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We consider a single-product revenue management problem with an inventory constraint and unknown,
noisy, demand function. The objective of the firm is to dynamically adjust the prices to maximize total
expected revenue. We restrict our scope to the nonparametric approach where we only assume some common
regularity conditions on the demand function instead of a specific functional form. We propose a family of
pricing heuristics that successfully balance the tradeoff between exploration and exploitation. The idea is to
generalize the classic bisection search method to a problem that is affected both by stochastic noise and an
inventory constraint. Our algorithm extends the bisection method to produce a sequence of pricing intervals
that converge to the optimal static price with high probability. Using regret (the revenue loss compared to
the deterministic pricing problem for a clairvoyant) as the performance metric, we show that one of our
heuristics exactly matches the theoretical asymptotic lower bound that has been previously shown to hold
for any feasible pricing heuristic. Although the results are presented in the context of revenue management
problems, our analysis of the bisection technique for stochastic optimization with learning can be potentially
applied to other application areas.

Key words : revenue management; pricing; nonparametric; learning; asymptotic analysis; bisection search.

1. Introduction. Dynamic pricing has became a common practice in many firms nowadays.
It plays a central role in the revenue optimization of many industries including airlines, hotels, car
rentals, and retails (Talluri and van Ryzin [36], Özer and Phillips [32]). In the typical dynamic
pricing problem, firms adaptively adjust their prices in response to market demand and try to
maximize their expected revenue. The success of this approach relies heavily on the firms’ knowledge
about the relationship between market demand and the posted price, which is characterized by
a demand function. Although in reality firms may not know the exact demand function, firms
can still dynamically price their products through a combination of active learning (e.g., price
experimentation) and dynamic optimization. The challenge, however, is obvious: Given the limited
time window of opportunity and the limited on-hand inventory, firms have to balance the effort
spent on probing the true demand function (exploration) and generating near-optimal revenue
(exploitation).

The literature on dynamic pricing with demand learning can be broadly divided into two cate-
gories: parametric and nonparametric models. (See den Boer [16] for a recent overview of the field.)
In the parametric model, it is assumed that the firms know the functional form of the underlying
demand function (e.g., linear, logit, etc.). The key challenges in such setting are to estimate the
unknown demand parameters and to develop a price optimization scheme utilizing this estimate.
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Some popular estimation procedures that have been studied in the literature include Bayesian
method (Araman and Caldentey [2]; Farias and van Roy [21]; Harrison et al. [23]), Maximum Like-
lihood estimation (Broder and Rusmevichientong [11]; den Boer [17]; den Boer and Zwart [19]; den
Boer and Zwart [18]; Chen et al. [13]), and Least Squares approach (Bertsimas and Perakis [4];
Keskin and Zeevi [27]). In contrast to parametric model, nonparametric model does not assume
that the firms know the functional form of the demand function; instead, it only assumes a certain
set of mild regularity conditions such as the decreasing property of demand as a function of price,
the boundedness of the first and second derivatives of the demand function, and the unimodality
of the revenue function. In such setting, the firms’ tasks are further complicated by the fact that
there is no explicit function to optimize. Current literature (e.g., Chen et al. [13] and Wang et al.
[38]) suggest that parametric approaches outperform nonparametric approaches, at least asymp-
totically. Given that parametric approach assumes a precise knowledge of the functional form of
the underlying demand function, this observation is hardly surprising. The question is whether
a parametric approach is always applicable. To illustrate, suppose that the underlying demand
function is actually a logit function. What will happen if we mistakenly assume a linear function
instead of a logit function when estimating the demand parameters? As shown in Besbes and Zeevi
[8], although model mis-specification is not always detrimental, it can lead to sub-optimal prices,
which yield a large loss in revenue. It remains an open research problem whether there is a way
to make parametric approach more robust with respect to model mis-specification. This leaves the
firms in a quandary of having to choose between a parametric approach, with the risk of model
mis-specification, or a nonparametric approach, with a weaker performance guarantee. The pur-
pose of this paper is to address this issue. In particular, we will consider a nonparametric approach
and study a scheme that will be shown to match the theoretical performance guarantee of the best
known parametric approach in the single product setting.

The proposed heuristics. A good pricing policy must balance the tradeoff between demand
learning (exploration) and revenue maximization (exploitation) while also successfully dealing with
the dynamics caused by stochastic demands and inventory constraints. Our heuristics achieve these
objectives by generating a sequence of shrinking intervals that converge to the optimal static price
calculated via a deterministic relaxation of the original dynamic pricing problem. More specifi-
cally, we generalize the standard bisection search algorithm to stochastic and constrained setting.
(Our heuristics actually generalize the trisection search. However, for consistency with the existing
optimization literature, we will simply call it a bisection instead of a trisection.) We use empirical
mean of the observed demands as an estimate of the true demand rate to shrink the intervals
accordingly. The sampling frequencies are chosen carefully: If they are too small, the resulting
estimates are not very accurate; if, on the other hand, they are too large, we spend too much time
on the sub-optimal prices, which incurs a large revenue loss. For the single-product problem, the
implementation of our heuristics can be essentially divided into two phases: the exploration phase
and the exploitation phase. Since it is known in this setting that the optimal static price can be
written as the maximum of the unconstrained maximizer and the clearance price (see Gallego and
van Ryzin [22]), the purpose of the exploration phase is to determine the identity of the optimal
static price via bisection search. We show that it is possible to distinguish this identity quickly
with a very high probability. During the exploitation phase, we apply another bisection search to
more efficiently shrink the intervals according to the identity of the optimal price.

Let θ > 0 denote the relative size of the problem (i.e., the amount of initial inventory). It can be
shown that the asymptotic revenue loss of the proposed heuristic is O(

√
θ log θ), which is very close

to the known Ω(
√
θ) theoretical lower bound on the performance of any feasible pricing policy in the

setting of unknown demand function. Moreover, the performance guarantee of this heuristic also
dominates the performance of the best known nonparametric scheme for single-product problem
in the literature, which is O(

√
θ log4.5 θ) (Wang et al. [38]). Can we further reduce the O(

√
θ log θ)
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revenue loss? It turns out that it is possible: If we use Stochastic Approximation algorithms (i.e.,
Kiefer-Wolfowitz and Robbins-Monro, see Broadie et al. [10]) during the exploitation phase instead
of another bisection search, then the resulting revenue loss is exactly Θ(

√
θ). Thus, we have provided

an “optimal” nonparametric pricing heuristic for the setting of a single-product problem with
inventory constraint. (In the case where the firms know the functional form of the demand function,
i.e., parametric model, the Ω(

√
θ) lower bound has been repeatedly shown to be tight. For example,

in the setting without inventory constraints, Keskin and Zeevi [27], den Boer and Zwart [19], and
Broder and Rusmevichientong [11], each proposes a parametric pricing heuristic that guarantees a
revenue loss of the order of O(

√
θ) . As for the setting with inventory constraints, recently Chen

et al. [13] propose a heuristic that exactly matches this lower bound. Their result holds for a
general parametric model with an arbitrary set of inventory constraints. Thus, they have resolved
the parametric dynamic pricing problem with inventory constraints.)

Related literature. Apart from the standard parametric and nonparametric approaches, there
are also works in the literature that consider robust optimization approach. Lim and Shanthiku-
mar [31] study a robust formulation of the classic single-product pricing problem where nature
adversarially chooses the distribution governing the demand realization. They use a conservative
max-min formulation that does not involve real-time demand learning and bears no closed form
solution in general. Eren and Maglaras [20] also study the robust setting and use a competi-
tive ratio formulation. However, they only deal with the setting without inventory constraint and
assume deterministic demand. Perakis and Roels [33] adopt both the maximin and minimax for-
mulation. Their focus is on deriving structural insights instead of proving a performance bound.
As has been noted in Cohen et al. [14], the robust optimization literature mainly focuses on static
problems and the previously realized uncertainty is not utilized to adjust the pricing decision;
this may result in a rather conservative pricing decision. Cohen et al. [14] try to bridge the gap
between robust approach and data-driven optimization by proposing algorithms that utilize the
realized demands and converges to the optimal robust solution. However, there is no theoretical
guarantee on the convergence rate of their algorithm. Rusmevichientong et al. [35] also adopt a
data-driven approach. They provide a bound on the number of samples required to guarantee a
near-optimal revenue if one uses the empirical optimal price under general consumer choice model.
Their approach is restricted to static setting, i.e., the pricing decision does not depend on the
previously realized demand uncertainties. Therefore, there is no trade-off between revenue earning
and demand learning.

On the technical side, our work is also related to three other streams of literature. The first one is
the continuum-armed bandit literature (e.g., Agrawal [1]; Auer et al. [3]; Cope [15]; and Kleinberg
[29]). While there are some high-level connections between our approach and the bandit approach,
the presence of an inventory constraint in our problems clearly distinguishes our work from theirs.
Another stream of related literature is the study of bisection search. Despite its long history and
broad prevalence, there is little work that studies its generalization into stochastic setting. To
the best of our knowledge, Waeber et al. [37] is the only work that attempts to generalize the
deterministic bisection search into a stochastic setting. However, the scope of their application is
restricted to a root-finding problem. Thus, compared to the existing studies on bisection search
method, our work is the only one that combines the challenge of stochastic setting and constrained
optimization. These distinctions do not allow any direct comparison to the existing literature.
Finally, our work is also related to the Online Convex Optimization (OCO) literature (see Cesa-
Bianchi et al. [12] for a review). OCO considers a setting where at each time period, after a decision
has been mand, nature choose a cost function adversarially. The performance of a given policy is
then compared to the policy that uses the best static action in hindsight. Although there are some
similarities in the problem formulation, the vast majority of the OCO literature restricts its scope
to convex cost functions and unconstrained setting; this clearly differentiates our work from OCO.
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Remainder of this paper. The remainder of the paper is organized as follows. In Section 2,
we introduce the problem formulation. In Sections 3 and 4, we discuss our heuristics and prove
their asymptotic bounds. Section 5 summarizes the paper and potential future research directions.
Unless otherwise noted, the details of the proofs can be found in the Appendix.

2. Problem Formulation. In this section, we first describe the problem setting and discuss
general modeling assumptions. We then introduce the deterministic analog of the original stochastic
pricing problem and discuss our performance metric.

2.1. Model setting. We consider a monopolist selling a single product with C units of initial
inventory. The selling horizon is discrete and divided into T periods. Without loss of generality, we
assume that at most one customer arrives during each period. At the beginning of period t, the firm
first posts the price pt and in turn induces a stochastic demand Dt(pt) with rate λ(pt) =E[Dt(pt)].
Note that, since at most one customer arrives during each period, the term λ(pt) can be interpreted
as the probability of a request during period t given pt. Demands across different periods are
assumed to be independent. Let r(p) = pλ(p) denote the revenue rate and pu its unique maximizer.
Also, let Ωp and Ωλ denote the convex set of feasible prices and demand rates, respectively. We
make the following assumptions on the underlying demand and revenue rate functions:

Modeling Assumptions

A1. The function λ(·) : Ωp→Ωλ is invertible and twice-differentiable. Moreover, λ(p) is strictly
decreasing in p, i.e., there exists a constant L> 0 such that |λ′(p)| ≥L. We will use p(·) : Ωλ→Ωp

to denote the inverse of λ(·).

A2. The function r(p) is strictly unimodal. In addition, r(λ) := p(λ)λ is strictly concave in λ.
(By abuse of notation, we will often write r(λ) instead of r(p) to denote the direct dependency of
revenue on demand rate instead of price.)

A3. λ(p) and p(λ) are Lipschitz continuous with a factor K > 0, i.e., ∀p, p′ ∈Ωp, |λ(p)−λ(p′)| ≤
K|p− p′|, and ∀λ,λ′ ∈Ωλ, |p(λ)− p(λ′)| ≤K|λ−λ′|.

A4. There exists a “shut-off” price p∞ such that if {pk} is any price sequence satisfying pk→ p∞,
then we have λ(pk)→ 0.

A5. There exists positive constants ML <MU such that 0>−ML ≥ r′′(λ)≥−MU and ML|p−
pu| ≤ |r′(p)| ≤MU |p− pu|.

