
Discrete event system methods for control
problems arising in cyber-physical systems

by

Eric Dallal

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Electrical Engineering: Systems)

in The University of Michigan
2014

Doctoral Committee:

Professor Stéphane Lafortune, Chair
Associate Professor Domitilla Del Vecchio, MIT
Professor Jessy W. Grizzle
Assistant Professor Gabor Orosz
Assistant Professor Necmiye Ozay
Professor Demosthenis Teneketzis

c© Eric Dallal 2014

All Rights Reserved

ACKNOWLEDGEMENTS

I would like to thank my advisor Stéphane Lafortune, my colleagues in publications

Stéphane Lafortune, Alessandro Colombo and Domitilla Del Vecchio, my committee

members Stéphane Lafortune, Domitilla Del Vecchio, Jessy Grizzle, Gabor Orosz,

Necmiye Ozay, and Demosthenis Teneketzis, my colleagues Yi-Chin Wu and Xiang

Yin, my parents Ilan and Linda, my sister Caroline, my friends, and anyone/anything

else I may have bounced ideas off of, including my pet tortoise, Koopa.

The work contained in this thesis was supported in part by NSF grant CNS-

0930081, NSF grant CCF-1138860 (Expeditions in Computing project ExCAPE: Ex-

peditions in Computer Augmented Program Engineering) and by a fellowship from

Fonds FQRNT, Government of Québec, Canada. The work on MPOs also benefited

from useful discussions with Franck Cassez, Stavros Tripakis and Tae-Sic Yoo.

ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . ii

LIST OF FIGURES . vi

LIST OF TABLES . x

LIST OF ABBREVIATIONS . xi

ABSTRACT . xii

CHAPTER

I. Introduction . 1

1.1 Discrete Event Systems Preliminaries 4
1.2 Problem Descriptions . 11

1.2.1 Dynamic Diagnosability 11
1.2.2 Vehicle Control . 13
1.2.3 Problem Comparison 16

1.3 Related Literature . 17
1.3.1 Dynamic Diagnosability 17
1.3.2 Vehicle Control . 18

1.4 Solution Methodology & Contributions 21
1.4.1 Dynamic Diagnosability 21
1.4.2 Vehicle Control . 24

II. Dynamic Diagnosability . 33

2.1 Abstract . 33
2.2 Introduction . 34
2.3 Problem Formulation . 37
2.4 Towards an Information State 41
2.5 The State Disambiguation Problem and the Most Permissive

Observer . 46

iii

2.6 The Extended Specification and Properties of the MPO . . . 54
2.7 Reducing the Information State 59
2.8 Constructing the MPO . 66

2.8.1 Experimental Results 69
2.9 Conclusion . 71

III. Vehicle Control : The case of perfect measurement 83

3.1 Abstract . 83
3.2 Introduction . 84
3.3 Model and Problem Definition 88
3.4 Bad Set Description . 91
3.5 Discrete Abstraction . 92
3.6 State Reductions and Supervisory Control 95

3.6.1 Preliminaries . 95
3.6.2 The State Reduction 96
3.6.3 The Exact State Reduction 102

3.7 Supervisor Computation and Relations Between the Time-discretized
and Discrete Event Systems 105

3.7.1 Supervisory Control Theory of DES 105
3.7.2 Translating Between Transition Systems and Discrete

Event Systems . 106
3.7.3 Relations Between the Time-discretized and Discrete

Event Systems . 107
3.8 Algorithmic Implementation 111
3.9 Simulation Results . 115

3.9.1 Simulation Descriptions 115
3.9.2 Results & Analysis 118

3.10 Conclusion . 120

IV. Vehicle Control : The case of imperfect measurement 135

4.1 Abstract . 135
4.2 Introduction . 136
4.3 Model . 140
4.4 Results from the Case of Perfect Measurement 144

4.4.1 The Initial Abstraction 145
4.4.2 State Reductions & Exact State Reductions 146

4.5 Observers and State Estimation 150
4.5.1 The modified abstraction 151
4.5.2 State Estimate Reductions & Exact State Estimate

Reductions . 153
4.6 Conditions for State Estimate Reductions and Exact State Es-

timate Reductions . 166

iv

4.6.1 Translating Between Transition Systems and Discrete
Event Systems . 167

4.6.2 Proofs of state estimate reductions between the ob-
server and the continuous estimator 172

4.7 Conclusion . 176

V. Conclusion & Future Work . 182

5.1 Dynamic Diagnosability . 182
5.2 Vehicle Control . 184

BIBLIOGRAPHY . 186

v

LIST OF FIGURES

Figure

1.1 In the above examples, f is a fault event and all other events are
observable. Left: A system that is 1-Diagnosable. Right: A system
that 2-Diagnosable but not 1-Diagnosable. 13

1.2 A summary of the approach to the construction of the Most Per-
missive Observer (MPO). The K-Diagnosability problem is mapped
to the state disambiguation problem, for which the extended spec-
ification is computed. An appropriate information state is defined
and the Total Observer (TO), containing all admissible controllers, is
constructed over the space of information states. By proving a mono-
tonicity property over the extended specification, we are able to re-
duce the information state. Finally, the MPO is constructed over the
space of reduced information states, obtained as a sub-automaton of
the TO, and using the extended specification to determine the safety
of control actions and reduced information states. 21

1.3 A depiction of the solution method in the case of perfect measure-
ment. The continuous system is discretized in time and space and
a Discrete Event System (DES) abstraction G is defined over the
discrete state space. The problem specifications are translated to
a sub-automaton H, and a supervisor for the abstracted system is
obtained by solving problem Basic Supervisory Control Problem in
the Non-Blocking case (BSCP-NB). Finally, the continuous domain
supervisor σ is obtained from the supervisor S of the DES domain. 24

1.4 A depiction of the real time system operation of the vehicle con-
trol system. The state x(t) is sampled at times 0, τ, 2τ, . . ., yielding
x(kτ). This sample is then discretized through the function `(·) to
a lattice point in the set Q̃. The discrete state `(x(kτ)) is sent to
the supervisor, which allows a subset of the available control actions.
One of these control actions is chosen by the vehicles, and held for
the following interval of length τ (i.e., a zero-order hold). Finally, the
chosen control action vc, in addition to the actions of the uncontrolled
vehicles vuc and the effect of the disturbance d determine the system
trajectory. 26

vi

1.5 The solution method. Given the time discretized system of Eq. (1.1)
with the space discretization given by `(·), constituting system Sb,
we can construct DES G that is a state reduction of this system.
Given system Sb with measurement uncertainty given by L(·), con-
stituting partially observed system S ′b, we can construct DES G′ that
models the measurement uncertainty of L(·) by partitioning the set
of measurements X into equivalence classes Λ. Given the estimator
Sb of partially observed system S ′b, we can construct DES G that is
a state estimate reduction of Sb. Furthermore, when emax = kµτ/2
for some k ∈ N, G can be obtained as the observer of G′. A DES
supervisor S is then computed by solving problem BSCP-NB, from
which a continuous domain supervisor σ is obtained. 28

1.6 A depiction of the process by which the modified DES abstraction
G′ is constructed from DES G. The set of continuous measurements
X is partitioned into a set of equivalence classes with respect to the
function `(L(·)), yielding the set of equivalence classes Λ representing
measurement events. The events of Uc are classified as controllable
and observable, the events of Uuc and W are classified as uncontrol-
lable and unobservable, and the events of Λ are classified as uncon-
trollable but observable. With four classes of events, the language of
G′ becomes L(G′) ⊆ (ΛUcUucW)∗. 31

2.1 A finite state automaton with fault event f 43
2.2 The augmented automaton for the automaton of Fig. 2.1 43
2.3 The total observer for the automaton of Fig. 2.1, with events classi-

fied as follows: Eo = ∅, Es = {a, b}, Euo = {t}, and Ef = {f}. . . . 53
2.4 The MPO for the automaton of Fig. 2.1, for any K ≥ 1. We used

the convention of Cassez and Tripakis (2008) by marking Y states
with squares and Z states with circles. 53

2.5 A finite state automaton. Events are classified as follows: Eo = ∅,
Es = {a, b}, Euo = {t}, and Ef = {f}. 64

2.6 The MPO corresponding to the automaton of Fig. 2.5, with K = 2,
not using reduced information states. 64

2.7 The MPO corresponding to the automaton of Fig. 2.5, with K = 2,
using reduced information states. 65

3.1 An example of the vehicle control problem. 84
3.2 An example scenario involving three vehicles on five roads. Blue lines

are drawn for each vehicle indicating starting road and ending road. 91
3.3 The transition function ψ. 94
3.4 A system and its corresponding state reduction. States of the left

system with the same output are placed in a common box. We use
the usual DES convention of denoting marked states with a double
circle and initial states with an incoming arrow that has no source
state. 102

vii

3.5 A depiction of the state reduction (left) and exact state reduction
(right) for a simple system Sb = ({1, . . . , 8}, {u},→b, {A,B}, Hb),
whereHb(x) = A for x ∈ {1, . . . , 4} andHb(x) = B for x ∈ {5, . . . , 8}.
In both the left and right cases, there is a transition (x, u, x′) ∈→b

with x ∈ H−1
b (A) and x′ ∈ H−1

b (B), and hence a transition from
A to B in the corresponding state reduction. The system on the
right contains some transition (x, u, x′) ∈→b with x ∈ H−1

b (A), for
every x′ ∈ H−1

b (B). For the system on the left, the occurrence of a
transition from A to B in the state reduction allows us to determine
that Sb is in state 7. For the system on the right, this transition only
allows to determine that the system is some state in the set H−1

b (B). 104
3.6 The intersection and vehicle paths used in each of the simulations of

this section. Blue lines are drawn for each vehicle indicating starting
road and ending road. 116

3.7 The capture sets of Eqs. (3.64)-(3.73) in the open (left) and closed
(right) cases. The blue square denotes the bad set. The set of
Eqs. (3.64)-(3.67) is depicted with solid lines, and its inflation by
µτ/2 is depicted in dashed lines. Right: If dmin and dmax are integer
multiples of µ, then Eqs. (3.72) and (3.73) are unnecessary, which is
shown by the dotted lines. 134

4.1 The system process in real time. At times 0, τ, 2τ, . . ., a measurement
χ ∈ X is obtained. This measurement is used to correct the previous
state estimate Ipred through I = Ic(Ipred, χ) = Ipred ∩ L(χ). The
corrected state estimate I is then discretized to a lattice with spacing
τµ as `(I), and `(I) is sent to the supervisor. The controlled vehicles
then choose some control action vc allowed by the supervisor, and
this control action, along with the state estimate I and knowledge
of the bounds on the actions of the disturbance and the uncontrolled
vehicles (shown with dashed lines because they are not observed) are
used to predict a new state estimate of possible positions at the next
time instant that is a multiple of τ , given by Ipred = Ip(I, vc), where
Ip is the function of Eq. (4.5). 144

4.2 The transition function ψ of DES automaton G, consisting of three
layers, one for each of the event categories Uc, Uuc, W , and separated
by intermediate states. 146

4.3 An example system Sb. Rectangles are used to denote states with
the same output. 166

4.4 The system Sa that is an exact state reduction of system Sb of Fig. 4.3.166

viii

4.5 The solution method. Given the time discretized system of Eq. (4.2)
with the space discretization given by `(·) of Eq. (4.3), constituting
system Sb, we can construct DES abstraction G that is a state reduc-
tion of this system. Given system Sb with measurement uncertainty
given by L(·) of Eq. (4.4), constituting partially observed system S ′b,
we can construct DES abstraction G′ that models the measurement
uncertainty of L(·) by partitioning the set of measurements X into
equivalence classes Λ, in accordance with Proc. IV.27. Given the es-
timator Sb of partially observed system S ′b, we can construct DES
abstraction G that is a state estimate reduction of Sb. Furthermore,
when emax = kµτ/2 for some k ∈ N, G can be obtained as the ob-
server of G′ (Props. IV.31 and IV.34). A DES supervisor S is then
computed by solving problem BSCP-NB, from which a continuous do-
main supervisor σ is obtained which solves Prob. IV.1 (Thms. IV.32
and IV.35). 177

ix

LIST OF TABLES

Table

2.1 Simulation results showing running times and MPO sizes with and
without using the reduced information states, for randomly generated
automata with 75 and 100 states. 70

3.1 Scenario 1: No uncontrolled vehicles, no disturbance. 119
3.2 Scenario 2: Uncontrolled vehicles, no disturbance. 120
3.3 Scenario 3: Disturbance, no uncontrolled vehicles. 120

x

LIST OF ABBREVIATIONS

DES Discrete Event System

CPS Cyber-Physical System

MPO Most Permissive Observer

TO Total Observer

BSCP-NB Basic Supervisory Control Problem in the Non-Blocking case

LTL Linear Temporal Logic

CTL Computational Tree Logic

xi

ABSTRACT

Discrete event system methods for control problems arising in cyber-physical
systems

by

Eric Dallal

Chair: Stéphane Lafortune

This thesis considers two problems in cyber-physical systems. The first is that of

dynamic fault diagnosis. Specifically, it is assumed that a plant model is available in

the form of a discrete event system containing special fault events whose occurrence

we would like to diagnose. Furthermore, it is assumed that there exist sensors that can

be turned on or off (for example, to save energy) and capable of detecting some subset

of the system’s non-faulty events. The problem to be solved consists of constructing a

compact structure, called the most permissive observer (MPO), containing the set of

all sequences of sensor activations that ensure that any fault event’s occurrence will

be correctly diagnosed within some finite number k of event occurrences. We solve

this problem by defining an appropriate notion of information state summarizing the

information obtained from the past sequence of observations and sensor activations.

The resulting MPO has a better space complexity than that of the previous approach

in the literature.

The second problem considered in this thesis is that of controlling vehicles through

an intersection. Specifically, we wish to obtain a supervisor for the vehicles that is safe

xii

(i.e., collision-free), non-deadlocking (i.e., ensures that all vehicles eventually cross the

intersection, never reaching a state where the supervisor allows no control actions)

and maximally permissive (i.e., allows any control action that does not violate safety

or non-deadlockingness). Furthermore, we solve this problem in the presence of un-

controlled vehicles, bounded disturbances in the dynamics, and measurement uncer-

tainty. Our approach consists of discretizing the system in time and space, obtaining

a discrete event system (DES) abstraction, solving for maximally permissive super-

visors in the abstracted domain, and refining the supervisor to one for the original,

continuous, problem domain. We provide general results under which this approach

yields maximally permissive memoryless supervisors for the original system and show

that, under certain conditions, the resulting supervisor will be maximally permissive

over the class of all supervisors, not merely memoryless ones. Our contributions are

as follows. First, by constructing DES abstractions from continuous systems, we can

leverage the supervisory control theory of DES, which is well-suited to finding maxi-

mally permissive supervisors under safety and non-blocking constraints. Second, we

define a number of relations between transition systems and their abstractions: state

reduction, exact state reduction, state estimate reduction, and exact state estimate

reduction. These are general notions which allow for the characterization of obtained

supervisors as maximally permissive among the class of memoryless supervisors, or

maximally permissive among all supervisors.

xiii

CHAPTER I

Introduction

This Ph.D. thesis considers two problems in Cyber-Physical System (CPS)s, namely

that of dynamic sensor activation for diagnosis, and that of vehicle control at an in-

tersection. Before describing these two problems, we briefly describe what a CPS is.

From a high-level perspective, a CPS is a collection of cooperating computational

elements that control physical components. Such systems are typically characterized

by the distributed nature of their physical components, which are tightly linked to the

computational elements. These systems may have centralized or decentralized control

architectures, where the choice of one over the other results in trade-offs involving

algorithm complexity, processing speed, communication system complexity, etc. Ex-

amples of CPSs include wireless sensor networks, autonomous automotive systems,

and distributed robotic systems.

The first problem under consideration in this thesis is that of dynamic sensor

activation for diagnosis. Briefly, it is assumed that we possess an accurate model of

possible system behavior, including that of fault occurrences, along with a limited

number of sensors that can provide information about the system’s transitions. The

goal in this work is to find strategies that allow for the timely diagnosis of any fault

occurrence, while minimizing sensor utilization. Minimizing sensor utilization may be

desirable for reasons of energy (if the sensors operate with limited access to a power

1

source), bandwidth (if the sensors readings must be transmitted to other devices), or

security (if the sensor readings may reveal sensitive tactical information, such as in

unmanned aerial vehicles).

The second problem under consideration is that of supervising vehicles at an inter-

section. This problem is examined in the presence of uncontrolled vehicles (vehicles

whose behavior cannot be restricted or in any way altered by the control system), dis-

turbances representing unmodeled dynamics, and measurement error. The goal is to

design a supervisor that ensures that the vehicles fully cross the intersection without

collisions. The supervisor must also be minimally restrictive, in the sense that it only

interferes with driver behavior when necessary. The last decade has seen a number of

commercially available systems designed to assist drivers. Examples of these include:

collision detection systems to either warn the driver or stop the car when an object is

spotted in the vehicle’s path; parking assist systems; and lane change assist systems

that warn drivers of vehicles in or entering their blind spot.

Our solutions to both problems are developed using the theory of Discrete Event

Systems (DES), and specifically of supervisory control. A DES is a system whose dy-

namics (i.e., its state transitions) are determined by event occurrences. An example

of a discrete event system is a text editor software program. In this example, inputs

are obtained from the mouse or the keyboard and generate responses from the soft-

ware. Thus, a mouse click or a key stroke would constitute an event in this example.

Notably, the state of the program does not change in between these events, and the

time that passes between consecutive events doesn’t affect its final state. Thus we

can say that such a system is event-driven, rather than time-driven.

DES theory uses elements also found in computer science, such as languages and

automata, and adds a control element in the form of supervisory control theory.

Specifically, supervisory control theory is the problem of restricting the set of behav-

iors of a system (given by a language) to some subset of those behaviors, given that

2

some events may be uncontrollable (i.e., cannot be prevented), unobservable (i.e., are

not seen by the system), or both. In the context of this thesis, the dynamic diag-

nosis problem is formulated directly within the DES formalism. The vehicle control

problem, on the other hand, is formulated within the context of classical control of

systems represented by differential equations. Our solution to the vehicle control

problem translates the problem to one of supervisory control through a technique

called abstraction.

This Ph.D. thesis is divided into five chapters. Chapters II, III, and IV describe,

respectively, our work on dynamic diagnosability, our work on the vehicle control

problem in the case of perfect measurement, and our work on the vehicle control

problem in the case of imperfect measurement. Chapter I is this introduction and

is divided into three sections. Because both problems being worked on are in the

domain of DES, we begin by presenting preliminaries that are necessary to the un-

derstanding of this research (Sec. 1.1). We proceed by giving a high-level description

of both research problems that make up this work (Sec. 1.2). Following this, we

provide an overview of the related literature for both problems under consideration

(Sec. 1.3). Finally, we provide an overview of our solution methodology and contri-

butions (Sec. 1.4). It should be noted that there will be overlap between the contents

of this introduction and that of Chapters II, III, and IV, particularly in the introduc-

tion of the respective chapters. Chapters I is meant to provide a high-level overview

of the problems worked on and our solutions and do not contain the same level of

detail as Chapters II, III, and IV. The results of Chapter II have appeared in Dallal

and Lafortune (2014). Earlier versions of the results presented in Chapters III and

IV have appeared in Dallal et al. (2013a) (in the case of perfect measurement) and

Dallal et al. (2013b) (in the case of imperfect measurement).

3

1.1 Discrete Event Systems Preliminaries

This section describes those concepts in discrete events systems (DESs) which are

necessary to understand the work in chapters II, III, and IV. It should not be seen as

an overview or an introduction to the field. Only matter that is relevant to the two

problems that make up this work will be presented here. The emphasis will be on

logical automata as a DES modelling formalism, the problem of diagnosability, and

the problem of control. See chapters 1-3 of Cassandras and Lafortune (2008) for a

reference of the following material.

Informally, a DES is an event-driven, discrete space, system in which changes in

state occur upon the occurrence of an event. Among the modelling formalisms for

DESs are automata and Petri nets. This work uses only logical automata, which

are sufficient when event occurrences are not synchronized to a clock (as in timed

automata), do not have preconditions (sometimes called guards, as in hybrid systems)

and do not follow any probabilistic structure (as in stochastic systems). Following is

a formal definition of deterministic logical automata.

Definition I.1 (Deterministic Logical Automata). A deterministic logical automaton

G is a tuple G = (X,E, f, x0, Xm), where X is the set of discrete states, E is the set

of events, f : X × E → X is a partial transition function, x0 is the initial state of

the system, and Xm is a set of marked states. For any x ∈ X and e ∈ E, f(x, e)

signifies that the system moves to state f(x, e) when event e occurs in state x. The

set of marked states Xm generally represent the set of states where some operation

of interest has completed. This set is sometimes omitted from the definition of an

automaton if it is not required.

Henceforth, we will refer to deterministic logical automata only as automata.

Given a set of events E (also called an alphabet), a string s is a sequence of zero

or more events. The string of length zero is called the empty string, and is denoted

4

by ε. Given two strings s and t (either of which could be empty), the notation

st or s.t denotes their concatenation. In this case, s is a prefix of st, and t is a

suffix of st. A language L is a set of strings defined over an alphabet E. The (·)∗

operation, called the Kleene-closure is defined by L∗ := {{ε} ∪ L ∪ LL ∪ . . .}, where

LL = {uv : u, v ∈ L}. Thus, the set E∗ contains all strings consisting of members

of the alphabet E. For any L ⊆ E∗, the set L, called the prefix-closure, contains the

set of all prefixes of all strings in L and is defined by L := {s ∈ E∗ : st ∈ L}. Since t

could be the empty string in the previous definition, it follows that L ⊆ L. If L = L,

we call L prefix-closed.

The transition function f of an automaton can be extended to strings (rather

than only events) by defining f(x, ε) := x and f(x, se) := f(f(x, s), e), for any string

s ∈ E∗. This allows us to define the language and marked language of an automaton

G as:

L(G) := {s ∈ E∗ : f(x0, s) is defined} (language of G)

Lm(G) := {s ∈ L(G) : f(x0, s) ∈ Xm} (marked language of G)

From the above definitions, it follows that L(G) = L(G) and that Lm(G) ⊆ L(G).

An automaton is blocking if Lm(G) ⊂ L(G). Informally, this means there exist

strings in G that cannot be extended to form a marked string in G. Mathematically,

∃s ∈ L(G) : (@t ∈ E∗) s.t. st ∈ Lm(G). conversely, an automaton is non-blocking if

Lm(G) = L(G).

The remainder of this section will deal with problems in DES related to either

partial observability (i.e., in the presence of events whose occurrence is not observ-

able), or partial controllability (i.e., in the presence of events whose occurrence is not

controllable).

Given some set of events E, there may be some events in E that cannot be

5

observed. In this case, the set E is partitioned as E = Eo ∪ Euo, Eo ∩ Euo = ∅,

where Eo is the set of events that are observable and Euo is the set of events that

are unobservable. In this case, the occurrence of some string s ∈ L(G) will result

in the observance of the string P (s), called the projection of s, where the function

P : E∗ → E∗o is defined by:

P (ε) := ε

P (e) :=

 e if e ∈ Eo

ε if e /∈ Eo
P (se) := P (s)P (e)

Intuitively, the projection P acts as a filter, leaving only those events that are in

Eo. We can also define the inverse projection P−1 : E∗o → 2E
∗

by P−1(t) = {s ∈ E∗ :

P (s) = t}.

Given some automaton G = (X,E, f, x0) (i.e., without a set of marked states

defined), and a partition of E into E = Eo ∪ Euo, Eo ∩ Euo = ∅, we may wish

to determine when some significant event ef ∈ Euo has occurred. This is called

the diagnosability problem, or the fault diagnosability problem (if ef represents the

occurrence of a faulty or abnormal event). Let Lf be defined as the set of strings in

the language of G in which the event ef has occurred. That is, Lf := {s ∈ L(G) : s =

s1efs2} . Given some observed string t ∈ E∗o , we can determine that ef has occurred if

P−1(t)∩L(G) ⊆ Lf and we can determine that ef has not occurred if P−1(t)∩Lf =

∅. If neither condition is satisfied, then we cannot make any determination. The

standard diagnosability problem requires only that we “eventually” be able to make

the determination.

Definition I.2 (Diagnosability). Given automaton G = (X,E, f, x0) with observable

event set Eo ⊆ E, the unobservable event ef ∈ Euo = E \ Eo is not diagnosable with

6

respect to L(G) if it is possible to find strings sY , sN ∈ L(G) satisfying the following

three conditions:

1. sY contains ef and sN does not

2. sY is of arbitrarily long length after ef

3. P (sY) = P (sN).

Given automaton G = (X,E, f, x0), the problem of finding a minimal set Eo ⊆ E

of observable events such that unobservable event ef is diagnosable with respect

to L(G) is called the static sensor selection problem for diagnosability. The first

problem that this thesis will address is the dynamic sensor selection problem for K-

diagnosability (the meanings of dynamic and K-diagnosability will be explained in

Sec. 1.2.1).

Next, we describe the supervisory control problem in DES. Once again, we begin

with an automaton G = (X,E, f, x0, Xm) and a partition on the set of events E =

Ec ∪ Euc with Ec ∩ Euc = ∅. This time, however, Ec and Euc represent controlled

and uncontrolled events. A controlled event can be disabled to prevent undesired

behavior; an uncontrolled event can never be disabled. A supervisor in DES is a

function S : L(G) → 2E which chooses which events to enable (i.e., allow to occur)

after each string in L(G). The supervisor only chooses which events can occur, not

which event will occur. We call S/G the automaton G under the control of S. The

language generated by S/G is denoted by L(S/G) and defined as follows:

1. ε ∈ L(S/G)

2. [(s ∈ L(S/G)) and (sσ ∈ L(G)) and σ ∈ S(s)]⇔ [sσ ∈ L(S/G)]

The language marked by S/G is defined by Lm(S/G) = L(S/G) ∩ Lm(G). The

supervisory control problem in DES consists of finding a supervisor S such that

7

L(S/G) ⊆ La ⊆ L(G) and/or Lm(S/G) ⊆ Lam ⊆ Lm(G), where La and/or Lam is

called the specification of the system. In the case of La, it represents the system’s

legal behavior in the sense that S must disable any string outside of La. Lam may

similarly be interpreted as the legal marked behavior. Next, we define what it means

for a language to be controllable.

Definition I.3 (Controllability). Given a prefix closed language M = M over event

set E and a subset of uncontrollable events Euc ⊆ E, language K is called controllable

with respect to M and Euc if:

KEuc ∩M ⊆ K.

In words, the above definition means that if some string s ∈ K (s is legal) can be

extended by uncontrollable event e ∈ Euc (e cannot be disabled), and string se ∈ M

(se is possible), then we should also have se ∈ K (se is legal). If we take M = L(G)

and K = La then we obtain that La is controllable with respect to L(G) and Euc if

the extension of any string s ∈ La by an uncontrollable event e ∈ Euc that is also

feasible (se ∈ L(G)) results in a string that is also in La (se ∈ La). The controllability

property is used in the following theorem.

