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ABSTRACT

The end of the Palaeozoic is marked by two mass-extinction events during
the Middle Permian (Capitanian) and the Late Permian (Changhsingian).
Given similarities between the two events in geochemical signatures, such as
large magnitude negative §'°C anomalies, sedimentological signatures such as
claystone breccias, and the approximate contemporaneous emplacement of
large igneous provinces, many authors have sought a common causal mecha-
nism. Here, a new high-resolution continental record of the Capitanian event
from Portal Mountain, Antarctica, is compared with previously published
Changhsingian records of geochemical signatures of weathering intensity and
palaeoclimatic change. Geochemical means of discriminating sedimentary
provenance (Ti/Al, U/Th and La/Ce ratios) all indicate a common provenance
for the Portal Mountain sediments and associated palaeosols, so changes
spanning the Capitanian extinction represent changes in weathering intensity
rather than sediment source. Proxies for weathering intensity chemical index
of alteration, AW and rare earth element accumulation all decline across the
Capitanian extinction event at Portal Mountain, which is in contrast to the
increased weathering recorded globally at the Late Permian extinction. Fur-
thermore, palaeoclimatic proxies are consistent with unchanging or cooler
climatic conditions throughout the Capitanian event, which contrasts with
Changhsingian records that all indicate a significant syn-extinction and post-
extinction series of greenhouse warming events. Although both the
Capitanian and Changhsingian event records indicate significant redox shifts,
palaeosol geochemistry of the Changhsingian event indicates more reducing
conditions, whereas the new Capitanian record of reduced trace metal abun-
dances (Cr, Cu, Ni and Ce) indicates more oxidizing conditions. Taken
together, the differences in weathering intensity, redox and the lack of evi-
dence for significant climatic change in the new record suggest that the
Capitanian mass extinction was not triggered by dyke injection of coal-beds,
as in the Changhsingian extinction, and may instead have been triggered
directly by the Emeishan large igneous province or by the interaction of
Emeishan basalts with platform carbonates.

Keywords Antarctica, greenhouse climate, mass extinctions, palaeoclimate,
palaeosols, Palaeozoic, weathering.
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INTRODUCTION

The end of the Palaeozoic is marked by two
large mass-extinction events, near the end of the
Middle Permian (Capitanian ca 260-4 Ma; Zhou
et al., 2002; Retallack et al., 2011) and one near
the end of the Late Permian and Palaeozoic as a
whole (Changhsingian; ca 252-2 Ma; Mundil
et al., 2004; Reichow et al., 2009; Shen et al.,
2011). The Late Permian mass extinction is the
largest in the history of higher life, with more
than 90% of species going extinct in both mar-
ine (Jin et al., 2000; Erwin et al., 2002) and ter-
restrial (Retallack, 1995) ecosystems (reviewed
in Chen & Benton, 2012). The Middle Permian
mass extinction was less severe, but was still
comparable in magnitude to the Cretaceous—
Palaeogene extinction among marine (Stanley &
Yang, 1994; Wang et al., 2004; Bond & Wignall,
2009; Wignall et al., 2012; McGhee et al., 2013),
and terrestrial (Ward et al., 2005; Retallack
et al., 2006) animals and plants (Stevens et al.,
2011).

Because the Global Standard Section and
Point (GSSP) for the basal Triassic is defined
by the first appearance of the conodont Hinde-
odus parvus and the mass extinction is at a
variable stratigraphic level below that (Retal-
lack et al., 2011), direct correlation between
marine and terrestrial records is difficult.
Instead, many workers use a ubiquitous, extre-
mely large negative carbon isotopic anomaly
(8"°C greater than —5%, marine; greater than
—109, continental) at the mass extinction, both
in marine (e.g. Fio et al., 2010) and continental
(e.g. Retallack et al., 2005) settings. Retallack
et al. (2006) recognized a similar magnitude
negative 5'°C anomaly at various marine (e.g.
Lai et al., 2008) and continental Capitanian
sections. The similarity between the carbon
cycle perturbations during both extinction
events has been taken as evidence of a
common causal mechanism, specifically, intru-
sion of coal-beds by feeder dykes associated
with the Emeishan (Capitanian) and Siberian
(Changhsingian—Griesbachian) Traps flood
basalt large igneous provinces (LIP; Retallack
et al., 2006; Retallack & Jahren, 2008; Wignall
et al., 2009). Here, that idea is tested by com-
paring a new end-Guadalupian continental
record (Fig. 1) from Portal Mountain, Antarc-
tica, with previously published continental
records of the end-Permian from Antarctica
and other parts of both Gondwana and
Laurentia.
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Fig. 1. Location map. Portal Mountain (shown with a
filled symbol) is located in the Central Transantarctic
Range relatively close to a number of other end-
Guadalupian and end-Permian localities. Modified
after Retallack et al. (2006).