Assumptions A1-A4, together with the first part of A5, are quite natural and have been repeat-
edly used in the literature (cf. Besbes and Zeevi [6], Wang et al. [38]). In particular, the existence
of shut-off price allows the firm to effectively shut down the demand whenever desired. The second
part of A5 is needed only for the analysis of Stochastic Approximation algorithms in Section 3.3.
(They are standard assumptions in the Stochastic Approximation literature, e.g., Broadie et al.
[10].)

2.2. The stochastic and deterministic pricing problems. We say that a pricing policy
π := (pπt : 0≤ t≤ T ) is non-anticipating if the decision pπt at the beginning of period t only depends
on past prices {pπs : 0≤ s < t} and past demand observations {Ds(p

π
s ) : 0≤ s < t}. Furthermore, we

also say that a pricing policy π is admissible if pπt ∈Ωp for all t and π is non-anticipating. Let Π
denote the set of all admissible pricing policies. The stochastic formulation of the dynamic pricing
problem is given by
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J∗ = max
π∈Π

E

[
T∑
t=1

pπt ·Dt(p
π
t )

]
such that

T∑
t=1

Dt(p
π
t )≤C a.s. (1)

The deterministic analog of the above pricing problem is

JD = max
pt∈Ωp

T∑
t=1

r(pt) such that
T∑
t=1

λ(pt)≤C. (2)

By assumption A1, the above deterministic problem can also be written as

JD = max
λt∈Ωλ

T∑
t=1

r(λt) such that
T∑
t=1

λt ≤C. (3)

Let {pDt } denote the unique optimal solution of (2); correspondingly, we also define λDt := λ(pDt ).
Since the demand function is time-homogeneous, it can be shown that pDt = pD for all t (see
Gallego and van Ryzin [22] for proof). Thus, the optimal deterministic price is static. For analytical
tractability, we will assume that both pD and pu lie in a proper interior of Ωp. We state this
assumption formally below.

A6. There exists 0< p< p̄ such that such that pD, pu ∈ [p, p̄]⊂Ωp.

2.3. Performance metric and asymptotic setting. Let Jπ denote the expected revenue
earned under pricing policy π. It is known that JD is an upper bound for the expected revenue
under any admissible policy, i.e., JD ≥ Jπ for all π ∈Π (see Gallego and van Ryzin [22] for proof,
we omit the details). Thus, following the convention in the literature, as our performance metric,
we will define the revenue loss of an admissible policy π as Rπ = JD − Jπ. Since it is typical for
revenue management firms to sell a large inventory during a selling season, following the standard
setting in the literature, in this paper we will consider a sequence of increasing problems where we
scale both the size of the initial inventory level and the number of selling periods by a factor of
θ > 0. To be precise, the θth problem is parameterized by (Cθ, Tθ) = (θC, θT ). Let JDθ denote the
optimal value of the deterministic problem (2) with scaling factor θ (it is not difficult to see that
JDθ = θJD) and let Jπθ denote the expected revenue under policy π for a problem with scaling factor
θ. (Throughout this paper, the subscript θ will be consistently used as a reference to the problem
with scaling factor θ.) Our objective is to study the asymptotic behavior of Rπθ = JDθ − Jπθ as θ
grows large. The scaling parameter θ can be interpreted as the size of the potential market, which
is often large in the application of dynamic pricing. Ideally, we would expect that a good policy
will have an expected revenue loss which grows relatively slowly with respect to θ. Notationwise,
we will use f(θ) =O(g(θ)) to mean that f(θ)≤M1g(θ) for some constant M1 > 0 and for all large
n. Likewise, f(θ) = Θ(g(θ)) means that there exist constants 0 <M2 <M3 such that M2g(θ) ≤
f(θ)≤M3g(θ) for large enough n and f(θ) = Ω(g(θ)) means that there exists a constant M4 > 0
such that f(θ)≥M4g(θ) for all large n. For notational simplicity, whenever there is no confusion,
we will often suppress the dependency on θ.

3. Main Results. In this section, we first introduce a generalization of the standard bisection
search heuristic to a stochastic and constrained problem. We then discuss two improvements of the
basic bisection heuristic to further reduce the asymptotic revenue loss bound. (The proofs of these
results can be found in Section 4.)
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3.1. Preliminary ideas. The departure point for the construction of our heuristics is a struc-
tural property of the optimal solution of the deterministic problem (2). It is known (e.g., Gallego
and van Ryzin [22]) that the optimal deterministic policy is a static price control where the firms
apply the same price pD = max{pu, pc} until stock-out, where pc = argminp∈Ωp

|λ(p)−C/T |. For
analytical tractability, we will assume that λ(p̄)< C/T , which implies pc = p (C/T ). (This is the
original static price control in Gallego and van Ryzin [22] and can be easily satisfied, for example,
if the feasible set Ωp is sufficiently large.) Intuitively, the static control prescribes that the firms
apply the unconstrained optimal price if inventory is abundant, and the clearance price if inventory
is scarce. If the firm knows pD and applies it to the stochastic pricing problem until the inventory
is depleted, then it incurs a revenue loss of order O(

√
θ) (Gallego and van Ryzin [22] ). Jasin [25]

show that this bound cannot be improved in general, i.e., the revenue loss of static price policy is
Θ(
√
θ). Motivated by the good performance of static price policy in the case where pD is known,

one fruitful idea that has been exploited in the literature (e.g., Besbes and Zeevi [6]; Wang et al.
[38]) is to design an algorithm whose resulting price sequence converges to pD in the long run. In
this paper, we will follow the same strategy and try to efficiently estimate pD.

3.2. Heuristic #1: Generalized Bisection Search. The key idea behind our first heuristic
is to generalize the classical bisection search into a stochastic setting with constraint. Before pre-
senting the complete algorithm for our heuristic, we first define a price experimentation subroutine
that will be repeatedly used throughout the paper. We parametrize the subroutine with I ⊂ [p, p̄]
and N ∈R, where I denotes the sampling price range and N denotes the sampling frequency.

Bisection Sampling Subroutine. BiSamp(I,N)

a. Divide I into 3 intervals of equal length.
Let S := {pl, l= 1,2,3,4} be the resulting endpoints of each interval.

b. For each l, apply pl for N consecutive periods.

c. Compute the empirical mean rates

r̂(pl) =
total revenue incurred by pl

N
and

λ̂(pl) =
total demand incurred by pl

N
, l= 1,2,3,4

Note that r̂(·) denotes the empirical revenue rate and λ̂(·) denotes the empirical demand rate.
The complete algorithm for our first heuristic is given below.

Bisection Dynamic Pricing Algorithm (BDPA).

Step 1: Initialization
Define p

1
= p, p̄1 = p̄ and I1 = [p

1
, p̄1] to be the starting interval.

Step 2: Shrinking the Interval
For k= 1, ..., τθ, do:

a. Execute BiSamp(Ik,Nk,θ) as long as the inventory level is still positive.
If the inventory is depleted, apply p∞ until time Tθ.
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b. If r̂(pk,2)< r̂(pk,3), define p
k+1

= pk,2, p̄k+1 = pk,4;

If r̂(pk,2)≥ r̂(pk,3) and λ̂(pk,3)<C/T −∆k,θ, define p
k+1

= pk,1, p̄k+1 = pk,3;

If r̂(pk,2)≥ r̂(pk,3) and λ̂(pk,3)>C/T + ∆k,θ, define p
k+1

= pk,2, p̄k+1 = pk,4;

If r̂(pk,2)≥ r̂(pk,3) and |λ̂(pk,3)−C/T | ≤∆k,θ, define p
k+1

= pk,2, p̄k+1 = pk,4;

c. Define the price range for the next iteration Ik+1 = [p
k+1

, p̄k+1].

Step 3: Applying Near-Optimal Static Price
Apply p̂Dθ = 1

2
(p
τθ+1

+ p̄τθ+1) until the end of selling horizon. Apply p∞ if inventory is depleted.

The above algorithm is defined by three groups of parameters: τθ, which is the total number of
rounds of bisection search performed; ∆k,θ, which serves as the tolerance level for stochastic error
and will be elaborated in Section 4; and Nk,θ, which denotes the sampling frequency. The value of
these parameters must be carefully chosen. For example, if Nk,θ is too large, we would be spending
too much time on sampling sub-optimal prices instead of converging to the optimal static price. If,
on the other hand, Nk,θ is too small, we may not be able to accurately estimate the revenues and
demand rates at different prices, which may lead to mis-identification of the optimal static price.
If ∆k,θ is too large, we will not be able to know with a high enough probability whether certain
price violates the capacity constraint; if ∆k,θ is too small, we will need to increase the sampling
frequencies accordingly. Below, we provide an explicit choice of parameters that will be used in our
analysis:

τθ = sup

{
n∈N : 4 ·

n∑
k=1

Nk,θ ≤ Tθ

}
, Nk,θ =

⌈(
3

2

)4k

log2 Tθ

⌉
, ∆k,θ =

(
2

3

)2k

log−1/4 Tθ,

where dxe= inf{y≥ x : y ∈N}. We make two observations: First, we define τθ to be the maximum
number of full-rounds bisection search until the end of the selling season. Since the intervals gen-
erated by BDPA keep shrinking to the optimal static price with a high probability, such choice
potentially has the smallest revenue loss. Second, the sampling frequencies Nk,θ are increasing in
k, whereas the error tolerances ∆k,θ are decreasing in k. The reasoning behind these choices are
intuitive: As the price interval shrinks, the revenue difference at two different prices within the
interval decreases and yet the magnitude of stochastic noise does not change. Thus, more samples
are needed to guarantee a more accurate estimate of the revenue rate, and smaller error tolerances
are required. We state our first result below.

Theorem 1. Under the aforementioned choice of parameters, we have:

RBDPAθ =O(θ3/4 log1/2 θ).

It is noteworthy that the performance guarantee in Theorem 1 is of the same order as the
performance of nonparametric algorithm in Besbes and Zeevi [6]. This result, however, is not
very satisfactory as there is still a big gap between the upper bound on the revenue loss and
the theoretical lower bound of Ω(θ). The reason behind this relatively poor performance is that
BDPA tries to estimate pu and pc simultaneously and utilize the fact that pD is the maximum of
the two prices to estimate pD. However, if we know the true identity of pD, the original pricing
problem can be simplified into either a unconstrained optimization problem (when pD = pu) or a
root-finding problem (when pD = pc). Both problems can be solved in more loss-efficient manners
than the original pricing problem. This enlightens us to first explore the identity of pD, then exploit
this identity using a more loss-efficient algorithm. The following two subsections are devoted to
expanding this idea and achieve a better performance.
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Remark 1. The iterative procedure in Step 2 helps us to shrink the size of price range while at
the same time making sure that the new interval still contains the optimal static price. The key idea
is to distinguish which of the three intervals does not contain pu (or pc) through revenue (or demand)
rates comparison. To understand the reasoning behind the four scenarios in Step 2b, suppose that
demand is deterministic and pD ∈ Ik for some k≥ 1. (In this case, the Bisection Sampling Routine
gives us the true demand and revenue rate, i.e., r̂(p) = r(p), λ̂(p) = λ(p).) Now, if r(pk,2)< r(pk,3),
by unimodality of r(·) we know that pu ≥ pk,2. Then we know that pD = max{pu, pc} ≥ pk,2 and can
safely delete [pk,1, pk,2) for the next round. This explains the intuition behind the first scenario. As
for the second scenario, if r(pk,2)≥ r(pk,3), then pu ≤ pk,3. Moreover, if λ(pk,3)<C/T −∆k,θ, then
pc ≤ pk,3 (because λ(·) is decreasing). This implies that pD ≤ pk,3 and, thus, we can safely delete
[pk,3, pk,4) for the next round. If, on the other hand, λ(pk,3)≥C/T−∆k,θ, then for a sufficiently small
∆k,θ, p

c belongs to a small region near pk,3 such that pc ≥ pk,2. Then we know pD = max{pu, pc} ≥
pk,2 and can safely delete [pk,1, pk,2) for the next round. This explains the intuition behind the
third and fourth scenarios. If the demand observations are stochastic, as long as the empirical
mean rates (r̂(·) and λ̂(·)) are close enough to the true rates (r(·) and λ(·)), we can infer the true
order relationships with high probability. As an example, Figure 3.1 illustrates the intuition behind
scenario 3. The black boxes in Figure 3.1(b) and (d) denote the ranges where λ̂(·) and r̂(·) fall with
high probability, while Figure 3.1(a) and (c) show their respective deterministic counterparts. If
Nk and ∆k are well-chosen, the upper blue dotted line in Figure 3.1(b) will not cross the third box,
and we can thus make correct prediction of the position of pc. Also, in Figure 3.1(d), the prediction
of the order relationship between r(pk,2) and r(pk,3) is correct as long as the middle two boxes do
not overlap along the vertical axis. As a consequence, the shrinking strategy in stochastic setting
(Figure 3.1(d)) is the same with those in deterministic setting (Figure 3.1(c)).