Theorem I.4 (Controllability Theorem). Given automaton G = (X,E, f, x0, Xm),

uncontrollable event set Euc ⊆ E, and specification K ⊆ L(G), there exists a super-

visor S such that L(S/G) = K if and only if K satisfies the controllability condition.

If the controllability condition is not satisfied, then we instead seek a supervisor

S that achieves as much of K as possible without allowing any strings outside of

K. Specifically, we seek to find a language Kcon ⊆ K satisfying the following two

properties:

8

1. KconEuc ∩ L(G) ⊆ Kcon (i.e., Kcon is controllable).

2. Given any K ′con ⊆ K satisfying K ′conEuc ∩ L(G) ⊆ K ′con, we have the inclusion

Kcon ⊇ K ′con.

In words, we would like to find a sublanguage of K that is controllable and supre-

mal, in the sense that it contains all other controllable sublanguages of K. Since set

inclusion does not induce a total order over sublanguages of K, it is not obvious that

a solution will always exist. It can be shown, however, that a solution to the problem

does indeed always exist. The key to proving this is showing that controllability is

preserved under union. This solution is called the supremal controllable sublanguage

of K with respect to uncontrollable event set Euc and language L(G) and is denoted by

K↑C . This language appears in the solution to the basic supervisory control problem

(BSCP), presented below:

Problem I.5 (BSCP: Basic Supervisory Control Problem). Given automaton G =

(X,E, f, x0, Xm), uncontrollable event set Euc ⊆ E, and specification La = La ⊆

L(G), find a supervisor S such that:

1. L(S/G) ⊆ La

2. Given any other supervisor S ′ satisfying L(S ′/G) ⊆ La, we have the inclusion

L(S/G) ⊇ L(S ′/G).

Condition 2 above is often referred to as maximal permissiveness. The solution to

problem BSCP is to choose S such that L(S/G) = L↑Ca .

If we would like the supervisor S to be non-blocking (i.e., L(S/G) = Lm(S/G)),

then we must use the following theorem instead.

9

Theorem I.6 (Non-Blocking Controllability Theorem). Given automaton G = (X,E, f, x0, Xm),

uncontrollable event set Euc ⊆ E, and specification K ⊆ L(G), there exists a non-

blocking supervisor S such that Lm(S/G) = K and L(S/G) = K if and only if K

satisfies the two conditions:

1. Controllability: KEuc ∩ L(G) ⊆ K

2. Lm(G)-closure: K = K ∩ Lm(G).

Suppose that there exists some automaton H such that Lm(H) = K and L(H) =

K. If we interpret K as the legal specification and K as the legal marked specification,

then the Lm(G)-closure condition can be seen as one of consistency. It means that

any string s in both K (legal specification) and L(G) (feasible behavior) should either

be marked in both L(H) and L(G) or not marked in either.

As before, if we are given a non-controllable legal marked specification Lam ⊆

Lm(G) then we can instead try to find a maximally permissive non-blocking supervi-

sor:

Problem I.7 (BSCP-NB: Basic Supervisory Control Problem - Nonblocking Case).

Given automaton G = (X,E, f, x0, Xm), uncontrollable event set Euc ⊆ E, and

Lm(G)-closed specification Lam ⊆ Lm(G), find a non-blocking supervisor S such

that:

1. Lm(S/G) ⊆ Lam

2. Given any other non-blocking supervisor S ′ satisfying Lm(S ′/G) ⊆ Lam, we

have the inclusion Lm(S/G) ⊇ Lm(S ′/G).

The solution to problem BSCP-NB is to choose S such that L(S/G) = L↑Cam and

Lm(S/G) = L↑Cam.

10

1.2 Problem Descriptions

This section describes the two problems under consideration in this thesis. Section

1.2.1 describes the dynamic diagnosability problem in discrete event systems and Sec.

1.2.2 describes the vehicular control problem. Section 1.2.3 briefly outlines similarities

and differences between the two problems.

1.2.1 Dynamic Diagnosability

Recall the definition of diagnosability from Def. I.2. As stated in section 1.1,

the static sensor selection problem in this context consists of finding a minimal set

of sensors Eo ⊆ E such that some fault event ef ∈ E is diagnosable in the language

of some automaton G. This problem can be extended to the dynamic case in which

sensors may be activated and deactivated after each observation by the system. In this

work, we are concerned with characterizing the entire set of solutions to the problem.

Informally, a control decision at any time consists of a set of sensors to monitor. Once

a control decision is made, the system enters a waiting state, “waking up” from this

state upon the occurrence of an event that it has chosen to monitor, referred to as

an observation. A new control decision may be made at this point, after which the

system enters a waiting state again, and so on. If we denote the sequence of control

decisions by C0, C1, . . . and the sequence of observations by e0, e1, . . . then, placing

these in chronological order, we obtain an alternating sequence C0, e0, C1, e1, A

sequence of this form with n control decisions and n observations is called a history,

or run of length n. In the most general sense, a dynamic controller is a function

C : R→ 2E, where R is the set of runs, E is the set of events, and C(ρ) = γ signifies

that the controller chooses to monitor (i.e., activates sensors for) the set of events

γ ⊆ E after run ρ ∈ R. A controller is called safe if it maintains the K-diagnosability

property throughout system operation. Informally, this means the controller must

diagnose the occurrence of any fault within K + 1 events after a fault. A formal

11

definition is given below, after defining the controller induced projection.

For a static set of observable events, the string that is observed upon the occur-

rence of execution s is the projection P (s). In the dynamic sensor activation problem,

the set of observable events changes through the system’s execution in a way that

depends on controller C. Therefore, we use the notation PC(s) rather than P (s) to

denote the observed string, in order to emphasize the dependence on the controller

C. Given some string of events s and controller C, we can iterate through the events

of s until we find an event e0 ∈ C0 = C(ε), where ε denotes the empty history. The

event e0 will be the first event observed in the string s. The next set of events to

monitor will be C1 = C((C0, e0)). We can then continue to iterate through the events

of s (from where we left off), until we find event e1 ∈ C1, and so on. See Def. II.3 for

a formal definition of the controller induced projection PC(·). The K-diagnosability

property is formally defined below. Also see Fig. 1.1 for an example.

Definition I.8 (Dynamic K-Diagnosability). Given automaton G = (X,E, f, x0)

and controller C : R→ 2E which chooses which events to monitor after each possible

run ρ = (C0, e0, . . . , Cn−1, en−1), the unobservable event ef ∈ E is not diagnosable

with respect to L(G) if it is possible to find strings sY , sN ∈ L(G) satisfying the

following three conditions:

1. sY contains ef and sN does not

2. sY is of length at least K + 1 after ef

3. PC(sY) = PC(sN)

For a fixed automaton G = (X,E, f, x0) and fault event ef ∈ E, controller C

is called safe if it satisfies the K-diagnosability property through any execution of

the system (i.e., if there do not exist sN and sY satisfying the three conditions of

Def. I.8 for controller C). Individual control decisions are called safe if they allow

12

(a) A 1-Diagnosable System (b) A 2-Diagnosable System

Figure 1.1: In the above examples, f is a fault event and all other events are ob-
servable. Left: A system that is 1-Diagnosable. Right: A system that
2-Diagnosable but not 1-Diagnosable.

for the K-diagnosability property to be maintained through some future sequence of

(run-dependent) control decisions.

This work has three goals:

1. To characterize the set of all safe controllers in some finite-sized structure

2. To efficiently compute the set of safe control decisions after any given run

3. To minimize the size of the structure in the first goal and the running times of

algorithms for computing safe controllers and safe control decisions.

1.2.2 Vehicle Control

The vehicle control problem consists of finding controllers to safely coordinate a

number vehicles across an intersection. Vehicles drive on multiple roads, all leading to

a central intersection. We assume that vehicles maintain a strictly positive velocity at

all times. Given a set of vehicles N = {1, . . . , n} and a set of roads R = {1, . . . ,m},

vehicle i ∈ N enters the intersection on road ri,1 and exits the intersection on road

ri,2. For any road r ∈ R, the portion of the road that is inside the intersection has

size αr. If we denote vehicle i’s position by xi then vehicle i enters the intersection on

road ri,1 when xi = −αri,1 , switches instantaneously from road ri,1 to road ri,2 when

xi = 0, and exits the intersection when xi = αri,2 . See Fig. 3.2 for a depiction of the

vehicle control problem. The safety criteria are defined as follows:

13

1. Vehicles on the same road must maintain a minimal distance of at least γ at all

times.

2. Vehicles on different roads cannot simultaneously be in the intersection.

Note that the first safety criterion implies that passing of one vehicle by another

on the road is not allowed. The set of all vehicle positions that do not satisfy both

safety criteria is called the bad set, denoted by B.

If we take x ∈ X to be the vector of vehicle positions and v to be the applied

control, then the dynamics of the system are given by the first order model ẋ = v+d,

where d is a disturbance with known bounds representing unmodelled dynamics. That

is, d ∈ D = [dmin, dmax]
n at all times. It is assumed that the set V is discretized by

some parameter µ ∈ R+. That is, each v ∈ V is a vector whose components are each

members of some finite set {µa, µ(a+ 1), . . . µb}, for some a, b ∈ N.

Additionally, we assume that a subset of the vehicles are uncontrolled. Their

available control actions are the same as for the other vehicles, but their behaviour is

inherently uncontrollable. We do not make any assumptions on the behaviour of these

vehicles. As such, it is not even possible to affect their behaviour indirectly through

those vehicles that are controllable. Thus, collisions involving two uncontrolled vehi-

cles do not count as a failure of the controller to enforce safety. In chapter III, we

assume that vehicle positions are measured perfectly. In chapter IV, we assume that

vehicle positions are measured with a maximal error of emax ∈ R+.

As in the dynamic diagnosability problem, we seek the set of all solutions rather

than one particular solution. Thus, we wish to obtain a supervisor σ : X → 2Vc

(σ : 2X → 2Vc in the case of imperfect measurement) which determines a set of

velocities the controlled vehicles are allowed to take rather than which precise velocity

they will take. The supervisor σ should satisfy three conditions:

14

1. Safety: If the controlled vehicles choose control actions allowed by σ at each

state x, the system avoids the bad set, no matter what happens with the un-

controlled vehicles or the disturbance

2. Non-blockingness: If σ(x(0)) is non-empty, then the vehicles must eventually

cross the intersection, never reaching any state x where σ(x) = ∅

3. Maximal Permissiveness: The supervisor allows any action that can not even-

tually cause a violation of safety or non-blockingness.

Ideally, we would be able to solve the problem as defined. In practice, the domain

over which the supervisor is defined is the continuous set X, which is uncountably

infinite. Thus, instead of trying to find a maximally permissive solution over an un-

countably infinite domain, we reduce the domain by a suitable discretization in space

and time, to obtain a DES. This means restricting the space of possible supervisors

σ. Since the maximally permissive criterion for σ is defined relative to the domain of

possible supervisors, restricting the space of possible supervisors to some set Σ will

mean that the obtained solution σ will not be maximally permissive in the original,

continuous-time, continuous space domain.

This work has three goals:

1. To construct a suitable DES abstraction of the original system

2. To translate solution requirements and specifications from the continuous level

to the DES level, solve at the DES level, and translate back

3. To characterize the class of supervisors over which the obtained supervisor is

maximally permissive.

15

1.2.3 Problem Comparison

Both of the problems worked on in this thesis are discrete event system control

problems: the dynamic diagnosability problem is formulated in discrete event systems

terminology whereas the vehicle control problem is solved by discretization in space

and time, resulting in a discrete event system abstraction (see Sec. 1.4.2). The two

problems are also similar in the sense that a maximally permissive solution is sought

to both. In the vehicle control problem, a maximally permissive solution is sought

so as to restrict the behavior of the vehicles as little as possible. In the dynamic

diagnosability problem, a maximally permissive solution can be used as a first step

to obtaining an optimal solution (according to some cost criterion) or simply a min-

imal solution in the sense of set inclusion (i.e., a Pareto optimal solution). Finally,

both problems can be formulated as supervisory control problems in discrete event

systems. In the dynamic diagnosability problem, the maximally permissive solution

(the most permissive observer) can be obtained as the automaton that marks the

supremal controllable sublanguage of the total observer (a structure that contains all

possible controllers, including those which are not safe) with respect to a particular

specification. In practice, however, the problem will be solved through a different

method that allows for faster computation. In the vehicle control problem, formula-

tion as a supervisory control problem is the chosen solution method (see Sec. 1.4.2).

Much of the work there focuses on translating safety requirements to the discrete

event level, on obtaining efficient algorithms for computing the supremal controllable

sublanguage, and on defining the class of supervisors in which the obtained supervisor

is maximally permissive.

16

1.3 Related Literature

1.3.1 Dynamic Diagnosability

The original definition of diagnosability is from Sampath et al. (1995). Related

literature in the context of static sensor selection problems in discrete event sys-

tems include e.g., Haji-Valizadeh and Loparo (1996), Jiang et al. (2003) and Yoo

and Lafortune (2002). The sensor selection problem is of particularly great impor-

tance in wireless sensor networks due to energy limitations. For a survey of work in

this domain, see Rowaihy et al. (2007). See Zaytoon and Sayed Mouchaweh (2012)

for a survey of works that consider the problem of dynamic sensor selection under

some diagnosability constraint in discrete event systems. It was shown in Yoo and

Lafortune (2002) that finding a minimal observable event set such that the diagnos-

ability property holds is an NP-complete problem. The same was shown for the DES

properties of normality and observability, properties relevant to supervisory control

of DESs. This work is most similar to that of Thorsley and Teneketzis (2007) and

Cassez and Tripakis (2008), both of which have considered the problem of dynamic

diagnosability.

In Thorsley and Teneketzis (2007), the optimal dynamic diagnosability problem

is considered for each of: acyclic timed automata, acyclic untimed automata, and

general untimed automata. In each case, the goal is to find an optimal controller ac-

cording to a cost function on sensor activations. Both the logical and stochastic cases

are considered. A solution is obtained by first defining an appropriate information

state and then using dynamic programming to obtain an optimal solution.

In Cassez et al. (2007a), the solution concept of most permissive observer (MPO)

is introduced, which the authors use as a basis for optimization according to a non-

discounted numerical cost criterion in Cassez et al. (2007b); Cassez and Tripakis

(2008). Instead of an information state based approach, the authors use results from

17

game theory (particularly safety games) and games on graphs. The same approach

is also applied to the problem of opacity in Cassez et al. (2009).

Another paper that considers the dynamic diagnosability problem is Wang et al.

(2010). That paper first defines feasible and implementable controllers over language

based partitions and then proceeds to define a paricular class of language based

partitions called window partitions. The paper provides an algorithm for obtaining

minimal solutions to both the centralized and distributed dynamic diagnosability

problems, where minimality is defined over the space of feasible and implementable

controllers for a particular window partition. Better solutions can be obtained by

taking finer partitions, at the cost of additional computation time.

We also mention Wang et al. (2009), which defines the state disambiguation prob-

lem and the extended specification, both used in this work. They provide an algorithm

for solving the minimal sensor activation problem on-line. Other than diagnosability,

it has also been shown that the property of observability can be mapped to state

disambiguation in Wang et al. (2007). Earlier versions of the results presented in

Chapter II appear in Dallal and Lafortune (2010, 2011a,b).

1.3.2 Vehicle Control

Three common approaches to the problem of vehicle control include: the com-

putation of maximally controlled invariant sets; mapping the problem to that of

scheduling; and abstraction/symbolic models. Among approaches falling in the first

category include, e.g., (Hafner and Del Vecchio, 2011; Verma and Del Vecchio, 2011).

By explicitly computing the capture set, or set of states from which it is not possible

to guarantee avoidance of the unsafe states, these approaches naturally satisfy safety,

non-deadlockingness and maximal permissiveness, and can deal with sources of un-

controllability and also with measurement uncertainty. However, such approaches

typically make assumptions such as convexity or order preserving dynamics, without

18

which they do not scale well to systems with multiple dimensions. See also (Tomlin

et al., 2003) for an example involving a flight management system. Scheduling ap-

proaches work by allocating time intervals during which the vehicles can be inside

the intersection.

The scheduling problem is generally NP-hard but takes polynomial time in the

special case where all jobs require the same processing time. Reducing the vehicle

control problem to the polynomial-time scheduling case amounts to either an as-

sumption of certain symmetries in the vehicle control problem set-up, or a problem

relaxation where such symmetries are not satisfied. Approaches in this category in-

clude (Colombo and Del Vecchio, 2012), its extension to the case of dynamics with

disturbances, (Bruni et al., 2013), and its extension to the case of uncontrolled vehi-

cles, Ahn et al. (2014). To our knowledge, these methods have not been extended to

the case of measurement uncertainty. Furthermore, the assumption of mutual exclu-

siveness of the intersection’s use is restrictive, as it precludes vehicles on common or

non-intersecting trajectories (e.g., in the case of right turns) from utilizing the inter-

section simultaneously. Another approach is to pre-compute fail-safe maneuvers as in

(Kowshik et al., 2011), or evasion plans as in (Au et al., 2012). These last approaches

deal with some types of environmental uncertainty, but do not guarantee maximal

permissiveness.

Finally, abstraction based methods work by mapping the continuous system model

and specifications to a finite model and solving for a supervisor on the finite model,

in such a way that the obtained supervisor can be used on the original (continuous)

system, while preserving safety and non-deadlocking properties. Work in this domain

includes (Alur et al., 2000; Daws and Tripakis , 1998) in the context of verification /

model checking, as well as (Colombo and Del Vecchio, 2011a,b; Colombo and Girard ,

2013), which makes use of differential flatness of dynamical systems to construct ab-

stractions with provable errors bounds. Our work is most closely related to that of

19

(Girard et al., 2010; Pola and Tabuada, 2009; Zamani et al., 2012; Camara et al.,

2011), which construct symbolic models that satisfy simulation or alternating simu-

lation relations with the original system. In particular, this work also makes use of

alternating simulation relations, and variations thereof.

Besides the language based specifications of supervisory control theory, system

specifications can also be formulated using temporal logics such as Linear Tempo-

ral Logic (LTL). Linear temporal logic is a language for specifying system behavior

which consists of boolean logic and a few “temporal” operators such as Next, Always,

Eventually, and Until. LTL can be used to specify allowable sequences of states in

a compact way. This approach is used in Belta et al. (2007), where the authors use

a discretization based on triangularization for the problem of robot control. In Alur

et al. (2000), the authors characterize classes of hybrid systems in which it is possible

to obtain finite discrete abstractions for the purpose of deciding formulas expressed in

LTL or Computational Tree Logic (CTL) (a temporal specification language similar

to LTL). A particular class of LTL formulas called General Reactivity (GR(1)) for-

mulas are defined in Piterman et al. (2006). These formulas place constraints on the

initial values, transitions, and goals of the system and the environment. The authors

pose the question: do the constraints on the environment imply the specifications on

the system. If so, they show that the complexity of translating the formula to an

automaton is polynomial in the size of the formula (as oppose to doubly exponential

in the general case).

20

1.4 Solution Methodology & Contributions

1.4.1 Dynamic Diagnosability

Figure 1.2: A summary of the approach to the construction of the MPO. The K-
Diagnosability problem is mapped to the state disambiguation problem,
for which the extended specification is computed. An appropriate infor-
mation state is defined and the TO, containing all admissible controllers,
is constructed over the space of information states. By proving a mono-
tonicity property over the extended specification, we are able to reduce
the information state. Finally, the MPO is constructed over the space of
reduced information states, obtained as a sub-automaton of the TO, and
using the extended specification to determine the safety of control actions
and reduced information states.

Our solution methodology for the dynamic diagnosability problem is depicted in

Fig. 1.2. We begin by providing a more formal behavioral definition of the MPO, the

structure which encapsulates the set of all safe controllers. Specifically, we define the

MPO as a deterministic bipartite automaton defined over two types of states, called

Y and Z states. The MPO has transitions from Y to Z states, labelled with sensor

activation decisions in Γ = {γ ∈ 2E : Eo ⊆ γ ⊆ Eo∪Es}, and transitions from Z to Y

states, labelled with events (corresponding to observations). Now remark that a run

can be considered a string in the set (ΓE)∗. The MPO therefore maps each run to at

most one Y state. Let this mapping be denoted by the partial function ∆ : R → Y .

We say that the MPO allows controller C if, for every run ρ ∈ R such that ∆(ρ) is

defined, there is a transition from ∆(ρ) in the MPO with label C(ρ). The MPO is

characterized by the property that a controller must be safe if and only if it is allowed

21

by the MPO.

With the above behavioral definition of the MPO, the remainder of the work

therefore consists of precisely defining what the set of Y and Z states is, what the

safe control actions are from any given Y state, and how to efficiently construct the

MPO. To this end, we begin by defining an appropriate notion of information state

for this problem, and let the set of such states be denoted by I. Specifically, these

information states satisfy two critical properties:

• The information state is uniquely determined by the sequence of control actions

and observations (i.e., the run).

• The set of safe control actions after any given run is uniquely determined by

the reached information state.

With these properties, we can then let Y = I, and Z = I × Γ, where Γ is the

set of feasible control actions. The reason for the definition of Z as I × Γ is that

transitions from Z states to Y states in the MPO correspond to event observations,

and the set of possible event observations is a subset of the monitored events. Thus,

any Z state must “remember” the previous control action in order to determine the

outgoing transitions from this Z state.

We proceed to define the TO, which has the same transition structure as the MPO,

but which allows all controllers, not merely the safe ones. It follows that the MPO

will be a sub-automaton of the TO. In practice, there may be information states that

cannot be produced by any run, and hence only a subset of the set of Y and Z states

will actually be reachable in the TO. Furthermore, some runs may occur only under

unsafe controllers, and hence the set of Y and Z states present in the MPO will be

smaller still. The next step, therefore, is to determine which Y and Z states (among

those in the TO) will in fact be present in the MPO. We call these remaining Y and

Z states safe.

22

To determine this set of safe Y and Z states, we begin by mapping the K-

diagnosability problem to that of state disambiguation. Informally, given automaton

Gsd = (Xsd,Σ, f sd, xsd0) and subset of monitorable events Σ0 ⊆ Σ, the dynamic state

disambiguation problem consists of finding a dynamic controller (which also chooses

sets of events to monitor) such that it is always possible to differentiate between

pairs of states in a given specification Tspec ⊆ Xsd × Xsd. That is, the controller

ensures that the system’s information state never contains both states of some pair

(x1, x2) ∈ Tspec. We show that the K-diagnosability problem is equivalent to an ap-

propriately defined state disambiguation problem. This in turn allows us to make

use of the extended specification of the state disambiguation problem. In words, the

extended specification T espec contains all state pairs that must not be confused be-

cause such confusion would make it impossible to ensure that the system does not

confuse a pair of states in the specification Tspec, not even by turning on all available

sensors from that point onwards. We then prove that a Y or Z state is safe if and

only if satisfies the extended specification, a condition which can be verified in time

quadratic in the size of G. Using this quadratic time test, we can then construct the

MPO through a depth-first search over the states of the TO, leaving only the safe Y

and Z states in the final MPO.

Finally, we prove a monotonicity property on the extended specification that, as

a corollary, allows us to reduce the set I of information states to a smaller set of

reduced information states, without losing any information necessary for diagnosis.

Thus, the MPO can be constructed over the smaller space of reduced information

states, yielding a lower space complexity.

Our contributions are as follows. By defining the information state as we have, we

reduce the space complexity of the MPO from O(2|X|
2·K·2|E|) in Cassez and Tripakis

(2008) to O(2|X|·(K+2)2|E|). Furthermore, the monotonicity property on the extended

specification and the resulting reduction of the information state reduces this com-

23

plexity to O(2|X|(K+2)|X|2|E|), yielding a complexity that is polynomial in K, rather

than exponential in K. Finally, the use of the extended specification allows for an

efficient quadratic time test for determining the safety of a control decision from any

given information state. This potentially allows for a minimal solution to be com-

puted on-line, simply by taking a minimal control decision from each information

state (all such controllers will be minimal but not all minimal controllers will have

this form).

1.4.2 Vehicle Control

Figure 1.3: A depiction of the solution method in the case of perfect measurement.
The continuous system is discretized in time and space and a DES abstrac-
tion G is defined over the discrete state space. The problem specifications
are translated to a sub-automaton H, and a supervisor for the abstracted
system is obtained by solving problem BSCP-NB. Finally, the continu-
ous domain supervisor σ is obtained from the supervisor S of the DES
domain.

Our solution methodology for the vehicle control problem in the case of perfect

measurement is depicted in Fig. 1.3. The first step consists of translating the system

model (dynamics) and specifications (safety and non-deadlockingness) to the DES

24

domain. This is achieved by discretizing the continuous time system in space and

time, a technique called abstraction. We begin by discretizing the system in time

with parameter τ , so that vehicles choose control actions at times 0, τ, 2τ, . . . and

hold those control decisions for time τ . This yields the discrete time system:

xk+1 = xk + uk + δk (1.1)

with xk = x(kτ), uk = v(kτ)τ , and δk =
∫ (k+1)τ

kτ
d(t)dt. Calling U = V τ and ∆ = Dτ ,

we have that u ∈ U and δ ∈ ∆. Recall that a certain subset of the vehicles is

uncontrolled. To represent this, we write u = (uc, uuc), for any u ∈ U , where uc

is the control action of the controlled vehicles and uuc is the control action of the

uncontrolled vehicles. We also write U = Uc × Uuc, and similarly, V = Vc × Vuc.

Next, we discretize the system in space with a parameter of τµ, yielding a lattice

of states Q̃ with spacing τµ. Each continuous state x ∈ X is therefore mapped to a

discrete state q ∈ Q̃ through the function ` : X → Q̃. Fig. 1.4 depicts the real time

system operation.

As the next step, we define a DES abstraction G = (Q,E, ψ, q0, Qm) over the set

of discrete state Q̃ to capture the dynamics of the discrete time system of Eq. (1.1).

The events of G are Uc (for the actions of the controlled vehicles), Uuc (for the actions

of the uncontrolled vehicles), and W (which is a discretization of the set D and

represents the “actions” of the disturbance). The set of controllable events is Uc and

the set of uncontrollable events is Uuc ∪W . Each of these event classes forms one

of three “layers” of the transition function ψ, so that L(G) ⊆ (UcUucW)∗ (n.b.: this

requires the addition of two layers of “intermediate states”, QI1 and QI2). See Fig. 3.3

for a depiction of the transition function ψ. The transition function ψ satisfies the

property that, for any q ∈ Q̃, uc ∈ Uc, and q′ ∈ Q̃, there exist uuc ∈ Uuc and w ∈ W

such that q′ = ψ(q, ucuucw) if and only if there exist x ∈ X, δ ∈ ∆, and x′ ∈ X such

that q = `(x), q′ = `(x′), and x′ = x+u+δ, where u = (uc, uuc). Finally, Qm = {qm},

25

Figure 1.4: A depiction of the real time system operation of the vehicle control system.
The state x(t) is sampled at times 0, τ, 2τ, . . ., yielding x(kτ). This sample
is then discretized through the function `(·) to a lattice point in the set
Q̃. The discrete state `(x(kτ)) is sent to the supervisor, which allows
a subset of the available control actions. One of these control actions is
chosen by the vehicles, and held for the following interval of length τ (i.e.,
a zero-order hold). Finally, the chosen control action vc, in addition to the
actions of the uncontrolled vehicles vuc and the effect of the disturbance
d determine the system trajectory.

where `(x) = qm for any x ∈ X where all the vehicles have crossed the intersection.