Key features of the Late Permian mass-
extinction event on land

In addition to the ubiquitous large negative 5'°C
anomaly, a number of other common features
have been recognized at continental Late Per-
mian sites. One key feature of all of the sites is
the absence of coal globally until the Middle Tri-
assic (Retallack, 1995; Retallack et al., 1996).
Another is a shift in fluvial style from meander-
ing to braided streams that has been associated
with the loss of continental vegetation (Sephton
et al., 2005), and which has been documented in
South Africa (Ward et al., 2000), Russia (Newell
et al., 1999), Australia (Michaelson, 2002) and
Antarctica (Sheldon, 2006a). Similarly, ‘clay-
stone breccias’ have been found immediately
above the last Permian coal in Antarctica, Aus-
tralia and South Africa, and have been inter-
preted as soil erosion event horizons similar to
modern forest responses to clearcutting, which is
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1814 N. D. Sheldon et al.

thought to be analogous to a plant extinction
event (Retallack, 2005). A number of authors
have also documented significant increases in
chemical weathering across the Permian—Triassic
boundary in both continental (Antarctica,
Sheldon, 2006a; Australia, Retallack et al., 2011)
and marine (Algeo & Twitchett, 2010; Algeo
et al., 2011a,b) settings, and have attributed the
enhanced weathering to a rapid global warming
event (Sheldon, 2006a). This conclusion is sup-
ported by modelling results that indicate that the
negative 5'°C anomaly could only be produced
by a significant input of methane (which oxi-
dizes rapidly to CO,) to the atmosphere during
the Changhsingian mass-extinction event (Bern-
er, 2002; Retallack & Jahren, 2008). Both in the
oceans and on land, recovery of floras and faunas
was delayed by continued climatic perturbations
(indicated by additional negative §'°C anoma-
lies) in the earliest Triassic (Retallack et al.,
2011; Irmis & Whiteside, 2012). Finally, there is
a strong redox response towards extremely
reducing conditions in waterlogged palaeosols at
a number of high-palaeolatitude Gondwanan
sites (Sheldon & Retallack, 2002; Sheldon,
2006a), although that feature has not been
observed in lower palaeolatitude sites than Aus-
tralia (for example, China, Thomas et al., 2011).

Regional stratigraphic relations in Antarctica

In contrast to other Permian successions (for
example, China), there is no direct dating of the
Victoria Land, Antarctica, so local chronology
relies on palaeobotany (e.g. Farabee et al., 1990,
1991; Collinson et al., 1994), and regional corre-
lation of both geochemistry (Fig. 2) and sedimen-
tary marker beds (e.g. Isbell & Cuneo, 1996). The
age of the Weller Coal Measures (Fig. 2) is
broadly constrained to the Middle Permian,
based on the undivided Protohaploxpinus zone
palynomorphs, which correlate with Australian
Middle Permian palynozone 4 (Isbell & Cuneo,
1996; Retallack et al., 2006), while also ranging
into Late Permian palynozone 5 (Askin, 1997;
Isbell & Askin, 1999). At Portal Mountain, while
the range of a number of plants (for example,
Gangamopteris and Palaeovitaria; Fig. 2) is trun-
cated at the stratigraphic level identified as the
Capitanian extinction by Retallack et al. (2006),
a variety of Late Permian macrofossils (Glossop-
teris flora; Vertebraria) continue for another ca
100 m stratigraphically, before their extinction at
the Changhsingian extinction event and the
lithological contact between the Weller Coal

Measures and Feather Conglomerate (see fig. 3 of
Retallack et al., 2006). Unique palaeosols (Dolo-
res pedotype of Retallack et al., 2006) found only
in the earliest Triassic that indicate extremely
reducing conditions (Sheldon & Retallack, 2002)
are present at Portal Mountain and six other Ant-
arctic Changhsingian sites (Sheldon, 2006a), and
provide an additional stratigraphic constraint at
Portal Mountain (Retallack et al., 2006). The
large magnitude negative carbon isotopic excur-
sion associated with the palaeobotanically iden-
tified Capitanian extinction (Fig. 2) has been
documented at 17 other sites globally (Retallack
et al., 2006), including both marine and terres-
trial successions, providing an additional chemo-
stratigraphic age constraint.

METHODS

Field and laboratory methods

A 23 m section spanning the Capitanian mass-
extinction level (Figs 2 and 3A; Retallack et al.,
2006) was logged on a ridge east of Portal
Mountain, south Victoria Land, Antarctica
(78-10784°S, 159-29979°E, 2107 m elevation). A
total of 29 rock samples were collected from the
main section, along with 11 additional samples
from a second section offset laterally from the first
by ca 20 m, to examine two stratigraphically
equivalent sections spanning the Changhsingian
mass-extinction event level (Fig. 3A). Samples
were crushed and powdered, and then 02 g
(£0-0005 g) was placed either into Teflon [induc-
tively coupled plasma-mass spectrometer (ICP-
MS)] or graphite crucibles [inductively coupled
plasma-optical emission spectrometry (ICP-
OES)]. The ICP-MS samples were heated and
digested using a 2 : 1 mixture of HF and HCIO,
acids, and then diluted with nitric acid. Fusions
were made for ICP-OES analysis by adding 1 g of
LiBO, to the graphite crucibles, which were then
placed in a muffle furnace set to 950°C for
25 min. The resulting glass bead was dissolved in
200 ml of 5% HNOj; acid and digested. Whole-
rock geochemical analyses were performed by a
combination of inductively coupled plasma-
atomic emission spectroscopy (ICP-AES; major
elements) and ICP-MS (trace elements) at the
NERC ICP Facility at Royal Holloway (University
of London). Results were calibrated using four
internal and two international standards (Qlo-1
and Q-2). Analytical uncertainty is less than
0-1% for major elements, and less than 5% for
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trace elements and rare earth elements (REE). The
data are compiled as Supporting Information.