3.3. Heuristic #2: Double Bisection Search. It is important to note that, if pu 6= pc, then
the functional behavior of r(p) around pu and pc are different. To be precise, r(p) is approximately
quadratic around pu and is approximately linear around pc. This suggests that an efficient algorithm
must take into account the distinction between pu and pc. Broadly speaking, our heuristics can
be divided into two phases: (1) an exploration phase, during which we try to identify whether the
optimal static price is pu or pc, and (2) an exploitation phase, during which we implement a more
efficient search algorithm exploiting the identity of the optimal static price. For the exploration
phase, we will use the generalized bisection search in BDPA. For the exploitation phase, we will
use more efficient bisection search method depending on the identity of pD distinguished by the
exploration phase. The algorithm will accordingly generate a sequence of shrinking intervals that
contain the optimal static price with a very high probability.

Double-Bisection Dynamic Pricing Algorithm (D-BDPA).

Step 1-2: Same as BDPA

Step 3: Identifying the Optimal Price
If λ̂(p

τθ+1
)<C/T −∆τθ,θ, go to Step 4a; else, go to Step 4b.

Step 4a: Converge to pu when pD = pu > pc.
Define Iu1 = [pu

1
, p̄u1 ] = Iτθ+1. For k= 1, ..., τuθ , do:

a. Execute BiSamp(Iuk ,N
u
k,θ).

b. If r̂(puk,2)< r̂(puk,3), define pu
k+1

= puk,2, p̄uk+1 = puk,4; else, define pu
k+1

= puk,1, p̄uk+1 = puk,3.

c. Define the price range for next iteration Iuk+1 = [pu
k+1

, p̄uk+1].
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Apply p̂Dθ = 1
2
(pu
τu
θ

+1
+ p̄uτu

θ
+1) until the end of selling horizon. Apply p∞ if inventory is depleted.

Step 4b: Converge to pc when pD = pc ≥ pu.
Define Ic1 = [pc

1
, p̄c1] = Iτθ+1. For k= 1, ..., τ cθ , do:

a. Execute BiSamp(Ick,N
c
k,θ).

b. If λ̂(pck,2)>C/T + ∆c
k,θ, define pc

k+1
= pck,2, p̄ck+1 = pck,4; else, define pc

k+1
= pck,1, p̄ck+1 = pck,3.

c. Define price range of next iteration Ick+1 = [pc
k+1

, p̄ck+1].

Apply p̂Dθ = 1
2
(pc
τc
θ

+1
+ p̄cτc

θ
+1) until the end of selling horizon. Apply p∞ if inventory is depleted.

We introduce some more parameters: τuθ , and τ cθ , which are the numbers of rounds of bisection
search performed during exploitation phase (Step 4), respectively; ∆c

k,θ, which serve as the tolerance
level for stochastic error; and N c

k,θ and Nu
k,θ, which denote the sampling frequencies. As for the old

parameters, we use the same Nk,θ and ∆k,θ, but different τθ, since now the exploration phase only
lasts for a few periods. Below, we provide an explicit choice of parameters which will be used in
our analysis:

λ(p)

ppk,1 pk,2 pk,3 pk,4

C
T

pc

(a)Deterministic demand comparison

λ(p)

ppk,1 pk,2 pk,3 pk,4

C
T

λ̂(pk,3)

2∆k

pc

(b)Stochastic demand comparison

r(p)

ppk,1 pk,2 pk,3 pk,4pcpu

λ(p) < C
T

Ik+1

Ik

(c)Deterministic demand and revenue comparison

r(p)

ppk,1 pk,2 pk,3 pk,4pc

r̂(pk,2)
r̂(pk,3)

pu

λ(p) < C
T

Ik+1

Ik

(d)Stochastic demand and revenue comparison

Figure 3.1. Convergence Behavior of Scenario 3, Step 2b in BDPA during kth round.
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τθ = sup

{
n∈N : 4 ·

n∑
k=1

Nk,θ ≤ log3 Tθ

}

τuθ = sup

{
n∈N : 4 ·

n∑
k=1

Nu
k,θ ≤ Tθ− 4 ·

n∑
k=1

Nk,θ

}
,

τ cθ = sup

{
n∈N : 4 ·

n∑
k=1

N c
k,θ ≤ Tθ− 4 ·

n∑
k=1

Nk,θ

}
,

N c
k,θ =

⌈(
3

2

)2k

log2 Tθ

⌉
, Nu

k,θ =

⌈(
3

2

)4k

log3 Tθ

⌉
, ∆c

k,θ =

(
2

3

)k
log−3/8 Tθ

We make several observations here. First, we set τθ such that the length of the exploration phase
does not exceed log3 Tθ, which is relatively short for large enough θ. This means that only a small
number of price experimentations are needed to correctly identify (with a very high probability)
whether pD = pu or pD = pc. Secondly, the definitions of τuθ and τ cθ follow from the fact that,
during the exploration phase, we try to perform as many full-rounds of bisection search as possible
until the end of the selling season. Thirdly, the sampling frequencies (Nu

k,θ,N
c
k,θ) and tolerance of

error (∆c
k,θ) are different in exploitation phase comparing with those parameters in exploration

phaseNk,θ. These along with different shrinking strategy provide better performance. We state our
result regarding the performance of D-BDPA below.

Theorem 2. Under the aforementioned choice of parameters, we have:

RD−BDPAθ =O(
√
θ log θ).

Theorem 2 tells us that D-BDPA is asymptotically optimal. Moreover, its performance guarantee
dominates the performance guarantee of any existing nonparametric algorithm in the literature,
including the O(

√
θ log4.5 θ) of Wang et al. [38], and is very close to the known theoretical lower

bound of Ω(
√
θ). In the next subsection we will show that if we replace the bisection search during

the exploitation phase with Stochastic Approximation algorithm, then we can exactly match the
lower bound.

3.4. Heuristic #3: Bisection Search and Stochastic Approximation. Stochastic
Approximation refers to a class of iterative stochastic optimization algorithms. We refer to [30]
for a comprehensive review. Broadly speaking, stochastic approximation algorithms can be divided
into two different types: those that are try to solve a root-finding problem and those who try
to stochastically estimate the maximum of a unimodal function. In this work, we consider the
first and prototypical algorithms of this kind, i.e. Robbins-Monro (Robbins and Monro [34]) and
Kiefer-Wolfowitz algorithms (Kiefer and Wolfowitz [28]). Let Rt(pt) = pt ·Dt(pt) denotes the real-
ized revenue during period t under pt, and define PX(x) = arg miny∈X ||y−x|| to be the geometric
projection function. The complete description of the combined bisection search and Stochastic
Approximation algorithm is given below.

SA-Bisection Dynamic Pricing Algorithm (SA-BDPA).

Steps 1 - 3: Same as D-BDPA

Step 4a: Converge to pu when pu > pc. (Kiefer-Wolfowitz Scheme)
Let pu1 = p

τθ+1
. For k= 1, ..., τuθ , do:
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a. Sample the revenue rate at price puk + cuk at period 4
∑τθ

k=1Nk + 2k− 1, and puk − cuk at period
4
∑τθ

k=1Nk + 2k respectively; if inventory is depleted, apply p∞.

b. Update the price according to

puk+1 = PIτθ+1

[
puk + auk

Rk(p
u
k + cuk)−Rk(puk − cuk)

cuk

]
.

Step 4b: Converge to pc when pc ≥ pu. (Robbins-Monro Scheme)
Let pc1 = p

τθ+1
. For k= 1, ..., τ cθ , do:

a. Sample the revenue rate at price pck for one period; if inventory is depleted, apply p∞.

b. Update the price according to

pck+1 = PIτθ+1

[
pck + ack

(
C

T
−Dk(p

c
k)

)]
.

Note that SA-BDPA is parameterized by τθ, ∆k,θ, Nk,θ, a
u
k , ack, and cuk . (The auk , ack, and cuk are

standard parameters in Stochastic Approximation algorithm, see Broadie et al. (2011).) We state
a theorem.

Theorem 3. Under the same choice of τθ, ∆k,θ, and Nk,θ as in Theorem 1 and a proper choice
of auk, ack, and cuk, we have:

RSA−BDPAθ =O(
√
θ). (4)

It is noteworthy that Besbes and Zeevi [6] also discuss a potential application of SA algorithms
in their work. Specifically, they propose to apply the two types of SA schemes consecutively during
the exploration phase to estimate pu and pc. At the end of the exploration phase, they propose
that we choose the maximum of the two estimates and apply it during the remaining selling season
until stock-out. The difference between their proposal and ours is obvious: They intend to use SA
as an exploration algorithm while we use it as an exploitation algorithm. They conjecture that
the revenue loss of their proposed SA-based dynamic pricing heuristic would be O(θ2/3), which is
worse than ours.

4. Proof of Results. In this section, we will mainly discuss the proof of Theorem 2 and 3.
We start by providing an outline of the proof in Section 4.1. The remaining details of the proof
can be found in Sections 4.2 - 4.7 and in the Appendix at the end of this paper. As for the proof
of Theorem 1, since it is very similar with proof of Theorem 2, we only discuss the outline briefly
in Section 4.1.

4.1. Outline of the Proofs and Key Lemmas. We first discuss the outline of the proofs.
For analytical convenience, we will consider a slightly modified pricing policy called Modified D-
BDPA (MD-BDPA) and Modified SA-BDPA (MSA-BDPA), respectively, which operate exactly
as D-BDPA and SA-BDPA with the exception that it does not apply p∞ when the seller runs
out of inventory. Under MD-BDPA and MSA-BDPA, any excess demand beyond the available
inventory can be outsourced at a unit price of 2p̄. Since pt < 2p̄ for all pt ∈ [p, p̄], obviously, we have
JMD−BDPA ≤ JD−BDPA and JMSA−BDPA ≤ JSA−BDPA. Thus, in order to bound J∗−JD−BDPA and
J∗−JSA−BDPA, it suffices that we compute a bound for each J∗−JMD−BDPA and J∗−JMSA−BDPA.
The outline of the proof of Theorems 2 and 3 is as follows:
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1. Bounding the Probability of Converging to pD in Step 2

We compute a lower bound for the probability that the optimal deterministic price pD lies in Ik
for all k in Step 2. This is critical to ensure that the final interval in the exploration phase contains
pD with a high probability. Define E1 :=∩τθ+1

k=1 {pD ∈ Ik}. We state a lemma.

Lemma 1. Under the choice of parameters given in section 4.2, there exists a constant C1 > 0

independent of θ≥ 1 such that P (E1)≥ 1−C1
(log log θ)2

θ
.

The proof of Lemma 1 can be found in Section 4.2. It is not difficult to show that, after τθ rounds
of bisection search in Step 2, the length of the remaining feasible price interval is of order log−1/4 θ
(see Section 3.2). So, Lemma 1 tells us that, by the end of the exploration phase, we are already
sufficiently “close” to the optimal price (not close enough for us to ignore the exploitation phase
and simply apply fixed price throughout the remaining selling horizon as in Besbes and Zeevi [6],
but close enough for us to distinguish the identity of the optimal price).

2. Bounding the Probability of Distinguishing the Identity of pD in Step 3

Once we guarantee that pD ∈ Iτθ+1 with a high probability, we also need to guarantee that the
action in Step 3 correctly distinguishes the identity of the optimal deterministic price with a high
probability. If pD = pu > pc, then we expect that the empirical demand rate at a point close to
pD will be much smaller than C/T . Similarly, if pD = pc ≥ pu, the empirical demand rate at a
point close to pD will be very close to C/T . Define E2 := {λ̂(p

τθ+1
)<C/T −∆τθ,θ} if pu > pc and

E2 := {λ̂(p
τθ+1

)≥C/T −∆τθ,θ} otherwise. We state our second lemma.

Lemma 2. Under the choice of parameters given in section 3.2, there exists a constant C2 > 0

independent of θ≥ 1 such that P (E1 ∩E2)≥ 1−C2
(log log θ)2

θ
.

