores across the state (Fig.
7(b)). The predicted reading scores ranged from 348 to 353 and showed a spatial pattern similar
to the predicted mathematics scores. Camden County, in the north-eastern corner of the state,
had the highest predicted reading score (352.6; 95% CrI = [351.0, 354.3]), and Graham County
in the south-west had the lowest predicted score (347.6; 95% CrI = [345.2, 349.7]).

Fig. 8 displays four model-estimated bivariate densities for the reference cohort. Fig. 8(a)
presents the density for an average county with household income set at the statewide median
value and random effects fixed at 0. Figs 8(b)–8(d) display the densities for three selected coun-
ties: Camden County, which had the highest predicted reading score and a top 10% mathematics
score; Bertie County, which was in the bottom 5% for both mathematics and reading, and Or-
ange County, which had top 5% predicted mathematics and reading scores. The county-specific
densities vary in both their location and their distribution of mass relative to the average density
presented in Fig. 8(a). In particular, Camden County shifted towards higher mathematics and
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(a)

(b)

Fig. 7. Predicted reading scores for reference group, by county: (a) mathematics ( , 352.05–353.18; ,
353.19–353.68; , 353.69–354.25; , 354.26–354.91; , 354.92–356.41; , highest predicted mathemat-
ics score; , lowest predicted mathematics score); (b) reading ( , 347.62–349.16; , 349.17–349.45; ,
349.46–349.93; , 349.94–350.52; , 350.53–352.56; , highest predicted reading score; , lowest pre-
dicted reading score)

reading scores, reflecting the more favourable outcomes for this county, whereas Bertie County
had a noticeable shift in mass towards the lower mixture component. Orange County, like Cam-
den County, showed a shift in mass towards more favourable outcomes, but with a longer-tailed
distribution, reflecting more heterogeneity for this county.

By integrating across these bivariate densities, we can obtain county-specific predictions of
interest. For example, to predict an individual’s joint probability of inconsistent or insufficient
mastery in both mathematics and reading, defined as a mathematics score of less than 344 and
a reading score of less than 342 (Table 1), we evaluated the integral

.1−πij2/

∫ 344

−∞

∫ 342

−∞
N2.ηij1,Σ1/dy2ij dy1ij +πij2

∫ 344

−∞

∫ 342

−∞
N2.ηij2,Σ2/dy2ij dy1ij:

A similar approach was used to compute additional joint probabilities of interest. Using the
cut-off values that are defined in Table 1, we calculated four joint probabilities of policy interest:
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Fig. 8. Estimated county-specific densities for the reference group: (a) ‘average’county; (b) Camden County;
(c) Bertie County; (d) Orange County

(a) the probability of inconsistent or insufficient mastery in both mathematics and reading
(labelled ‘low mathematics–low reading’);

(b) the probability of inconsistent or insufficient mathematics, but consistent or superior
reading (‘low mathematics–high reading’);

(c) the probability of consistent or superior mathematics, but inconsistent or insufficient
reading (‘high mathematics–low reading’);

(d) the probability of consistent or superior performance on both examinations (‘high
mathematics–high reading’).

Fig. 9 displays the county-specific averages for these four joint probabilities for the reference
group.

In general, the central Piedmont and north-eastern coastal counties had more favourable
outcomes than counties in the interior north-east, along the southern border in the east and in
the north- and south-west corners of the state. The probability of low mathematics–low reading
achievement ranged from 0.04 to 0.13 (Fig. 9(a)), with Camden County having the lowest (0.04;
95% CrI = [0.02, 0.06]) and Bertie County having the highest probability (0.13; 95% CrI = [0.09,
0.17]). These results are consistent with the predicted densities shown in Fig. 6 for these counties.
As Fig. 9(b) indicates, the combination of low mathematics and high reading was a relatively
rare event, with average probabilities ranging from 0.02 to 0.07 across the state. This result is not
surprising, since students typically perform much better on mathematics than on reading. One
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notable exception was Avery County along the central western border, which had the lowest
predicted mathematics score (see Fig. 7), but a reading score close to the state average at 349.40
(95% CrI = [347.67, 351.46]). High mathematics–low reading performance was a more common
phenomenon (Fig. 9(c)), ranging from 0.06 to 0.16 state wide, with Graham County having the
highest probability (0.16; 95% CrI = [0.11, 0.22]). As Fig. 9(d) suggests, most students in the
reference group demonstrated consistent or superior achievement on both examinations. The
county averages ranged from 0.69 in Bertie County (95% CrI = [0.65, 0.82]) to 0.87 in Camden
County (95% CrI = [0.81, 0.93]), again supporting the results that are shown in Figs 6(b) and
6(c).