This completes the translation of the system model from the continuous domain

to the DES domain. The next step is to translate safety and non-deadlocking speci-

fications to the DES domain as well. To translate the safety requirement, we define

a transition from q to q′ = ψ(q, ucuucw) in G as safe if all trajectories of the continu-

ous time and space system corresponding to this discrete transition do not cross the

bad set. The translation of the non-deadlocking specification is achieved through the

DES marking: the set of marked states Qm = {qm} corresponds to the continuous

states where all the vehicles have crossed the intersection. Requiring that the DES

system be able to reach the state qm therefore implies that the vehicles will cross

the intersection in the original, continuous, domain system. We therefore define a

second automaton H, which is the sub-automaton of G containing only safe tran-

sitions. Solving problem BSCP-NB with marked legal language Lam = Lm(H), G,

and uncontrollable event set Euc = Uuc ∪W therefore yields a maximally permissive

26

safe and non-deadlocking supervisor S for the DES domain problem. The continuous

domain supervisor σ is obtained from S through σ(x(kτ)) = S(`(x(kτ))), for k ∈ N,

and control actions are held for the following interval of length τ .

It remains to show that the supervisor σ will be safe, non-deadlocking, and maxi-

mally permissive. To this end, we define two types of relations between systems and

their abstractions: the state reduction and the exact state reduction. We show that,

when an abstraction is a state reduction of some initial system and the safety and

non-deadlocking specifications of the initial system are translated to the abstract do-

main as induced specifications, then the supervisor for the initial system obtained by

following the procedure of Fig. 1.3 will be safe, non-deadlocking, and maximally per-

missive among the class of memoryless supervisors, given the spatial discretization.

Furthermore, when the abstraction is an exact state reduction of the initial system,

the resulting supervisor for the initial system will be safe, non-deadlocking, and max-

imally permissive among the class of all controllers (given the spatial discretization),

not merely memoryless ones.

Finally, we show that the abstraction G is indeed a state reduction of the continu-

ous domain vehicle control system, and that the specifications given by sub-automaton

H are in fact the induced safety and non-deadlocking specifications. Thus, we can in-

voke the preceding theorem to show that the obtained continuous domain supervisor

σ is indeed safe, non-deadlocking, and maximally permissive. Furthermore, we also

show that, when the bounds dmin and dmax on the disturbance are integer multiples

of µ (recall that µ is the discretization parameter for the velocities V), then G is an

exact state reduction of the continuous domain vehicle control system.

We now turn attention to the case of imperfect measurement. Our solution

methodology for this case is depicted in Fig. 1.5. The idea is very similar to that

of the case of perfect measurement, except that, in this case, we construct a DES

automaton that is an abstraction of the prediction-correction estimator of the con-

27

Figure 1.5: The solution method. Given the time discretized system of Eq. (1.1) with
the space discretization given by `(·), constituting system Sb, we can
construct DES G that is a state reduction of this system. Given system
Sb with measurement uncertainty given by L(·), constituting partially ob-
served system S ′b, we can construct DES G′ that models the measurement
uncertainty of L(·) by partitioning the set of measurements X into equiv-
alence classes Λ. Given the estimator Sb of partially observed system S ′b,
we can construct DES G that is a state estimate reduction of Sb. Fur-
thermore, when emax = kµτ/2 for some k ∈ N, G can be obtained as the
observer of G′. A DES supervisor S is then computed by solving problem
BSCP-NB, from which a continuous domain supervisor σ is obtained.

tinuous system. In this setting, the actions of the uncontrolled vehicles and of the

disturbance are not directly observed. Instead, we obtain information about them

through measurements χ, taken at times 0, τ, 2τ, Given some maximum measure-

ment error emax, we define the function L : X → 2X by:

L(χ) = [χ− 1emax, χ+ 1emax], (1.2)

where 1 = (1, . . . , 1) ∈ Rn and, for any a, b ∈ Rn, [a, b] := {x ∈ Rn : ai ≤ xi ≤ bi, i =

1, . . . , n} denotes a box. Thus, for any measurement χ ∈ X, L(χ) consists of the

set of states that are consistent with measurement χ. Recall that Vuc is the set of

actions of the uncontrolled vehicles (i.e., velocities), and ∆ = Dτ is the set of possible

28

disturbances for the discrete time system of Eq. (1.1). With L defined as above, we

can define a prediction-correction estimator as the two functions Ip : 2X × Vc → 2X

and Ic : 2X ×X → 2X (n.b.: X is both the set of possible vehicle positions and the

set of possible measurements), given by:

Ip(I, vc) =
⋃
x∈I

⋃
vuc∈Vuc

⋃
δ∈∆

(x+ vτ + δ) (1.3)

Ic(I, χ) = I ∩ L(χ), (1.4)

where v = (vc, vuc). Thus, if I ⊆ X is the current best estimate of the system state at

some time t and control action vc ∈ Vc is taken then Ip(I, vc) predicts the set of states

that the system could be in at time t+ τ . Similarly, if I is the current estimate of the

system’s state and measurement χ is obtained then the corrected estimate is given by

Ic(I, χ). The prediction-correction estimator given by Eqs. (1.3) and (1.4) define a

new transition system defined over state estimates. Specifically, the partial transition

function of this system is some subset of 2X × Vc × 2X , with transition (I, vc, I
′)

present in this system if there exists some χ ∈ X such that I ′ = Ic(Ip(I, vc), χ). Let

this transition system defined over state estimates be denoted by Sb. The next step

is to construct a suitable DES abstraction of Sb.

For the vehicle control problem under consideration, this is achieved by modifying

the DES abstraction G that was constructed in the case of perfect information and

then taking the observer of the modified abstraction. The DES abstraction G is

modified by partitioning the set of measurements X into a set of equivalence classes,

given the discretization function `(·). Mathematically, χ1 ≡o χ2 ⇔ `(L(χ1)) =

`(L(χ2)). Thus, two measurements are grouped in the same equivalence class if the

set of discrete states consistent with both measurements are the same. Next, we let

[χ] denote the equivalence class of measurement χ ∈ X and Λ be the set of such

29

equivalence classes. The set Λ is then used as a set of discrete measurement events

for the modified abstraction G′. The set of events Λ is taken to be the first layer of

the four layer transition function ψ′ of G′, so that L(G′) ⊆ (ΛUcUucW)∗. The state

of G′ reached after any string in the set (UcUucWΛ)∗ is some element of Q̃′, which is

a copy of the set of discrete states Q̃. For any λ ∈ Λ, q ∈ Q̃, and q′ ∈ Q̃′ that is the

copy of q, we have that:

ψ′(q′, λ) :=

 q, if (∃χ ∈ X : [χ] = λ)[L(χ) ∩ `−1(q) 6= ∅]

undefined, else
(1.5)

In words, there is a transition from the copy of q to q itself upon measurement event

λ if and only if there exists some (continuous) measurement χ whose equivalence

class is λ and some continuous state x mapping to discrete state q such that x is

consistent with χ. Intuitively, the measurement event λ can not occur when in state

q if the above condition does not hold. If the condition does hold, then the act

of measuring does not change the system’s physical state, so there is a transition

between q′ and q. Because the measurement events Λ are observed but cannot be

chosen by the system, we take these events to be observable but uncontrollable. On

the other hand, the events of uncontrolled vehicles Uuc and of the disturbance W are

not directly observed by the system, and as such are taken to be unobservable (as

well as uncontrollable). The set of control events Uc are taken to be both controllable

and observable. This is summarized in Fig. 1.6.

Finally, let G = Obs(G′), the observer of DES G′. This observer is a new automa-

ton whose states are state estimates of G′, obtained by performing a determinization

with respect to the unobservable events. Its event set is only the observable events,

namely the (controllable) events Uc and the (uncontrollable) events Λ. It can be

shown that G is effectively a prediction-correction estimator. As in the perfectly

measured case, we proceed to translate safety and non-deadlocking requirements to

30

Figure 1.6: A depiction of the process by which the modified DES abstraction G′

is constructed from DES G. The set of continuous measurements X is
partitioned into a set of equivalence classes with respect to the function
`(L(·)), yielding the set of equivalence classes Λ representing measurement
events. The events of Uc are classified as controllable and observable, the
events of Uuc and W are classified as uncontrollable and unobservable,
and the events of Λ are classified as uncontrollable but observable. With
four classes of events, the language of G′ becomes L(G′) ⊆ (ΛUcUucW)∗.

the DES domain, given by a sublanguage of L(G), following which we solve prob-

lem BSCP-NB and translate the obtained supervisor S from the DES domain to the

continuous domain, yielding supervisor σ.

As before, it remains to prove that σ satisfies the safety and non-deadlocking spec-

ifications of the continuous time system, and to characterize the class of supervisors

over which σ is maximally permissive. To this end, we define the analogous versions of

the state reduction and the exact state reduction, but for the case of imperfect mea-

surement: the state estimate reduction and the exact state estimate reduction. The

analogous theorems show that, when some abstraction is a state estimate reduction of

a prediction-correction estimator, and the safety and non-deadlocking specifications

of the initial system are translated to the abstract domain as induced specifications,

then the supervisor for the initial system obtained by following the procedure of

Fig. 1.5 will be safe, non-deadlocking, and maximally permissive among the class

31

of memoryless supervisors, given the spatial discretization. Furthermore, when the

abstraction is an exact state estimate reduction of the initial system, the resulting

supervisor for the initial system will be safe, non-deadlocking, and maximally permis-

sive among the class of all controllers (given the spatial discretization), not merely

memoryless ones.

Finally, we show that, when the maximal measurement error emax is an integer

multiple of µτ/2, then the observer G will indeed be a state estimate reduction of

the prediction-correction estimator Sb. Furthermore, if bounds on the disturbance

dmin and dmax are also multiples of µτ (i.e., for the same condition under which the

abstraction G of the perfectly measured case is an exact state reduction), then G will

be an exact state estimate reduction of the prediction-correction estimator Sb. On

the other hand, if emax is not an integer multiple of µτ/2, then the above procedure

does not yield a state estimate reduction. In such a case, it is still possible to obtain

an abstraction that is a state estimate reduction, but only by directly constructing

an abstraction of the prediction-correction estimator.

Our contributions are as follows. We showed how to construct DES abstractions

for systems with environmental uncertainty by discretizing the state space, using un-

controllable events to model sources of environmental uncertainty and, in the case of

imperfect measurement, using observable but uncontrollable events to model measure-

ment uncertainty. We also showed how to translate safety and marking specifications

defined over a continuous state space to the DES domain, yielding a language based

specification. Finally, we defined new relations between systems and their DES ab-

stractions, allowing for supervisors to be computed using a “abstract-solve-translate”

method and characterizing the class of supervisors over which the result will be max-

imally permissive.

32

CHAPTER II

Dynamic Diagnosability

2.1 Abstract

We consider the problem of dynamic sensor activation for fault diagnosis of dis-

crete event systems modeled by finite state automata under the constraint that any

fault must be diagnosed within no more than K + 1 events after its occurrence, a

property called K-diagnosability. We begin by defining an appropriate notion of

information state for the problem and defining dynamic versions of the projection

operator and information state evolution. We continue by showing that the problem

can be reduced to that of state disambiguation. Then we define the most permissive

observer (MPO) structure that contains all the solutions to the problem, and we prove

results showing that maintaining the K-diagnosability property is equivalent to satis-

fying the extended specification of the state disambiguation problem. We then prove

a monotonicity property of the extended specification, and show that this allows us

to reduce our information state, which in turn allows us to significantly reduce the

complexity of our solution. Putting all of our results together, we obtain a MPO

with a size complexity of O(2|X|(K + 2)|X|2|E|), compared with O(2|X|
2·K·2|E|) for the

previous approach, where X and E are respectively the sets of states and events of

the automaton to diagnose. Finally, we provide an algorithm for constructing the

most permissive observer and demonstrate its scalability through simulation.

33

2.2 Introduction

The problem under consideration in this work is that of dynamic fault diagnosis

for discrete event systems modelled by finite state automata. We assume that there

are sensors capable of detecting event occurrences for a subset of the events of the

automaton model of the system. Among those events that are monitorable, it is

further assumed that there is a subset whose sensors are costly to operate. This

may be because of limited availability of energy or bandwidth, out of a desire to

minimize communication for security reasons, or for any other reason. We use the

sensor outputs and system model to diagnose past fault occurrence. In this work,

we consider the K-diagnosability property, which stipulates that the occurrence of a

fault must be determined with certainty within no more than K + 1 events after its

occurrence. It is assumed that we do not have sensors capable of detecting these fault

events directly. Thus, the structure of the problem presents a trade-off: if sensors

are turned on too infrequently, we may fail to diagnose the fault in time; if sensors

are turned on too frequently, fault diagnosis will be needlessly costly. The problem is

dynamic because we assume that sensors can be turned on or off at different points in

the system’s execution. A controller in this problem is (in the most general sense) a

function mapping histories of past sensor activations (i.e., the control decisions) and

observed events to a set of sensor activations.

Related literature in the context of static sensor selection problems in discrete

event systems include e.g., Haji-Valizadeh and Loparo (1996), Jiang et al. (2003)

and Yoo and Lafortune (2002). The sensor selection problem is of particularly great

importance in wireless sensor networks due to energy limitations. For a survey of

work in this domain, see Rowaihy et al. (2007). See Zaytoon and Sayed Mouchaweh

(2012) for a survey of works that consider the problem of dynamic sensor selection

under some diagnosability constraint in discrete event systems. In particular, we

describe Thorsley and Teneketzis (2007); Cassez and Tripakis (2008); Wang et al.

34

(2010) here. In Thorsley and Teneketzis (2007), the emphasis is on finding a sin-

gle dynamic controller that solves the diagnosability problem optimally according to

a discounted numerical cost criterion. The authors use an information state based

approach in combination with dynamic programming. In Cassez et al. (2007a), the

solution concept of most permissive observer (MPO) is introduced, which the authors

use as a basis for optimization according to a non-discounted numerical cost crite-

rion in Cassez et al. (2007b); Cassez and Tripakis (2008). Instead of an information

state based approach, the authors use results from game theory (particularly saftey

games) and games on graphs. The same approach is also applied to the problem of

opacity in Cassez et al. (2009). Finally, Wang et al. (2010) considers the decentral-

ized version of the dynamic diagnosis problem. The authors use a “window-based

partition” approach to obtain polynomial time algorithms for computing solutions in

the centralized and decentralized cases.

In this work, we provide a new information state based characterization of the

MPO structure originally defined in Cassez et al. (2007a), an approach similar to

that used in Thorsley and Teneketzis (2007). We prove that our information state is

sufficient to fully determine the set of all control decisions (i.e., sensor activations) that

maintain the K-diagnosability property. Our goals in providing a new information

state based characterization of the MPO are three-fold: (i) to obtain a more readily

interpretable solution; (ii) to better study informational properties of the MPO; and

(iii) to have a method that could more easily be adapted to other dynamic optimiza-

tion problems in discrete event systems. We show that the fault diagnosis problem

under consideration can be reduced to a state disambiguation problem, which we use

to prove a number of monotonicity properties about the MPO. Notably, we show

that satisfying the K-diagnosability property is equivalent to satisfying the extended

specification of a state disambiguation problem. Finally, we prove a monotonicity

property of the extended specification, and show how this allows us to reduce our

35

information state, without losing any “useful” information for the purpose of diag-

nosis. Putting these results together, we present an algorithm for constructing the

MPO. The MPO can then be used as the basis for solving an optimal dynamic sensor

activation problem, as is done in Cassez and Tripakis (2008); Cassez et al. (2007b)

or Thorsley and Teneketzis (2007).

The MPO constructed in this work improves upon that of Cassez and Tripakis

(2008) in four ways. First, by using a single automaton to track both faulty and non

faulty executions rather than the product of two automata, we obtain a space com-

plexity for our MPO that is exponential in |X|, rather than exponential in |X|2, where

X is the state space of the automaton to diagnose. Second, by defining an information

state at the outset and then introducing control decisions on these information states,

we avoid performing a determinization after introducing control decisions. This al-

lows us to obtain a space complexity for our MPO that is exponential in |E|, rather

than doubly exponential in |E|, where E is the set of events of the automaton to di-

agnose. Third, by mapping the problem to that of state disambiguation and making

use of the extended specification, we allow for an on-line construction of a minimal

solution when |E| is small. Finally, by proving a monotonicity property on the ex-

tended specification, we reduce the number of distinct information states, resulting

in an MPO that has polynomial size in K, rather than exponential in K. The final

size complexity of our MPO is O(2|X|(K + 2)|X|2|E|), compared with O(2|X|
2·K·2|E|)

in Cassez and Tripakis (2008). Preliminary versions of some of the results in this

work have appeared in Dallal and Lafortune (2010), Dallal and Lafortune (2011a),

and Dallal and Lafortune (2011b).

The remainder of this work is organized as follows. In Sect. 2.3, we formally

define the problem we wish to solve. In Sect. 2.4, we provide definitions related

to our notion of information state and define the total observer, which contains all

admissible controllers. In Sect. 2.5, we present the state disambiguation problem,

36

show how the K-diagnosability problem can be mapped to it, and use this mapping to

construct the most permissive observer by pruning the total observer. In Sect. 2.6, we

define the extended specification and prove that K-diagnosability is maintained if and

only if the extended specification is satisfied. In Sect. 2.7, we prove the monotonicity

property on the extended specification that allows us to reduce our information state.

In Sect. 2.8, we present an algorithm for constructing the MPO, give its running

time, and provide experimental results demonstrating the scalability of the algorithm

in practice. Finally, we conclude in Sect. 2.9. Appendix 1 contains algorithms

and their running times for computing the extended specification and the reduced

unobservable reach, which are used in the construction of the MPO. Appendix 2

contains the proofs of some results.

2.3 Problem Formulation

We begin by defining the dynamic diagnosability problem more precisely. Assume

that the system to be diagnosed is modeled by a deterministic finite state automaton.

We use the standard deterministic model that has been adopted in the literature on

supervisory control Ramadge and Wonham (1989) and diagnosis Sampath et al. (1995)

in discrete event systems. Specifically, let G = (X,E, f, x0), where X is the set of

states, E is the set of events, f : X ×E → X is a partial transition function, and x0

is the initial state. Let E∗ denote the set of all finite length strings of events in E.

The transition function f is extended from the domain X ×E to X ×E∗ recursively:

f(x, es) := f(f(x, e), s) for all s ∈ E∗. We denote by L(G, x) the set of all strings

s ∈ E∗ that can occur through f when starting from x. For brevity, we denote by

L(G) := L(G, x0) the language of the system and we define f(s) := f(x0, s) for all

s ∈ E∗. The set of events E is partitioned into four mutually exclusive categories:

E = Eo ∪ Es ∪ Euo ∪ Ef , where Eo is the set of freely monitorable events (events for

which we have zero cost sensors), Es is the set of costly monitorable events (events

37

for which we have costly sensors), Euo is the set of non-faulty unobservable events

(non-faulty events for which we do not have sensors), and Ef = {ef} contains the

fault event whose occurrence we would like to diagnose. The generalization of the

results to the case of multiple fault events and / or types is straightforward.

Our goal is to dynamically diagnose the occurrence of the fault event ef within

no more than K + 1 events after the occurrence of the fault. Note that this is K + 1

events of any kind, whether we can observe the events or not. This is referred to as

the K-diagnosability property. A controller for this problem is a function that chooses

a set of events to monitor. This set of events remains fixed until an observation is

made, at which point a new set of events to monitor can be chosen (i.e., a new control

decision). This naturally produces an alternating sequence of control decisions and

event observations, which we call a run (Def. II.1); these runs constitute the domain

for controllers (Def. II.2). With these definitions, we can define a function mapping

executions to observations (Def. II.3) and hence formally define the K-diagnosability

property (Def. II.4). We end this section by defining the problem we wish to solve

(Prob. II.5).

Definition II.1 (Run). A run ρ of length n is defined as a sequence C0, e0, . . . , Cn−1, en−1

of control decisions or sensor activations (the Ci’s, which are subsets of events to

monitor) and observed events (the ei’s). Since the events are observed, they must

be among the monitored events. That is, ei ∈ Ci, for all i = 0, . . . , n − 1. On the

other hand, the strict alternation of control decisions and observed events reflects the

assumption that control decisions are only changed upon the observance of an event.

Denote by Rn the set of runs of length n and by R =
⋃∞
n=0Rn the set of all runs.

Finally, let ρ(k) = C0, e0, . . . , Ck−1, ek−1 denote the subsequence of ρ of length k.

Definition II.2 (Admissible Controller). Let Γ = {γ ∈ 2E : Eo ⊆ γ ⊆ Eo ∪ Es} be

defined as the set of admissible control decisions (i.e., Γ is the set of control decisions

that monitor all events in Eo and no events in Euo or Ef). Then a controller is defined

38

as any function C : R→ Γ from runs to admissible control decisions.

For a fixed set of monitored events, it is a trivial task to define the projection of

a string. When the set of monitored events changes dynamically along the string’s

execution, in a way that depends on the particular controller C, it is necessary to

define a controller induced projection.

Definition II.3 (Controller Induced Projection). Given a controller C, we define

PC(ρ, s) as the string t that is observed when string s occurs after run ρ (the projection

t does not include the observed events of ρ). This can be computed as follows:

PC(ρ, ε) := ε

PC(ρ, e) :=

 e if e ∈ C(ρ)

ε if e /∈ C(ρ)

PC(ρ, es) :=

 e.[PC(ρ.C(ρ).e, s)] if e ∈ C(ρ)

PC(ρ, s) if e /∈ C(ρ)

(2.1)

For the last case, the first argument of PC must be updated with the new run. If

the event e is not observed then the run does not change. If e is observed, then

we produce the new run by concatenating the last control decision and the observed

event to ρ. For brevity, we define PC(s) := PC(ρ0, s), where ρ0 is the empty run (i.e.,

the unique element of R0).

We also define the (static) natural projection P : E∗ → (Eo∪Es)∗ in the usual way.

Equivalently, we can write P (s) = PCall
(s), with Call defined by Call(ρ) = Eo ∪ Es,

for all ρ ∈ R. That is, Call is the controller that always monitors all available sensors

and P (s) is the projection induced by this controller. We can now formally define

the K-Diagnosability property.

Definition II.4 (K-Diagnosability). We recall the standard definition of diagnosabil-

ity from Sampath et al. (1995). Adapted for a fixed K and the context of a dynamic

39

observer, we say that a system G is K-diagnosable given controller C if there do not

exist a pair of strings sY , sN ∈ L(G) such that the following three conditions are

satisfied:

1. sY has an occurrence of the fault event ef and sN does not.

2. sY has at least K + 1 events after the fault event ef .

3. PC(sY) = PC(sN), that is, the observed string of events is identical given the

controller.

We also say that a system G is K-diagnosable if there exists a controller C such that

G is K-diagnosable given controller C. We call such a controller safe.

We now formally define the problem we wish to solve. The following problem def-

inition is an adaptation of the behavioural definition of the most permissive observer

found in Cassez and Tripakis (2008).

Problem II.5 (Behavioral Definition of the Most Permissive Observer). We would

like to find a deterministic bipartite automaton MPO = (Y ∪Z,Γ∪E, hY Z ∪hZY , y0)

satisfying the following properties:

1. Control decisions are made from Y states: hY Z ⊆ Y × Γ× Z.

2. Observations are made from Z states: hZY ⊆ Z×E×Y and, for any z ∈ Z and

e ∈ E, hZY (z, e) is defined if and only if there exists some y ∈ Y and γ ∈ Γ such

that hY Z(y, γ) = z and e ∈ γ. This means that, if z ∈ Z was reached through

monitoring decision γ from a previous Y state, then there exists an outgoing

transition from z with label e for each e ∈ γ.

With MPO’s transition function defined in this way, we can map any run ρ ∈ R to at

most one Y state (the converse need not hold). Let the partial function ∆ : R → Y

represent this mapping and define ∆(ρ0) = y0, where ρ0 is the empty run. We say

40

that controller C is allowed by MPO if, for all ρ ∈ R such that ∆(ρ) is defined,

we have that hY Z(∆(ρ), C(ρ)) is defined. Notice from property 2) that, if ∆(ρ) is

defined and hY Z(∆(ρ), γ) is also defined, then ∆(ρ.γ.e) will be defined for all e ∈ γ,

and will satisfy ∆(ρ.γ.e) = hZY (hY Z(∆(ρ), γ), e). From this observation and the fact

that ∆(ρ0) is defined, it follows by induction that any controller C allowed by MPO

will never produce a run ρ such that ∆(ρ) is undefined. The last property of MPO

is therefore as follows:

3. MPO contains exactly the safe controllers: C is allowed by MPO ⇔ C is

safe.

Such a structure clearly exists. In the worst case, we use a distinct Y state for

every possible run in R (in which case ∆ will be invertible) and define a transition for

hY Z(y, γ) if and only if there exists some safe controller C such that C(∆−1(y)) = γ.

Defining MPO in this way will result in an infinite structure, however. A procedure

for obtaining a finite MPO is given in Cassez and Tripakis (2008) and thus the goal

of this work is to make use of structural properties of the problem to find a more

compact structure that still satisfies all of these properties.

2.4 Towards an Information State

Finding a compact structure for the solution to Problem II.5 requires us to reduce

the infinite domain of runs to some finite domain. Hence, the first step is to define

an appropriate information state that summarizes the information of the run. We

begin by defining the augmented state, augmented transition function, and augmented

automaton. Note that the augmented state used here was previously defined in Cassez

and Tripakis (2008). This work differs in that we do not synchronize these states with

those of a copy of the plant with fault events removed. As a consequence, we obtain a

41

size and time complexity for constructing the MPO that is exponential in |X| rather

than exponential in |X|2.

Define the augmented state as a pair (x, n) ∈ X × {−1, 0, 1, . . .}, where, n repre-

sents a “count” of the number of events (of all kinds) that have occurred since a first

fault event occurred, or −1 if no fault event has occurred. The set of such states is

denoted by X+ = X × {−1, 0, 1, . . .}. The initial augmented state is x+
0 = (x0,−1).