The proof of Lemma 2 can be found in section 4.3.

3. Bounding the Revenue Loss in Step 4

After we know the identity of pD, we can then properly bound the revenue loss incurred during
the exploitation phase. Note that, by definition of τθ, the total revenue loss incurred during the
exploitation phase is only O(log3 θ). So, all that matters is the revenue loss incurred during the
exploitation phase. In particular, by definition of π ∈ {MD-BDPA, MSA-BDPA}, we can write:

Jπθ = E

[
Tθ∑
t=1

ptDt(pt)

]
− 2p̄ E

( Tθ∑
t=1

Dt(pt)−Cθ

)+
 .

(Above, we suppress the notational dependency on π.) The bulk of the arguments in the rest of
the analysis are in showing that

E

[
Tθ∑
t=1

ptDt(pt)

]
= r(pD)Tθ−O(

√
θ log θ) (for Theorem 2)

E

[
Tθ∑
t=1

ptDt(pt)

]
= r(pD)Tθ−O(

√
θ) (for Theorem 3)



Lei, Jasin, and Sinha: Near-Optimal Bisection Search for Nonparametric Dynamic Pricing with Inventory Constraint
Ross School of Business, University of Michigan 2014 13

E

( Tθ∑
t=1

Dt(pt)−Cθ

)+
 = O(

√
θ) (for Theorems 2 and 3),

which completes the proof. We now briefly explain how D-BDPA achieves this order of performance.
(See section 4.4 and 4.5 for the parts regarding Theorem 2. We defer the proof of Theorem 3 in
appendix since there are some similarities.) Assuming that the sequence of price intervals produced
by D-BDPA converges to pD, which happens with high probability. Since the exploration phase is
relatively small, we can simply lower bound the collected revenue by zero. Now for the exploration
phase, notice that if pu is the optimal static price, the revenue function is relatively “flat” near pu

in the sense that it is approximately quadratic (see Lemma 3(i)). Hence, to correctly distinguish
the order relationship of the demand rates at two different prices, we need to sample more, i.e.
Nu
k,θ = Θ(( 3

2
)4k log2 θ). On the other hand, the convergence of revenue rate around pu can be show

to be quadratic (see Lemma 3(iii)). Now, assume without loss of generality that the selling season

ends at the last period of the (τuθ )th round of bisection search. Notice that |Iuk |= Θ
((

2
3

)2k
log−1/4 θ

)
(see Section 4.4) and contains pD with high probability, the revenue loss during Step 4a is of the
order of

O

 τuθ∑
k=1

(
2

3

)2k

Nu
k,θ

=O

 τuθ∑
k=1

(
3

2

)2k

log3/2 θ

=O

((
3

2

)2τuθ

log3/2 θ

)
=O(

√
θ log θ),

where the last inequality follows from Lemma 4. Now, if pc is the optimal static price, the demand
function is relatively “steep” near pu in the sense that it is approximately linear (see Lemma 3(ii)).
And accordingly we sample less frequently i.e. N c

k,θ = Θ((3
2
)2k log2 θ). However, the convergence of

revenue rate around pc can be show to be linear (see Lemma 3(iii)), which is slower comparing with

the case that pD = pu. Again, notice that |Ick|= Θ
((

2
3

)2k
log−1/4 θ

)
(see Section 4.4) and contains

pD with high probability, the revenue loss during Step 4n is of the order of

O

 τcθ∑
k=1

(
2

3

)k
N c
k,θ

=O

 τcθ∑
k=1

(
3

2

)k
log7/4 θ

=O

((
3

2

)τcθ
log7/4 θ

)
=O(

√
θ log θ),

where the last inequality follows from Lemma 4.

Building upon the intuition, we briefly explain the intuition behind the order of the performance
guarantee of BDPA. Notice that BDPA executes bisection search without distinguishing the identity
of pD. As a consequence, it has to sample with higher frequency (Nk,θ = Nu

k,θ > Nk,θ, since r(p)
is flat around pu) without knowing if the revenue convergence rate is quadratic (pD = pu) or
linear (pD = pc). Then, if the optimal price is pc, BDPA will clearly suffer from oversampling.
Quantitatively speaking, the revenue loss of BDPA is of the order of

O

τBDPAθ∑
k=1

Nk,θ

(
2

3

)k=O

τBDPAθ∑
k=1

(
3

2

)3k

log2 θ

=O

((
3

2

)3τBDPAθ

log2 θ

)
=O(θ3/4 log1/2 θ),

where τBDPAθ = sup{n∈N : 4
∑n

k=1Nk,θ ≤ Tθ} is the rounds of bisection search performed in BDPA

and satisfies ( 3
2
)τ
BDPA
θ = Θ(θ1/4 log−1/2 θ).

Below, we state two lemmas that will be repeatedly used in the proof.
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Lemma 3. (i) There exists a constant Ku > 0 such that for all pa, pb ∈ [p, p̄], if pu > pa > pb (or
pb > pa > p

u), then r(pa)− r(pb)≥Ku(pa− pb)2.
(ii) For any pa, pb ∈ [p, p̄], we have |λ(pa)−λ(pb)| ≥L|pa− pb| for some positive constant L.

(iii) For any p∈ [p, p̄], we have r(pu)−r(p)≤ MuK
2

2
(pu−p)2 and r(pc)−r(p)≤ (1+2Kp̄)|pc−p|.

Lemma 4. The following identities hold: τθ = Θ(log log θ), τuθ = Θ(log θ), and τ cθ = Θ(log θ).
Moreover, (

3

2

)τθ
= Θ

(
log1/4 θ

)
,

(
3

2

)4τuθ

= Θ

(
θ

log3 θ

)
, and

(
3

2

)2τcθ

= Θ

(
θ

log2 θ

)
.

The first two parts of the first lemma tells us the “distinctiveness” of the revenue and demand
function. They will provide useful guidelines for the choice of sampling frequencies. The third part
of the first lemma provides upper bounds on the revenue loss depending on the identity of pD. The
second lemma quantifies the exact order of τθ, τ

u
θ , and τ cθ .

4.2. Proof of Lemma 1. By De Morgan’s law and sub-additivity of probability measure, we
have

P
(
Ē1

)
= P (∪τθ+1

k=1 {pD /∈ Ik})≤
τθ+1∑
k=1

P (pD /∈ Ik),

where Ē is the complement of E. For k > 1, we can bound:

P (pD /∈ Ik) = P (pD /∈ Ik|pD ∈ Ik−1)P (pD ∈ Ik−1) +P (pD /∈ Ik|pD /∈ Ik−1)P (pD /∈ Ik−1)
≤ P (pD /∈ Ik, pD ∈ Ik−1) +P (pD /∈ Ik−1)
≤ · · ·

≤
k−1∑
j=1

P (pD /∈ Ij+1, p
D ∈ Ij)

where the last inequality follows from P (pD /∈ I1) = 0. Substituting them back into the bound for
P (Ē1) and using the fact that P (pD 6∈ I1) = 0, we get:

P
(
Ā1

)
≤

τθ+1∑
k=2

k−1∑
j=1

P (pD /∈ Ij+1, p
D ∈ Ij) =

τθ∑
k=1

(τθ− k+ 1)P (pD /∈ Ik+1, p
D ∈ Ik).

We will now proceed to bound the term P (pD /∈ Ik+1, p
D ∈ Ik) for k= 1, ..., τθ. Define five groups

of events B1
k, ...,B

5
k as follows:

B1
k = {r̂(pk,2)< r̂(pk,3), pu < pk,2},

B2
k = {r̂(pk,2)≥ r̂(pk,3), pu > pk,3},

B3
k = {λ̂(pk,3)<C/T −∆k,θ, p

c > pk,3},
B4
k = {λ̂(pk,3)>C/T + ∆k,θ, p

c < pk,3},
B5
k = {|λ̂(pk,3)−C/T | ≤∆k,θ, p

c < pk,2}.

We claim that:

P (pD /∈ Ik+1, p
D ∈ Ik)≤

5∑
l=1

P (Bl
k), ∀k (5)
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To prove this, first, note that, per the description of our algorithm, there are four different cases
in Step 2(b) that we can enter in round k. So, we can bound:

P (pD /∈ Ik+1, p
D ∈ Ik) ≤ P (r̂(pk,2)< r̂(pk,3), pD /∈ Ik+1, p

D ∈ Ik)
+P (r̂(pk,2)≥ r̂(pk,3) , λ̂(pk,3)<C/T −∆k,θ, p

D /∈ Ik+1, p
D ∈ Ik)

+P (r̂(pk,2)≥ r̂(pk,3), λ̂(pk,3)>C/T + ∆k,θ, p
D /∈ Ik+1, p

D ∈ Ik)
+P (r̂(pk,2)≥ r̂(pk,3), |λ̂(pk,3)−C/T | ≤∆k,θ, p

D /∈ Ik+1, p
D ∈ Ik).

Now, if pD = pu > pc, we have:

P (r̂(pk,2)< r̂(pk,3), pu /∈ Ik+1, p
u ∈ Ik)

= P (r̂(pk,2)< r̂(pk,3), pu ∈ [pk,1, pk,2), pu ∈ Ik)
≤ P (r̂(pk,2)< r̂(pk,3), pu < pk,2, p

u ∈ Ik)
≤ P (B1

k).

P (r̂(pk,2)≥ r̂(pk,3), λ̂(pk,3)<C/T −∆k,θ, p
u /∈ Ik+1, p

u ∈ Ik)
≤ P (r̂(pk,2)≥ r̂(pk,3), pu ∈ (pk,3, pk,4], pu ∈ Ik)
≤ P (B2

k).

P (r̂(pk,2)≥ r̂(pk,3), λ̂(pk,3)>C/T + ∆k,θ, p
u /∈ Ik+1, p

u ∈ Ik)
= P (r̂(pk,2)≥ r̂(pk,3), λ̂(pk,3)>C/T + ∆k,θ, p

u ∈ [pk,1, pk,2), pu ∈ Ik)
≤ P (r̂(pk,2)≥ r̂(pk,3), λ̂(pk,3)>C/T + ∆k,θ, p

u < pk,2)
≤ P (λ̂(pk,3)>C/T + ∆k,θ, p

c < pk,2) (because pD = pu > pc)
≤ P (B4

k).

P (r̂(pk,2)≥ r̂(pk,3), |λ̂(pk,3)−C/T | ≤∆k,θ, p
u /∈ Ik+1, p

u ∈ Ik)
= P (r̂(pk,2)≥ r̂(pk,3), |λ̂(pk,3)−C/T | ≤∆k,θ, p

u ∈ [pk,1, pk,2), pu ∈ Ik)
≤ P (|λ̂(pk,3)−C/T | ≤∆k,θ, p

c < pk,2) (because pD = pu > pc)
≤ P (B5

k).

If, on the other hand, pD = pc ≥ pu, we have:

P (r̂(pk,2)< r̂(pk,3), pc /∈ Ik+1, p
c ∈ Ik)

= P (r̂(pk,2)< r̂(pk,3), pc ∈ [pk,1, pk,2), pc ∈ Ik)
≤ P (r̂(pk,2)< r̂(pk,3), pc < pk,2)
≤ P (r̂(pk,2)< r̂(pk,3), pu < pk,2) (because pD = pc ≥ pu)
= P (B1

k).

P (r̂(pk,2)≥ r̂(pk,3), λ̂(pk,3)<C/T −∆k,θ, p
c /∈ Ik+1, p

c ∈ Ik)
≤ P (λ̂(pk,3)<C/T −∆k,θ, p

c ∈ (pk,3, pk,4], pc ∈ Ik)
≤ P (B3

k).

P (r̂(pk,2)≥ r̂(pk,3), λ̂(pk,3)>C/T + ∆k,θ, p
c /∈ Ik+1, p

c ∈ Ik)
= P (r̂(pk,2)≥ r̂(pk,3), λ̂(pk,3)>C/T + ∆k,θ, p

c ∈ [pk,1, pk,2), pc ∈ Ik)
≤ P (λ̂(pk,3)>C/T + ∆k,θ, p

c < pk,2)
= P (B4

k).