Quantifying weathering and pedogenesis
A variety of geochemical proxies have been
developed to characterize weathering and
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pedogenesis in palaeosols and associated sedi-
mentary rocks (reviewed in Sheldon & Tabor,
2009). All of the proxies for pedogenesis rely
on molar ratios of the element in question,
which is given as m, for each of the following
proxies.
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Fig. 2. Stratigraphy and carbon isotopes at Portal Mountain. Carbon isotope stratigraphy and plant biostratigraphy
are shown, in addition to the stratigraphic positions of palaeosols, ‘claystone breccia’ horizons, fossil logs and
other sedimentary features modified after Retallack et al. (2006). This study focuses on a 23 m section that spans
roughly the 30 to 53 m levels in the studied stratigraphy of Retallack et al. (2006) from the same site.
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Provenance ratios. For example, the Ti/Al ratio is a useful
Differences in provenance can be examined using indicator of source area differences because,
a variety of different major and trace element while Ti content is highly variable in different

Fig. 3. Outcrop photographs. (A) Long-distance view of the focus interval for this study. Section 1 (yellow) is the
‘long-section’ and section 2 (green) is the secondary section to look at horizontal variability. Persons for scale are
ca 1-8 m tall. (B) Close-up of the last Capitanian coal (LCC) and ‘claystone breccia’ (CB) identified by Retallack
et al. (2006), at ca 45 m in the overall section (Fig. 2). The rock hammer is 30 cm long. (C) Stacked, high-energy
beds about the Capitanian extinction interval; backpack in foreground is ca 75 cm.
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rock types, Al content normally varies within a
narrower range (Sheldon & Tabor, 2009). It has
been applied as a provenance tool to rocks span-
ning from the Precambrian (e.g. Driese et al.,
2007; Mitchell & Sheldon, 2009, 2010) through to
the Cenozoic (e.g. Hamer et al., 2007). Similarly,
the U/Th ratio has been used as an indicator of
provenance (e.g. Sheldon, 2006a), in part because
both elements are relatively immobile during oxi-
dative weathering (e.g. van der Weijden & van der
Weijden, 1995; Pett-Ridge et al., 2007). Sheldon
(2006a) also found that results using the REE ratio
of La/Ce to assess provenance matched results
from the more widely applied Ti/Al, and sug-
gested that it provides an additional means of
assessing provenance.

Weathering intensity

A number of proxies have been developed to
assess weathering intensity in palaeosols
(reviewed in Sheldon & Tabor, 2009), but the
most widely applied is the chemical index of
alteration (CIA; Nesbitt & Young, 1982)

m ) @

Mmp] + Mica + MINa + K

CIA = 100x <

where m, refers to the molar content of each of
Al, Ca, Na and K in a given sample (Egs 1, 3 and
4). The CIA was designed to look at the break-
down of feldspars to form clay minerals, and typi-
cally ranges from a value of ca 40 (unweathered
basalt) to 100 (pure kaolinite). High values (i.e.
more intensely weathered) can arise either as a
function of climatic conditions (for example,
higher temperatures lead to higher weathering
rates) or as a function of long formation times,
because even moderate climatic conditions can
yield intensely weathered soils if they operate for
a sufficient amount of time. Sheldon & Tabor
(2009) proposed a modified version of the CIA
designed to assess temporal trends in weathering
intensity:

where CIA, is the CIA value for a palaeosol B
horizon and pcpa refers to the mean CIA value
for a time series of palaeosol B horizons. The
AW proxy was recently applied by Sheldon
et al. (2012) to look at weathering changes
across the Eocene-Oligocene transition, where
additional a significant reduction was demon-
strated in chemical weathering that occurred
concomitantly with a drop in atmospheric pCO,
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and by Retallack et al. (2011) who demonstrated
significantly enhanced AW values in concert
with increasing atmospheric pCO,. The AW
proxy was also applied by Ohta et al. (2011) to
characterize weathering intensity and palaeocli-
matic changes associated with dinosaur evolu-
tion in China. Thus, the proxy appears to be a
sensitive recorder of both increasing and
decreasing intensity of chemical weathering.

Pedogenesis

The rates of many pedogenic processes are
determined by climate, including salinization
(accumulation of soluble salts):

_IIK + HINa
mp)

S (3)

wherein soils forming under low mean annual
temperature (MAT) regimes accumulate K and
Na during pedogenesis, particularly in their A
and B horizons (Sheldon et al., 2002). Thus, low
S values generally occur in warmer climates and
higher S values typically occur in cooler cli-
mates. Although that proxy is not applied here,
calculated S values from Eq. 3 may also be used
to estimate palaeotemperature quantitatively via
a somewhat weak empirical relation (e.g. Krause
et al., 2010). Similarly, clay accumulates in soils
as a function of temperature as well, where
‘clayeyness’ can be determined as follows:

mp)
C= 4
s, (4)

because while Si is not typically very mobile
during weathering, Al accumulates as weather-
able minerals such as feldspars are transformed
into clay minerals (Sheldon, 2006b). Thus,
higher temperatures lead to higher C values (e.g.
Takeuchi et al., 2007). Similarly, some authors
have used the molar ratio of Ba to Sr as a proxy
for the degree of leaching during soil formation
(e.g. Retallack, 2008; Kalinin & Alekseev, 2011),
which is broadly comparable to clay formation
due to hydrolysis.