For any augmented state x+ ∈ X+, we let the state and count components be denoted

by S(x+) and N(x+), respectively, so that x+ = (S(x+), N(x+)). We extend this no-

tation to sets by defining S(U) =
⋃
u∈U S(u), for any U ⊆ X+. Next, we define the

augmented transition function g : X+×E → X+ on augmented states that is induced

by the automaton G = (X,E, f, x0) and the partition of event set E. Formally, for

any u = (xu, nu) and event e, we have:

• Case 1: If nu = −1 and e 6= ef then g(u, e) = (f(xu, e),−1).

• Case 2: If nu = −1 and e = ef then g(u, e) = (f(xu, e), 0).

• Case 3: If nu ≥ 0 then g(u, e) = (f(xu, e), nu + 1).

For any U ⊆ X+, let g(U, e) =
⋃
u∈U g(u, e). This definition is extended to strings

(rather than merely events) in the usual way. Also, define g(s) = g(x+
0 , s) for brevity.

Finally, we define the augmented automaton as the automaton G+ = (X+, E, g, x+
0)

defined over augmented states that is induced from the original automaton G. Note

that, since there is no bound on the count component of augmented states, G+ might

not be finite in size. (In Sect. IV, we will use a trimmed version of G+ that avoids this

problem). Figures 2.1 and 2.2 show an automaton and its corresponding augmented

automaton.

Definition II.6 (Information State). An information state (IS) is a subset S ⊆ X+

of augmented states. We denote by I = 2X
+

the set of information states.

42

Figure 2.1: A finite state automaton with fault event f .

Figure 2.2: The augmented automaton for the automaton of Fig. 2.1

Definition II.7 (Information State Based Controller). An information state based

controller (or IS-controller) is a function C : I → 2E that satisfies the two conditions

of an admissible controller (i.e., C(i) ⊇ Eo and C(i)∩(Euo∪Ef) = ∅ for all i ∈ I).

Henceforth, controllers will be assumed to be information state based unless stated

otherwise.

With the information state defined, the next step is to construct a structure that

encapsulates all admissible controllers (safe or not), which we call the total observer.

This structure will serve as the basis from which we construct the most permissive

observer, which will contain only the safe controllers. Constructing an observer for

an automaton and a fixed set of unobservable events is a relatively simple task. To

construct the observer when the set of observable events is a dynamic control decision,

we must explicitly model the effect of the controller on the evolution of the information

state.

Definition II.8 (Total Observer). The total observer (TO) is defined as the bipartite

automaton TO = (Y ∪Z,Γ∪E, hY Z∪hZY , y0). Here, Y is the set of information states

(i.e., Y = I) and Z is the set of information states augmented with control decisions

(i.e., Z = I × Γ). We use the notation I(z) and C(z) to denote z’s information state

43

and control decision components, respectively, so that z = (I(z), C(z)). The function

hY Z defines transitions from Y states to Z states, which occur when a control decision

is taken, and the function hZY defines transitions from Z states to Y states, which

occur when a monitored event occurs (i.e., an observation). Thus, the alternation

between control decisions and event observations (i.e, the run) also results in an

alternation between Y and Z states. The initial state of TO is the Y state y0 = {x+
0 },

the initial information state. The transition functions hY Z and hZY are defined below.

First, z = hY Z(y, γ) defined by the unobservable reach operation:

I(z) = UR(y, γ) (2.2)

=

 v ∈ X+ : (∃u ∈ y)(∃t ∈ (E \ γ)∗)

s.t. v = g(u, t)

 (2.3)

=
⋃
u∈y

⋃
t∈(E\γ)∗

g(u, t) (2.4)

C(z) = γ (2.5)

In words, this means that I(z) is the set of augmented states reachable from some

augmented state of the preceding Y state through some string of unmonitored events.

Next, y = hZY (z, e) for observation e ∈ C(z) is given by:

y = {v ∈ X+ : (∃u ∈ I(z)) s.t. v = g(u, e)} (2.6)

=
⋃

u∈I(z)

g(u, e) (2.7)

In words, this means that y is the set of augmented states reachable through the

single event e from some augmented state in the information state component of the

preceding Z state.

Because the total observer contains all admissible control decisions after each run

and all possible event observances after each control decision, it contains every run

44

and, also, every admissible controller.

Definition II.9 (Y and Z State Controller Induced Information State Evolution).

Given a controller C, we define ISYC (y, s) to be the Y state that results from the

occurrence of string s, when starting in Y state y. This can be computed as follows:

ISYC (y, ε) := y

ISYC (y, e) :=

 hZY (hY Z(y, C(y)), e) if e ∈ C(y)

y if e /∈ C(y)

ISYC (y, es) := ISYC (ISYC (y, e), s)

(2.8)

For brevity, we define ISYC (s) := ISYC (y0, s). Also define ISZC (z, s) analogously, with

ISZC (s) := ISZC (z0, s) as before, where z0 = hY Z(y0, C(y0)) (which is well defined for

a fixed controller).

Definition II.10 (IS-Controller Induced Projection). We redefine the controller in-

duced projection PC(ρ, s) of Def. II.3 to PC(z, s) for IS-controllers:

PC(z, ε) := ε

PC(z, e) :=

 e if e ∈ C(z)

ε if e /∈ C(z)

PC(z, es) :=

 e.[PC(z′, s)] if e ∈ C(z)

PC(z, s) if e /∈ C(z)

where z′ = hY Z(y′, C(y′)) and y′ = hZY (z, e)

(2.9)

We define PC(s) := PC(z0, s) for brevity, as before.

Lemma II.11 (Relation between projection and information state). For any string

s and controller C, I(ISZC (s)) = {v ∈ X+ : ∃s′ s.t. PC(s) = PC(s′) ∧ v = g(s′)}.

The proof of this lemma is given in Appendix 2. This lemma shows that the

information state reached by controller C upon the occurrence of string s is the set

45

of augmented states reached through strings that cannot be distinguished from s by

C.

2.5 The State Disambiguation Problem and the Most Per-

missive Observer

In this section, we show how to obtain the most permissive observer (MPO), the

structure containing all safe controllers, from the total observer. We begin by briefly

describing the state disambiguation problem and showing that the K diagnosability

property can be formulated as a state disambiguation problem. This allows us to

prove that the information state as defined is sufficient to uniquely determine the set

of safe control decisions after any given run. We then proceed to define safety of Y

and Z states and, finally, we define the MPO.

Definition II.12 (State Disambiguation Problem). The state disambiguation prob-

lem is defined as a triple 〈Gsd,Σo, Tspec〉, where Gsd = (Xsd,Σ, f sd, xsd0) is an automa-

ton, Σo ⊆ Σ is a set of monitorable events, and Tspec ⊆ Xsd × Xsd is a set of pairs

that must not be confused. The state disambiguation problem consists of finding a

controller C for Gsd, which chooses sensors to activate, such that the state of Gsd is

never confused between any pair of states in the specification Tspec. The controller C

is again defined as a function C : R→ 2Σo from runs to control decisions, as in Sect.

2.3. Using the notation defined in Sect. 2.3 of this work, we can define the problem

formally as that of finding a controller C such that:

s1, s2 ∈ L(Gsd) : PC(s1) = PC(s2)

⇒ (f sd(s1), f sd(s2)) /∈ Tspec .
(2.10)

To formulate the K-diagnosability problem as a state disambiguation problem,

46

we specify each of Gsd, Σo, and Tspec:

• Gsd = G+
K which is the augmented automaton G+, but restricted to augmented

states having counts no greater than K + 1.

• Σo = Eo∪Es is the set of monitorable events (we assume that C is an admissible

controller).

• Finally, we define Tspec as:

Tspec = {(u, v) ∈ X+ ×X+ : N(u) = −1 ∧N(v) = K + 1} . (2.11)

Comparing Defs. II.4 and II.12, we see that this state disambiguation problem can be

satisfied if and only if there do not exist two strings s1 and s2 with PC(s1) = PC(s2),

N(g(s1)) = −1, and N(g(s2)) = K + 1. Recall that N(g(s)) is equal to −1 if there

is no fault in s, and the number of events since a fault event otherwise. If we take s1

and s2 in this problem to correspond to sN and sY of Def. II.4, we see that the two

problems are identical, except for the fact that, in the definition of K-diagnosability

sY must have at least K + 1 events after a fault, whereas in Tspec the string s2 has

exactly K + 1 events after a fault. To see that this makes no difference, suppose

that there exist two strings sN and sY that violate K-diagnosability and that sY has

r > K + 1 events after a fault. Then we may simply truncate sY to obtain an s′Y

with exactly K + 1 events after a fault. If this shortens the projection PC(sY), we

can truncate sN as well to obtain an s′N such that PC(s′Y) = PC(s′N).

Definition II.13 (K-diagnosable binary function for information states). An in-

formation state i ∈ I violates K-diagnosability if there exist two augmented states

x+
1 , x

+
2 ∈ i where x+

1 = (x1,−1) and x+
2 = (x2, n) for some n > K. In light of the def-

inition of Tspec, we define the K-diagnosability binary function for information states

47

DI : I → {0, 1} as:

DI(i) =

 0, ∃u, v,∈ I : (u, v) ∈ Tspec

1, else
(2.12)

In words, DI(i) = 1 if and only if i does not violate the K-diagnosability property.

Theorem II.14 (Formulation of the K-diagnosability property through the infor-

mation state). Controller C is safe if and only if DI(I(z)) = 1, for all reachable Z

states. Mathematically:

∃s ∈ L(G) : z = ISZC (s) ∧ ∃u, v ∈ I(z)

s.t. N(u) = −1 and N(v) = K + 1

⇔
∃sY , sN ∈ L(G) : PC(sY) = PC(sN),

N(g(sN)) = −1 and N(g(sY)) = K + 1.

Proof. (⇐) Since unobserved events cannot change the information state, we have

that ISZC (s) = ISZC (PC(s)). Thus, PC(sY) = PC(sN) implies ISZC (sY) = ISZC (sN) = z.

By definition, g(s) ∈ I(ISZC (s)), for all s. Thus, g(sN) ∈ I(ISZC (sN)) = z and

g(sY) ∈ I(ISZC (sY)) = z as well. We may therefore take s = sY , u = g(sN), and

v = g(sY).

(⇒) Recall from Lem. II.11 that I(ISZC (s)) = {v ∈ X+ : ∃s′ s.t. PC(s) = PC(s′)∧v =

g(s′)}. Then u, v ∈ I(z) implies that there exists s1, s2 such that PC(s1) = PC(s2) =

PC(s), u = g(s1), and v = g(s2). We simply take sN = s1 and sY = s2.

The above theorem has two consequences. First, because the safety of a controller

is dependent on the Z information states that are reached and because the possible

next Z states are determined by the current information state and control decision, it

follows that there is no loss of generality by using IS-controllers instead of run-based

48

controllers. That is, any safe controller must make control decisions allowed by the

MPO (although a run-based safe controller may make a different control decision

from the same information state). The second consequence is that we have a test for

determining whether or not a particular controller is safe, in terms of the Z states

that are reachable. Specifically, they must all satisfy DI(I(z)) = 1. Mathematically,

we can write that controller C is safe if DI(I(ISZC (s))) = 1, for all s ∈ L(G). A

minor additional consequence is that we can consider only Z states. This could have

been guessed from the definition of the Z state as the unobservable reach of the

preceding Y state, from which it follows that, for any y and any C(y), y ⊆ I(z) for

z = hY Z(y, C(y)).

The purpose of defining the MPO is to capture all controllers that satisfy the

K-diagnosability property. In light of the preceding theorem and the fact that we

can deterministically compute future Z states from the current Y or Z state and the

sequence of future control decisions and observed events, we see that we can speak not

only of safe controllers but also of safe information states. Specifically, we say that Y

State y is safe if it currently satisfies the K diagnosability property and there exists

some controller that maintains the K-diagnosability property for all future executions

of the system. This is formalized in the following definition:

Definition II.15 (K-diagnosibility binary functions for Y and Z states). Since we

can choose control decisions but not event occurrences, we define twoK-diagnosability

binary functions, DY : Y → {0, 1} and DZ : Z → {0, 1} (similar to DI , but for Y

and Z states) as follows:

DY (y) =


1

if DI(y) = 1

and ∃γ ∈ Γ : DZ(hY Z(y, γ)) = 1

0 else

(2.13)

49

DZ(z) =


1

if DI(I(z)) = 1

and DY (hZY (z, e)) = 1 ∀e ∈ C(Z)

0 else

(2.14)

From these definitions, we can say that G is K-diagnosable if and only if DI(y0) =

1, and ∃C(y0) : DI(hY Z(y0, C(y0))) = 1, and ∃C(y0)∀e0 ∈ C(y0) : DI(hZY (hY Z(y0, C(y0)), e0)) =

1, and so forth. Put in terms of the information state evolution, we can equivalently

say that G is K-diagnosable if and only if ∃C such that ∀s ∈ L(G), DI(IS
Y
C (s)) = 1

and DI(I(ISZC (s))) = 1 (in practice, the second condition is sufficient). Thus the

alternation of existential and universal quantifiers in Def. II.15 implicitly captures

the idea that there must exist some controller such that K-diagnosability holds for

all possible strings of events. This is the same conclusion that is reached from Thm.

II.14. Note that the above definitions are akin to the controllable predecessor of game

theory, with the information states such that DI(·) = 1 playing the role of the base

set of winning states, as is done in Cassez and Tripakis (2008). We can now use the

above definition to define the safety of a control decision.

Definition II.16 (Safe Control Decision). Control decision γ is safe from Y state y

if and only if DZ(hY Z(y, γ)) = 1, since we know that there exists a future sequence

of safe control decisions in this case.

The above definition has the consequence that after any run ρ resulting in Y state

y, the set of safe control decisions is uniquely determined by the information state y.

Thus, there is no loss of generality in using information state based controllers.

Definition II.17 (Fault diagnosis binary function). Define the fault diagnosis binary

50

function DF : Y → {0, 1} as follows:

DF (y) =

 1 if N(u) 6= −1, ∀u ∈ y

0 else
(2.15)

In words, this means that DF (y) = 1 if and only if all possible executions s ∈ L(G)

resulting in information state y had a fault occurrence. A Y state y satisfyingDF (y) =

1 is called diagnosed.

Definition II.18 (Structural Definition of the Most Permissive Observer). The most

permissive observer is defined as the trim of the total observer when removing Y

states such that DY (·) = 0 and Z states such that DZ(·) = 0. The trim operation

removes these states and all transitions involving them, as well as any states and

transitions that become unreachable from the initial state. To make this automaton

finite, we also replace any Y state such that DF (y) = 1 by a “fault detected” state

F , and make this state terminal in the sense that there are no transitions out of it

(i.e., we make no further control decisions from F).

Theorem II.19 (Correctness of the MPO). If K <∞, then a controller C is safe if

and only if it only makes control decisions allowed by the MPO.

Proof. The contrapositive of the “only if” part of this assertion follows immediately

from Thm. II.14. To see the “if” part of the assertion, consider any string sY ∈

(E \Ef)∗EfEK+1. Since new control decisions are made only upon event observances,

at most K+1 control decisions will be made after the occurence of a fault event before

reaching a Z information state containing an augmented state with a count of K+ 1.

If all the control decisions are safe, then this information state cannot also contain

an augmented state with a count of -1, and hence the fault will be diagnosed. Thus,

if K is finite, a controller which makes only safe control decisions must reach the

fault diagnosed state within K + 1 events of a fault event occurring. From Lem.

51

II.11, it follows that there does not exist any sN ∈ (E \ Ef)∗ ∩ L(G) such that

PC(sN) = PC(sY), which proves that controller C is safe.

Thus, the MPO as defined does indeed solve Problem II.5 when K is finite. This

result was also proven in Cassez and Tripakis (2008) for their construction of the

MPO. If K is infinite, then infinite sequences of control decisions without a definitive

diagnosis after a fault event are possible. See Thorsley and Teneketzis (2007) for an

example of this. An example of the MPO is useful at this point.

Example II.20 (A simple example). Figures 2.3 and 2.4 show the total and most

permissive observer for the automaton of Fig. 2.1. Note that the TO shown does

not have any transitions out of Y and Z states such that DI(·) = 0 for all finite K

and shows only states reachable from y0. We have also not shown any transitions

out of diagnosed Y states or from Z states for events that would lead to an empty

information state (e.g., there is no b transition out of Z state z3). Finally, we omit (in

both the TO and MPO) any further control decisions from any Y state from which it

is clear that no fault has occurred in the past and none can occur in the future (such

as y1).

If we take any K ≥ 2, then the removal of all Y and Z states such that DI(·) = 0

results in the removal of all states of the TO marked with a “X”, which leaves state

y2 of the TO with no safe control decisions. If we take K = 1, then DI(y2) = 0 as

well. In either case, y2 is removed, leading to the removal of z2. Intuitively, it is

initially necessary to choose to monitor event b for otherwise it will not be possible to

differentiate between the string fbatn and the string a, which means K-diagnosability

is violated for any K. Thus, it is indeed possible for a Y or Z state to satisfy DI(·) = 1

but still not be safe. It can be verified that DY (·) = 1 for all remaining Y states and

that DZ(·) = 1 for all remaining Z states. To verify that this is intuitively correct,

consider what happens after choosing to initially monitor only b and then observing

event b. At this point, it is now necessary to monitor event a, for otherwise it will not

52

Figure 2.3: The total observer for the automaton of Fig. 2.1, with events classified
as follows: Eo = ∅, Es = {a, b}, Euo = {t}, and Ef = {f}.

Figure 2.4: The MPO for the automaton of Fig. 2.1, for any K ≥ 1. We used
the convention of Cassez and Tripakis (2008) by marking Y states with
squares and Z states with circles.

be possible to differentiate between the string ab and the string fbatn, which again

violates K-diagnosability for any K. Notice that we can achieve 0-diagnosability by

choosing to monitor {a, b} initially, and only 1-diagnosability if we choose to monitor

only {b}.

With the structure of the MPO defined, it remains to describe an efficient method

of constructing it. One possibility is to use the method described in Cassez and

Tripakis (2008), in which the most permissive observer is obtained as the solution of

a two player safety game where player 1 must prevent the system from reaching the

53

unsafe set of states. The same method can be applied here, where the analogous

set of “unsafe states” to be avoided consists of those Y and Z states such that

DI(·) = 0. However, we will not use this method as a means of computing the

most permissive observer in this work. We will instead use the extended specification

of state disambiguation problems, which will be described in the next section.

2.6 The Extended Specification and Properties of the MPO

In this section, we present the extended specification and explain how it allows

for a simple test to determine the safety of the Y and Z states of the MPO.

Definition II.21 (Extended Specification). We repeat the definition of the extended

specification found in Wang et al. (2009):

T espec =

 (u, v) ∈ X+ ×X+ : ∃s1, s2 s.t. P (s1) = P (s2)

and (g(u, s1), g(v, s2)) ∈ Tspec

 (2.16)

In words, the extended specification is defined as the set of all augmented state pairs

that must not be confused because even if all the sensors in Eo ∪ Es are turned on

for the rest of time, there still exists some sequence of events such that some pair in

Tspec will be confused.

Definition II.22 (Extended specification binary function for information states). In

light of the definition of T espec, we define the extended specification binary function

for information states De
I : I → {0, 1} as follows:

De
I(i) =

 0, ∃u, v,∈ I : (u, v) ∈ T espec

1, else
(2.17)

In words, De
I(i) = 1 if and only if i does not violate the extended specification.

54

The following theorems show how the extended specification is useful.

Lemma II.23 (Equality of projection when everything is observed is equivalent to

equality of projection under all controllers). For any two strings s1, s2 ∈ E∗ and

starting Z state z, P (s1) = P (s2)⇔ ∀C,PC(z, s1) = PC(z, s2).

Proof. (⇐) Clearly, if PC(z, s1) = P (z, s2) ∀C, then it is true for the particular con-

troller Call defined by Call(y) = Eo ∪ Es, ∀y ∈ I. But this is exactly the same as

taking the natural projection P .

(⇒) Certainly, events that can never be observed make no difference in the pro-

jection that is computed by some controller C. Thus, we may write PC(z, s1) =

PC(z, P (s1)) and PC(z, s2) = PC(z, P (s2)), from which it follows that P (s1) =

P (s2)⇒ ∀C,PC(z, s1) = PC(z, s2).

Theorem II.24 (Safety is equivalent to satisfying the extended specification for Z

states). For any Z state z, we have DZ(z) = De
I(I(z)). That is, a Z state is safe if

and only if it satisfies the extended specification.

Proof. Define L(G,S(I(z))) :=
⋃
x∈S(I(z)) L(G, x), the set of strings that can occur

55

after reaching Z state z. Then:

DZ(z) = 0

⇔
∀C, ∃s ∈ L(G,S(I(z))) :

DI(I(ISZC (z, s))) = 0
Thm. II.14

⇔

∀C, ∃s ∈ L(G,S(I(z))),

∃v1, v2 ∈ I(ISZC (z, s)) :

(v1, v2) ∈ Tspec

Def. II.13

⇔

∀C, ∃s1, s2 ∈ L(G,S(I(z))),

∃u1, u2 ∈ I(z) :

PC(z, s1) = PC(z, s2),

and (g(u1, s1), g(u2, s2)) ∈ Tspec

⇔

∃s1, s2 ∈ L(G,S(I(z))),

∃u1, u2 ∈ I(z) : P (s1) = P (s2)

and (g(u1, s1), g(u2, s2)) ∈ Tspec

Lemma II.23

⇔ ∃u1, u2 ∈ I(z) : (u1, u2) ∈ T espec Def. II.21

⇔ De
I(I(z)) = 0 Def. II.22

The fourth equivalence follows in the forward direction by taking the particular con-

troller Call. In the backward direction, we have a statement of the form ∃(·) :

P (s1) = P (s2) . . . and invoke Lemma II.23 to obtain a statement of the form ∃(·),∀C :

PC(z, s1) = PC(z, s2) . . ., which implies the previous statement of the form ∀C, ∃(·) :

PC(z, s1) = PC(z, s2) . . ., since ∃∀(·) is stronger than ∀∃(·).

Note that Thm. II.24 immediately implies that the safety of a Z state is solely

dependent on its information state component, and not on its associated control

decision.

A few corollaries follow from this result.

56

Corollary II.25 (Monotonicity Properties).

(i) If Z state z1 is safe then so is any Z state z2 satisfying I(z2) ⊆ I(z1).

(ii) Any control decision γ that is safe in Y state y1 is also safe in Y state y2 ⊆ y1.

(iii) If control decision γ1 is safe in Y state y, then so is any control decision γ2 ⊇ γ1.

Proof.

(i) Immediate from Thm. II.24 and Def. II.22, since I(z2) ⊆ I(z1) ⇒ De
I(I(z2)) ≥

De
I(I(z1)).

(ii) Immediate from part (i), since y2 ⊆ y1 implies I(hY Z(y2, γ)) ⊆ I(hY Z(y1, γ)).

(iii) Immediate from part (i), since γ2 ⊇ γ1 implies I(hY Z(y, γ2)) ⊆ I(hY Z(y, γ1)).

Theorem II.26 (Safety is equivalent to satisfying the extended specification for Y

states). For any Y state y, we have DY (y) = De
I(y). That is, a Y state is safe if and

only if it satisfies the extended specification.

57

Proof.

DY (y) = 0

⇔
DI(y) = 0

or ∀γ : DZ(hY Z(y, γ)) = 0
Def. II.15

⇔
DI(y) = 0

or DZ(hY Z(y, Eo ∪ Es)) = 0
Cor. II.25 (iii)

⇔
DI(y) = 0

or De
I(I(hY Z(y, Eo ∪ Es))) = 0

Thm. II.24

⇔

DI(y) = 0

or ∃v1, v2 ∈ I(hY Z(y, Eo ∪ Es)) :

(v1, v2) ∈ T espec

Def. II.21

⇔

DI(y) = 0

or ∃u1, u2 ∈ y,

∃s1, s2 ∈ (Euo ∪ Ef)∗ :

(g(u1, s1), g(u2, s2)) ∈ T espec

⇔
DI(y) = 0

or ∃u1, u2 ∈ y : (u1, u2) ∈ T espec

Def. II.21

⇔ De
I(y) = 0 Def. II.22

The fifth equivalence follows from the definition of hY Z as the unobservable reach.

Theorems II.24 and II.26 have important implications. By making use of the ex-

tended specification, we can determine the safety of any control decision γ ∈ Γ, from

any Y state y by checking if the resulting Z state satisfies the extended specifica-

tion. That is, γ is a safe control decision from y if and only if De
I(I(hY Z(y, C(y))) =

De
I(UR(y, C(y))) = 1. This can be done in O(K|X||E|+K|X|2) time, since comput-

ing the unobservable reach can be done through a O(K|X||E|) time depth-first search

over G+
K and evaluating De

I(·) can be done in O(K|X|2) time. Thus, we can determine

safe control decisions from any Y state y without constructing any part of the TO

58

beyond the immediate successors of y. This implies that the MPO can be constructed

with a search algorithm that need only visit safe states of the TO (i.e., those that will

remain in the MPO) and their immediate successors. This results in savings in both

running time and memory and would not be the case if we were to use the algorithm

presented in Cassez and Tripakis (2008). Another important consequence of the use

of the extended specification is that, if |Es| is small, we can compute an “on the fly”

minimal solution (i.e., a safe controller C such that there does not exist any other

safe controller C ′ 6= C such that C ′(y) ⊆ C(y) for all y ∈ Y satisfying DY (y) = 1).

Clearly, any controller that makes minimal safe control decisions at each Y state is a

minimal controller (the converse is not true). Thus, it suffices to find a minimal safe

control decision at each Y state to construct a minimal controller on the fly, and this

requires time exponential in Es, but only quadratic in |X|, at each new Y state.

Example II.27 (A simple example revisited). To illustrate the use of the extended

specification, let us now revisit Ex. II.20. From the definition of Tspec, we know

that ((1,−1), (2, K + 1)) ∈ Tspec. The two strings s1 = a and s2 = atK−1 satisfy

P (s1) = P (s2), g((0,−1), s1) = (1,−1), and g((4, 1), s2) = (2, K + 1). Thus, we

have ((0,−1), (4, 1)) ∈ T espec, for any finite K > 0. If K = 0, then ((0,−1), (4, 1)) ∈

Tspec ⊆ T espec. Thus, for any finite K, ((0,−1), (4, 1)) ∈ T espec, from which it follows

that state z2 of Fig. 2.4 does not satisfy the extended specification and will not be in

the MPO. The use of the extended specification therefore allows us to construct the

MPO without exploring y2 and its four successors.

2.7 Reducing the Information State

In this section, we prove new results using a monotonicity property on the ex-

tended specification. Specifically, we use this to show that we can “reduce” our

information state. That is, we will show that, as currently defined, our information

59

state carries more information than what is strictly necessary for the problem of K-

diagnosability. In order to simplify notation in what follows, we write that v′ >+ v

for augmented states v and v′ if S(v′) = S(v) and N(v′) > N(v). Let <+, ≥+, and

≤+ be similarly defined for augmented states.