P (r̂(pk,2)≥ r̂(pk,3), |λ̂(pk,3)−C/T | ≤∆k,θ, p
c /∈ Ik+1, p

c ∈ Ik)
= P (r̂(pk,2)≥ r̂(pk,3), |λ̂(pk,3)−C/T | ≤∆k,θ, p

c ∈ [pk,1, pk,2), pc ∈ Ik)
≤ P (|λ̂(pk,3)−C/T | ≤∆k,θ, p

c < pk,2)
= P (B5

k).
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Thus, in either case (i.e., pD = pu > pc or pD = pc ≥ pu), the bound in (5) holds. Put this together
with our earlier bound for P

(
Ā1

)
, we get:

P
(
Ā1

)
≤

τθ∑
k=1

(τθ− k+ 1)

[
5∑
l=1

P (Bl
k)

]
.

To complete the proof of Lemma 1, it suffices that we compute a bound for P (Bl
k) for k= 1, ..., τθ,

l= 1, ...,5, which is our remaining focus.

Upper bound for P(B1
k) and P(B2

k)

The probabilities P (B1
k) and P (B2

k) can be bounded in a similar manner. So, we will only show
how to bound P (B1

k). Fix k ∈ {1, ..., τθ}. Note that pu < pk,2 < pk,3 on Bk
1 . Then by Lemma 3

part (ii), on B1
k, r(pk,2) − r(pk,3) ≥ Ku(pk,3 − pk,2)2 = Ku( |I|

3
)2( 2

3
)2(k−1). Since |r̂(pk,l) − r(pk,l)| <

1
4
Ku( |I|

3
)2( 2

3
)2(k−1) for l ∈ {2,3} implies

r̂(pk,2)− r̂(pk,3) = (r(pk,2)− r(pk,3)) + (r̂(pk,2)− r(pk,2))− (r̂(pk,3)− r(pk,3))
≥ (r(pk,2)− r(pk,3))− |r̂(pk,2)− r(pk,2)| − |r̂(pk,3)− r(pk,3)|

> Ku

(
|I|
3

)2(
2

3

)2(k−1)

− 2

4
Ku

(
|I|
3

)2(
2

3

)2(k−1)

> 0,

by Hoeffding’s inequality (Hoeffding [24]), we can bound

P (B1
k) ≤ P

(
|r̂(pk,l)− r(pk,l)| ≥

1

4
Ku

(
|I|
3

)2(
2

3

)2(k−1)

for some l ∈ {2,3}

)

≤
3∑
l=2

P

(
|r̂(pk,l)− r(pk,l)| ≥

1

4
Ku

(
|I|
3

)2(
2

3

)2(k−1)
)

≤ 4exp

−2
Nk,θ

1
42
K2
u

(
|I|
3

)4 (
2
3

)4(k−1)

p̄2

 .

By definition, Nk,θ = Θ(
(

3
2

)4k
log2 θ). So, for all sufficiently large θ, P (B1

k)≤ 4
θ
. The same bound

also holds for P (B2
k).

Upper bound for P(B3
k) and P(B4

k)

The probabilities P (B3
k) and P (B4

k) can be bounded in a similar manner. So, we will only show
how to bound P (B3

k). Note that pc > pk,3 implies λ(pk,3)>C/T . So,

P (B3
k) ≤ P

(
λ̂(pk,3)<C/T −∆k,θ , λ(pk,3)>C/T

)
≤ P

(
λ̂(pk,3)−λ(pk,3)<−∆k,θ

)
≤ P

(
|λ̂(pk,3)−λ(pk,3)|>∆k,θ

)
.

Again, by Hoeffding’s inequality, since ∆k,θ = Θ((2
3
)2k log−1/4 θ) and Nk,θ = Θ(

(
3
2

)4k
log2 θ), for

all large θ, we have P (|λ̂(pk,3)− λ(pk,3)| ≥∆k,θ) ≤ 2exp(−2Nk,θ∆
2
k,θ) ≤ 2

θ
. The same bound also

holds for P (B4
k).

Upper bound for P(B5
k)
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By the decreasing property of demand function, pc < pk,2 implies λ(pk,2)≤ C/T . By Lemma 3
part (i), λ(pk,2)−λ(pk,3)≥L|pk,2− pk,3|=L |I|

3
( 2

3
)k−1. So, on B5

k,

λ(pk,3)− λ̂(pk,3) ≤ λ(pk,2)−L |I|
3

(
2

3

)k−1

−
(
C

T
−∆k,θ

)
≤ C

T
−L |I|

3

(
2

3

)k−1

−
(
C

T
−∆k,θ

)
≤ −1

2
L
|I|
3

(
2

3

)k−1

,

where the last inequality follows because, by definition, ∆k,θ ≤ 1
2
L |I|

3

(
2
3

)k−1
for all sufficiently large

θ. Now, by similar arguments as above,

P (B5
k) ≤ P

(
λ(pk,3)− λ̂(pk,3)<−1

2
L
|I|
3

(
2

3

)k−1
)

≤ P

(
|λ̂(pk,3)−λ(pk,3)|> 1

2
L
|I|
3

(
2

3

)k−1
)

≤ 2exp

−2Nk

[
1

2
L
|I|
3

(
2

3

)k−1
]2
 ≤ 2

θ
(for all sufficiently large θ) .

Put all the bounds together, we have

P
(
Ē1

)
≤

τθ∑
k=1

(τθ− k+ 1)

[
5∑
l=1

P (Bl
k)

]
≤ τθ(τθ + 1)

2
· 4
θ
· 5 =

10τθ(τθ + 1)

θ
.

Since τθ = Θ(log log θ) (see Lemma 4), we conclude that there exists a constant C1 such that

P (E1) = 1−P
(
Ē1

)
≥ 1−C1

(log log θ)2

θ
. �

4.3. Proof of Lemma 2. The proof is similar to that of Lemma 1. We will analyze the two
cases (i.e., pD = pu > pc and pD = pc ≥ pu) separately.

Case 1: pD = pc ≥ pu

If pu ≤ pc, then the optimal deterministic price pD equals pc. On E1, we know that pc = pD ∈
[p
τθ+1

, p̄τθ+1]. This implies λ(p
τθ+1

)≥ λ(pc) =C/T . So, we can bound:

1−P (E1 ∩E2) = 1−P (E1) +P (E1)−P (E1 ∩E2)
= P

(
Ē1

)
+P

(
E1 ∩ Ē2

)
≤ P

(
Ē1

)
+P

(
pc ∈ [p

τθ+1
, p̄τθ+1], λ̂(p

τθ+1
)<C/T −∆τθ,θ

)
≤ P

(
Ē1

)
+P

(
λ(p

τθ+1
)≥C/T, λ̂(p

τθ+1
)<C/T −∆τθ,θ

)
≤ P

(
Ē1

)
+P

(
λ̂(p

τθ+1
)−λ(p

τθ+1
)<−∆τθ,θ

)
≤ P

(
Ē1

)
+P

(
|λ̂(p

τθ+1
)−λ(p

τθ+1
)|>∆τθ,θ

)
≤ P

(
Ē1

)
+ 2exp

(
−2Nτθ,θ ∆2

τθ,θ

)
(by Hoeffding’s inequality)

≤ C1

(log log θ)2

θ
+

2

θ
(by Lemma 1),
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where the last inequality holds for all sufficiently large θ.

Case 2: pD = pu > pc

If pu > pc, then pD = pu and λ(pu)<λ(pc) =C/T . By definition of τθ, |Iτθ+1| and ∆τθ,θ decrease
to zero as θ→∞. Since we always have pu = pD ∈ [p

τθ+1
, p̄τθ+1] on A1, it must also hold for all

sufficiently large θ on A1 that pc < p
τθ+1

< pu, λ(p
τθ+1

)− λ(pu) ≤ (λ(pc)− λ(pu))/4, and ∆τθ,θ ≤
(λ(pc)−λ(pu))/4. Arguing as in case 1, for all large θ, we can bound:

1−P (E1 ∩E2) = P
(
Ē1

)
+P

(
E1 ∩ Ē2

)
≤ P

(
Ē1

)
+P

(
max

{
∆τθ,θ, λ(p

τθ+1
)−λ(pu)

}
≤ (λ(pc)−λ(pu))/4, λ̂(p

τθ+1
)≥C/T −∆τθ,θ

)
≤ P

(
Ē1

)
+P

(
max

{
∆τθ,θ, λ(p

τθ+1
)−λ(pu)

}
≤ (λ(pc)−λ(pu))/4, λ̂(p

τθ+1
)≥ λ(pc)−∆τθ,θ

)
≤ P

(
Ē1

)
+P

(
λ̂(p

τθ+1
)−λ(p

τθ+1
)≥ (λ(pc)−λ(pu))/2

)
≤ C1

(log log θ)2

θ
+

1

θ
,

where the last inequality follows by Lemma 1 and Hoeffding’s inequality (for sufficiently large θ).

Put the bounds from case 1 and case 2 together, we conclude that there exists a constant C2 > 0

independent of θ≥ 1 such that P (E1 ∩E2)≥ 1−C2
(log log θ)2

θ
. �

4.4. Bounding the Revenue Loss of D-BDPA Upon Entering Step 4a. Since pD =
pu > pc, for all sufficiently large θ, the following two conditions must hold: (i) pc /∈ Iu1 and (ii) r(p)
is strictly concave in Iu1 = Iτθ+1. The first condition holds because pu is strictly larger than pc and
the interval Iτθ+1 can be arbitrarily small for large θ. The second condition follows from the fact
that r(p) is locally strictly concave in the neighborhood of pu (see Lemma 3 part (i)).

Let Eu :=∩τ
u
θ
k=1{pu ∈ Iuk }. The following lemma is analogous to Lemma 1.

Lemma 5. There exists a constant C3 > 0 such that P (E1 ∩E2 ∩Eu)≥ 1−C3
(log θ)2

θ
.

We defer the proof of Lemma 5 to the appendix. Per our discussions in Section 4.1, the net
revenue of MD-BDPA is the direct revenue minus the penalty, i.e.,

JMD−BDPA
θ = E

[
Tθ∑
t=1

ptDt(pt)

]
− 2p̄ E

( Tθ∑
t=1

Dt(pt)−Cθ

)+
 .

We will now proceed to bound the two expectations separately.

Step 1: Lower Bound for Direct Revenue Collected by MD-BDPA

We claim that there exists a constant C̃1 > 0 such that

E

[
Tθ∑
t=1

ptDt(pt)

]
≥ r(pu)Tθ− C̃1

√
θ log θ.

We focus our analysis on the sample path in E1 ∩E2 ∩Eu. Define T̃ uθ,1 =
∑τθ

k=1 4Nk,θ and T̃ uθ,2 =∑τ

k=1 4Nk,θ +
∑τθ

k=1 4Nu
k,θ. The collected revenue can be lower bounded by two components as

follows:

E

[
Tθ∑
t=1

ptDt(pt)

]
≥E

 T̃uθ,2∑
t=1+T̃u

θ,1

ptDt(pt)1{E1 ∩E2 ∩Eu}
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≥E

 τuθ∑
k=1

4∑
l=1

Nu
k,θ r̂(p

u
k,l)1{E1 ∩E2 ∩Eu}

+E
[(
Tθ− T̃ uθ,2

)
r̂(p̂D)1{E1 ∩E2 ∩Eu}

]
. (6)

For the first term, note that

E

 τuθ∑
k=1

4∑
l=1

Nu
k,θ r̂(p

u
k,l)

∣∣∣∣∣∣ E1 ∩E2 ∩Eu

 =

τuθ∑
k=1

4∑
l=1

Nu
k,θ E

[
r(puk,l)| E1 ∩E2 ∩Eu

]
.

Since on event E1∩E2∩Eu, |puk,l−pu| ≤ |Iu1 |( 2
3
)k−1, then by Lemma 3(iii) we know that r(puk,l)≥

r(pu)− 9MUK
2

8
|Iu1 |2

(
2
3

)2k
. Put this together with Lemma 5 and the fact that

∑τuθ
k=1 4Nu

k,θ ≥ T̃ uθ,2 −
log3 Tθ, we have

τuθ∑
k=1

4∑
l=1

Nu
k,θE

[
r(puk,l)|E1 ∩E2 ∩Eu

]
P (E1 ∩E2 ∩Eu)

≥

 τuθ∑
k=1

4Nu
k,θ

(
r(pu)− 9MUK

2

8
|Iu1 |2

(
2

3

)2k
)(1−C3

(log θ)2

θ

)

≥ r(pu)
(
T̃ uθ,2− log3 Tθ

)
− C3 p̄

log2 θ

θ

 τuθ∑
k=1

4Nu
k,θ

− 9MUK
2

8
|Iu1 |2

 τuθ∑
k=1

4Nu
k,θ

(
2

3

)2k


≥ r(pu)T̃ uθ,2− p̄ log3 Tθ−C3p̄T log2 θ− 81

10
MUK

2|Iu1 |2 log3 Tθ

(
3

2

)2(τuθ +1)

≥ r(pu)T̃ uθ,2−Θ(
√
θ log θ),

where the last inequality follows because |Iu1 |= Θ(log−1/4 θ) and
(

3
2

)4τuθ = Θ
(

θ
log3 θ

)
(see Lemma 4).