6. Discussion

Closing the achievement gap between high and low performing schools is a necessary step to
help all children to succeed in school (Ferguson, 2008). Although the No Child Left Behind
Act was designed to help to close the gap by setting standards for evaluating schools, signif-
icant disparities remain, both within North Carolina and across the USA (National Center
for Education Statistics, 2013). Therefore, it is an important public policy goal to examine re-
gions of varying school performance and to identify factors that are associated with differences
in student achievement. This will enable state education officials to direct resources to areas
of greatest need. However, because few studies have examined regional differences in student
achievement, there remains a need for a systematic approach to identifying geographic areas of
high and low performance.

This paper has described a new spatial mixture model designed to meet these goals. The
model incorporates individual and region level predictors, accommodates complex dependence
structures, enables investigators to examine covariate effects across subgroups of the population
and supports region-specific departures from normality through the inclusion of spatial random
effects for both the location parameters and the mixing weights. By integrating across this
multivariate density, one can obtain region-specific joint, marginal and conditional inferences
of interest. In the EOG study, for example, we could compute county-specific joint probabilities
of low mathematics–low reading performance, low mathematics, high reading performance,
etc. We specified the model within a Bayesian framework and, for posterior computation, we
developed a tractable MCMC algorithm that relies in large part on easy-to-sample Gibbs steps.

Our exploratory analysis of the EOG data is, to our knowledge, the first to use advanced mul-
tivariate spatial modelling to examine geographic patterns in EOG scores at a refined geographic
level. Through our analysis, we found that non-Hispanic black race and enrolment in subsidized
lunch programmes were associated with lower test scores. We also found gender gaps in EOG
performance, with girls performing substantially better in reading, particularly among students
with low EOG scores, and boys scoring slightly higher in mathematics, especially among ‘high
achieving’ students. These results are consistent with previous research on gender disparities
in standardized test scores (Pope and Sydnor, 2010; National Center for Education Statistics,
2013), which has shown that boys tend to score lower than girls on standardized reading tests
but generally perform better in mathematics and science, particularly in the upper tails of the
response distribution (i.e. among high performing students). Together, these findings suggest the
need to target two sets of gender disparities: first, in reading among students with low EOG per-
formance and, second, in mathematics among those with high EOG scores. Future work might
also examine gender-by-county interactions vis-à-vis a spatial random-coefficients model, to
determine whether these disparities vary by region; a finding that has been documented at the
national level in prior work (Pope and Sydnor, 2010).
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Our analysis revealed similar spatial patterns for mathematics and reading scores, with the
central Piedmont and northern coastal counties displaying higher scores on average than coun-
ties in the interior north-east, south central and westernmost portions of the state. These findings
could be used to guide county level initiatives to improve elementary education. For example,
by identifying counties with comparatively low reading scores, local school boards could in-
troduce school-based literacy programmes to improve vocabulary and reading comprehension.
This is especially relevant in counties such as Graham County, which had the highest rate of
high mathematics–low reading performance.

Our simulations demonstrated that the mixture model proposed outperforms the conven-
tional, single-component model, even for skewed unimodal data. However, by relying on multi-
variate normal distributions, we failed to capture fully the skewness that was observed for some
of the counties in the second simulation study. An interesting extension, therefore, would be to
develop models based on mixtures of skew normal or skew t-distributions, building on recent
work in the univariate non-mixture setting (Genton and Zhang, 2012; Nathoo and Ghosh, 2013;
Zareifard and Khaledi, 2013). This would yield a highly flexible and computationally tractable
parametric model that could accommodate both multimodality and extreme skewness.