Theorem II.28 (Monotonicity Property for the Extended Specification). Suppose

that (u, v) ∈ T espec. Then, for any v′ >+ v, we also have (u, v′) ∈ T espec.

Proof. Suppose that (u, v) ∈ T espec. Then:

∃s1, s2 : P (s1) = P (s2), (g(u, s1), g(v, s2)) ∈ Tspec .

We know that N(g(u, s1)) = −1 and N(g(v, s2)) = K + 1. Clearly, v′ >+ v ⇒

g(v′, s2) >+ g(v, s2). Truncate s2 to obtain s′2 such that N(g(v′, s2)) = K + 1.

Similarly, truncate s1 to obtain s′1 such that P (s′1) = P (s′2). Then s′1 and s′2 satisfy

the three conditions that P (s′1) = P (s′2), N(g(u, s′1)) = −1, and N(g(v′, s′2)) = K+1,

which implies that (u, v′) ∈ T espec.

The above theorem allows us to reduce the extended specification to a |X|×|X| ta-

ble filled with elements from {−1, 0, . . . , K+1}, where an entry of n at location (x1, x2)

signifies that ((x1,−1), (x2, n)) ∈ T espec and that, for all n′ < n, ((x1,−1), (x2, n
′)) /∈

T espec. We will see with the next definition and theorems that this has even more

significant consequences.

Definition II.29 (Information State Reducing Function). Define R : I → I by:

R(i) = {u ∈ i : [N(u) = −1] ∨ [@u′ ∈ i s.t. u′ >+ u]} . (2.18)

Also define the notation m(i) = {u ∈ i : N(u) = −1} and M(i) = {u ∈ i :

@u′ ∈ i s.t. u′ >+ u}, so that R(i) = m(i) ∪ M(i). Define R : Z → Z by

60

R(z) = (R(I(z)), C(z)). Finally, define reduced versions of hY Z , UR, hZY :

hRY Z(y, C(y)) = R(hY Z(y, C(y))) (2.19)

RUR(y, C(y)) = R(UR(y, C(y))) (2.20)

hRZY (z, e) = R(hZY (z, e)) (2.21)

In words, R(·) reduces an information state by keeping only those augmented

states within it that have a count of -1 and, for each state in X, keeping only the

augmented state with that state component that has the highest count. As the

following corollary will show, this information is sufficient to determine the safety of

a Y or Z state.

Corollary II.30 (Reduced information state carries all necessary information in

determining safety). For any information state i ∈ I, De
I(i) = De

i (R(i)).

Proof. Obviously, R(i) ⊆ i, so that De
I(R(i)) ≥ De

I(i), ∀i ∈ I. Now suppose to the

contrary that for some i ∈ I, De
I(i) 6= De

i (R(i)). Then it must be that De
i (R(i)) = 1

and De
I(i) = 0. Thus, ∃u, v ∈ i : (u, v) ∈ T espec. Since N(u) = −1, we know that

u ∈ R(i) as well. Then it must be that v /∈ R(i). Hence N(v) 6= −1 and, since

v ∈ i but v /∈ R(i), there exists some v′ ∈ R(i) such that v′ >+ v. But by Thm.

II.28 and (u, v) ∈ T espec, we know that (u, v′) ∈ T espec, so that De
i (R(i)) = 0 also, a

contradiction.

This proves that R(·) conserves all the necessary information for determining the

safety of a Y or Z state. However, it is still possible that this “filtering out” of

information in the present could change safety properties of Y or Z states in the

future (i.e., those Y and Z states that are reachable further in the execution of the

system). The following two theorems preclude this possibility.

61

Theorem II.31 (There is no loss in applying hRZY to a reduced Z state). For any Z

state z and event e ∈ C(z), hRZY (z, e) = hRZY (R(z), e).

Proof. We seek to prove thatm(hZY (z, e)) = m(hZY (R(z), e))) and thatM(hZY (z, e)) =

M(hZY (R(z), e))). From the definition of hZY , {v ∈ hZY (z, e)} =
⋃
u∈I(z) g(u, e).

Since e /∈ Ef ,

m(hZY (z, e)) =
⋃
u∈m(I(z)) g(u, e)

=
⋃
u∈m(I(R(z))) g(u, e) = m(hZY (R(z), e)).

Next, we claim that, for any i1, i2 ∈ I:

M(i1) ⊆ i2 ∧M(i2) ⊆ i1 ⇒M(i1) = M(i2) (2.22)

To see this, consider any v ∈ M(i1) ⊆ i2 and suppose that v /∈ M(i2). Then there

exists some v′ ∈M(i2) such that v′ >+ v. But M(i2) ⊆ i1, so this would imply v′ ∈ i1,

contradicting v ∈ M(i1). Thus, M(i1) ⊆ M(i2). We can prove M(i2) ⊆ M(i1) by a

symmetrical argument. Next, we claim that:

M(i1) = M(i2),

where i1 =
⋃
u∈I(z) g(u, e) and i2 =

⋃
u∈M(I(z)) g(u, e)

(2.23)

From the definition of M , it follows that M(i2) ⊆ i2 ⊆ i1. By Eq. (2.22), it therefore

suffices to prove that M(i1) ⊆ i2. Consider any v ∈ M(i1) and let u ∈ I(z) be such

that g(u, e) = v. Suppose that u /∈ M(I(z)). Then there exists some u′ ∈ I(z) such

that u′ >+ u. This in turn implies that g(u′, e) >+ g(u, e) = v, which contradicts

v ∈M(i1). It follows that u ∈M(I(z)) and hence that v = g(u, e) ∈ i2, which proves

62

that M(i1) ⊆ i2. Finally, we obtain:

M(hZY (z, e))

= M
(⋃

u∈I(z) g(u, e)
)

Def. of hZY

= M
(⋃

u∈M(I(z)) g(u, e)
)

Eq. (2.23)

= M
(⋃

u∈M(I(R(z))) g(u, e)
)

Def. of M(·)

= M
(⋃

u∈I(R(z)) g(u, e)
)

Eq. (2.23)

= M(hZY (R(z), e) Def. of hZY

which completes the proof.

Theorem II.32 (There is no loss in applying hRY Z to a reduced Y state). For any Y

state y and control decision C(y), hRY Z(y, C(y)) = hRY Z(R(y), C(y)).

Proof. Similar to the previous proof, except that we consider unobservable strings of

events rather than single events.

By induction, Thms. II.31 and II.32 along with Cor. II.30 show that we do

not lose any information relevant to determining safety of Y or Z states by working

solely with reduced information states. Significantly, this substantially reduces the

number of “distinct” information states. Without this reduction, the number of

information states that may be present in the MPO is 2(K+2)|X|, since there are

|{−1, 0, 1, . . . , K}| = K + 2 values for the count component of each augmented state

in the information state. For reduced information states ri, we must indicate, for

each x ∈ X, whether or not (x,−1) ∈ ri and what the maximal value of n is such

that (x, n) ∈ ri. If we use −1 to denote both the case where this maximal value is

−1 and the case when x /∈ S(ri) (where we determine which case it is by checking if

(x,−1) ∈ ri), then we obtain only 2|X| · (K+2)|X| distinct reduced information states

that may be present in the MPO. This reduces the space complexity of the MPO from

exponential in K to polynomial in K.

63

Following is a second MPO example that demonstrates the usefulness of the re-

duced information state.

Example II.33 (MPO with and without reduced information state).

Figure 2.5: A finite state automaton. Events are classified as follows: Eo = ∅, Es =
{a, b}, Euo = {t}, and Ef = {f}.

Figure 2.6: The MPO corresponding to the automaton of Fig. 2.5, with K = 2, not
using reduced information states.

Consider the automaton of Fig. 2.5. The entire extended specification has |X|2 =

81 “critical values”, the minimum value of n such that ((x1,−1), (x2, n)) ∈ T espec,

for each x1, x2 ∈ X. Of these, only four actually restrict behavior: ((0,−1), (6, 0)),

((3,−1), (6, 2)), ((2,−1), (7, 0)), and ((8,−1), (8, 0)). These values can be determined

by inspection for this example, by computing longest strings with the same projection

for each pair (see Appendix 1 for details on this method for computing T espec). For

((0,−1), (6, 0)), take s1 = ba and s2 = bat∞. For ((3,−1), (6, 2)), take s1 = b and

64

Figure 2.7: The MPO corresponding to the automaton of Fig. 2.5, with K = 2, using
reduced information states.

s2 = b. For ((2,−1), (7, 0)), take s1 = a and s2 = at∞. Finally, for ((8,−1), (8, 0)),

take s1 = ε and s2 = t∞. The remaining critical values are either irrelevant because

the corresponding pair of states does not occur, or are relevant but do not require any

more events to be monitored. The MPOs without and with reduced information states

are shown in figures 2.6 and 2.7, respectively. If we choose not to monitor event a

initially, the unobservable reach will include both augmented states (0,−1) and (6, 1),

which causes a lack of K-diagnosability since ((0,−1), (6, n)) ∈ T espec for any n ≥ 0.

From Y states y1, y2, and y4, we must monitor event a since the unobservable reach

from any of these Y states would otherwise include both augmented states (3,−1)

and (6, 2), and ((3,−1), (6, n)) ∈ T espec for any n ≥ 2. From Y states y2, y3, and y4,

we must monitor event b since the unobservable reach from any of these Y states

would otherwise include both augmented states (2,−1) and one of (7, 2) or (7, 3),

and ((2,−1), (7, n)) ∈ T espec for any n ≥ 0. Finally, it is also necessary to monitor

event a from Y state y5, since the unobservable reach would otherwise include both

augmented states (8,−1) and (8, 3), and ((8,−1), (8, n)) ∈ T espec for any n ≥ 0. As

in the MPO of Ex. II.20, we omitted the portion of the MPO after which we can

65

determine that no fault has occurred in the past and none can occur in the future.

We can confirm the validity of this MPO by observing that the faulty and non-

faulty languages are f(ε + b)abat∗ and (ε + b)aabt∗, respectively, whereas the faulty

and non-faulty languages of Ex. II.20 are fbat∗ and abt∗, respectively. Thus, once we

have observed a first occurrence of event a, the structure of the MPO from that point

on should be similar to the structure of the MPO in Ex. II.20. Indeed, upon observing

event a we find ourselves in one of Y states y2, y3, or y4. If we have potentially reached

an augmented state with a count of 2 (i.e., in y2 or y4), then the MPO from these

states onwards has the same structure as the MPO of Ex. II.20, but with K = 0. If,

on the other hand, at most one event has occurred after a fault (i.e., in y3), then the

MPO from this state onwards has the same structure as the MPO of Ex. II.20 (i.e.,

with K = 1).

Notice that MPO states y2 and y4 have the same reduced versions (namely (2,−1), (6, 2))

and the same structure from that point on. On the other hand, MPO state y3 is also

very similar to y2 and y4, but has a different reduced version (namely (2,−1), (6, 1))

and therefore a different structure from that point on.

2.8 Constructing the MPO

In this section, we provide an algorithm for constructing the MPO and determine

its running time. The algorithm assumes that T espec has already been computed.

An algorithm for computing T espec and its running time are given in Appendix 1.

The algorithm also makes use of a specialized algorithm for computing the reduced

unobservable reach, which has a better running time than simply computing the

unobservable reach and reducing the resulting information state. This algorithm and

its running time are also given in Appendix 1.

The basic outline of an implemented algorithm for constructing the MPO is shown

in Algorithm 1. The algorithm is based on a depth-first search (DFS). The parameter

66

G represents the finite-state automaton, the parameter y is a Y state, the param-

eter Tespec is the extended specification, the parameter Γ is the set of admissible

control decisions, and the parameter MPO represents the MPO automaton, with

MPO.Y Z being its set of states and MPO.h being its transition function. Before

calling MakeMPO, it is necessary to check if G is diagnosable. If so, then the initial

call will be MakeMPO(G, y0, Tespec, Γ, MPO), with MPO.Y Z initialized to {y0}

and MPO.h initialized to the empty set.

Algorithm 1 searches through the space of Y states and, for each encountered

Y state y, checks if DF (y) = 1 (lines 2-4) and finds the safe control decisions (line

7). For each safe control decision, a transition is added from y to the next z state

(line 11). If a control decision leads to a Z state z that is already in the MPO, the

algorithm moves on to another control decision (lines 12-14). If z is not already in

the MPO, it is added to the MPO (line 15), and the algorithm enters the inner for

loop. The inner for loop considers each possible observation e ∈ γ which could occur

from z and computes the next Y state y′. If y′ is an empty information state (which

occurs if e cannot be the next observation from z), the algorithm moves on to another

event e ∈ γ (lines 18-20). Otherwise, a transition is added from z to y′ (line 21). If

y′ is non-empty and not already in the MPO, it is added to the MPO (line 23), and

the algorithm recurses on y′ (line 24). Since there is a finite number of augmented

states with count at most K + 1, there is a finite number of information states that

will be traversed and the algorithm must eventually terminate.

Theorem II.34 (Correctness of MakeMPO). Algorithm 1 correctly constructs the

MPO.

Proof. Def. II.18 defines the MPO as the accessible part of the TO after removing

the Y states such that DY (·) = 0 and the Z states such that DZ(·) = 0. It follows

that the MPO can be correctly constructed by a DFS over the TO which visits all

the remaining accessible Y and Z states. By Thm II.24, DZ(z) = De
I(I(z)). By Def.

67

Algorithm 1: Algorithm for constructing the MPO

1: procedure MakeMPO(G, y, Tespec, Γ, MPO)
2: if DF(y) = true then . Fault can be diagnosed
3: return
4: end if
5: for all γ ∈ Γ do . Try all admissible control decisions
6: ur ← GetRUR(y, γ) . Get reduced unobservable reach for next z state
7: if DeI(ur, Tespec) = false then . γ is not safe from y
8: continue . Try the next admissible control decision
9: end if
10: z ← (ur, γ)
11: MPO.h←MPO.h ∪ {(y, γ, z)} . z = h(y, γ)
12: if z ∈MPO.Y Z then . z is already in MPO.Y Z
13: continue . Try the next admissible control decision
14: end if
15: MPO.Y Z ←MPO.Y Z ∪ {z} . Add z to MPO.Y Z
16: for all e ∈ γ do . Try all events
17: y′ ← Next(ur, e) . Get next reduced y state
18: if y′ = ∅ then . y′ is empty
19: continue . Try the next event
20: end if
21: MPO.h←MPO.h ∪ {(z, e, y′)} . y′ = h(z, e)
22: if y′ /∈MPO.Y Z then . y′ is not already in MPO.Y Z
23: MPO.Y Z ←MPO.Y Z ∪ {y′} . Add y′ to MPO.Y Z
24: MakeMPO(G, y′, T espec, sl, E,MPO)
25: end if
26: end for
27: end for
28: end procedure

II.15, DZ(z) = 1 implies DY (y) = 1, for all successor y states. Thus it suffices for

the DFS to visit all encountered Y and Z states other than the Z states such that

De
I(I(z)) = 0, which is precisely what Algorithm 1 does.

Proposition II.35 (Running time of MakeMPO). The running time of Algorithm 1

is in O([(2(K + 2))|X|][2|Es|][|X||E|+ |X|2]).

Proof. There are (2(K+2))|X| reduced information states. For each information state

encountered, a maximum of 2|Es| control decisions are considered. For each control

decision, we find the next Z state z, check if it satisfies the extended specification, and

68

for each e ∈ C(z), find the next Y state. Finding z consists of computing the reduced

unobservable reach and can be done in O(|X||E|) time (see Appendix 1). Checking

if it satisfies the extended specification can be done in time O(|X|2). Finally, there

are at most |Eo ∪ Es| successors to z, and each takes O(|X|) time to compute since

there are at most 2|X| augmented states in reduced information state I(z), and we

must consider the occurrence of event e from each of these to compute hZY (z, e). The

total running time is therefore O([(2(K + 2))|X|][2|Es|][|X||E|+ |X|2 + |Eo ∪Es||X|]).

But |Eo ∪ Es| ≤ |E|, so this reduces to O([(2(K + 2))|X|][2|Es|][|X||E|+ |X|2]).

2.8.1 Experimental Results

We have implemented Algorithm 1 in C++ and run the program on randomly

generated automata in order to demonstrate the scalability of the algorithm. We also

created a program to generate random automata in accordance with the following

specifications, in terms of input parameters n, ny, nm, nn, py, pm, pn, and pf :

• The generated automaton will have |X| = n states, |Eo| = ny events that are

always observed, |Es| = nm events that may or may not be observed, |Euo| = nn

non-faulty unobservable events, and |Ef | = 1 fault event ef .

• The generated automaton will be accessible and will have no fault event self-

loops.

• From any x ∈ X, the probability that f(x, e) is defined is given by py if e ∈ Eo,

pm if e ∈ Es, pn if e ∈ Euo, and pf if e = ef . These probabilities are independent

between one state and another, given the accessibility constraint.

We used the parameters ny = 0, nm = 4, nn = 1, py = 0, pm = 0.35, pn = 0.05,

and pf = 0.05. These parameters were chosen by trial and error. We found that

low probabilities tended to result in automata that were trivial or almost trivial (in

some cases, it was safe to choose to monitor no events from the initial state). When

69

the probabilities were too high, the generated automata were undiagnosable. As the

purpose of these results is to demonstrate the scalability of the algorithm, we do not

present data with different parameters.

Table 2.1 shows MPO sizes and running times (rounded to the nearest second)

for two versions of the program, one that makes use of the reduced information state

and associated faster algorithms (e.g., for computed the reduced unobservable reach

and for verifying if the extended specification is satisfied) and one that does not. We

ran ten simulations each with n = 75 states and n = 100 states, respectively. We

used K = 4 for the 75 state simulations and K = 5 for the 100 state simulations.

One of the randomly generated automata with n = 75 states and two with n = 100

states were not K-diagnosable. The results of Table 2.1 show that the use of the

reduced information state has little effect on the size of the resulting MPO, but that

the algorithms for working with the reduced information state reduce running time by

a factor of 3 or 4. We conjecture that the lack of structure of the randomly generated

automata accounts for the small effect on MPO size of the reduced information state.

The results of Table 2.1 also show that large MPOs can be generated in a small

amount of time, which demonstrates that the algorithm of Sec. 2.8 is scalable in

practice. All simulations were run on a 6GB Dell XPS 12 Laptop with a 1.6GHz intel

core i7 processor (no parallelization was used in the simulations).

n RIS?
MPO States/Time (s)

1 2 3 4 5 6 7 8 9 10

75
no

84325 N/A 86114 54502 54832 40404 29493 146108 169635 30819
3 N/A 4 2 3 1 1 18 11 1

yes
84258 N/A 86114 54502 54829 40325 29493 146003 169635 30674

1 N/A 1 1 1 1 1 4 5 0

100
no

N/A 586886 871242 204583 149817 N/A 259381 199464 170652 2016398
N/A 109 98 18 9 N/A 17 15 13 395

yes
N/A 579455 871225 204458 149759 N/A 259380 199460 170618 2016395
N/A 21 27 6 4 N/A 6 5 4 91

Table 2.1: Simulation results showing running times and MPO sizes with and without
using the reduced information states, for randomly generated automata
with 75 and 100 states.

70

2.9 Conclusion

This work considered the problem of dynamic fault diagnosis under the constraint

of maintaining K-diagnosability. We established results about a structure called the

MPO that contains all the solutions of the problem, developed from our notion of the

information state. We next proved that the problem of finding safe controllers can

be mapped to the state disambiguation problem, and showed an equivalence between

safety and satisfying the extended specification. We proceeded to prove a monotonic-

ity result on the extended specification that allowed us to reduce our information state

and the size of our MPO. Putting all of our results together, we obtained a MPO

with a size complexity of O(2|X|(K + 2)|X|2|E|), compared with O(2|X|
2·K·2|E|) for the

previous approach of Cassez and Tripakis (2008). Finally, we presented an algorithm

for computing the MPO, and demonstrated through simulations that the algorithm

is scalable in practice. In future work, we will concentrate on finding a single optimal

controller (according to some numerical cost criterion), using the MPO as a basis.

We will also work on extending the results of this work to the problem of dynamic

co-diagnosability.

Appendix 1: Computing the Extended Specification and the

Reduced Unobservable Reach

Computing the Extended Specification

In this section, we show that computing the extended specification is equivalent

to finding maximal weight paths on a particular graph. This idea was presented

in Cassez and Tripakis (2008), in which the authors reduced the problem of finding

the minimal K for which K-diagnosability can be achieved for a given automaton (i.e.,

71

the minimal detection delay). Computing the extended specification is a similar, but

more general problem. In fact, in the notation to follow, the problem of computing

this minimal K is equivalent to determining the single value mF (x0, x0). The method

used here is very similar to that presented in Yoo and Garcia (2008) in that both

approaches make use of strongly connected components to find minimal / maximal

weight paths. The algorithm presented here differs from that of Yoo and Garcia

(2008) in two ways: (i) we compute the extended specification rather than merely

the minimal detection delay; and (ii) we use a customized algorithm for the problem

of event-diagnosability whereas Yoo and Garcia (2008) considers the more general

problem of language-diagnosability. Our algorithm therefore achieves a complexity of

O(|X|2|E|), compared to O(|X|3|E|) as would be obtained by applying the method of

Yoo and Garcia (2008). There are also similarities to the construction of the verifier

Yoo and Lafortune (2002).

In what follows, let L = L(G) be the language of the automaton G = (X,E, f, x0)

and let LNF = L ∩ (E \ Ef)∗, the language of G but excluding strings with fault

occurrences. Also, for any state x ∈ X, let L/x denote the language L(G, x) =

L((X,E, f, x)). That is, L/x denotes the language that is possible given the automa-

ton G when starting in state x. Define LNF/x analogously. Finally, for any string s

and fault event ef , let s/ef denote the part of s beginning at the first occurence of

event ef in s, or ε if ef does not occur in s. As before, we assume that there is only

a single fault event, so that Ef = {ef}.

In Sect. 2.6, we proved that safety is equivalent to satisfying the extended specifi-

cation. By Thm. II.28, it suffices to find (for each (x1, x2) ∈ X2) the minimum count

n such that ((x1,−1), (x2, n)) ∈ T espec to compute the extended specification. But by

72

Def. II.21, this is equivalent to finding:

min


n ∈ {−1, 0, 1, . . .} : ∃s1 ∈ L/x1, s2 ∈ L/x2

s.t. P (s1) = P (s2), N(g((x1,−1), s1)) = −1,

and N(g((x2, n), s2)) = K + 1

 (2.24)

Instead of computing this minimum, we compute the following two maxima:

m(x1, x2) = max
s1∈LNF /x1,s2∈L/x2

s.t. P (s1)=P (s2)

|s2| (2.25)

mF (x1, x2) = max
s1∈LNF /x1,s2∈L/x2

s.t. P (s1)=P (s2)

|s2/ef | (2.26)

Theorem II.36.

min

 n ∈ {−1, 0, 1, . . .} :

((x1,−1), (x2, n)) ∈ T espec


=


−1 if

mF (x1, x2)

≥ K + 2

max{0, K + 1−m(x1, x2)} else

(2.27)

Proof. Suppose that mF (x1, x2) = c. Then there exists s1 ∈ LNF/x1 and s2 ∈

L/x2 such that P (s1) = P (s2) and |s2/ef | = c. Since s1 ∈ LNF/x1, it follows that

N(g((x1,−1), s1)) = −1. Also, since |s2/ef | is the number of events in s2 starting

at the first occurrence of ef , it follows that N(g((x2,−1), s2)) = c − 1. Thus, the

minimum in equation (2.24) is n = −1 if c − 1 ≥ K + 1. Now suppose instead

that mF (x1, x2) < K + 2 and that m(x1, x2) = c. Then there exists s1 ∈ LNF/x1

and s2 ∈ L/x2 such that P (s1) = P (s2) and |s2| = c. As before, this implies that

N(g((x1,−1), s1)) = −1. It also implies that N(g((x2, n), s2)) = c + n if n ≥ 0 and

73

hence N(g((x2, n), s2)) ≥ K + 1 if n ≥ 0 and n ≥ K + 1−m(x1, x2).

An advantage to using this method for computing the extended specification is

that the values in equations (2.25) and (2.26) are not dependent on the particular

value of K. This means that we do not need to recompute the extended specifica-

tion for different values of K. The procedure for computing the values of m(·, ·) and

mF (·, ·) is described below. The two sets of values are computed by finding maximal

weight (not necessarily simple) paths in a graph. The graph will be described below

but it is effectively the complete (in the sense that we do not trim the non-accessible

parts) one-sided verifier of G. The intuition for the procedure is that it generates all

pairs of strings that have the same projection (with the first string being non-faulty),

from each pair of states of the automaton G, and assigns a value to such a pair of

strings equal to the length of the second string (in the case of the m(·, ·) values), or

equal to the number of events starting from the first fault occurrence of the second

string (in the case of the mF (·, ·) values).

Step 1:

Create the graph Ges = (Ves, Aes), where Ves = X × {N} ×X × {N, Y }, and Aes ⊆

Ves × Ves is the set of (directed) edges between them, with labels in the set E × E.

Here, N and Y are fault labels, where N represents no fault (i.e., a count of -1) and Y

represents the occurence of a fault at some point in the past (i.e., any count not equal

to -1). We use FL = {N, Y } to denote the set of fault labels. Define the function

FLes : Ves → FL to be the fault label associated with the second state of a vertex.

That is:

FLes(v) =

 N, if v ∈ X × {N} ×X × {N}

Y, if v ∈ X × {N} ×X × {Y }
(2.28)

Also, let ELes : Aes → E ×E be the function that assigns labels to edges. The set of

edges Aes is defined by three cases:

74

• Observed Events : For any vertex v1 = (x1, N, x2, f l) and any event e ∈ Eo∪Es,

if f(x1, e) and f(x2, e) are both defined, then there exists an edge (v1, v2) ∈ Aes

with label (e, e), where v2 = (f(x1, e), N, f(x2, e), f l).

• Unobservable Events : For any vertex v1 = (x1, N, x2, f l) and any event e ∈ Euo,

if f(x1, e) is defined, then there exists an edge (v1, v2) ∈ Aes with label (e, ε),

where v2 = (f(x1, e), N, x2, f l). Similarly, if f(x2, e) is defined, then there exists

an edge (v1, v2) ∈ Aes with label (ε, e), where v2 = (x1, N, f(x2, e), f l).

• Faulty Events : For any vertex v1 = (x1, N, x2, f l), if f(x2, ef) is defined, then

there exists an edge (v1, v2) ∈ Aes with label (ε, ef), where v2 = (x1, N, f(x2, ef), Y).