RESULTS

Sedimentology and stratigraphy of Portal
Mountain

The Capitanian extinction interval is preserved
at Portal Mountain as part of the Weller Coal
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Measures and is 40 m stratigraphically above
the regionally extensive Ferrar Dolerite (Fig. 2).
The Weller Coal Measures are dominated locally
by sandstones and siltstones, with a notable
increase in grain size across the Capitanian
extinction (Fig. 3C). To summarize from Retal-
lack et al. (2006), the extinction interval locally
is recognized on the basis of: (i) a significant
plant extinction (Fig. 2); (ii) an erosive ‘clay-
stone’ breccia horizon (Fig. 3B; Retallack, 2005)
accompanied by a change in fluvial style that is
similar to the earliest Triassic Feather Conglo-
merate or age-equivalent Fremouw Formation
(Collinson et al., 1994) found elsewhere in Ant-
arctica (i.e. similar facies transitions at both
Permian extinction levels); and (iii) a negative
8"°Corg excursion of greater than —49%, (ca 20 to
35 m in Fig. 2), followed immediately by a
return to a similar pre-excursion baseline value
of ca —229,,. Stratigraphically above and below
the boundary interval, there are sandy palaeo-
sols with small, ellipsoidal siderite nodules,
which are typically associated with strongly
reducing conditions (e.g. Ludvigson et al.,
1998). Siderite disappears in the boundary inter-
val itself, but is considered authigenic through-
out because there are syneresis cracks and some
of the nodules have nucleated on root traces
(Retallack et al., 2006). Most of the palaeosols in
the boundary interval (Fig. 2) are similar to
modern Aquents (waterlogged, weakly deve-
loped soils with some relict sedimentary struc-
ture and A-Bg-C horizonation; Retallack et al.,
2006), whereas the Permian-Triassic transition
elsewhere in Antarctica (Retallack et al., 2005)
is characterized by coaly palaeosols (Histosols)
that disappear at the Permian-Triassic extinc-
tion and are replaced by Aquents similar to
Portal Mountain. As with Changhsingian-Gri-

esbachian palaeosols, the Capitanian palaeosols
are all characterized by evidence for gleying
and locally reducing conditions (for example,
green colour, siderite nodules) rather than well-
drained, well-aerated conditions (for example,
red colour, calcium carbonate nodules; Kraus &
Aslan, 1993; Sheldon, 2005).

Major element geochemistry

Titanium/aluminium ratios are essentially
unchanged through the Capitanian extinction
event (Fig. 4A), with the replicate Capitanian
sections yielding identical mean values
(Table 1). Values of Ti/Al less than 0-1, as in
each of the three sets of data, are consistent with
a sedimentary parent material (Sheldon & Tabor,
2009).

The bulk chemical composition of both pre-
extinction and post-extinction sedimentary rocks
forms arrays when plotted against SiO, content
(Fig. 5A and B). While data from the replicate
pre-extinction Capitanian sections typically plot
together, the younger post-extinction Capitanian
data show less overlap with the other data sets
(Fig. 5). The SiO, content of the younger Capita-
nian samples is typically higher (>75 wt%) and
spans a narrower range than older Capitanian
samples. Chemical index of alteration values are
negatively correlated with SiO, content (Fig. 5C).

When CIA is plotted as a function of strati-
graphic position instead, there is again consider-
able overlap between the replicate pre-extinction
Capitanian sections and the younger Capitanian
data, and there is no increase in CIA within the
Capitanian as a whole (Fig. 6A; Table 1). While
the AW values become more variable in the post-
extinction Capitanian than in the pre-extinction
Capitanian, there is no evidence of an increasing
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Fig. 4. Geochemical ratios for differentiating sedimentary provenance ratios. For reference, elemental ratios are
plotted alongside the 8'°C,,, excursion that defines the Capitanian extinction at Portal Mountain. Ratios plotted
include: (A) Ti/Al; (B) U/Th and (C) La/Ce — each indicates a consistent sediment source for both pre-extinction
and post-extinction sediments.
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Table 1. Comparison of mean geochemical ratios.
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Ratio Pre-extinction I Pre-extinction II Post-extinction
Provenance
Ti/Al 0-06 (0-006)* 0-06 (0-006) 0-06 (0-01)
La/Ce 0-49 (0-020) 0-48 (0-020) 0-48 (0-06)
U/Th 0-20 (0-020) 0-20 (0-010) 0-22 (0-03)
Weathering intensity
CIA 61-40 (2-320) 62-60 (2-730) 57-6 (4-22)
AW +1-86 (2-300) +0-06 (2-900) —1-99 (4-20)
Ba/Sr 1-92 (0-680) 1-63 (0-710) 1-97 (0-79)
Pedogenic processes
Salinization 0-29 (0-040) 0-28 (0-040) 0-40 (0-05)
Clayeyness 0-13 (0-030) 0-15 (0-050) 0-07 (0-01)

*Values in the parentheses represent 1¢ uncertainty of the mean value.

AW value and, like the CIA, the mean value
decreases upsection (Fig. 6B).

Molar ratios related to pedogenic processes
give a coherent response during the Capitanian
(Fig. 7; Table 1). The salinization and ‘clayey-
ness’ ratios are indistinguishable between the
replicate pre-extinction Capitanian sections, and
indicate a long-term secular trend upsection
through the post-extinction Capitanian section,
with a higher degree of salinization and a lower
degree of ‘clayeyness’ upwards through the
Capitanian, post-dating the extinction event.