In our application, we considered two-component mixture models, but higher dimensional
mixtures can be envisioned. More generally, one might choose to model the multivariate distri-
bution non-parametrically via infinite mixtures, extending the work of Kottas et al. (2008) to
allow for multivariate responses. Extensions to more than two outcomes are also straightfor-
ward, although, as the dimension of the problem increases, it may become necessary to impose
a structure on the class-specific error covariances Σk, to aid in identifying variance components.
In high dimensional settings, a factor analytic approach could be used to encourage dimension
reduction further.

Our modelling approach should also have broad applicability to other research settings. For
example, the spatial mixture model could be applied in reproductive epidemiology to explore
joint spatial patterns in birth outcomes and to obtain region-specific joint probabilities of low
birth weight and preterm birth. It might also find use in medical imaging as an extension of recent
univariate methods (Ismail et al., 2013). In short, the model proposed provides a pragmatic and
flexible approach for the joint analysis of multivariate areal data. The MCMC algorithm that
was described in Section 3 offers a computationally tractable method for fitting such models.
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Appendix A: Markov chain Monte Carlo algorithm

Step 1: update γk and δk—the full conditional for p-dimensional vector γk .k =2, : : : , K/ is given by

π.γk|·/∝
n∏

i=1

ni∏
j=1

exp.x′
ijγk + v′

iδk +ψik/

K∑
h=1

exp.x′
ijγh + v′

iδh +ψih/

Np.γk;μγ , Σγ/,

where Np.γk; ·/ is a p-dimensional normal distribution evaluated at γk. Since this full conditional does
not have a closed analytic form, we update γk by using a random-walk Metropolis algorithm based
on a multivariate t3.sgTk/ proposal density centred at the previous value, γold

k , where the parameter sg
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scales the covariance to achieve optimal acceptance rates, and Tk is a component-specific scale matrix.
To improve mixing, we apply the adaptive proposal approach that was developed by Haario et al.
(2005), which uses the empirical covariance from an extended burn-in to tune Tk. A similar approach
can be used to update δk.
Step 2: update ψik—the full conditional for ψik .i=1, : : : , n; k =2, : : : , K/ is given by

π.ψik|·/∝
ni∏

j=1

exp.x′
ijγk + v′

iδk +ψik/

K∑
h=1

exp.x′
ijγh + v′

iδh +ψih/

N

(
1
mi

∑
l∈@i

ψlk,
τ 2

k

mi

)
,

where mi and @i are defined in equation (4) of Section 3. Since this full conditional does not have a
closed form, we update ψik by using random-walk Metropolis steps.
Step 3: update τ 2

k —assuming an IG.g, s/ prior, draw τ 2
k its IG.gÅ, sÅ/ full conditional, where gÅ =

g+ .n−ω/=2, sÅ = s+ψ′
k.M−A/ψk=2, n is the number of areal units,ω=max.1, number of ‘islands’/

and .M −A/ is defined in equation (6).
Step 4: update Cij—for all .i, j/, draw Cij from its full conditional

π.Cij|·/=Pr.Cij =k|·/=Cat.pijk/,

where

pijk = πijk N2.yij ;ηijk, Σk/

K∑
h=1

πijh N2.yij ;ηijh, Σh/

:

Here, Cat.pijk/ denotes a categorical distribution taking the value k with probability pijk, πijk is the
prior probability that Cij = k, as given in equation (1) of Section 3, and N2.yij ;ηijk, Σk/ denotes the
bivariate normal density from equation (1), Section 3, evaluated at yij .
Step 5: update Σk—assuming an IW.κ0, S0/ prior, update Σk from its IW.κÅ, SÅ/ full conditional,
where κÅ =κ0 +Nk, Nk is the number of observations in component k, SÅ =S0 +E′

kEk, E =Yk −ηÅ
k ,

Yk is an Nk ×2 matrix consisting of y1ij (the first column) and y2ij (the second column) response values
for all .i, j/ in component k and ηÅ

k is an Nk ×2 matrix consisting of η1ij (the first column) and η2ij (the
second column) linear predictor values for all .i, j/ in component k, as defined in equation (1). Use

Σk =
(

σ2
1k ρkσ1kσ2k

ρkσ1kσ2k σ2
2k

)

to obtain σ2
1|2, k = .1−ρ2

k/σ
2
1k, σ2

2|1, k = .1−ρ2
k/σ

2
2k, βÅ

1k =ρkσ1k=σ2k and βÅ
2k =ρkσ2k=σ1k.