As for the second term in the RHS of (6), by the same arguments as above,

E
[(
Tθ− T̃ uθ,2

)
r̂(p̂D)1{E1 ∩E2 ∩Eu}

]
≥
(
Tθ− T̃ uθ,2

)(
r(pu)− 9MUK

2

8
|Iu1 |2

(
2

3

)2τuθ
)(

1−C3

(log θ)2

θ

)
≥ r(pu)

(
Tθ− T̃ uθ,2

)
− C3 p̄ T log2 θ− 9MUK

2

8
|Iu1 |2 Tθ

(
2

3

)2τuθ

≥ r(pu)
(
Tθ− T̃ uθ,2

)
−Θ(

√
θ log θ),

where the last inequality follows because |Iu1 |= Θ(log−1/4 θ) and
(

3
2

)4τuθ = Θ
(

θ
log3 θ

)
. Put the bounds

for the two terms together proves our initial claim.

Step 2: Upper Bound for Total Penalty Incurred by Capacity Violation

We claim that there exists a constant C̃2 > 0 such that

2p̄ E

( Tθ∑
t=1

Dt(pt)−Cθ

)+
≤ C̃2

√
θ.
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We first analyze the sample path on E1 ∩E2 ∩Eu. We know that

E

( Tθ∑
t=1

Dt(pt)−Cθ

)+

1{E1 ∩E2 ∩Eu}


≤E

( Tθ∑
t=1

Dt(pt)−λ(pt)

)+

1{E1 ∩E2 ∩Eu}

+E

( Tθ∑
t=1

λ(pt)−Cθ

)+

1{E1 ∩E2 ∩Eu}


≤E

( Tθ∑
t=1

Dt(pt)−λ(pt)

)+
+E


T̃uθ,1∑

t=1

λ(pt)− T̃ uθ,1
C

T

+

1{E1 ∩E2 ∩Eu}


+E

 τuθ∑
k=1

4∑
l=1

Nu
k,θλ(puk,l)−

(
T̃ uθ,2− T̃ uθ,1

) C
T

+

1{E1 ∩E2 ∩Eu}


+E


 Tθ∑
t=T̃u

θ,2
+1

λ(pt)−
(
Tθ− T̃ uθ,2

) C
T


+

1{E1 ∩E2 ∩Eu}


≤E

( Tθ∑
t=1

Dt(pt)−λ(pt)

)+
+ T̃ uθ,1 +E

 τuθ∑
k=1

4∑
l=1

Nu
k,θ

(
λ(puk,l)−

C

T

)+

1{E1 ∩E2 ∩Eu}


+ E


 Tθ∑
t=T̃u

θ,2
+1

λ(pt)−
(
Tθ− T̃ uθ,2

) C
T


+

1{E1 ∩E2 ∩Eu}


≤E

( Tθ∑
t=1

Dt(pt)−λ(pt)

)+
+ log3 Tθ +

τuθ∑
k=1

4∑
l=1

Nu
k,θ E

[(
λ(puk,l)−

C

T

)+

1{E1 ∩E2 ∩Eu}

]

+ E

[(
Tθ− T̃ uθ,2

)(
λ
(
p̂D
)
− C
T

)+

1{E1 ∩E2 ∩Eu}

]
,

where the first and second inequalities follow from Jensen’s Inequality; the third inequality follows
from the boundedness of demand observation and the definition of T̃ uθ,1, T̃ uθ,2; the last inequality
follows from Jensen’s Inequality and the definition of τθ. Basically, we break the capacity violation
into four parts: stochastic randomness, and the capacity violation during Step 2, during bisection
search in Step 4 and applying p̂D in Step 4.

By Cauchy-Schwarz’s inequality and the boundedness of demand observation, the first term can
be easily bounded as follows:

E

( Tθ∑
t=1

D(pt)−λ(pt)

)+
≤

E

( Tθ∑
t=1

D(pt)−λ(pt)

)2


1/2

=

{
Tθ∑
t=1

E
[
(D(pt)−λ(pt))

2
]}1/2

≤
√
Tθ.

As for the third term, since pu > pc, which implies λ(pu) < λ(pc) = C/T , and pc /∈ Iuk for all k
(for all large θ), we always have λ(puk,l) < λ(pc) = C/T . So, (λ(puk,l)−C/T )+ = 0 for all k and l.
Similarly, since p̂D ∈ Iuτu

θ
+1, we have λ(p̂D)<C/T for all large θ. So, the last term also equals to 0.

Put the bounds together we have:

E

( Tθ∑
t=1

Dt(pt)−Cθ

)+

1{E1 ∩E2 ∩Eu}

=O(
√
θ).
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Thus, the total penalty for capacity violation satisfies

2p̄ E

( Tθ∑
t=1

Dt(pt)−Cθ

)+


= 2p̄ E

( Tθ∑
t=1

Dt(pt)−Cθ

)+

1{E1 ∩E2 ∩Eu}

+ 2p̄ E

( Tθ∑
t=1

Dt(pt)−Cθ

)+

1{E1 ∩E2 ∩Eu}


≤ 2p̄ O

(√
θ
)

+ 2p̄ TθP
(
E1 ∩E2 ∩Eu

)
=O(

√
θ),

where the last inequality follows the boundedness of demand observation.

Finally, combining our results from Steps 1 and 2 above we conclude that

JMD−BDPA
θ ≥ r(pu)Tθ− C̃1

√
θ log θ− C̃2

√
θ = r(pu)Tθ−O(

√
θ log θ). �

4.5. Bounding the Revenue Loss of D-BDPA Upon Entering Step 4b. The proof

is similar to those in section 4.2. Let Ec = ∩τ
c
θ
k=1{pc ∈ Ick}. The following lemma is the analog of

Lemma 5.

Lemma 6. There exists a constant C4 > 0 such that P
(
E1 ∩E2 ∩Ec

)
≥ 1−C4

(log θ)2

θ
.

We defer the proof of Lemma 6 to the appendix. We again consider MD-BDPA. The net revenue
generated by MD-BDPA is given by:

JMD−BDPA
θ ≥ E

[
Tθ∑
t=1

ptDt(pt)

]
− 2p̄ E

( Tθ∑
t=1

Dt(pt)−Cθ

)+
 .

Step 1: Lower Bound for Direct Revenue Collected by MD-BDPA

We claim that there exists a constant C̃3 > 0 such that

E

[
Tθ∑
t=1

ptDt(pt)

]
≥ r(pc)Tθ− C̃3

√
θ log θ.

The proof is similar to Step 1 in section 4.1. We break up the revenue on the sample path of
E1 ∩E2 ∩Ec into two parts:

E

[
Tθ∑
t=1

ptDt(pt)

]
≥E

 τcθ∑
k=1

4∑
l=1

N c
k,θ r̂(p

c
k,l)1{E1 ∩E2 ∩Ec}

+E
[(
Tθ− T̃ cθ,2

)
r̂(p̂D)1{E1 ∩E2 ∩Ec}

]
,

(7)

where T̃ cθ,1 =
∑τθ

k=1 4Nk,θ and T̃ cθ,2 =
∑τθ

k=1 4Nk,θ +
∑τcθ

k=1 4N c
k,θ. For the first term, note that

E

 τcθ∑
k=1

4∑
l=1

N c
k,θr̂(p

c
k,l)

∣∣∣∣∣∣E1 ∩E2 ∩Ec

 =

τcθ∑
k=1

4∑
l=1

N c
k,θ E

[
r(pck,l)

∣∣E1 ∩E2 ∩Ec
]
.
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Since on E1∩E2∩Ec, |pck,l−pc| ≤
3|Ic1 |

2
( 2

3
)k, by Lemma 3(iii) we know that r(pc)− r(pck,l)≤ 3

2
(1+

2Kp̄)|Ic1 |
(

2
3

)k
. Put this together with Lemma 6 and the fact that

∑τcθ
k=1

∑4

l=1N
c
k,θ ≥ T̃ cθ,2 − log3 Tθ

we have

τcθ∑
k=1

4∑
l=1

N c
k,θ E

[
r(pck,l)

∣∣E1 ∩E2 ∩Ec
]
P (E1 ∩E2 ∩Ec)

≥
τcθ∑
k=1

4N c
k,θ

[
r(pc)− 3

2
(1 + 2Kp̄)|Ic1 |

(
2

3

)k][
1−C4

log2 θ

θ

]

≥ r(pc)(T̃ cθ,2− log3 Tθ)− p̄ C4

log2 θ

θ

 τcθ∑
k=1

4N c
k,θ

− 3

2
(1 + 2Kp̄)|Ic1 |

 τcθ∑
k=1

4N c
k,θ

(
2

3

)k
≥ r(pc)T̃ cθ,2− p̄ log3 Tθ− p̄TC4 log2 θ− 18(Kp̄+ 1)|Ic1 | log2 Tθ

(
3

2

)τcθ
= r(pc)T̃ cθ,2−O(

√
θ log θ),

where the last inequality follows since |Ic1 |= Θ(log−1/4 θ) and
(

3
2

)2τcθ = Θ
(

θ
log2 θ

)
, or equivalently(

3
2

)τcθ = Θ
( √

θ
log θ

)
. (See Lemma 4)

As for the second term in the RHS of (7), by the same argument as above,

E
[(
Tθ− T̃ cθ,2

)
r̂(p̂D)1{E1 ∩E2 ∩Ec}

]
≥
(
Tθ− T̃ cθ,2

)[
r(pc)− 3

2
(1 + 2Kp̄)|Ic1 |

(
2

3

)τcθ](
1−C4

log2 θ

θ

)
≥ r(pc)

(
Tθ− T̃ cθ,2

)
− C4 p̄ T log2 θ− 3

2
(1 + 2Kp̄)|Ic1 | Tθ

(
2

3

)τcθ
≥ r(pc)

(
Tθ− T̃ uθ,2

)
−O(

√
θ log θ),

where the last inequality follows since |Ic1 |= Θ(log−1/4 θ) and
(

3
2

)2τc

= Θ
(

θ
log2 θ

)
. Put the bounds

for the two terms in together proves the initial claim.

Step 2: Upper Bound for Total Penalty Incurred by Capacity Violation

We claim that there exists a constant C̃4 > 0 such that

2p̄ E

( Tθ∑
t=1

Dt(pt)−Cθ

)+
≤ C̃4

√
θ log θ. (8)

We first analyze the sample path on E1 ∩E2 ∩Ec. We break the amount of capacity violation
into several different parts. Following the same arguments as in Step 2 in section 4.2,

E

( Tθ∑
t=1

Dt(pt)−Cθ

)+

1{E1 ∩E2 ∩Ec}


≤E

( Tθ∑
t=1

Dt(pt)−λ(pt)

)+
+ log3 Tθ +

τcθ∑
k=1

4∑
l=1

N c
k,θ E

[(
λ(pck,l)−

C

T

)+

1{E1 ∩E2 ∩Ec}

]
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+ E

[(
Tθ− T̃ cθ,2

)(
λ
(
p̂D
)
− C
T

)+

1{E1 ∩E2 ∩Ec}

]
.