Trace and rare earth geochemistry

Trace element ratios used to separate sediments
of different provenance are plotted in Fig. 4B
and C. Both the U/Th and La/Ce ratios are indis-
tinguishable between the replicate pre-extinction
Capitanian sections and when compared to post-
extinction Capitanian values. This unchanging
pattern matches the Ti/Al results (Fig. 3A;
Table 1), which indicates an unchanging source
area.

At the same time, the mean REE content is not
constant (Fig. 8; Table 1). Each of the replicate
pre-extinction Capitanian data sets is essentially
identical, and the late Capitanian results are also
similar for the heavy REE (HREE), but the late
Capitanian samples are considerably less
enriched relative to chondritic means in terms of
their light REE (LREE) content. Light REE con-
tents for the late Capitanian samples are <1/2 of
the LREE contents of the two mid-Capitanian
data sets.

There is a minor difference among redox-sensi-
tive trace metals between the replicate mid-Capit-

anian data sets and the late Capitanian data set
(Fig. 9; Table 1). The late Capitanian samples are
less U-rich, Ni-rich, Cu-rich, Eu-rich and Cr-rich
than the mid-Capitanian replicate sample sets,
which are indistinguishable (Fig. 10).

Although not plotted here, there is also no
change in Ba/Sr ratios through the Capitanian
(Table 1). Values are generally similar to latest
Permian sections elsewhere in Antarctica (Shel-
don, 2006a).

DISCUSSION AND INTERPRETATION

Provenance and weathering intensity results
compared

On the basis of both major and trace element geo-
chemistry (Fig. 4), there is no significant diffe-
rence in the provenance of the sediments across
the Capitanian mass-extinction boundary at
Portal Mountain, which is similar to what is
observed across the end-Permian boundary at
different sites (for example, Graphite Peak; Shel-
don, 2006a; Table 1). Therefore, changes in the
geochemical proxies for weathering intensity or
the intensity of pedogenic processes must be a
result of changing environmental or climatic
variables. Major element proxies for weathering
intensity (Fig. 6) do not indicate enhanced chem-
ical weathering during the mid-Capitanian,
immediately below the local plant extinction and
claystone breccia, but the late Capitanian was a
time of reduced weathering intensity. That result
is confirmed by both trace element (Ba/Sr;
Table 1) and REE comparisons. In particular,
there is significantly less accumulation of REE
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Fig. 5. Major element chemistry. Major elements (A)
Na,O + K,0, (B) MgO and (C) CIA plotted against
SiO, content. Diamonds represent samples from the
main pre-extinction section, squares are from the rep-
licate pre-extinction section and triangles represent
samples from the main post-extinction section.

overall and especially among the LREE in the
late Capitanian samples relative to the mid-Ca-
pitanian ones. The solubility of REE and plati-
num group elements is typically low under the
circum-neutral pH conditions found in most
soils (Wimpenny ef al.,, 2007), with some
increase in solubility under more acidic condi-
tions (Tyler, 2004). Because REEs accumulate as

a function of either soil formation time (Zhang
et al., 2007; Kahmann & Driese, 2008) or of
weathering intensity (Kahmann et al.,, 2008;
Sheldon & Tabor, 2009), the decline in REE accu-
mulation could be simply a change in soil forma-
tion duration. However, given the relatively
weak and uniform development of palaeosols
both before and after the Capitanian extinction
(Retallack et al., 2006), and given that both CIA
and AW values decline above that, it is unlikely
that the change in REE accumulation is due to
changes in the duration of pedogenesis. Alterna-
tively, the decrease in REE accumulation could
represent an increase in soil pH, which would,
in turn, reduce REE solubility (Tyler, 2004). This
latter possibility is reasonable given that at Portal
Mountain, the sideritic palaeosols (Aquents;
moderate pH) preserved both before and after the
Capitanian extinction can be contrasted with the
peaty palaeosols (Histosols; acidic pH) within
the zone of negative carbon isotopic composition
and decline to extinction of characteristic Middle
Permian fossil plants. Thus, because a change in
palaeosol parent material can be discounted
(Fig. 3), the declining weathering intensity indi-
cated by major element (Figs 6 and 7) and REE
data (Fig. 8) indicates a significant local change
in weathering intensity across the Capitanian
mass extinction.

Redox changes across the Capitanian
extinction

There is a systematic shift in the concentration of
redox-sensitive elements during the Capitanian
(Fig. 10) towards lower values (Cu, Cr, Ni, U, Ce
and Eu). While the differences between the mid-
Capitanian replicate sample sets and the late
Capitanian samples are typically ca 10, the basic
pattern holds for all of the elements that were con-
sidered. Within modern soils, the distribution of
redox-sensitive metals is usually a function of
local environmental controls rather than of cli-
matic differences among sites (Gueniot et al,
1988a). For example, while U does not accumulate
in well-drained, well-aerated soils (Gueniot et al.,
1988a) or palaeosols (Sheldon, 2005), it commonly
accumulates in waterlogged, hydromorphic soils
(Gueniot et al., 1988b) and palaeosols (Sheldon,
2006a). Similarly, Ce** is insoluble, whereas Ce®*
is soluble under reducing conditions.
Stratigraphically speaking, the shift in redox-sen-
sitive element concentration occurs concurrently
with the mid-Capitanian isotopic excursion
(Fig. 10B and C), and a new lower baseline is
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established by the late Capitanian. Unlike the §'°C
shift during the mid-Capitanian extinction, which
rebounds back to its prior baseline, the shift in
redox elements persists through the rest of the
record (Fig. 10B and C).