Step 6: update β1k andα1k—we update β1k andα1k conditionally on y2k, where y2k denotes the Nk ×1
vector of y2ij response values for all .i, j/ in component k. Specifically, assuming an Np.μβ , Σβ/ prior,
update β1k from its Np.Mβ1k

, Vβ1k
/ full conditional, where

Vβ1k
={

Σ−1
β +σ−2

1|2,k.X
′
kXk/

}−1

and

Mβ1k
=Vβ1k

[Σ−1
β μβ +σ−2

1|2,kX′
k{y1k −Vkα1k −Φ1k −βÅ

1k.y2k −η2k/}]:

Here, y1k denotes the Nk ×1 vector of y1ij response values for all .i, j/ in component k; Xk denotes the
Nk ×p individual level design matrix for component k; Vk is an Nk × r county level design matrix for
component k; Φ1k is an Nk ×1 stacked vector such that φ1ik is replicated for each observation in county
i and component k; η2k is an Nk × 1 vector of η2ij-values for all .i, j/ in component k, as defined in
equation (1); and σ2

1|2,k and βÅ
1k are defined in step 5. A similar set of equations can be used to update

the r ×1 vector α1k.
Step 7: update β2k and α2k—we update β2k and α2k conditionally on y1k. Specifically, assuming an
Np.μβ , Σβ/ prior, update β2k from its Np.Mβ2k

, Vβ2k
/ full conditional, where

Vβ2k
={Σ−1

β +σ−2
2|1,k.X

′
kXk/}−1

and

Mβ2k
=Vβ2k

[Σ−1
β μβ +σ−2

2|1,kX′
k{y2k −Vkα2k −Φ2k −βÅ

2k.y1k −η1k/}]:

Here, η1k is an Nk × 1 vector of η1ij-values for all .i, j/ in component k, as defined in equation (1),
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σ2
2|1,k and βÅ

2k are defined in step 5, and all other elements are defined in a manner analogous to those
in step 6. A similar set of equations can be used to update the r ×1 vector α2k.
Step 8: update φik—for i = 1, : : : , n, draw the 2 × 1 vector φik from its N2.Mφ, Vφ/ full conditional,
where

Vφ = .NikΣ−1
k +miΛ−1

k /−1

and

Mφ =Vφ{Σ−1
k Z′

ik.yik −Xikβk −Vikαk/+Λ−1
k

∑
l∈@

φlk}:

Here, Nik denotes the component k sample size for county i; mi is the number of neighbours of county
i; Zik is a 2Nik × 2 matrix with alternating rows of .1, 0/ and .0, 1/; yik is a 2Nik × 1 stacked vector
consisting of alternating Y1 and Y2 response values for each observation in county i and component
k; Xik is a 2Nik × 2p design matrix for county i and component k, with rows alternating between
.x′

ij , 0/ and .0, x′
ij/ for each of the Nik observations in county i and component k; βk = .β′

1k,β′
2k/

′ is a
2p×1 vector of individual level regression parameters; Vik is a 2Nik ×2r design matrix of county level
predictors; andαk = .α′

1k,α′
2k/

′ is a corresponding 2r ×1 vector of county level regression coefficients.
Step 9: updateΛk—assuming an IW.ν0, D0/ prior, drawΛk from its IW.νÅ, DÅ/ full conditional, where
νÅ = ν+n−ω, n is the number of areal units, ω is defined in step 3 and DÅ = D0 +ΦÅ′

k .M − A/ΦÅ
k .

Here, ΦÅ
k denotes an n×2 matrix with first column equal toφ1k = .φ11k, : : : ,φ1nk/

′ and second column
equal to φ2k = .φ21k, : : : ,φ2nk/

′.
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