Remark that, for any edge (v1, v2) ∈ Aes, its corresponding label (e1, e2) will satisfy

P (e1) = P (e2) in any of the above three cases. Next, we assign weights to each edge

of Ges through the function Wes : Aes → {0, 1} as follows. For any a = (v1, v2) ∈ Aes

with label EL(a) = (e1, e2),

Wes(a) =


1,

if [FLes(v1) = N and e2 = ef]

or [FLes(v1) = Y and e2 6= ε]

0, else

(2.29)

Thus Wes(a) = 1 precisely when it corresponds to an event occurrence that would

increment the count on the x2 state in the augmented automaton. For any (x1, x2) ∈

X2, the value of m(x1, x2) is equal to the maximal weight of a path starting at

(x1, N, x2, Y). Similarly, the value of mF (x1, x2) is equal to the maximal weight of a

path starting at (x1, N, x2, N). Let the weight of the maximal weight path starting

from v ∈ Ves be denoted by des(v).

Step 2:

Create the component graph GSCC
es = (V SCC

es , ASCCes) of Ges, which is the graph over

75

strongly connected components (SCCs) of Ges. If we denote by SCC(v) the SCC con-

taining vertex v, we can write V SCC
es = {SCC(v) : v ∈ V e

es} and ASCCes = {(S1, S2) ∈

V SCC
es × V SCC

es : S1 6= S2 ∧ ∃v1 ∈ S1, v2 ∈ S2 s.t. (v1, v2) ∈ Aes}. Also, assign weights

to each edge of GSCC
es through the function W SCC

es : ASCCes → {0, 1} as follows. For

any a = (S1, S2) ∈ ASCCes ,

W SCC
es (a) = max

v1∈S1,v2∈S2:(v1,v2)∈Aes

Wes((v1, v2)) . (2.30)

Since all edge weights of Ges are non-negative, the maximal path weights starting

from any two vertices in the same strongly connected components must be equal.

That is, SCC(v1) = SCC(v2) ⇒ des(v1) = des(v2). This is clearly true if all edges

in a SCC have weight zero. If there is a non-zero edge, it can be traversed infinitely

often on a maximal weight path starting from any vertex in the SCC, in which case

the maximal path weights will be infinite for any vertex in the SCC. Thus, we can

define dSCCes (S) for any S ∈ V SCC
es and give it the value of des(v) for any v ∈ S.

Step 3:

To compute the maximal weight paths, we consider the following three cases:

• For any S ∈ V SCC
es such that there exist two vertices v1, v2 ∈ S and an edge

a = (v1, v2) with weight 1, assign dSCCes (S) =∞, since this edge can be traversed

an infinite number of times in the maximal weight path starting from any v ∈ S.

• For any S1 ∈ V SCC
es that has a path to some S2 ∈ V SCC

es in GSCC
es with

dSCCes (S2) = ∞, assign dSCCes (S1) = ∞, since there exists a path from any

v1 ∈ S1 to any v2 ∈ S2 in this case (and hence the weight of the maximal weight

path from any such v1 is at least as great as that of the maximal weight path

from any such v2).

• For the remainder of the vertices of GSCC
es , we can do a topological sort, assign

76

dSCCes (S) = 0, for any S ∈ V SCC
es that is a sink of GSCC

es (i.e., with no outgo-

ing edges), and work backwards from these to compute the remaining values

of dSCCes (S). Considering the vertices in this order ensures that we find the

longest path from any vertex before moving on to any of its predecessors in the

topological sort.

Proposition II.37 (Running Time of Extended Specification Computation). The

running time of the procedure described in this section is O(|X|2|E|) if G is deter-

ministic.

Proof. The graph created in step 1 has |Ves| = 2|X|2 vertices. For a deterministic

automaton, there is at most one transition defined for a given initial state and event.

Thus, for each of the 2|X|2 vertices of Ges, there is at most one outgoing edge for

each event e ∈ Eo ∪ Es (labeled (e, e)), at most two outgoing edges for each event

e ∈ Euo (labeled either (e, ε) or (ε, e)), and at most one outgoing edge for each event

e ∈ Ef (labeled (ε, e)). Hence, the graph created in step 1 has |Aes| ≤ [2|X|2][2|E|] =

4|X|2|E| edges. Creating the component graph in step 2 can be done in time O(|Ves|+

|Aes|) (see e.g., Cormen et al. (2009)). Furthermore, |V SCC
es | ≤ |Ves| = 2|X|2 and

|ASCCes | ≤ |V SCC
es | − 1 < 2|X|2. Computing W SCC

es and performing the first part of

step 3 can be done together in time O(|Aes|), by considering each edge (v1, v2) ∈ Aes

such that Wes(v1, v2) = 1. If SCC(v1) = SCC(v2) = S, then we set dSCCes (S) = ∞.

If SCC(v1) 6= SCC(v2), then we set W SCC
es (SCC(v1), SCC(v2)) = 1. The second

part of step 3 can be done through a single depth-first search on GSCC
es , and hence

takes O(|X|2) time. For the last part of step 3, finding a topological sort can be

done at the same time as computing the component graph. The remainder of the

algorithm takes linear time in the size of GSCC
es by considering this graph’s vertices in

topologically sorted order, starting from sink nodes. Thus, the total running time is

in O(|X|2|E|).

77

Computing the Reduced Unobservable Reach

In this section, we show how to efficiently compute the reduced unobservable reach

(i.e., how to compute rur = RUR(y, γ)). The naive method of computing the un-

observable reach and reducing the resulting information state has a running time of

O(K|X||E|) + O(|X|), which is worse than the O(|X||E|) running time of the algo-

rithm presented below. The procedure for this computation bears some similarity

to the one used to compute the extended specification in that we also make use of

strongly connected components and the topological sort. In what follows, we assume

that the computation of the unobservable reach is a step in determining whether or

not a particular control decision is safe, so that we stop immediately if we find an

augmented state with a count of more than K + 1 in the unobservable reach.

Step 1: Graph construction

Create the graph Gγ = (X,Aγ), where Aγ ⊆ X × X is the set of (directed) edges.

Let Aγ = AFγ ∪ ANFγ , where these are defined by:

AFγ = {(x1, x2) ∈ X2 : ∃e ∈ Ef s.t. f(x1, e) = x2}

ANFγ =

 (x1, x2) ∈ X2 : ∃e ∈ E \ (γ ∪ Ef)

s.t. f(x1, e) = x2


Thus, the set of edges Aγ corresponds simply to all unobservable transitions of the

automaton G, given the set of monitored events γ, and are split into AFγ (for fault

transitions) and ANFγ (for non-faulty transitions). Note that some (x1, x2) may be in

both sets.

Step 2: Finding the -1 count augmented states

Initialize rur ← y. For all u ∈ y such that N(u) = −1, determine all x ∈ X such

78

that there exists a path from S(u) to x in Gγ, considering only edges in ANFγ , and set

rur ← rur ∪ {(x,−1)}. This can be done through a single depth-first search on the

graph Gγ and gives the set of all v ∈ RUR(y, γ) such that N(v) = −1.

Step 3: Finding the 0 count augmented states

For each u ∈ rur such that N(u) = −1 and for each x ∈ X such that (S(u), x) ∈ AFγ ,

set rur ← rur ∪ {(x, 0)}, unless there exists some v ∈ rur such that v >+ (x, 0).

Step 4: Finding the maximal count augmented states

Create the component graph GSCC
γ = (V SCC

γ , ASCCγ) of Gγ defined over strongly

connected components. For each x ∈ X, let SCCγ(x) denote the SCC that contains

x. We first check if there are any augmented states that can be reached with arbitrarily

large count. This will occur if there exists some x ∈ X such that (x, n) ∈ rur for

some n ≥ 0 and a path from SCCγ(x) to some SCC S ∈ V SCC
γ with |S| > 1. In this

case, we stop here and determine that γ was not a safe control decision. If we do

not halt at this point, then we know that all non-singleton SCCs are unreachable by

any x ∈ X such that (x, n) ∈ rur for some n ≥ 0. It follows that any non-singleton

SCCs in GSCC
γ will not have any effect on the maximal counts. Therefore, we remove

all these states from GSCC
γ , obtaining a subgraph G′γ of Gγ. Finally, we compute

the maximal counts by considering the vertices in topologically sorted order, starting

from source nodes. This guarantees that we will find all paths to a vertex x (and

hence the maximal value of n such that (x, n) ∈ RUR(y, γ)) before moving on to any

of its successors.

Proposition II.38 (Running Time of Reduced Unobservable Reach Computation).

The running time of the procedure described in this section is O(|X||E|) if G is de-

terministic.

Proof. The graph created in step 1 has |X| vertices and at most |E\γ| ≤ |E| outgoing

79

edges per vertex and can therefore be constructed in time O(|X||E|). The depth-

first search in step 2 takes linear time in the size of the graph Gγ. Step 3 requires

considering all fault transitions in the automaton. Since G is deterministic, and there

is only one fault event, there are at most |X| such transitions and hence this step

is done in O(|X|) time. In step 4, computing the component graph can be done in

linear time in the size of the graph Gγ (see e.g., Cormen et al. (2009)). We can then

find all the SCCs of GSCC
γ that are not singletons and mark them in time O(|X|).

Checking if there exists a path to one of these non-singleton SCCs from some x ∈ X

such that (x, n) ∈ rur for some n ≥ 0 can be done with a single depth-first search

on GSCC
γ , which takes linear time. Removing the non-singleton SCCs from GSCC

γ and

topologically sorting the remaining graph also takes linear time in the size of GSCC
γ .

Finally, computing the maximal counts by considering the vertices in topologically

sorted order takes linear time in the size of G′γ. Since all of the operations are

linear time and no graph has size larger than O(|X||E|), the overall running time is

O(|X||E|).

Appendix 2: Proofs not contained in main body

Proof of Lemma II.11:

Proof. The proof is established by induction on the length of PC(s). Let |PC(s)| = n.

Furthermore, for any string t, let t[k] denote the kth event in t, and let t(k) denote

the substring t[1] · · · t[k], with t(0) = ε. As further shorthand, let sk = PC(s)(k) for

k = 0, . . . , n and ek = PC(s)[k + 1] for k = 0, . . . , n− 1, so that s0 = ε, s1 = e0, etc...

Define y0 as usual. For k = 0, . . . , n, let zk = hY Z(yk, C(yk)) and for k = 0, . . . , n− 1,

define yk+1 = hZY (zk, ek). Finally, for k = 0, . . . , n, define Ck by Ck = C(yk). First,

notice that since unobserved events do not change the information state, we have

ISZC (sk) = zk and, in particular, z = ISZC (s) = ISZC (PC(s)) = ISZC (sn) = zn. The

80

inductive hypothesis is:

I(zk) = {v ∈ X+ : ∃s′k s.t. PC(s′k) = sk ∧ v = g(s′k)}, (2.31)

where we have dropped the PC(·) around sk since sk is already a projection. For the

base case z0, we have that:

I(z0) = UR(y0, C0)

=

 v ∈ X+ : (∃u ∈ y0)(∃t ∈ (E \ C0)∗)

s.t. v = g(u, t)


= {v ∈ X+ : ∃t ∈ (E \ C0)∗ s.t. v = g(x+

0 , t)}

= {v ∈ X+ : ∃t s.t. PC(t) = ε = s0 ∧ v ∈ g(t)}

Thus the base case is established, by taking s′0 = t. Now suppose that the inductive

81

hypothesis is true at k. Then:

yk+1 = hZY (zk, ek)

= {v ∈ X+ : ∃u ∈ I(zk) s.t. v = g(u, ek)}

=

v ∈ X+ :
∃s′k s.t. PC(s′k) = sk

and v = g(s′kek)


I(zk+1) = UR(yk+1, Ck+1)

=

v ∈ X+ :
(∃u ∈ yk+1)(∃t ∈ (E \ Ck+1)∗)

s.t. v = g(u, t)


=

v ∈ X
+ :

(∃s′k)(∃t ∈ (E \ Ck+1)∗)

s.t. PC(s′k) = sk

v = g(s′kekt)


=

v ∈ X+ :
∃s′k+1 s.t. PC(s′k+1) = sk+1

and v = g(s′k+1)

 ,

where the last equality follows by taking s′k+1 = s′kekt and noting that, since s′k can

be any string satisfying PC(s′k) = sk and t can be any string satisfying t ∈ (E \Ck+1)∗

(which is equal to the set {t : PC(zk, t) = ε}), the concatenation s′k+1 = s′kekt can be

any string satisfying PC(s′k+1) = skek = sk+1. Thus the induction step is proven and

the lemma follows from this.

82

CHAPTER III

Vehicle Control : The case of perfect measurement

3.1 Abstract

We consider the problem of controlling a set of vehicles at an intersection, in the

presence of uncontrolled vehicles and a bounded disturbance. We begin by discretiz-

ing the system in space and time to construct a suitable discrete event system (DES)

abstraction, and formally define the problem to be solved as that of constructing a su-

pervisor over the discrete state space that is safe (i.e., collision-free), non-deadlocking

(i.e., the vehicles all cross the intersection eventually), and maximally permissive with

respect to the chosen discretization. We show how to model the uncontrolled vehi-

cles and the disturbance through uncontrollable events of the DES abstraction. We

define two types of relations between systems and their abstraction: state reduction

and exact state reduction. We prove that, when the abstraction is a state reduction

of a continuous system, then we can obtain a safe, non-deadlocking, and maximally

permissive memoryless supervisor. This is obtained by translating safety and non-

deadlocking specifications to the abstract domain, synthesizing the supervisor in this

domain, and finally translating the supervisor back to the concrete domain. We show

that, when the abstraction is an exact state reduction, the resulting supervisor will be

maximally permissive among the class of all supervisors, not merely memoryless ones.

Finally, we provide a customized algorithm and demonstrate its scalability through

83

simulation.

3.2 Introduction

We consider the problem of controlling a set of n vehicles in the vicinity of an

intersection. We assume that vehicles move along a set of m intersecting two-way

roads, m ≤ n, and that the path that each vehicle will follow is known a priori (for

example, by means of reading the turn signal of the vehicle), and we want to supervise

the vehicles’ behaviour to avoid a side impact of any two vehicles on intersecting paths,

and a rear-end collision of any two vehicles on a common or on merging paths. See

Fig. 3.1 for an example.

Figure 3.1: An example of the vehicle control problem.

We assume that a certain subset of the vehicles are uncontrolled, and that there

is a disturbance on the vehicle dynamics with a known bound. The problem to be

solved consists of designing a supervisor that restricts the actions of the controlled

vehicles such that the system is safe (i.e., collision-free), non-deadlocking (i.e., the

vehicles must eventually cross the intersection), and maximally permissive.

Three common approaches to this problem include: the computation of maximally

controlled invariant sets; mapping the problem to that of scheduling; and abstrac-

tion/symbolic models. Among approaches falling in the first category, we mention,

e.g., (Hafner and Del Vecchio, 2011; Verma and Del Vecchio, 2011; Hafner et al.,

84

2013). By explicitly computing the capture set, or set of states from which it is not

possible to guarantee avoidance of the unsafe states, these approaches naturally satisfy

safety, non-deadlockingness and maximal permissiveness, and can deal with sources of

uncontrollability and also with measurement uncertainty. However, such approaches

typically require conditions on the geometry of the unsafe set and on the structure

of the dynamics, or else scale poorly to systems with more than a few dimensions.

See also (Tomlin et al., 2003) for an example involving a flight management system.

Scheduling approaches work by allocating time intervals during which the vehicles

can be inside the intersection. The scheduling problem is generally NP-hard but

takes polynomial time in the special case where all jobs require the same processing

time. Reducing the vehicle control problem to the polynomial-time scheduling case

amounts to either an assumption of certain symmetries in the vehicle control problem

set-up, or a problem relaxation where such symmetries are not satisfied. Approaches

in this category include (Colombo and Del Vecchio, 2012), its extension to the case

of dynamics with disturbances, (Bruni et al., 2013), and its extension to the case

of uncontrolled vehicles Ahn et al. (2014). Because of the assumption of mutual ex-

clusiveness of the use of the intersection, these approaches do not deal with vehicles

on non-intersecting paths (in which case multiple vehicles could simultaneously be

in the intersection). Another approach is to pre-compute fail-safe maneuvers as in

(Kowshik et al., 2011), or evasion plans as in (Au et al., 2012). These last approaches

deal with some types of environmental uncertainty, but do not guarantee maximal

permissiveness.

Our approach falls in the category of abstraction/symbolic models. Abstraction

based methods work by mapping the continuous system model and specifications

to a finite model and solving for a supervisor on the finite model, in such a way

that the obtained supervisor can be used on the original (continuous) system, while

preserving safety and non-deadlocking properties. Work in this domain includes (Alur

85

et al., 2000; Daws and Tripakis , 1998) in the context of verification / model checking,

as well as (Colombo and Del Vecchio, 2011a,b; Colombo and Girard , 2013), which

make use of differential flatness of dynamical systems to construct abstractions with

provable errors bounds. Our work is most closely related to that of (Girard et al., 2010;

Pola and Tabuada, 2009; Zamani et al., 2012; Camara et al., 2011), which construct

symbolic models that satisfy simulation or alternating simulation relations with the

original system. In particular, this work also makes use of alternating simulation

relations, and variations thereof.

In this problem, the number of vehicles will typically be at least five (we provide

simulation results for six vehicles) and the bad set has a non-convex shape, which

makes exact computation of the capture set intractable. On the other hand, the

scheduling methods of (Colombo and Del Vecchio, 2012), (Bruni et al., 2013), and

(Ahn et al., 2014) do not explicitly pre-compute sets of states from which there exist

solutions to the corresponding scheduling problems, but instead perform verification

on-line. Because the exact verification problem is NP-hard, only the polynomial-

time problem relaxations are feasible in practice. While also suffering from prob-

lems related to state space explosion, abstraction based methods nevertheless offer

more scalability than capture set computation and more flexibility than reductions

to scheduling problems.

We proceed to solve the problem by discretizing the system in space and time, thus

obtaining a finite solution space. Using this discretization as a basis, we construct a

discrete-event system (DES) abstraction and model the two sources of uncontrollabil-

ity (the uncontrolled vehicles and the disturbance) through uncontrollable events. By

translating the safety and non-deadlocking specifications from the continuous to the

discrete-event domain, we formulate the problem to be solved in the context of super-

visory control theory of DES (see (Ramadge and Wonham, 1987), (Wonham, 2013),

(Cassandras and Lafortune, 2008)). Specifically, we obtain a maximally permissive

86

safe and non-deadlocking supervisor for the DES by solving the Basic Supervisor

Control Problem in the Non-Blocking case (BSCP-NB). The resulting supervisor is

then translated back to the original (continuous) problem domain, preserving safety,

non-deadlockingness, and maximal permissiveness with respect to the discretization.

To prove that safety and non-deadlockingness are preserved when translating the

obtained supervisor from the abstract back to the continuous problem domain and

to characterize the sense in which the resulting solution is maximally permissive, we

define two types of relations between systems and their abstractions: the state reduc-

tion and the exact state reduction. We prove that, when the abstraction is a state

reduction of the original system, the obtained supervisor for the continuous domain

problem will be safe, non-deadlocking, and maximally permissive among the class of

memoryless supervisors. When the abstraction is an exact state reduction of the orig-

inal system, the obtained supervisor will be maximally permissive among the class

of all supervisors, not merely memoryless ones. In the context of the vehicles control

problem, we show that our DES abstraction is a state reduction of the continuous

system model. Additionally, we show that, if the bounds on the disturbance are an

integral multiple of one of the discretization parameters, then our DES abstraction

becomes an exact state reduction of the continuous system model.

Finally, we present a customized algorithm to construct the supervisor for the

vehicle control problem. By making use of the problem’s structure, we are able

to obtain an algorithm that is faster than the standard DES supervisory control

algorithms. We show through simulation that the algorithm is scalable in practice,

with running times of under one minute for systems with hundreds of millions of

accessible transitions in the DES abstraction.

Our contributions are as follows. First, the translation of the system model and

specifications to the domain of DES allows us to leverage methods from supervisory

control theory, methods which are well-suited to finding maximally permissive su-

87

pervisors in the presence of uncontrolled elements of the environment. Second, the

notions of state reduction and exact state reduction are general notions that conserve

maximal permissiveness, rather than merely safety and non-deadlockness, when going

from an abstraction back to the original system. Finally, the customized algorithm

presented in this work makes use of system properties that could also generalize to

other problems of interest. Preliminary versions of some of the results presented here

have appeared in (Dallal et al., 2013a), (Dallal et al., 2013b).

The organization of this work is as follows. In Sec. 3.3, we present the system

model, its time/space discretization, and the problem to be solved. In Sec. 3.4,

we describe the set of collision points to be avoided. In Sec. 3.5, we define the

DES abstraction of the system defined in Sec. 3.3. In Sec. 3.6, we present the state

reduction, exact state reduction, and associated theorems. In Sec. 3.7, we provide an

overview of supervisory control theory, prove that the abstraction defined in Sec. 3.5 is

a state reduction of the system defined in Sec. 3.3, and additionally prove under what

conditions the abstraction is an exact state reduction. In Sec. 3.8, we present our

customized algorithm for solving the vehicle control problem. In Sec. 3.9, we present

simulation results for an implementation of our algorithm. Finally, we conclude in

Sec. 3.10. We also include derivations of the equations used in our algorithms, which

are contained in the appendix.

3.3 Model and Problem Definition

Consider a set of n vehicles N = {1, . . . , n} modeled as kinematic entities (inte-

grators) and described by

ẋ = v + d (3.1)

where x ∈ X ⊂ Rn is the state, v ∈ V ⊂ Rn is the control input, and d ∈ D ⊂ Rn

is a disturbance input representing unmodeled dynamics (for instance, the dynamic

88

response of the vehicle to the engine torque). Assume that X is compact (i.e., the

vehicles are controlled in some neighbourhood of the intersection) and that D =

[dmin, dmax]
n, with dmin ≤ 0 ≤ dmax. We take the set V to be the (discrete) set of

vectors with elements in the finite set {aµ, (a+1)µ, . . . , bµ}, with a, b ∈ N and µ ∈ R+.

The values aµ and bµ are denoted by vmin and vmax, respectively. To allow for the

possibility that a subset of the vehicles cannot be controlled, let v be partitioned into

two subvectors, vc ∈ Vc for the controlled vehicles, and vuc ∈ Vuc for the uncontrolled

vehicles, so that v = (vc, vuc) and V = Vc×Vuc. Assume also that vmin +dmin ≥ µ, so

that µ constitutes a lower bound on the velocity of the vehicles. Finally, assume that

the input v is kept constant over time intervals [kτ, (k + 1)τ], k ∈ N and discretize

the above system in time with step τ , obtaining

xk+1 = xk + uk + δk (3.2)

with xk = x(kτ), uk = v(kτ)τ , δk =
∫ (k+1)τ

kτ
d(t)dt. Calling U = V τ and ∆ = Dτ ,

we have that u ∈ U and δ ∈ ∆. In the remainder of this work, we will also use the

notation δmin := dminτ and δmax = dmaxτ . As with the set V , we use the notation

u = (uc, uuc) to denote the controls of the controlled and uncontrolled vehicles and

write U = Uc × Uuc. Next, we discretize the system in space by defining a set of

discrete states Q̃ and a mapping ` : X → Q̃ from continuous to discrete states as

follows:

`i(xi) :=


cτµ, for c ∈ Z s.t.

cτµ− τµ/2 < xi ≤ cτµ+ τµ/2,
if xi ≤ αk

qi,m, if xi > αk

(3.3)

where k is the index of the road on which vehicle i exits the intersection (i.e., after

any turn) and αk marks the end of the intersection on road k (the shape of the

intersection will be described in more detail in Sec. 3.4). Note that, if the vehicles are

to be controlled beyond the end of the intersection, then a value greater than αk could

89

be used in Eq. (3.3). This could potentially result in more than one marked state

in the definition of G (see Sec. 3.5) and would not invalidate any results presented

in this work. Define `(x) as the vector (`1(x1), . . . , `n(xn)) and define the notation

`−1(q) = {x ∈ X : `(x) = q}. In words, the space X is covered by a regular lattice

with spacing τµ. Vehicles before the end of the intersection are mapped to a point of

this lattice whereas vehicles after the end of the intersection are mapped to “special”

states qi,m. The state qm = (q1,m, . . . , qn,m) is the (unique) discrete state where all

vehicles have crossed the intersection. Assume that, for all q ∈ Q̃, there exists some

x ∈ X such that `(x) = q. Finally, assume that there is some set B of bad states

(representing collision points) and that we would like to define a supervisor so that

x(t) /∈ B ∀ t ≥ 0. We will describe the bad set in the following section. Specifically,

we wish to solve the following problem:

Problem III.1. Let X/` denote the quotient set of X with respect to the equivalence

relation E ⊆ X × X defined by (x1, x2) ∈ E ⇔ `(x1) = `(x2). Given Q̃, define a

supervisor σ : X/` → 2Vc that assigns to each x(kτ) ∈ X a set of inputs vc ∈ Vc

allowed for the interval [kτ, (k + 1)τ] and constant over this time interval, with the

following properties:

• if vc(t) ∈ σ(x(bt/τcτ)) for t ∈ [kτ, (k + 1)τ], then x(t) /∈ B in the same time

interval (safety)

• if σ(x(kτ)) 6= ∅, vc(t) ∈ σ(x(bt/τcτ)) for t ∈ [kτ, (k+ 1)τ], and `(x((k+ 1)τ)) 6=

qm, then σ(x((k + 1)τ)) 6= ∅ (non-deadlockingness)

• if σ̃ 6= σ and σ̃ satisfies the two properties above, then σ̃(x(kτ)) ⊆ σ(x(kτ)) for

all k ≥ 0 (maximal permissiveness).

90

3.4 Bad Set Description

Let the set of roads in this system be denoted by R = {1, . . . ,m}. Associated

to each vehicle i is a pair of roads (ri,1, ri,2), indicating that the vehicle starts on

road ri,1 and turns onto road ri,2 at the intersection. Each road r in this system is

parametrized by the length αr of the road that is inside the intersection. We assume

that vehicles instantaneously switch from one road to another (i.e., when turning)

at point 0. Thus, vehicle i is on road ri,1 when xi < 0, inside the intersection when

xi ∈ [−αri,1 , αri,2], and on road ri,2 when xi > 0. We define any two pairs of roads

(ri,1, ri,2) and (rj,1, rj,2) as conflicting pictorially as follows.

Figure 3.2: An example scenario involving three vehicles on five roads. Blue lines are
drawn for each vehicle indicating starting road and ending road.

Let each road r ∈ R be represented by two points (one for each direction of traffic),

arranged as a regular polygon with m sides. Figure 3.2 shows an example with five

roads. Now suppose that vehicles travel on the right side of the road and represent a

pair of roads (r1, r2) by a line segment from the right point of road r1 (when looking

toward the center of the intersection) to the right point of road r2 (when looking away

from the center of the intersection). We say that the two pairs of roads (ri,1, ri,2) and

(rj,1, rj,2) are conflicting if their respective line segments intersect. We identify two

types of constraints, depending on whether the intersection point is an endpoint of

the line segments (case 1) or not (case 2). The former case (case 1) will occur if two

vehicles are travelling on the same road and in the same direction, either before or

after reaching the origin. Figure 3.2 contains two examples of this: there are two

91

vehicles entering the intersection on road 3, and there are two vehicles exiting the

intersection on road 1. In this case, we place the safety constraint that they must

maintain a distance of at least γ, as long as both vehicles are on this road. Thus,

if ri,1 = rj,1, then the forbidden set of points is given by |xi − xj| < γ, xi, xj ≤ 0.