Capitanian climate change?

Although quantitative climofunctions have not
been used to reconstruct precise mean annual
precipitation (MAP) or mean annual temperature
(MAT) values, many of the proxy relations
described above are also correlated with climate.
For example, both salinization (Sheldon et al.,
2002) and ‘clayeyness’ (Sheldon, 2006b) are

related to MAT and a slightly modified version
of CIA (Eq. 1) is strongly correlated with MAP.
However, the quantitative proxy relations were
all calibrated using well-drained modern soils
(i.e. not waterlogged) so, while the relations may
apply quantitatively, the more conservative
approach of assuming that the vectors of change
will match with currently derived empirical
proxies even if the exact quantitative relation
will not, has been taken. Salinization (Fig. 7B)
is inversely related to MAT for modern soils
(Sheldon et al., 2002); thus, the declining salini-
zation ratios across the end-Guadalupian extinc-
tion event are consistent with declining MAT.
Similarly, for weakly developed soils, ‘clayey-
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ness’ is linearly related to MAT, so the ‘clayey-
ness’ results are also consistent with declining
MAT during the mid-Capitanian extinction
event. The modest decrease in CIA across the
mid-Capitanian extinction event was probably
caused in part by a reduction in MAP, but per-
haps the more striking feature is the increased
range of AW values in the late Capitanian that
indicates more variable weathering conditions
and, possibly, more variable palaeoprecipitation
conditions. Such variation in AW, MAT and
MAP has also been found in better drained and

better developed palaeosols in the late Capita-
nian of the Sydney Basin, Australia (Retallack
et al., 2011).

Comparison with other terrestrial Capitanian
records

Stevens et al. (2011) described three distinct
plant turnover events, with the middle event
coincident with the marine Capitanian extinc-
tion, and the youngest event post-dating the
main Emeishan large igneous province (LIP).
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Similarly, Bond et al. (2010) recently reviewed
marine and continental fossil records of the Ca-
pitanian mass extinction from a well-dated sec-
tion in China, concluding that while the marine
extinction event was clearly temporally associ-
ated with the Emeishan LIP (Wignall et al.,
2009), the plant mass extinction may have post-
dated the main eruptive phase. Those authors
also note that the characteristic negative carbon
excursion associated with the Capitanian extinc-
tion is not synchronous with the apparent extinc-
tion level, which is also noted for the continental
Antarctic record in the present study (Fig. 2).
The magnitude of the middle event in China
described by Stevens et al. (2011) is similar to
the Capitanian records in Antarctica and South
Africa (Retallack et al., 2006), although the over-
all diversity was much higher in China than in
Antarctica, and the South African record is based
entirely on pollen. Thus, although one possibil-
ity is that there were more plant turnover events
in China than at the other sites, a more likely sce-

nario is that China records a more complete con-
tinental plant record than the other sites, either
due to taphonomic differences (for example,
South Africa) or to overall biodiversity gradients
comparable to modern ecosystems with lower
diversity nearer to the poles (for example, Ant-
arctica) than at lower palaeolatitudes.

There are relatively few continental Capitanian
extinction event palaeosol records, and most rep-
resent relatively high-palaeolatitude Gondwanan
sites. In general, the 813C0rg responses at those
sites can be broken down into two categories: (i)
moderate negative (lesser than —39%,) excursions,
as in Morondava, Madagascar (de Wit et al,
2002) and Muswellbrook, Australia (Compston,
1960; Retallack et al., 2011); and (ii) large nega-
tive (greater than —39,,) excursions as in Graphite
Peak, Antarctica (Krull & Retallack, 2000), Rani-
ganj, India (de Wit et al., 2002), Eddystone, Aus-
tralia (Morante, 1996) and Portal Mountain,
Antarctica (this study; Retallack et al., 2006).
Generally speaking, as with the Late Permian
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mass-extinction event, the magnitude of the
8"Corg isotopic excursion is larger at higher
palaeolatitude sites (Retallack & Krull, 2006).
However, with a dearth of mid-latitude and low-
latitude continental sites, this pattern may or may
not hold up to future scrutiny. Ongoing work in
Niger (Tabor et al., 2011), China (Yang et al.,
2010) and Spain (De la Horra et al., 2012) may
eventually allow for the latitudinal variability in
8"°Corg to be addressed; but, at present, age con-
trol is poor in Niger and Spain (De la Horra et al.,
2012), and work in China is still at a relatively
early stage, but shows promise given a high
degree of cyclicity among the continental depo-
sits and a number of new U-Th-Pb ages (Yang
et al., 2010). Nonetheless, a negative carbon iso-
topic excursion is a robust feature in both marine
and continental records, and organic matter and
carbonate records (table 1 of Retallack et al.,
2006).