By Cauchy-Schwarz’s inequality again, the first term can be upper bounded by
√
Tθ. Then since

for the sample paths on event E1 ∩ E2 ∩ Ec, |λ(pck,l) − λ(pc)| ≤ 3
2
K|Ic1 |( 2

3
)k for all k and l and

λ(pc) =C/T , we can bound

E

( Tθ∑
t=1

Dt(pt)−Cθ

)+

1{E1 ∩E2 ∩Ec}


≤
√
Tθ + log3 Tθ +

τcθ∑
k=1

4 ·N c
k,θ ·

3

2
K|Ic1 |

(
2

3

)k
+
(
Tθ− T̃ cθ,2

)
· 3
2
K|Ic1 |

(
2

3

)τcθ
≤
√
Tθ + log3 Tθ + 18K|Ic1 |

(
3

2

)τcθ
log2 Tθ +

3

2
KTθ|Ic1 |

(
2

3

)τcθ
=O(

√
θ log θ),

where the last inequality the same argument as in Step 1 above.
Then, the total penalty for capacity violation satisfies

2p̄ E

( Tθ∑
t=1

Dt(pt)−Cθ

)+


= 2p̄ E

( Tθ∑
t=1

Dt(pt)−Cθ

)+

1{E1 ∩E2 ∩Ec}

+ 2p̄ E

( Tθ∑
t=1

Dt(pt)−Cθ

)+

1{E1 ∩E2 ∩Ec}


≤O

(√
θ log θ

)
+ 2p̄ TθP (E1 ∩E2 ∩Ec) =O(

√
θ log θ).

Finally, combining our results from Step 1 and 2 above we have

JMD−BDPA
θ ≥ r(pu)Tθ− C̃3

√
θ log θ− C̃4

√
θ log θ = r(pc)Tθ−O(

√
θ log θ). �

5. Conclusion and Future Work. This paper presents a scheme of nonparametric dynamic
pricing with demand learning. Our scheme generalizes the classical bisection search algorithm into
a stochastic setting with a constraint. We show that the performance of one of our heuristics
exactly matches the theoretical lower bound for any feasible pricing policy. Thus, we have closed
the gap (in asymptotic sense) between the performance of parametric approach and nonparametric
approach for the single product problem.

There are several possible extensions of this work. One important direction is a generalization
to the multiproduct setting. Although we have focused our analysis in the paper only on the single
product setting, it is an open question whether our bisection search heuristic can also be applied to
multiproduct problem. There are at least two challenges for such an extension: First, it is not imme-
diately clear how to do bisection in high dimensional spaces. To the best of our knowledge, there
is no existing literature on applying bisection search to multidimensional constrained optimiza-
tion problem, even in the deterministic setting. Second, in multiproduct setting, nonparametric
approach might suffers from curse of dimensionality, since it has to estimate a multidimensional
function. In fact, the the order of the revenue loss of the best known nonparametric scheme for
multiproduct setting depends on the number of products in a non-trivial way (cf. Besbes and Zeevi
[7]). It is curious to see whether applying bisection search algorithm to multiproduct setting can
reduce the curse of dimensionality on revenue loss.
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Additionally, throughout the paper, we have assumed that the demand function is stationary, i.e.,
it does not vary with time. In reality however, this assumption might not hold, which suggests that
a good pricing heuristic should ideally take into account this possibility in its learning algorithm.
The challenge, however, is obvious. For dynamic pricing with non-stationary demand, it is no longer
true that the optimal solution to the deterministic problem is static pricing. This limits the ability
to exploit the structure of the optimal solution, as we did in this paper. Actually, all of the works in
non-stationary setting (Besbes et al. [5], Keskin and Zeevi [26]) consider only the problem without
inventory constraint. Moreover, it is not clear how one can generalize the bisection search heuristic
to non-stationary setting. Obviously this is an important research topic; we leave this as future
research project.

Appendix A: Proof of Theorem 3.

A.1. Bounding the Revenue Loss in SA-BDPA Upon Entering Step 4a. Following
the same arguments as in the proof of Theorem 2, we know that

JMSA−BDPA
θ ≥ E

 τuθ∑
k=1

[Rk(p
u
k + cuk) +Rk(p

u
k − cuk)]1{E1 ∩E2}


−2p̄ E

( Tθ∑
t=1

Dt(pt)−Cθ

)+
 (9)

where τuθ :=
⌊
Tθ−4

∑τ
k=1Nk

2

⌋
and E1 and E2 are as defined in Lemma 1 and Lemma 2, respectively.

We start with bounding the first term, which is the direct revenue incurred by MSA-DPA. Note

that, for all p, we have r(pu)− r(p)≤ MUK
2

2
(pu− p)2. So,

E

 τuθ∑
k=1

[Rk(p
u
k + cuk) +Rk(p

u
k − cuk)]1{E1 ∩E2}


≥

τuθ∑
k=1

E [r(puk + cuk)1{E1 ∩E2}] +

τuθ∑
k=1

E [r(puk − cuk)1{E1 ∩E2}]

≥
τuθ∑
k=1

E
[
r(pu)−MUK

2

2
(pu− puk − cuk)21{E1 ∩E2}

]
+

τuθ∑
k=1

E
[
r(pu)−MUK

2

2
(pu− puk + cuk)21{E1 ∩E2}

]

≥ 2 τuθ r(p
u)− 2MUK

2

 τuθ∑
k=1

E
[
(pu− puk)21{E1 ∩E2}

]
+ (cuk)

2


≥ r(pu)Tθ− p̄ (2 + log3 Tθ)− 2MUK

2

 τuθ∑
k=1

E
[
(pu− puk)21{E1 ∩E2}

]
+ (cuk)

2

 ,
where the last inequality follows because, by definition of τθ and τuθ , we have 2τuθ ≥ Tθ −
4
∑τθ

k=1Nk,θ − 2. As for the second term in (9), which is the total penalty incurred by capacity
violation, similar to the arguments in Step 2 in section 4.2, for sample paths on E1 ∩E2, we can
bound

E

( Tθ∑
t=1

Dt(pt)−Cθ

)+

1{E1 ∩E2}
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≤E

( Tθ∑
t=1

Dt(pt)−λ(pt)

)+
+E


4

∑τθ
k=1

Nk,θ∑
t=1

λ(pt)− 4

τθ∑
k=1

Nk,θ

C

T

+

1{E1 ∩E2}


+E

 Tθ∑
t=4

∑τθ
k=1

Nk,θ+1

λ(pt)−

(
Tθ− 4

τθ∑
k=1

Nk,θ

)
C

T

+

1{E1 ∩E2}


≤
√
Tθ + log3 Tθ + 0 =O(

√
θ),

where the third inequality follows from Cauchy-Schwarz inequality, the definition of τθ, and the
fact that pc is to the left of Iuk for all k.

Then, the total penalty for capacity violation satisfies

2p̄ E

( Tθ∑
t=1

Dt(pt)−Cθ

)+


= 2p̄ E

( Tθ∑
t=1

Dt(pt)−Cθ

)+

1{E1 ∩E2}

+ 2p̄ E

( Tθ∑
t=1

Dt(pt)−Cθ

)+

1{E1 ∩E2}


≤ O(

√
θ) + 2p̄ TθP (E1 ∩E2) =O(

√
θ).

Finally, combining the bounds for the two terms in (9), we get

JMSA−BDPA
θ ≥ r(pu)Tθ− 2MUK

2

 τuθ∑
k=1

E
[
(pu− puk)21{E1 ∩E2}

]
+ (cuk)

2

−O(
√
θ).

Applying the standard result in Stochastic Approximation (e.g. Proposition 1 in Broadie et al.
[10]), there exists positive constants Cu

a and Cu
c such that if auk =Ca/k and cuk =Cc/k

1/4 we have
E[(pu − puk)21{E1 ∩E2}]≤ Cu/

√
k, for all k ≥ 1, where Cu > 0 is also a constant. Substitute this

into the above bound, we get

JMSA−BDPA
θ ≥ r(pu)Tθ− 2MUK

2

τuθ∑
k=1

(
Cu√
k

+
C2
c√
k

)
−O(

√
θ)

≥ r(pu)Tθ− 2MUK
2(Cu +C2

c )
√
τuθ −O(

√
θ)

≥ r(pu)Tθ−O(
√
θ). �

A.2. Bounding the Revenue Loss in SA-BDPA Upon Entering for Step 4b. Follow-
ing the same arguments as in Step 1 in section 4.2, we know that

JMSA−BDPA
θ ≥ E

 τcθ∑
k=1

Rk(p
c
k)1{E1 ∩E2}

− 2p̄E

( Tθ∑
t=1

Dt(pt)−Cθ

)+
 (10)

where τ cθ := Tθ−4
∑τθ

k=1Nk,θ. For the first term in (10), note that r(pc)− r(pck)≤ (1 +Kp̄)|pc−pck|.
So, we can bound

E

 τcθ∑
k=1

Rk(p
c
k)1{E1 ∩E2}

 =

τcθ∑
k=1

E [r(pck)1{E1 ∩E2}]
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≥
τcθ∑
k=1

E [{r(pc)− (1 +Kp̄)|pc− pck|} 1{E1 ∩E2}]

≥ r(pc)Tθ− p̄ log3 Tθ− (1 +Kp̄)

τcθ∑
k=1

E [|pc− pck|1{E1 ∩E2}]

≥ r(pc)Tθ− p̄ log3 Tθ− (1 +Kp̄)

τcθ∑
k=1

√
E
[
(pck− pc)

2
1{E1 ∩E2}

]
,

where the second inequality follows by definition of τ cθ and the last inequality follows from Jensen’s
inequality. As for the second term in (10), following the same arguments as in Step 2 in section
4.2, we know that for the sample paths on E1 ∩E2,

E

( Tθ∑
t=1

Dt(pt)−Cθ

)+

1{E1 ∩E2}


≤E

( Tθ∑
t=1

Dt(pt)−λ(pt)

)+
+E


4

∑τθ
k=1

Nk,θ∑
t=1

λ(pt)− 4

τθ∑
k=1

Nk,θ

C

T

+

1{E1 ∩E2}


+E

 Tθ∑
t=4

∑τθ
k=1

Nk,θ+1

λ(pt)−

(
Tθ− 4

τθ∑
k=1

Nk,θ

)
C

T

+

1{E1 ∩E2}


≤
√
Tθ + log3 Tθ +

τcθ∑
k=1

E

[(
λ(pck)−

C

T

)+

1{E1 ∩E2}

]

≤O(
√
θ) +

τcθ∑
k=1

√
E
[
(λk(pck)−λ(pc))

2
1{E1 ∩E2}

]
≤O(

√
θ) +K

τcθ∑
k=1

√
E
[
(pck− pc)

2
1{E1 ∩E2}

]
.

Thus, the total penalty for capacity violation satisfies

2p̄E

( Tθ∑
t=1

Dt(pt)−Cθ

)+


= 2p̄ E

( Tθ∑
t=1

Dt(pt)−Cθ

)+

1{E1 ∩E2}

+ 2p̄ E

( Tθ∑
t=1

Dt(pt)−Cθ

)+

1{E1 ∩E2}


≤O(

√
θ) + 2p̄ K

τcθ∑
k=1

√
E
[
(pck− pc)

2
1{E1 ∩E2}

]
+ 2p̄ TθP (E1 ∩E2)

=O(
√
θ) + 2p̄ K

τcθ∑
k=1

√
E
[
(pck− pc)

2
1{E1 ∩E2}

]
.

Combining the results above we get

JMSA−BDPA
θ ≥ r(pc)Tθ−O(

√
θ)− (1 + 3Kp̄)

τcθ∑
k=1

√
E
[
(pck− pc)

2
1{E1 ∩E2}

]
.
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Applying the established convergence result for Robbins-Monro type of Stochastic Approxima-
tion, by Theorem 1 in the electronic companion in Broadie et al. [10], we know that there exists pos-
itive constant Cc

a such that when ack =Cc
a/k, we have E[(pck− pc)

2
1{E1∩E2}]≤Cc/k, for all k≥ 1,

where Cc > 0 is also a constant. Substitute this back into the previous bound, we have

JMSA−BDPA
θ ≥ r(pc)Tθ−Θ(

√
θ)− (1 + 3Kp̄)

τcθ∑
k=1

√
Cc/k

≥ r(pc)Tθ−Θ(
√
θ)− (1 + 3Kp̄)

√
Ccτ cθ = r(pc)Tθ−Θ(

√
θ). �

Appendix B: Proof of Key Lemmas.

B.1. Proof of Lemma 3 (i) We assume without loss of generality that pb > pa > pu. Let
λa = λ(pa), λb = λ(pb), and we have λb < λa < λu since demand is decreasing in price. Now, by
Assumption A5, we know that (see Boyd and Vandenberghe [9])

r(pa)− r(pb) = r(λa)− r(λb)≥
Ml

2
(λb−λa)2− r′(λa)(λb−λa)

≥ MlL
2

2
(pb− pa)2− r′(λa)(λb−λa)

≥ MlL
2

2
(pb− pa)2,

where the first inequality follows from Assumption A5x, second inequality follows from Lemma 3

part (ii), and the third inequality follows from Assumption A2. Setting Ku = MlL
2

2
completes the

proof of part (i).