Similarly, if ri,2 = rj,2, then the forbidden set of points is given by |xi − xj| < γ,

xi, xj ≥ 0. The latter case (case 2) will occur when there is a danger of a crash at the

intersection between vehicles while turning. Figure 3.2 shows an example of this in

which one vehicle turns from road 3 to road 5 and another turns from road 4 to road

1. In this case, we place the safety constraint that they must not simultaneously be

in the intersection. Thus, the forbidden set of points is given by −αri,1 < xi < αri,2

and −αrj,1 < xj < αrj,2 . If the line segments for two vehicles do not intersect, then

no constraints are placed on the joint position of the two vehicles (ex: two vehicles

on different roads turning onto the roads to their immediate rights). We call the set

of all forbidden points the bad set, and denote it by B. Note that we do not include

collision points involving two uncontrolled vehicles in the bad set, since these cannot

be prevented through any control action.

3.5 Discrete Abstraction

In this section, we define a discrete event system (DES) and proceed to construct

a DES G that models the behavior of the continuous time system, using the lattice

Q̃ as the set of discrete states.

Definition III.2 (Discrete Event System). A (deterministic) discrete event system

is tuple G = (X,E, ψ, x0, Xm) where X is a set of states, E is a set of events,

ψ : X × E → X is a partial transition function, x0 ∈ X is the initial state, and

Xm ⊆ X is a set of marked states representing the completion of some behavior of

interest.

92

To construct a DES abstraction of the continuous-time system, we use a three-

layered transition function ψ. The first layer consists of events in the set Uc, for the

actions of the controlled vehicles. The second layer consists of events in the set Uuc,

for the actions of the uncontrolled vehicles. It remains to model the disturbance d.

We achieve this by discretizing the set ∆ to obtain a set of “discretized disturbances”

W . Specifically, let

W = {kτµ : k ∈ Z ∧ bδmin/(τµ)c ≤ k ≤ dδmax/(τµ)e}n. (3.4)

This set W makes up the third layer of G’s transition structure. For any q ∈ Q̃,

uc ∈ Uc, uuc ∈ Uuc, and w ∈ W , we define

ψ(q, ucuucw) := q + u+ w, (3.5)

where u = (uc, uuc). In Sec. 3.7, we will show that ψ(q, ucuucw) = q′ if and only

if there exist x ∈ X, δ ∈ ∆, and x′ ∈ X such that x′ = x + u + δ, q = `(x),

and q′ = `(x′) (see Prop. III.20). To define the discrete system state in between

the occurrence of events in Uc and Uuc and in between the occurrence of events in

Uuc and W (all of which occur simultaneously in the continuous-time system), we

introduce two sets of “intermediate” states QI1 and QI2 (disjoint from each other and

from Q̃ and with no physical meaning), and three intermediate transition functions:

ψ1 : Q̃ × Uc → QI1, ψ2 : QI1 × Uuc → QI2, and ψ3 : QI2 × W → Q̃, defined

only by ψ(q, uc, uuc, w) = ψ3(ψ2(ψ1(q, uc), uuc), w). See Fig. 3.3 for a depiction of the

transition function ψ. We take the set of marked states to be the set Qm = {qm}.

Finally, we define a set Q0 of possible initial states, which we model by introducing

a dummy initial state q0 and having transitions from q0 to each state q ∈ Q0 with

event label eq. We denote this set of events by EQ := {eq : q ∈ Q0} and define

ψ(q0, eq) := q. The final DES is defined as:

93

G := (Q,EQ ∪ Uc ∪ Uuc ∪W,ψ, q0, Qm) (3.6)

where Q = {q0} ∪ Q̃ ∪ QI1 ∪ QI2. The sets of events Uc is taken to be controllable,

whereas the sets of events Uuc and W are taken to be uncontrollable. Note that, in

the context of supervisory control problems of DES, a supervisor is obtained which

does not choose a particular event from any given state, but rather chooses which

events to enable (allow) and which ones to disable (prevent). An uncontrollable event

is an event that cannot be disabled.

Figure 3.3: The transition function ψ.

Remark III.3. Although the initial state can not be chosen by the system, we take

the set of events EQ to also be controllable. In Sec. 3.7, we will use G as the basis for

a supervisory control problem. If EQ were defined as uncontrollable, we would obtain

an empty solution to the supervisory control problem whenever there was any initial

state from which there was no solution, even if there existed solutions from some of

them. By defining the set EQ as controllable, the computed supervisor will contain

a transition from q0 to q for every q ∈ Q0 from which there exists a solution to the

supervisory control problem. We will revisit this issue in Sec. 3.8.

94

3.6 State Reductions and Supervisory Control

In this section, we define two types of relations between systems: state reductions

and exact state reductions, and prove theorems relating safety, non-deadlockness, and

maximal permissiveness of supervisors for systems related through state reductions

and exact state reductions. The state reduction and exact state reduction relations are

based on the notions of alternating similarity relations, as defined in Tabuada (2009).

The theorems proven in this section will be used later in this work to establish the

correctness of our solution to Prob. III.1. We begin with some preliminary definitions.

3.6.1 Preliminaries

Definition III.4 (System). A system S is defined as a tuple S = (X,U,→, Y,H),

where X is the set of states, U is a set of control inputs,→⊆ X×U×X is a transition

relation, Y is an output set, and H : X → Y is the output function.

For a system S = (X,U,→, Y,H), we will use the notation Postu(x) := {x′ ∈ X :

(x, u, x′) ∈→} and U(x) := {u ∈ U : Postu(x) 6= ∅}. In the remainder of this work,

it will be assumed that all systems satisfy the property H(x1) = H(x2) ⇒ U(x1) =

U(x2), for all x1, x2 ∈ X. In words, this means that any two states with the same

observation should not be distinguishable by their available set of inputs.

Definition III.5 (Run). A run ρ of length n for a system S = (X,U,→, Y,H) is a se-

quence of past states and inputs (x0, u0, . . . , xn−1, un−1, xn), such that ui ∈ U(xi) and

xi+1 ∈ Postui(x
i) for i = 0, . . . , n−1. The set of runs of length n is denoted by Rn(S)

and the set of runs is R(S) =
⋃∞
i=0 Rn(S). Given run ρ = (x0, u0, . . . , xn−1, un−1, xn),

we define the notation tgt(θ) := xn and ρ(k) := (x0, u0, . . . , xk−1, uk−1, xk), called a

prefix of ρ.

Definition III.6 (History). A history θ of length n for a system S = (X,U,→, Y,H)

is a sequence of past outputs and inputs (y0, u0, . . . , yn−1, un−1, yn), such that there

95

exists a run ρ = (x0, u0, . . . , xn−1, un−1, xn) ∈ Rn(S) that is consistent with θ, in

the sense that yi = H(xi) for i = 0, . . . , n. The set of histories of length n is

denoted by Θn(S) and the set of histories is Θ(S) =
⋃∞
i=0 Θn. We will also write

θ(ρ) to mean the unique history produced by a run ρ ∈ R. Given history θ =

(y0, u0, . . . , yn−1, un−1, yn), we define the notation θ(k) := (y0, u0, . . . , yk−1, uk−1, yk)

and tgt(θ) := yn, as was the case with runs.

Definition III.7 (Supervisor). A supervisor σ for a system S = (X,U,→, Y,H) is a

function σ : Θ→ 2U which chooses which control inputs to enable/disable after each

history. A supervisor is called memoryless if it is of the form σ : Y → 2U . A run

ρ = (x0, u0, . . . , xn−1, un−1, xn) ∈ Rn(S) is allowed by supervisor σ if ui ∈ σ(θ(ρ(i))),

for i = 0, . . . , n− 1.

Definition III.8 (Specification). A safety specification for a system S = (X,U,→

, Y,H) is a subset Safe ⊆→ of transitions that we would like the system S to be

restricted to. A marking specification for S is a set Xm ⊆ X of “special” or marked

states. We say that S is deadlocking if there exists a run ρ such that U(tgt(ρ)) = ∅

and tgt(ρ) /∈ Xm.

In discrete event systems, marked states are used to denote states where some

operation of interest has completed.

3.6.2 The State Reduction

Definition III.9 (State Reduction). Given two systems Sa and Sb with Ya = Yb = Y ,

we say that Sa is a state reduction of Sb with state relation R ⊆ Xa×Xb and output

dependent control relation C : Y → 2Ua×Ub (hereafter referred to only as control

relation) if:

1. R−1 = {(xb, xa) ⊆ Xb ×Xa : (xa, xb) ∈ R} is a function.

2. For every y ∈ Y , the relation C(y) ⊆ Ua × Ub is a bijection relation.

96

3. Ha(xa) = Hb(xb) if and only if (xa, xb) ∈ R.

4. ∀(xa, ua, x′a) ∈→a, ∃(xb, ub, x′b) ∈→b such that (xa, xb) ∈ R, (ua, ub) ∈ C(Ha(xa)),

and (x′a, x
′
b) ∈ R.

5. ∀(xb, ub, x′b) ∈→b, ∃(xa, ua, x′a) ∈→a such that (xa, xb) ∈ R, (ua, ub) ∈ C(Hb(xb)),

and (x′a, x
′
b) ∈ R.

Remark III.10. The state reduction was first defined in (Dallal et al., 2013b), where

we used slightly different conditions. In this work, we have changed notation for the

control relation C to resolve ambiguity. Furthermore, condition 5) was previously

stated as: ∀(xa, xb) ∈ R, (ua, ub) ∈ C and x′b ∈ Postub(xb), ∃x′a ∈ Postua(xa) such

that (x′a, x
′
b) ∈ R. The two conditions can be shown to be equivalent under conditions

1) and 2).

In words, condition 1) signifies that every xb ∈ Xb is in relation with exactly

one xa ∈ Xa, condition 5) signifies that, for every (xb, ub, x
′
b) ∈→b, there exists

(xa, ua, x
′
a) ∈→a which models (xb, ub, x

′
b) ∈→b, and condition 4) signifies that every

transition in →a models some transition in →b. Significantly, conditions 4) and 5)

can be achieved by construction for any system Sb, and relations R and C satisfying

conditions 1), 2), and 3). Furthermore, the system Sa is uniquely defined by Sb, R,

and C.

Definition III.11 (Induced Specification). Given system Sb with state reduction Sa,

along with safety and marking specifications Safeb ⊆→b and Xm,b ⊆ Xb on system

97

Sb, define the induced specification on Sa as follows:

(xa, ua, x
′
a) ∈ Safea ⊆→a

⇔

 (xb, ub, x
′
b) ∈→b s.t. (xa, xb) ∈ R

∧(ua, ub) ∈ C(Ha(xa)) ∧ (x′a, x
′
b) ∈ R

 ⊆ Safeb (3.7)

Xa ∈ Xm,a ⊆ Xa ⇔ {xb ∈ Xb s.t. (xa, xb) ∈ R} ⊆ Xm,b (3.8)

In the remainder of this work we will often refer to the computation of a maximally

permissive, safe, and non-blocking supervisor of a system. We will leave the discussion

of its computation and of the translation between DES in the form of Def. III.2 and

systems in the form of Def. III.4 to the next section.

The usefulness of Def. III.9 is illustrated in the following theorem:

Theorem III.12. Suppose that system Sa is a state reduction of system Sb with

state relation R and control relation C and that we are given safety and marking

specifications Safeb ⊆→b and Xm,b ⊆ Xb for system Sb. Let Safea and Xm,a be

the corresponding induced specifications for system Sa and suppose that we have a

maximally permissive, safe, and non-deadlocking supervisor σa : Y → 2Ua, where Y

is the (common) output space. Define the supervisor σb : Y → 2Ub by ub ∈ σb(y)

iff ∃ua ∈ σa(y) such that (ua, ub) ∈ C(y). Then σb is safe, non-deadlocking, and

maximally permissive among supervisors of the form σb : Y → 2Ub.

Proof. We proceed in three claims. The first two claims show that the supervisor σb

will be safe and non-deadlocking. To prove maximal permissiveness, we first define

a function σb→a which maps supervisors for Sb to supervisors for Sa such that σa =

σb→a(σb), for σa and σb as defined in the theorem statement. The last claim shows

that, for any σ′b that is safe an non-deadlocking for Sb, σ
′
a = σb→a(σ

′
b) will be safe

and non-deadlocking for Sa. Maximal permissiveness then follows by a monotonicity

98

property on σb→a.

Claim 1: (xa, xb) ∈ R∧(σa(Ha(xa)) 6= ∅∨xa ∈ Xm,a)⇒ (σb(Hb(xb)) 6= ∅∨xb ∈ Xm,b).

By definition of Xm,a, xa ∈ Xm,a ⇔ xb ∈ Xm,b, for all xb : (xa, xb) ∈ R, so that

(xa, xb) ∈ R ∧ xa ∈ Xm,a ⇒ xb ∈ Xm,b. By definition of σb, ub ∈ σb(y) iff ∃ua ∈ σa(y)

such that (ua, ub) ∈ C(y). But (xa, xb) ∈ R ⇒ Ha(xa) = Hb(xb), so that (xa, xb) ∈

R ∧ σa(Ha(xa)) 6= ∅ ⇒ σb(Hb(xb)) 6= ∅.

By assumption, Hb(xb,1) = Hb(xb,2)⇒ Ub(xb,1) = Ub(xb,2), from which it follows that,

if σb(Hb(xb)) 6= ∅, then xb is not deadlocked under σb.

Claim 2: ∀xb ∈ Xb, ub ∈ σb(Hb(xb)) ⇒ ∀x′b ∈ Postub(xb), (xb, ub, x
′
b) ∈ Safeb ∧

[σb(Hb(x
′
b)) 6= ∅ ∨ x′b ∈ Xm,b].

Consider any xb ∈ Xb and any ub ∈ σb(Hb(xb)). By property (1) of Def. III.9, R−1 is

a function. Therefore let xa be the unique member of Xa such that (xa, xb) ∈ R. By

property (3) of Def. III.9, Ha(xa) = Hb(xb) = y for some y ∈ Y . By property (2) of

Def. III.9, C(y) is a bijection. Therefore let ua be the unique member of Ua such that

(ua, ub) ∈ C(y). From the definition of σb, it follows that ua ∈ σa(Ha(xa)). Thus,

∀x′a ∈ Postua(xa), (xa, ua, x
′
a) ∈ Safea∧ [σa(Ha(x

′
a)) 6= ∅∨x′a ∈ Xm,a]. From the way

that Safea was defined, this implies that (xb, ub, x
′
b) ∈ Safeb, for all x′b ∈ Postub(xb)

such that (x′a, x
′
b) ∈ R and x′a ∈ Postua(xa). But property (5) of Def. III.9 states

that ∀x′b ∈ Postub(xb), ∃x′a ∈ Postua(xa) satisfying (x′a, x
′
b) ∈ R. From this and the

previous statement, it follows that (xb, ub, x
′
b) ∈ Safeb, for all x′b ∈ Postub(xb). It

similarly follows from property (5) of Def. III.9 along with Claim 1 that σb(Hb(x
′
b)) 6=

∅ ∨ x′b ∈ Xm,b, for all x′b ∈ Postub(xb).

Thus σb is safe and non-deadlocking. Given any supervisor σ′b : Y → 2Ub , let σ′a :

Y → 2Ua be defined by ua ∈ σ′a(y) iff ∃ub ∈ σ′b(y) such that (ua, ub) ∈ C(y) and let

the function σb→a be the mapping which takes a supervisor σ′b for system b to the

supervisor σ′a for system a in this way.

Claim 3: If σ′b is safe and non-deadlocking then so is σ′a = σb→a(σ
′
b).

99

Suppose that σ′b is safe and non-deadlocking and take σ′a = σb→a(σ
′
b). Consider

any xa ∈ Xa, any ua ∈ σ′a(Ha(xa)), and any x′a ∈ Postua(xa). By property (4) of

Def. III.9, there exists (xb,1, ub, x
′
b,1) ∈→b such that (xa, xb,1) ∈ R, (ua, ub) ∈ C, and

(x′a, x
′
b,1) ∈ R. From the definition of σb→a(σ

′
b), it must be that ub ∈ σ′b(Hb(xb,1)). By

property (3) of Def. III.9, any xb,2 such that (xa, xb,2) ∈ R must satisfy Hb(xb,1) =

Ha = Hb(xb,2). It follows that ub ∈ σ′b(Hb(xb)), for any xb ∈ Xb such that (xa, xb) ∈ R.

Since σ′b is safe and non-deadlocking, it follows that, for all (xb, ub, x
′
b) ∈→b such that

(xa, xb) ∈ R, we have that (xb, ub, x
′
b) ∈ Safeb ∧ [σ′b(Hb(x

′
b)) 6= ∅ ∨ x′b ∈ Xm,b]. It

follows from the definition of Safea that (xa, ua, x
′
a) ∈ Safea and from the definitions

of σb→a(σ
′
b) and Xm,a that σ′a(Ha(x

′
a)) 6= ∅ ∨ x′a ∈ Xm,a. Since x′a ∈ Postua(xa) was

arbitrary, it follows that ua is a safe and non-deadlocking control decision from xa.

Since xa ∈ Xa and ua ∈ σ′a(Ha(xa)) were arbitrary, it follows that σ′a = σb→a(σ
′
b) is

safe and non-deadlocking.

It is obvious from the definition of σb→a that σ′b ⊇ σb ⇒ σb→a(σ
′
b) ⊇ σb→a(σb) = σa.

Thus, if there exists a safe and non-deadlocking supervisor σ′b ⊇ σb then it follows

that σa is not maximally permissive, a contradiction.

The above theorem shows that it is possible to compute a supervisor for a system

with a large or infinite state space by abstracting that system to one with a finite

state space, computing a supervisor for the reduced system, and translating back.

Furthermore, this process conserves not only safety and non-deadlockingness in the

translation, but also maximal permissiveness.

Remark III.13. The above theorem characterizes a controller σ as safe and non-

deadlocking for system S = (X,U,→, Y,H), safety specification Safe, and marking

specification Xm if and only if ∀x ∈ X, ∀u ∈ σ(H(x)), ∀x′ ∈ Postu(x), we have that

(x, u, x′) ∈ Safe ∧ (σ(H(x′)) 6= ∅ ∨ x′ ∈ Xm). This is a sufficient condition for a

system to be safe and non-deadlocking, but it is not necessary if the supervisor can

use initial state information, even if we restrict attention to memoryless supervisors.

100

For an example of such a situation, see Example III.14.

Example III.14. Figure 3.4 shows an example of a system (left) and its correspond-

ing state reduction (right). If we assume that there is only a marking specification

and no safety specification, then the maximally permissive supervisor σ1 for the state

reduction would enable {a, b} from state {1, 2}, {a} from state {3, 4, 5}, and {a, b, c}

from state {7}. It can be seen that this would indeed be a maximally permissive

memoryless solution for the left system if there were no initial state information. If,

however, the initial state is known a priori to be one of {1, 2}, then there exists a

strictly more permissive memoryless supervisor σ2 for the left system which also en-

ables b from states {3, 4, 5}. It is possible to be more permissive from states {3, 4, 5}

by making use of the fact that the initial states are {1, 2} and event c was disabled

from states {1, 2}, making state 5 unreachable. Another safe memoryless supervi-

sor σ3 enables {a} from states {1, 2}, {a, b, c} from states {3, 4, 5} and {a, b, c} from

states {7}. Thus, it is possible to enable more from states {3, 4, 5} by enabling less

from states {1, 2}. Consistent with the discussion of Remark III.13, both of these

supervisors violate the property that ∀x ∈ X, ∀u ∈ σ(H(x)), ∀x′ ∈ Postu(x), we

have that (x, u, x′) ∈ Safe∧ (σ(H(x′)) 6= ∅∨x′ ∈ Xm). In particular, σ2 and σ3 both

allow b from state 5, despite the fact that this allows (5, b, 8), and state 8 is dead-

locked. Furthermore, the union of σ2 and σ3 is blocking, since it allows the string bc,

which leads to blocking state 8. Thus, there does not exist a maximally permissive

safe and non-blocking supervisor which uses the initial state information in this case.

Note that the system on the left is accessible, deterministic, and has both initial and

marked states which respect the partition of states determined by the output map.

This example is very closely related to the problem of obtaining maximally permissive

supervisors of the form S : XG → 2E for a discrete event system G, subject to specifi-

cation automaton H, which would normally require the supervisor to be defined over

the state space of the product automaton G×H.

101

Figure 3.4: A system and its corresponding state reduction. States of the left system
with the same output are placed in a common box. We use the usual DES
convention of denoting marked states with a double circle and initial states
with an incoming arrow that has no source state.

3.6.3 The Exact State Reduction

Definition III.15 (Exact State Reduction (2)). Given two systems Sa and Sb with

Ya = Yb = Y , we say that Sa is an exact state reduction of Sb with state relation

R ⊆ Xa × Xb and control relation C : Y → 2Ua×Ub if Sa is a state reduction of Sb

with state and control relations R and C and:

6. ∀(xa, ua, x′a) ∈→a, ∀x′b ∈ Xb : (x′a, x
′
b) ∈ R, ∃(xb, ub, x′b) ∈→b such that (xa, xb) ∈

R and (ua, ub) ∈ C(Ha(xa)).

The above condition is akin to a time-reversed alternating similarity condition, in

the sense that it requires that every transition of Sa have a corresponding transition

in Sb, for every pair of related target states, rather than for every pair of related

source states. Lemma III.17 demonstrates its usefulness.

Remark III.16. The exact state reduction was first defined in (Dallal et al., 2013b),

where we used a normal (i.e., non time-reversed) alternating similarity condition. We

have added the “(2)” in this work to differentiate between these.

Lemma III.17. Suppose that system Sb has an exact state reduction (2) Sa. Then,

for any history θb for system Sb and any xb ∈ Xb such that H(xb) = tgt(θb), there

exists a run ρb such that θb = θ(ρb) and xb = tgt(ρb).

102

Proof. The proof is by induction on the length of θb. The base case is trivially true.

Assume that the lemma holds up to histories of length n and consider a pair of

histories θb ∈ Θn(Sb) and θ′b ∈ Θn+1(Sb) such that θb is a prefix of θ′b. Also define

y = tgt(θb), y
′ = tgt(θ′b), and let ρ′b = (x0

b , . . . , x
n
b , u

n
b , x

n+1
b) ∈ Rn+1(Sb) be such that

θ′b = θ(ρ′b). Note that, in particular, this implies Hb(x
n
b) = y and Hb(x

n+1
b) = y′. Since

(xnb , u
n
b , x

n+1
b) ∈→b, we have from property (5) that ∃(xna , una , xn+1

a) ∈→a such that

(xna , x
n
b) ∈ R, (una , u

n
b) ∈ C(Hb(x

n
b)) = C(y) and (xn+1

a , xn+1
b) ∈ R. From property

(3), we have Ha(x
n
a) = Hb(x

n
b) = y and Ha(x

n+1
a) = Hb(x

n+1
b) = y′. Now consider

any x′b ∈ Xb such that H(x′b) = tgt(θ′b) = y′. Using property (3) again, we have

that (xn+1
a , x′b) ∈ R. From property (6) we therefore have that ∃(xb, ub, x′b) ∈→b such

that (xna , xb) ∈ R and (una , ub) ∈ C(Ha(x
n
a)) = C(y). From property (3), we have

that Hb(xb) = Ha(x
n
a) = y and from property (2) we have that ub = unb . From the

induction hypothesis, there exists a run ρb such that θb = θ(ρb) and tgt(ρb) = xb.

Thus we can form the run ρ′′b := ρb.ub.x
′
b satisfying θ′b = θ(ρ′′b) and tgt(ρ′′b) = x′b, which

completes the proof.

In words, the above lemma implies that, when there exists an exact state reduction

(2) for system Sb, a history θb gives no more information about the current state of

Sb than does the last output tgt(θb). The following theorem follows immediately from

this observation.

Theorem III.18. Suppose that system Sa is an exact state reduction (2) of system Sb

and that all other conditions of Thm. III.12 are satisfied. Then the obtained supervisor

σb will be safe, non-deadlocking, and maximally permissive among supervisors of the

form σb : Θ→ 2Ub.

Remark III.19. As in the case of (non-exact) state reductions, the obtained supervi-

sor will not generally be maximally permissive if the supervisor can use initial state

information. In particular, if the set of initial states X0,b gives more information

103

(a) A State Reduction (b) An Exact State Reduction

Figure 3.5: A depiction of the state reduction (left) and exact state reduction (right)
for a simple system Sb = ({1, . . . , 8}, {u},→b, {A,B}, Hb), where Hb(x) =
A for x ∈ {1, . . . , 4} and Hb(x) = B for x ∈ {5, . . . , 8}. In both the left
and right cases, there is a transition (x, u, x′) ∈→b with x ∈ H−1

b (A) and
x′ ∈ H−1

b (B), and hence a transition from A to B in the correspond-
ing state reduction. The system on the right contains some transition
(x, u, x′) ∈→b with x ∈ H−1

b (A), for every x′ ∈ H−1
b (B). For the system

on the left, the occurrence of a transition from A to B in the state re-
duction allows us to determine that Sb is in state 7. For the system on
the right, this transition only allows to determine that the system is some
state in the set H−1

b (B).

than the initial output y0, then there may exist more permissive supervisors. Note

however that, if H(xb,1) = H(xb,2) ⇒ [xb,1 ∈ X0,b ⇔ xb,2 ∈ X0,b], then X0,b gives no

more information than the initial output y0, and hence the resulting supervisor will

still be maximally permissive. This is contrary to the case of non-exact state reduc-

tions, in which case the above condition is still not sufficient to guarantee maximal

permissiveness of the supervisor σ2 obtained in Thm. III.12, as is demonstrated in

Ex. III.14.

Figure 3.5 depicts an example of a state reduction and an example of an exact

state reduction.

104

3.7 Supervisor Computation and Relations Between the Time-

discretized and Discrete Event Systems

In this section, we describe the supervisory control problem of DES, prove that

G is a state reduction of the time-discretized system of equation 3.2, and use this to

show how we can solve Prob. III.1. Readers familiar with supervisory control theory

of DES may skip Subsec. 3.7.1.