Retallack et al. (2006) made a detailed com-
parison between the palaeosols from Portal
Mountain, Antarctica (this study), and from the
Karoo Basin, South Africa, and found a number
of additional similarities including a ‘spike’ of
lycopsids, fungi, and algae, soil erosion hori-
zons (claystone breccias in his parlance), soil
stagnation, evidence for a greenhouse climate
shift and a shift to braided stream deposits
(Fig. 2). The similarities between those sites led
the authors to suggest a global cause for the
observed changes at both the high-palaeolati-
tude (Antarctica) and the low-palaeolatitude
(South Africa) sites. The new geochemical
results here support the idea of soil stagnation
(Figs 9 and 10; siderite nodules present
throughout both sections), but do not support a
shift to a greenhouse climatic event beyond the
resolution of the proxies employed here (i.e.
while modest warming undetectable by the
proxies used herein cannot be ruled out, a high-
magnitude warming event can be). Indeed, the
declining chemical weathering (Figs 6 and 8)
and lessening of some temperature-dependent
pedogenic processes such as clay formation/
‘clayeyness’ and increase of others such as sali-
nization are all consistent with a cooling rather
than warming climate.

Comparison with marine Capitanian records

Capitanian marine turnover was first recognized
in foraminifera (Jin et al., 1994; Stanley & Yang,
1994), before subsequent workers found similar
losses among dinocephalian reptiles (Lucas,

2009) and other continental organisms (Retallack
et al., 2006), and among a variety of marine
invertebrates including ammonoids, bivalves,
brachiopods, bryozoans and corals (Clapham
et al., 2009; Bond et al., 2010). Although the
pace of the extinction event continues to be
debated (e.g. Clapham et al. 2009 vs. Bond et al.
2010), there is general consensus about the mag-
nitude of losses and that the extinction event is
more a product of reduced originations rather
than increased extinctions. Among ‘typical’
extinction causal mechanisms, Bond et al
(2010) argue against sea-level fall or climatic
cooling because the major sequence boundary
post-dates the Capitanian extinction and the
major positive §'’C ‘Kamura Event’ (Isozaki
et al., 2007) also post-dates the extinction event
in the global stratotype section in China, and
against marine anoxia because fully oxygenated
conditions appear to have been present at the
extinction level (Wignall et al., 2010). While it
is generally difficult to compare marine and con-
tinental records directly, large redox changes are
often recorded by both types of depositional set-
tings. For example, both marine and continental
settings record significant reducing conditions
in the earliest Triassic (Sheldon, 2006a),
whereas for the Capitanian extinction, neither
marine (Wignall et al., 2010) nor continental
(Fig. 9) records indicate a significant redox shift,
suggesting that both types of settings are record-
ing similar global conditions.

Comparison with the Permian-Triassic
extinction event

While there are some significant similarities
(Table 2) between Gondwanan records of conti-
nental Middle and Late Permian mass-extinction
events, including a high level of vertebrate and
plant extinctions, a shift in fluvial depositional
style from meandering to braided streams, a
large negative 5'°C anomaly and evidence for a
soil erosion crisis, there are also significant dif-
ferences. In particular, while an abrupt series of
warming events coincide with the Late Permian
mass extinction (Berner, 2002; Kidder & Wors-
ley, 2003; Sheldon, 2006a; Retallack & Jahren,
2008; Algeo et al., 2011a,b), the new record pre-
sented herein is consistent instead with
unchanging, or even cooling conditions (Figs 7
and 8). Enhanced chemical weathering, REE
accumulation (Fig. 8) and changes to pedogenic
process intensity were all observed in the latest
Changhsingian of Antarctica (Sheldon, 2006a),
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whereas the latest Capitanian is characterized by
declining chemical weathering (Fig. 6), reduced
REE accumulation (Fig. 8) and changes in pedo-
genic process intensity (Fig. 7) that are consis-
tent with cooling rather than warming
conditions, and which cannot be explained as
reflecting changing source terrain (Fig. 4). Fur-
thermore, while there is extensive evidence for a
substantial redox shift during the Late Permian
to more chemically reducing conditions in soils
and perhaps the atmosphere (Figures S1 and S2;
e.g. Sheldon & Retallack, 2002; Huey & Ward,
2005; Sheldon, 2006a) that are matched by mar-
ine records (Knoll et al., 1996; Kidder & Wors-
ley, 2003), results from Portal Mountain are not
consistent with the Late Permian in that they
indicate slightly more oxidized conditions
(Figs 9 and 10), or with marine records that
indicate a more mixed response with both
anoxic (Weidlich, 2002; Clapham et al., 2009)
and oxic (Wignall et al., 2009; Bond et al., 2010)
conditions prevailing locally. Thus, on the basis
of substantial differences in the climatic and
redox responses of continental records of
Changhsingian and Capitanian mass extinctions,
the two events were either of different magni-
tude and duration or did not share a common
causal mechanism.

Table 2. Comparison of Changhsingian and Capita-
nian events.

Capita- Changh-

Environmental change nian  singian
Similarities
Negative 5'°C excursion Yes Yes
Change in fluvial style from Yes Yes
dominantly meandering to
dominantly braided
Change in sediment provenance  No No
Shift towards reducing conditions Yes Yes
across boundary (Cu, Cr, Ni,
Ce shifts)
Differences
Increase in weathering No Yes

intensity (CIA, AW)
Increase in leaching (YREE, Ba/Sr) No Yes

Greenhouse climate shift No Yes
Berthierine as reduced Fe-phase* No Yes
Siderite as reduced Fe-phase* Yes No

*At high-latitude continental Gondwanan sites.