(ii) Follows directly from Assumption A1.
(iii) Let us denote λ = λ(p). Notice that r(λ) is strictly concave in λ, by Taylor’s expansion,

there exists ξ ∈ [λ,λu] (or possibly [λu, λ)) such that

r(p) = r(λ) = r(λu) + r′(λu)(λ−λu) +
r′′(ξ)

2
(λ−λu)2 ≥ r(pu)−MU

2
(λ−λu)2 ≥ r(λu)−MUK

2

2
(p− pu)2,

where the first and the second inequalities follow by Assumptions A2 and A4, respectively.
As for the second part, we know that

r(pc)− r(p) = r(pc)− (pc + p− pc)[λ(pc) +λ(p)−λ(pc)]
= λ(pc)(pc− p) + p (λ(pc)−λ(p))− (p− pc)(λ(p)−λ(pc))
≤ |pc− p|+Kp̄ |pc− p|+K|pc− p|2
≤ (1 + 2Kp̄)|pc− p|,

where the first inequality follows from the boundedness of demand and price and Assumption A3.
�

B.2. Proof of Lemma 4. We start with τθ. Define:

t1 =

⌈
1

4
log3/2

(
1

6
logTθ + 1

)⌉
− 3 and t2 =

⌈
1

4
log3/2

(
65

324
logTθ + 1

)⌉
+ 1.

Note that t1 < t2 when θ is large and they are both Θ(log log θ). Moreover, we also have

4 ·
t2∑
k=1

Nk,θ ≥ 4

t2∑
k=1

(
3

2

)4k

log2 Tθ =
324

65

[(
3

2

)4t2

− 1

]
log2 Tθ > log3 Tθ and

4 ·
t1+1∑
k=1

Nk,θ <

[
4

t1+1∑
k=1

(
3

2

)4k

log2 Tθ

]
+ 4t1 <

(
3

2

)4(t1+2)

log2 Tθ + 4t1

≤ 1

6
log3 Tθ + log2 Tθ + Θ(log logTθ) < log3 Tθ (for all large θ).
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Since
∑t

k=1Nk,θ is increasing in t, we must have t1 < τθ < t2. We conclude that τθ = Θ(log log θ)
and (2/3)τθ = Θ(log−1/4 θ). We now calculate the order of τuθ . Define:

tu1 =

⌈
1

4
log3/2

(
65Tθ

648 log3 Tθ
+ 1

)⌉
− 1 and tu2 =

⌈
1

4
log3/2

(
65Tθ

162 log3 Tθ
+ 1

)⌉
.

By definition of τuθ and Nu
k,θ, for all large enough θ, we have

4

tu1∑
k=1

Nu
k,θ ≤ 4

tu1∑
k=1

[(
3

2

)4k

log3 Tθ + 1

]
≤ 4tu1 +

324

65

[(
3

2

)4tu1

− 1

]
log3 Tθ

≤ 1

2
Tθ + Θ

(
log

(
Tθ

log3 Tθ

))
≤ Tθ− log3 Tθ ≤ Tθ− 4

τθ∑
k=1

Nk,θ and

4

tu2∑
k=1

Nu
k,θ ≥ 4

tu2∑
k=1

[(
3

2

)4k

log3 Tθ− 1

]
≥ 324

65
log3 Tθ

[(
3

2

)4tu2

− 1

]
− 4tu2

≥ 2Tθ−Θ

(
log

(
Tθ

log3 Tθ

))
≥ Tθ− 4

τθ∑
k=1

Nk,θ,

which implies that tu1 ≤ τuθ ≤ tu2 . Since tu1 and tu2 are both Θ(log θ), we conclude that τuθ = Θ(log θ).
Moreover, (2/3)4τuθ = Θ(θ−1 log3 θ). Finally, we calculate τ cθ . Define:

tc1 =

⌈
1

2
log3/2

(
5Tθ

72 log2 Tθ
+ 1

)⌉
− 1 and tc2 =

⌈
1

2
log3/2

(
5Tθ

18 log2 Tθ
+ 1

)⌉
.

By definition of τ cθ and N c
k,θ, for all large enough θ, we have

4

tc1∑
k=1

N c
k,θ ≤ 4

tc1∑
k=1

[(
3

2

)2k

log2 Tθ + 1

]
≤ 4tc1 +

36

5

[(
3

2

)2tc1

− 1

]
log2 Tθ

≤ 1

2
Tθ + Θ

(
log

(
Tθ

log2 Tθ

))
≤ Tθ− log3 Tθ ≤ Tθ− 4

τθ∑
k=1

Nk,θ and

4

tc2∑
k=1

N c
k,θ ≥ 4

tc2∑
k=1

[(
3

2

)2k

log2 Tθ− 1

]
≥ 36

5

[(
3

2

)2tc2

− 1

]
log2 Tθ− 4τ cθ

≥ 2Tθ−Θ

(
log

(
Tθ

log2 Tθ

))
≥ Tθ− 4

τθ∑
k=1

Nk,θ

which implies tc1 ≤ τ cθ ≤ tc2. Since tc1 and tc2 are both Θ(log θ), we conclude that τ c = Θ(log θ).
Moreover, (2/3)2τcθ = Θ(θ−1 log2 θ). This completes the proof. �

B.3. Proof of Lemma 5. By the same arguments as in the proof of Lemma 1,

P
(
Ēu|E1 ∩E2

)
≤
∑τuθ

k=1(τuθ − k+ 1)P (pu /∈ Iuk+1, p
u ∈ Iuk ). So, we can bound

P
(
E1 ∩E2 ∩Eu

)
≤ P

(
E1 ∩E2

)
+P (E1 ∩E2 ∩ Ēu)

≤ P
(
E1 ∩E2

)
+

τuθ∑
k=1

(τuθ − k+ 1)P (pu /∈ Iuk+1, p
u ∈ Iuk ).

The remaining task then is to bound the term P (pu /∈ Iuk+1, p
u ∈ Iuk ) for k= 1, ..., τuθ . Define:

Bu
k,1 = {r̂(puk,2)< r̂(puk,3), pu < puk,2} and Bu

k,2 = {r̂(puk,2)≥ r̂(puk,3), pu > puk,3}.
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Observe that, for all k, we have

P (pu /∈ Iuk+1, p
u ∈ Iuk ) ≤ P

(
r̂(puk,2)< r̂(puk,3), pu /∈ Iuk+1, p

u ∈ Iuk
)

+P
(
r̂(puk,2)≥ r̂(puk,3), pu /∈ Iuk+1, p

u ∈ Iuk
)

= P (r̂(puk,2)< r̂(puk,3), pu ∈ [puk,1, p
u
k,2), pu ∈ Iuk )

+P (r̂(puk,2)≥ r̂(puk,3), pu ∈ (puk,3, p
u
k,4], pu ∈ Iuk )

≤ P (r̂(puk,2)< r̂(puk,3), pu < puk,2, p
u ∈ Iuk )

+P (r̂(puk,2)≥ r̂(puk,3), pu > puk,3, p
u ∈ Iuk )

≤ P
(
Bu
k,1

)
+P

(
Bu
k,2

)
.

By Lemma 3 part (i), we have

r(puk,2)− r(puk,3)≥Ku(puk,2− puk,3)2 =Ku

|Iu1 |2

9

(
2

3

)2(k−1)

=
1

4
Ku|Iu1 |2

(
2

3

)2k

.

Arguing as in the proof of Lemma 1, if |r̂(pk,l)− r(pk,l)|< 1
8
Ku|Iu1 |2( 2

3
)2k for all k and l ∈ {2,3},

then we can correctly predict whether r(puk,2)≥ r(puk,3) or r(puk,2)< r(puk,3). (This guarantees that
the deleted segment does not contain pu.) So, applying Hoeffding’s inequality together with the
facts that r̂(pk,l)< p̄ and |Iu1 |= |I|

(
2
3

)τθ = Θ(log−1/4 θ) (see Lemma 4), we can bound P (Bu
k,l) as

follows:

P (Bu
k,l) ≤ P

(
|r̂(pk,j)− r(pk,j)| ≥

1

8
Ku|Iu1 |2

(
2

3

)2k

for some j ∈ {2,3}

)

≤
3∑
j=2

P

(
|r̂(pk,j)− r(pk,j)| ≥

1

8
Ku|Iu1 |2

(
2

3

)2k
)

≤ 4 · exp

(
−2

Nu
k,θ [ 1

8
Ku |Iu1 |2

(
2
3

)2k
]2

p̄2

)
≤ 4 · exp(− log θ) =

4

θ
, for l= 1,2 and sufficiently large θ.

Since it can be shown that τuθ = Θ(log θ), put the above bounds together with our earlier bound
for P

(
E1 ∩E2 ∩Eu

)
and P

(
E1 ∩E2

)
(from Lemma 2), we conclude that

P
(
E1 ∩E2 ∩Eu

)
≤ P

(
E1 ∩E2

)
+

τuθ∑
k=1

(τuθ − k+ 1)
2∑
l=1

P (Bu
k,l) = Θ

(
(log θ)2

θ

)
. �

B.4. Proof of Lemma 6 . Define two events:

Bc
k,1 = {λ̂(pck,2)>C/T + ∆c

k,θ, p
c < pck,2} and Bc

k,2 = {λ̂(pck,2)≤C/T + ∆c
k,θ, p

c > pck,3}.

By similar arguments as in the proof of Lemma 5, we know that P (Ēc |E1 ∩E2)≤
∑τcθ

k=1(τ cθ −
k+ 1)

[∑2

l=1P (Bc
k,l)
]
. For event Bc

k,1, note that pc < pck,2 implies λ(pck,2)<C/T . So,

P (Bc
k,1) ≤ P

(
λ̂(pck,2)>C/T + ∆c

k,θ , λ(pck,2)<C/T
)
≤ P

(
λ̂(pck,3)−λ(pck,3)>∆c

k,θ

)
.

Since N c
k,θ = Θ(

(
3
2

)2k
log2 θ) and ∆c

k,θ = Θ(
(

2
3

)k
log−3/8 θ), by Hoeffding’s inequality,

P (Bc
k,1)≤ P

(
λ̂(pck,2)−λ(pck,2)>∆c

k,θ

)
≤ exp

(
−2N c

k,θ(∆
c
k,θ)

2
)
≤ exp(− log θ) =

1

θ
.
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As for event Bc
k,2, note that pc > pck,3 implies λ(pck,3) > C/T . By Lemma 3 part (ii), λ(pck,2)−

λ(pck,3)≥L · |pck,2− pck,3|=L
|Ic1 |
3

( 2
3
)k−1. So, for the sample path in Bc

k,2, we have:

λ(pck,2)− λ̂(pck,2) ≥ λ(pck,3) +L
|Ic1 |
3

(
2

3

)k−1

−
(
C

T
+ ∆c

k,θ

)
>
C

T
+L
|Ic1 |
3

(
2

3

)k−1

−
(
C

T
+ ∆c

k,θ

)
= L
|Ic1 |
3

(
2

3

)k−1

−∆c
k,θ >

1

2
L
|Ic1 |
3

(
2

3

)k−1

where the last inequality follows because |I1
c |= |I|

(
2
3

)τθ = Θ(log−1/4 θ) and so ∆c
k,θ <

1
2
L
|Ic1 |
3

(
2
3

)k−1

for all large θ. By similar argument as above,

P (Bc
k,2) ≤ P

(
λ(pck,2)− λ̂(pck,2)>

1

2
L
|Ic1 |
3

(
2

3

)k−1
)

≤ exp

(
−2

N c
k,θ [ 1

2
L
|Ic1 |
3

(
2
3

)k−1
]2

p̄2

)
≤ exp(− log θ) =

1

θ
.

Since it can be shown that τ cθ = Θ(log θ), put the above bounds together with our earlier bound
for P

(
E1 ∩E2 ∩Ec

)
and P

(
E1 ∩E2

)
(from Lemma 2), we conclude that

P
(
E1 ∩E2 ∩Ec

)
≤ P

(
E1 ∩E2

)
+

τcθ∑
k=1

(τ cθ − k+ 1)
2∑
l=1

P (Bc
k,l) = Θ

(
(log θ)2

θ

)
. �
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