Middle Permian weathering 1825

Capitanian extinction causal mechanism

A variety of common causal mechanisms have
been invoked for the Capitanian and Changhsin-
gian extinctions, including ocean anoxia, LIP
emplacement, global climate change (warming)
and methane outbursts either from marine
sources or from coal-beds. As noted above, ocean
anoxia can be excluded for the Capitanian
extinction and it is very difficult to envision a
scenario in which continental plant and animal
mass extinctions could possibly be caused by
marine anoxia, so it is probably an effect rather
than a cause for the Changhsingian extinction as
well. Both LIP emplacement and methane out-
bursts could potentially cause global warming,
depending on the composition of the degassed
gases associated with the LIP (for example, dom-
inantly H,O and CO,, low SO,). At the same
time, it is very difficult to trigger a large negative
carbon isotopic anomaly in either marine or con-
tinental settings without a significant input of
isotopically depleted carbon from methane
(Berner, 2002), but it is not always possible to
deconvolve whether methane release was a cause
or an effect of some other climatic warming
mechanism (Sheldon, 2006a). Retallack & Jahren
(2008) linked methane release to coal-bed intru-
sion by dykes associated with LIPs and sug-
gested that it could be a common causal
mechanism for both the Capitanian and Changh-
singian extinction events, possibly due to a cata-
strophic drop in atmospheric oxygen that may
have been responsible for continental vertebrate
extinctions. However, both marine records (Bond
et al., 2010) and the new Antarctic Capitanian
record indicate relatively stable climatic condi-
tions without evidence for extreme warming, as
recorded by the Changhsingian extinction in
both marine and continental settings (Berner,
2002; Kidder & Worsley, 2003; Sheldon, 2006a;
Retallack & Jahren, 2008; Algeo et al., 2011a,b),
and indicate no significant redox change, even
though the depositional setting is identical for
the Changhsingian and Capitanian records from
Antarctica. Similarly, the Changhsingian mass
extinction is characterized by a significant
increase in chemical weathering due to warm/
wetter climatic conditions (Sheldon, 2006a;
Algeo & Twitchett, 2010; Algeo et al., 2011a,b;
Retallack et al., 2011), but no similar increase in
chemical weathering intensity is recorded for the
Capitanian (Figs 6 and 8). Thus, while the LIP-
triggered coal-bed methane hypothesis is well-
supported for the Changhsingian extinction (e.g.
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Grasby et al., 2011; Ogden & Sleep, 2012), it is
not well-supported for the Capitanian extinction.
At the same time, interbedded marine limestones
and Emeishan LIP basalt flows strongly suggest a
causal link between the Capitanian mass extinc-
tion and the Emeishan LIP (Wignall et al., 2009),
and plant extinction events locally in China also
correlate temporally with the Emeishan LIP.
Therefore, the differences in the geochemical sig-
natures and magnitude of the two extinction
events could either reflect a lack of coal-bed
methane release during the Capitanian, or that
the volcanic emissions associated with the Emei-
shan LIP were relatively richer in SO, (anti-
greenhouse gas), less CO,-rich or involved much
lower total gas fluxes. It is difficult to discern
between these latter possibilities, but it is clear
that the Emeishan LIP caused local (Wignall
et al., 2009) and possibly global environmental
impacts as well.

CONCLUSIONS

New high-resolution continental records of
palaeosol geochemistry spanning the Middle
Permian (Capitanian) mass-extinction event in
Antarctica were compiled and compared to con-
tinental records of palaeosol geochemistry from
the Late Permian (Changhsingian) mass extinc-
tion to look for evidence of similarities that
would indicate a common causal mechanism. On
the basis of major and trace element data, the
protolith for the pre-extinction and post-extinc-
tion palaeosols is the same, which means that
any changes in other geochemical proxies may
be related to environmental or climatic shifts.
Both major and trace element proxies indicate
declining chemical weathering intensity through-
out the Capitanian extinction, which is in sharp
contrast to proxies of end-Permian weathering
intensity that indicate enhanced weathering
intensity. Proxies related to climatic change indi-
cate no change or a slight cooling during and
after the Middle Permian event, whereas the
latest Permian to early Triassic saw elevated and
continuing greenhouse crises (Retallack et al.,
2011). Although the high-latitude Gondwanan
records of both events indicate a significant
redox shift, the sign of that shift is opposite in
Antarctica where the Capitanian extinction
indicates more oxidizing conditions and the
Changhsingian extinction indicates more reduc-
ing conditions. Thus, on the basis of substan-
tially different (or diametrically opposed) results

for weathering intensity, climatic conditions
and soil redox, it can be concluded that climatic
and environmental drivers were fundamentally
different for the two extinction events.
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Supporting Information

Additional Supporting Information may be found in
the online version of this article:

Figure S1. Shifts in redox across the Changhsin-
gian—Griesbachian boundary. In contrast to the Capita-
nian extinction event (Fig. 9), the Changhsingian
extinction demonstrates a strong redox shift towards
more chemically reducing conditions. This can be
seen in both the gleization (Fe®'/Fe®*) ratio and Eu
content. Data used to construct this plot are from
Sheldon (2006).

Figure S2. Ce content in palaeosols across the
Changhsingian-Griesbachian. In contrast to the Capit-
anian extinction event (Fig. 9), the Changhsingian
extinction demonstrates a strong redox shift towards
more chemically reducing conditions as indicated by
increasing Ce content in Griesbachian palaeosols rela-
tive to Changhsingian ones. Data used to construct
this plot are from Sheldon (2006).

Table S1. Major element data.

Table S2. Trace element data — Part I — complete
Capitanian Extinction Section.

Table S3. Rare Earth Element and Trace Element
Data — Part I — complete Capitanian Extinction Sec-
tion.
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