3.7.1 Supervisory Control Theory of DES

Given a set of events E, E∗ denotes the set of finite strings of events in E. A set

of strings K ⊆ E∗ is called a language. The prefix-closure of a language K ⊆ E∗,

denoted by K, is defined by K = {s ∈ E∗ : ∃t ∈ E∗ ∧ st ∈ K}. Recall that a

deterministic DES G is defined as a tuple G = (X,E, f, x0, Xm), where X is a set of

states, E is a set of events, f : X ×E → X is a (partial) transition function, x0 ∈ X

is the initial state, and Xm ⊆ X is a set of marked or accepting states. The transition

function f is extended from events to strings through f(x, se) = f(f(x, s), e). The

language generated by G, denoted by L(G), is defined as L(G) := {s ∈ E∗ : f(x0, s)!},

where ! means “is defined”. The marked language of G, denoted by Lm(G) ⊆ L(G)

is defined by Lm(G) := {s ∈ L(G) : f(x0, s) ∈ Xm}.

Obtaining a safe, non-blocking, and maximally permissive supervisor for a dis-

crete event system consists of solving the basic supervisory control problem in the

non-blocking case, or BSCP-NB, as described in (Ramadge and Wonham, 1987), (Cas-

sandras and Lafortune, 2008). Specifically, problem BSCP-NB computes the supre-

mal controllable sublanguage of a specification Lm(H) with respect to L(G), where

G is a system automaton and H is a specification automaton satisfying L(H) ⊆ L(G)

and Lm(H) ⊆ Lm(G). The set L(H) represents the legal sublanguage of L(G), rep-

resenting safe system behavior. The set Lm(H) is usually assumed to satisfy the

105

property Lm(H) = L(H) ∩ Lm(G) (called Lm(G)-closure).

In general, the event set of G and H, denoted by E is partitioned into control-

lable events Ec and uncontrollable events Euc. The solution to problem BSCP-NB

is the language (Lm(H))↑C , where ↑ C denotes the supremal controllable sublan-

guage operation. This is the largest sublanguage K ⊆ Lm(H) satisfying the property

KEuc ∩ L(G) ⊆ K, which means that there exist no strings in K that can be ex-

tended by an uncontrollable event to a string in L(G) \K. The standard algorithm

which solves this problem is given in (Wonham and Ramadge, 1987) and constructs

a supervisor S such that Lm(S/G) = (Lm(H))↑C and L(S/G) = (Lm(H))↑C , where

S/G is the system G controlled by S.

3.7.2 Translating Between Transition Systems and Discrete Event Sys-

tems

In Thm. III.12, we compute the maximally permissive, safe, and non-deadlocking

supervisor of a system Sa = (Xa, Ua,→a, Ya, Ha) with respect to a safety specification

Safea ⊆→a and set of marked states Xm,a ⊆ Xa. In practice, this would be done

by translating the transition system Sa into an automaton Ga, the specification into

an automaton Ha, and solving BSCP-NB to obtain the supervisor S described in

the preceding subsection. Consistent with the above description of BSCP-NB, we

need two automata, denoted by Ga and Ha, to capture the system behavior →a and

the legal behavior given by Safea and Xm,a. The automaton Ga := (Xa ∪ Za, Ec ∪

Euc, ψGa , xa,0, Xm,a) must satisfy the following conditions:

Ec = Ua (3.9)

ψGa ⊆ (Xa × Ec × Za) ∪ (Za × Euc × (Xa ∪ Za)) (3.10)

ψGa(xa, ua)!⇔ ∃x′a ∈ Xa : (xa, ua, x
′
a) ∈→a (3.11)

∃t ∈ E∗uc : ψGa(xa, uat) = x′a ⇔ (xa, ua, x
′
a) ∈→a, (3.12)

106

where Za is some set of intermediate states (such as QI1 and QI2 of DES G in Sec. 3.5).

In words, Eq. (3.9) signifies that the controllable events of Ga are the control inputs

of Sa, whereas Eq. (3.10) signifies that controllable (resp. uncontrollable) events

are defined only from states in Xa (resp. Za) and lead only to states in Za (resp.

Xa ∪ Za). Eqs. (3.11) and (3.12) signify that, for every (xa, ua, x
′
a) ∈→a, event ua is

defined from state xa of Ga and there exists some uncontrollable sequence of events

following ua that takes Ga from ψGa(xa, ua) to x′a. Thus, we use uncontrollable events

to model any non-determinism in the transition relation →a. Thus, there is a true

1-1 equivalence between a system in the form of definition III.4 and a discrete-event

system in the form above. Given Ga, Safea and Xm,a, we construct subautomaton

Ha v Ga (G1 is a subautomaton of G2 if ψ1(x01, s) = ψ2(x02, s) for all s ∈ L(G1),

where x01 and x02 are the initial states of G1 and G2, see (Cassandras and Lafortune,

2008)) such that Xm,a ⊆ Xa is the set of marked states and with transition function

ψHa satisfying conditions (3.11) and (3.12), but with Safea instead of →a. We solve

BSCP-NB for Ha and Ga. Because Ha v Ga, S is of the form S : Xa → 2Uc .

To unify notation between systems as in Def. III.4 and discrete event systems as

described above, we will use the notation U(x) := {u ∈ Ec : ψ(x, u)!} and Postu(x) :=

{x′ ∈ Xa : (∃t ∈ E∗uc)(x′ = ψ(x, ut))} for x ∈ Xa and (in an abuse of notation) will

write (x, u, x′) ∈ ψ if x ∈ Xa and x′ ∈ Postu(x). This notation allows us to work with

DES of the above form in the context of state reductions and exact state reductions.

3.7.3 Relations Between the Time-discretized and Discrete Event Sys-

tems

Proposition III.20. Define the observation maps HQ̃(q) := q, HX(x) := `(x), the

relation R := {(q, x) ∈ Q̃×X : `(x) = q}, and the control relation C(q) := {(uc, vc) :

vcτ = uc ∈ Uc}, for all q ∈ Q̃. Then DES G of Sec. 3.5 is a state reduction of system

(3.2).

107

Proof. Properties (1), (2), and (3) follow immediately from the definitions of HX ,

HQ, `, R, and C.

Property (4): Consider any q ∈ Q̃, uc ∈ Uc, uuc ∈ Uuc, and w ∈ W , with q′ =

ψ(q, uc, uuc, w) = q + u + w (where u = (uc, uuc)). We construct x ∈ X, x′ ∈ X

and δ ∈ ∆ such that `(x) = q, `(x′) = q′, and x + u + δ = x′ by considering each

co-ordinate in turn. There are three cases, depending on where wi lies with respect

to the interval [δmin, δmax] (recall from Eq. (3.4) that wi may be smaller than δmin or

larger than δmax when these values are not integer multiples of µτ , because of the

floor and ceiling operations).

Case 1: δmin ≤ wi ≤ δmax. Take xi = qi, δi = wi, and x′i = q′i.

Case 2: wi > δmax. Take xi = qi + µτ/2, δi = δmax, and x′i = xi + ui + δmax. From

the definition of `, we have that `i(xi) = qi. With these values, we obtain

q′i − x′i = qi − xi + wi − δmax = wi − δmax − µτ/2. From the definition of W ,

we know that δmax < wi < δmax + µτ , or equivalently that 0 < wi − δmax < µτ .

From this and the previous statement, we obtain −µτ/2 < q′i−x′i < µτ/2, from

which it follows that `(x′i) = q′i.

Case 3: wi < δmin. Take x′i = q′i + µτ/2, δi = δmin, and xi = x′i − ui − δmin. The

same reasoning as in the previous case shows that `(x) = q and that `(x′) = q′.

Property (5): Consider any x ∈ X, uc ∈ Uc, uuc ∈ Uuc, and δ ∈ ∆, with x′ = x+u+δ

(where u = (uc, uuc)). Take q = `(x), q′ = `(x′), and w = q′ − q − u. It suffices to

show that w ∈ W . From q = `(x) and q′ = `(x′), we have −µτ/2 < x − q ≤ µτ/2

and −µτ/2 < x′ − q′ ≤ µτ/2 (component-wise). Combining these inequalities with

w = q′ − q − u and x′ = x+ u+ δ, we obtain w = δ + (x− q)− (x′ − q′) and hence:

−τµ+ δ < w < δ + τµ.

108

It follows that w is a vector whose components are all integer multiples of τµ and in

the interval (δmin − µτ, δmax + µτ). But from Eq. 3.4, this set of vectors is precisely

equal to W , proving that w ∈ W .

Proposition III.21. Define HX(·), HQ̃(·), R, and C as in Prop. III.20. If δmin

and δmax are both integer multiples of τµ, then DES G of Sec. 3.5 is an exact state

reduction (2) of system (3.2).

Proof. Property (6): Consider any q ∈ Q̃, uc ∈ Uc, uuc ∈ Uuc, w ∈ W , and x′ such

that q′ = q + u + w = `(x′), where u = (uc, uuc). We construct x ∈ X and δ ∈ ∆

such that q = `(x) and x′ = x + u + δ. Simply take δ = w and x = x′ − u − δ.

As remarked in the proof of Prop. III.20, w must be a vector whose components are

integer multiples of τµ and in the interval (δmin−µτ, δmax+µτ). If δmin and δmax are

multiples of τµ, then it follows that the components of w are in the (closed) interval

[δmin, δmax]. Thus δ ∈ ∆. Furthermore, x′−x = q′−q = u+w, so that x−q = x′−q′,

from which it follows that q′ = `(x′)⇒ q = `(x).

Given the above results, we can solve Prob. III.1.

Theorem III.22. Define the automaton H := (Q,EQ∪Uc∪Uuc∪W,ψsafe, q0, Qm) v

G, where ψsafe ⊆ ψ is defined by:

(q, uc, q
′) ∈ ψsafe ⇔

x ∈ `−1(q) ∧ vuc ∈ Vuc ∧ d ∈ D[0,τ] ∧ x′ ∈ `−1(q′)

∧x′ = x+ vτ +
∫ τ

0
d(t)dt

⇒ x(t) = x+ vt+
∫ t

0
d(t′)dt′ /∈ B, ∀t ∈ [0, τ]

, (3.13)

where v = (uc/τ, vuc). Solve for the supremal controllable sublanguage (Lm(H))↑C of

Lm(H) with respect to L(G) and uncontrollable event set Euc = Uuc ∪W , obtaining

a maximally permissive safe and non-blocking supervisor S : Q̃ → 2Uc. Then the su-

pervisor σ : X/`→ 2Vc defined by vc ∈ σ(x)⇔ uc = τvc ∈ S(`(x)) solves Prob. III.1.

109

Proof. Solving Prob. III.1 requires finding the maximally permissive safe and non-

deadlocking supervisor σ for System Sb = (X, Vc,→b, Q̃, `) subject to safety specifi-

cation Safeb and marking Xm,b, where:

(x, vc, x
′) ∈→b⇔ (∃vuc ∈ Vuc)(∃δ ∈ ∆) : x+ τv + δ = x′, v = (vc, vuc), (3.14)

(x, vc, x
′) ∈ Safeb ⇔

vuc ∈ Vuc ∧ d ∈ D[0,τ]

∧x′ = x+ vτ +
∫ τ

0
d(t)dt

⇒ x(t) = x+ vt+
∫ t

0
d(t′)dt′ /∈ B, ∀t ∈ [0, τ]

, (3.15)

and Xm,b = `−1(qm). Thus, it suffices to apply Thm. III.12, and we proceed to verify

its conditions. Proposition III.20 shows that G is a state reduction of Sb, with the

state and control relations R = {(q, x) ∈ Q̃ × X : q = `(x)} and C(q) = {(uc, vc) ∈

Uc × Vc : uc = vcτ}. The safety specification Safea defined by equation (3.13) does

indeed satisfy the condition (q, uc, q
′) ∈ Safea if and only if, for all (x, vc, x

′) ∈→b

such that (q, x) ∈ R, (uc, vc) ∈ C(q) and (q′, x′) ∈ R, we have that (x, vc, x
′) ∈ Safeb.

Finally, the set Qm of marked states for G and H obviously satisfies the condition

q ∈ Qm if and only if x ∈ Xm,b for all x ∈ Xb such that (q, x) ∈ R, since Qm = {qm},

Xm,b = `−1(qm), and (q, x) ∈ R ⇔ q = `(x). Thus, G is a state reduction of Sb,

and Safea and Xm,a = Qm are induced specifications, satisfying the conditions of

Thm. III.12.

Theorem III.23. If δmin and δmax are both integer multiples of τµ, then the supervi-

sor σ of Thm. III.22 solves Prob. III.1, and is maximally permissive among the class

of all supervisors, not merely memoryless ones.

Proof. Immediate from Prop. III.21, Thm. III.18, and the proof of Thm. III.22.

110

3.8 Algorithmic Implementation

In this section, we provide an algorithm for computing the DES supervisor S of

Thm. III.22 that is based on a depth-first search (DFS) and has a lower asymptotic

complexity than the standard algorithm. The customized algorithm of this section

is based on the following three observations: the vehicle’s velocities are bounded by

µ > 0; the specification automaton H is a sub-automaton of G; and each pair of

events uucw ∈ UucW is feasible after each event Uc from each state q ∈ Q̃. The

first observation implies that the system is acyclic, and hence livelock-free. This

allows for solving problem BSCP-NB in time linear in the size of G×H, rather than

quadratic (see, e.g. (Hadj-Alouane et al., 1994)). The second observation implies

that the product automaton H×G is isomorphic to H which, combined with the first

observation, allows for the problem to be solved through a DFS on G. Finally, the

third observation implies that there is no need to determine the safety of each string

ucuucw ∈ UcUucW from each state q. Instead, a single test of safety for each uc ∈ Uc

and state q ∈ Q̃ suffices. This is formalized below.

Definition III.24. Given q ∈ Q̃, u ∈ U , w ∈ W , and t ∈ [0, τ], let the set Aq,u,w(t) ⊆

X denote the set of points xt such that there exist x ∈ `−1(q), d : [0, τ]→ D, and x′ ∈

`−1(ψ(q, ucuucw)) satisfying x′ = x+u+
∫ τ

0
d(t′)dt′ and xt = x+u(t/τ) +

∫ t
0
d(t′)dt′.

In words, Aq,u,w(t) represents the set of possible vehicle positions xt such that it

is possible for x(kτ + t) = xt when `(x(kτ)) = q, DE control decision uc is issued at

time kτ , the uncontrolled vehicles take action uuc, and the disturbance event is w.

Given the above definition, we can say that the transition corresponding to initial

state q ∈ Q̃, action of the controlled vehicles uc, action of the uncontrolled vehicles

uuc and disturbance event w is safe if and only if Aq,u,w(t) ∩B = ∅ for all t ∈ [0, τ].

Now remark that, since uuc ∈ Uuc and w ∈ W cannot be chosen, control action uc

can only be allowed from state q ∈ Q̃ if Aq,u,w(t)∩B = ∅ for all uuc ∈ Uuc, w ∈ W , and

111

t ∈ [0, τ]. Thus, we can define a second set Aq,uc(t) representing the set of possible

vehicle positions xt such that it is possible for x(kτ + t) = xt when `(x(kτ)) = q

and DE control decision uc is issued at time kτ , as is done below. In the following

definition, we use 1 ∈ Rn to denote the vector (1, . . . , 1), where n is the number of

vehicles. For any two vectors a = (a1, . . . , an) and b = (b1, . . . , bn), we write a < b if

ai < bi for i = 1, . . . , n, and similarly for >, ≤, and ≥. Finally, for a, b ∈ Rn, let (a, b]

denote the box {c ∈ Rn : a < c ≤ b}.

Definition III.25. Given t ∈ [0, τ], let the set Aq,uc(t) ⊆ X denote the set of

points xt such that there exist x ∈ `−1(q), uuc ∈ Uuc, and d : [0, τ] → D satisfying

xt = x+ u(t/τ) +
∫ t

0
d(t′)dt′, where u = (uc, uuc). This set is given by

Aq,uc(t) = (q − 1µτ/2 + vuct, q + 1µτ/2 + vuct], (3.16)

where:

vuc,i =

 uc,i/τ + dmin, vehicle i is controlled

vmin + dmin, vehicle i is uncontrolled
(3.17)

vuc,i =

 uc,i/τ + dmax, vehicle i is controlled

vmax + dmax, vehicle i is uncontrolled
(3.18)

From the above definitions, it follows that Aq,uc(t) =
⋃
uuc∈Uuc,w∈W Aq,u,w(t), and

hence that the safety of control action uc from state q ∈ Q̃ can be determined by

checking if Aq,uc(t) ∩ B = ∅ for all t ∈ [0, τ]. Equations for verifying this condition

are give in the appendix. The general idea is to check intersection with the bad set

for each pair of vehicles, so that the test takes O(n2) time.

The following proposition provides the basis for our algorithm:

Proposition III.26. Let S be the supervisor that solves problem BSCP-NB for sys-

112

tem automaton G of Sec. 3.5, specification automaton H of Thm. III.22, and event

partition E = Ec ∪ Euc with Ec = EQ ∪ Uc and Euc = Uuc ∪W . Then S is uniquely

defined by:

∀q ∈ Q̃,

uc ∈ S(q)⇔

 Aq,uc(t) ∩B = ∅

∧[(S(q′) 6= ∅ ∨ q′ = qm), ∀q′ ∈ Postuc(q)]


 (3.19)

eq ∈ S(q0)⇔ S(q) 6= ∅ (3.20)

Proof. First, H v G, so that S does indeed have the form S : Q → 2Uc , rather

than the more general form S : L(G) → 2Uc . Furthermore, there are no controllable

events defined from QI1 or QI2, so what remains is only to define S for q0 and Q̃.

Consider any q ∈ Q̃. Comparing Eq. (3.13) and Def. III.25 shows that [Aq,uc(t)∩B =

∅]⇔ [(q, uc, q
′) ∈ ψsafe, ∀q′ ∈ Postuc(q)]. Thus allowing uc from q satisfies the safety

specification ofH if and only ifAq,uc(t)∩B = ∅, from which it follows that uc ∈ S(q)⇒

Aq,uc(t) ∩ B = ∅. Furthermore, the condition S(q′) 6= ∅ ∨ q′ = qm means that q′ is

not deadlocked, from which it follows that uc ∈ S(q)⇒ (S(q′) 6= ∅ ∨ q′ = qm), ∀q′ ∈

Postuc(q). Because G is acyclic, non-blockingness is equivalent to non-deadlockness,

which proves the ⇒ portion of Eq. (3.19). The other direction follows from maximal

permissiveness. A similar argument establishes the correctness of Eq. (3.20). Finally,

S is uniquely defined by Equations (3.19) and (3.20) since G is acyclic, which implies

that the recursive equations do not have cyclic dependencies.

The above proposition provides the basis for the following algorithm.

It is assumed that, for every state q ∈ Q̃, there exists a boolean variable Done(q)

that is initialized to false, and that S(q) is initialized to the empty set.

Theorem III.27. Algorithms 1 and 2 correctly compute the supervisor S of Prop. III.26.

113

Algorithm 1 Computation of S(q0)

1: procedure DoInit(G)
2: S(q0)← EQ
3: for all eq ∈ EQ do
4: if not DoDFS(G, q) then
5: S(q0)← S(q) \ {eq}
6: end if
7: end for
8: end procedure

Algorithm 2 DFS Computation of S

1: procedure DoDFS(G, q)
2: if q = qm then
3: return true
4: else if Done(q) then
5: return [S(q) 6= ∅]
6: end if
7: S(q)← Uc
8: for all uc ∈ Uc do
9: if [Aq,uc(t) ∩B 6= ∅] then
10: S(q)← S(q) \ {uc}
11: continue
12: end if
13: for all q′ ∈ Postuc(q) do
14: if not DoDFS(G, q′) then
15: S(q)← S(q) \ {uc}
16: break
17: end if
18: end for
19: end for
20: Done(q)← true
21: return [S(q) 6= ∅]
22: end procedure

114

Proof. From lines 2-6 and 21, it follows that Algorithm 2 returns the boolean value

of the expression S(q) 6= ∅ ∨ q = qm. From this, Eq. (3.20), and Algorithm 1, it

follows that S(q0) is correctly computed. From lines 7-19 of Algorithm 2, it follows

that uc ∈ S(q) ⇔ [Aq,uc(t) ∩ B 6= ∅] ∧ [(S(q′) 6= ∅ ∨ q′ = qm), ∀q′ ∈ Postuc(q)]. It

therefore follows from Eq. (3.19) that S(q) is correctly computed. Finally, the DFS

of Algorithm 2 ensures that the values will be correctly computed for all q ∈ Q̃ that

are reachable under S.

Proposition III.28. The running time of Algorithms 1 and 2 is in

O
(
|Q̃||Uc| [|Postuc(q)|+ n2]

)
.

Proof. Algorithm 2 is executed at most |Q̃| times, once for each encountered q ∈ Q̃.

The outer for loop (lines 8-19) is executed |Uc| times and consists of verifying the

condition [Aq,uc(t)∩B 6= ∅] and executing the inner for loop. Verifying the condition

[Aq,uc(t)∩B 6= ∅] (line 9) takes O(n2) time (see Appendix). The inner for loop (lines

13-18) is executed |Postuc(q)| times, each of which takes O(1) time beyond that of the

recursive call. The total running time is therefore O(|Q̃||Uc| [|Postuc(q)|+ n2]).

Remark III.29. Because the particular state q ∈ Q̃ and control action uc ∈ Uc do

not restrict the set of possible actions of the uncontrolled vehicles Uuc or the set of

possible disturbance events W , the value |Postuc(q)| is independent of the particular

q ∈ Q̃ and uc ∈ Uc. This value is, however, dependent on the number of vectors of

actions of the uncontrolled vehicles (which determines |Uuc|), as well as on the bounds

of the disturbance (which determines |W |).

3.9 Simulation Results

3.9.1 Simulation Descriptions

In this section, we present results from simulations run in C++. In each case, we

used µ = τ = 1 for the time and space discretization. We consider three different

115

scenarios: the first has no disturbance and no uncontrolled vehicles; the second has

uncontrolled vehicles but no disturbance; the third has no uncontrolled vehicles but

has a disturbance. We do not present a scenario which includes both uncontrolled

vehicles and a disturbance, since these often result in empty solutions. Each scenario

consists of an intersection with six vehicles, one on each of six roads arranged in a

regular hexagonal pattern. Vehicles cross from one road to the road opposite their

starting road. Specifically, if the set of vehicles is N = {1, . . . , 6}, then vehicle i ∈ N

starts on road ri,1 = i and ends on road ri,2 = 1 + [(i + 2) mod 6]. Thus, the three

pairs of vehicles (1, 4), (2, 5), and (3, 6) can occupy the intersection simultaneously,

but vehicles from different pairs cannot (see Fig. 3.6). Each of the three scenarios

consisted of three “sub-scenarios”. In each one, the length of the intersection was

identical for all roads, but this length was changed for different sub-scenarios, with all

other parameters remaining the same. For each sub-scenario, two simulations were

run, one with the algorithm as described in Sec. 3.8, and one with this algorithm

augmented with an optimization described in detail in the appendix. Briefly, this

optimization consists of computing the capture set for each pair of vehicles that

cannot simultaneously be inside the intersection. This can be done easily for such

pairs of vehicles, since the bad set is bounded and convex in this case. We describe

each scenario in more detail below.

Figure 3.6: The intersection and vehicle paths used in each of the simulations of this
section. Blue lines are drawn for each vehicle indicating starting road and
ending road.

116

Scenario 1: In each of the three sub-scenarios, all vehicles’ starting positions are at

a distance of 26 from the end of the intersection and the vehicles have available

velocities {1, 2}. The parameters for the first sub-scenario are such that the ve-

hicles have just enough space to get through the intersection safely. Specifically,

one pair of vehicles must travel at maximal velocity until they have crossed the

intersection, a second pair of vehicles must enter the intersection as the first

pair leaves and travel at maximal velocity while in the intersection, and the

last pair of vehicles must travel at minimal velocity until they enter the inter-

section, which again occurs as the previous pair leaves the intersection. The

second and third sub-scenarios have shorter intersection lengths, resulting in a

strictly larger set of solutions over the same state space.

Scenario 2: In each of the three sub-scenarios, vehicles 1 and 4 are uncontrolled

whereas the other four vehicles are controlled. The controlled and uncontrolled

vehicles start at a distance of 26 and 15, respectively, from the end of the inter-

section and all vehicles have available velocities {1, 2}. The parameters for the

first sub-scenario are again such that the vehicles have just enough space to get

through the intersection safely. Because the uncontrolled vehicles start closer to

the intersection, and have the same set of available controls, they must cross the

intersection first in any safe solution. The “worst-case scenario” therefore occurs

when the uncontrolled vehicles maintain minimal velocity throughout the sim-

ulation, in which case one pair of controlled vehicles must enter the intersection

as the uncontrolled vehicles leave and must travel at maximal velocity while

inside the intersection. In this case, the last pair of controlled vehicles must

maintain minimal velocity until entering the intersection, which again occurs

as the previous pair leaves the intersection. Once again, the second and third

sub-scenarios have shorter intersection lengths, resulting in a strictly larger set

of solutions over the same state space.

117

Scenario 3: This scenario uses a disturbance in the range [−1, 1]. In each of the

three sub-scenarios, vehicles 1 and 4 start at a distance of 12 from the end of

the intersection, vehicles 2 and 5 at a distance of 8, and vehicles 3 and 6 at a

distance of 4. All vehicles have available velocities {2, 3, 4, 5}. The parameters

for the first sub-scenario are again such that the vehicles have just enough space

to get through the intersection safely. The safe solutions in this case consist of

allowing vehicles 3 and 6 to cross the intersection first, followed by vehicles 2

and 5, and then finally vehicles 1 and 4. Because of the disturbance, no control

action can ensure a velocity of less than 3 or more than 4. Thus, the “worst-case

scenario” occurs when vehicles 3 and 6 travel at velocity 4 and vehicles 1 and

4 travel at velocity 3, leaving vehicles 2 and 5 to navigate in between. As was

the case in scenarios 1 and 2, the second and third sub-scenarios have shorter

intersection lengths, resulting in a strictly larger set of solutions over the same

state space.

3.9.2 Results & Analysis

For each simulation, we provide the number of states examined by the algorithm,

the subset of those states that were safe, the product of the number of examined states

with |Uc||Postuc(q)|, and the running time in seconds. For each sub-scenario, we give

the ratio of unsafe examined states for the simulation with optimization compared to

that without optimization. This data is presented in Tables 3.1, 3.2, and 3.3.

A comparison of the last two rows shows that the algorithm can compute max-

imally permissive solutions in approximately one minute for systems with over 200

million accessible transitions in the absence of a disturbance, and with over 50 billion

accessible transitions in the presence of a disturbance. There are two reasons why the

algorithm can deal with systems with larger numbers of accessible transitions in the

presence of a disturbance. First, the fact that there is only one safety test for each

118

Table 3.1: Scenario 1: No uncontrolled vehicles, no disturbance.
Int. Range α = 3 α = 2 α = 1

Optimization? ×
√

×
√

×
√

Examined States 877886 37901 1815045 438432 3187418 2030613
Safe States 754 146097 1752458

(Ex. States)|Uc||Postuc (q)| 5.62× 107 2.43× 106 1.16× 108 2.81× 107 2.04× 108 1.30× 108

Time (s) 6.61 0.37 16.32 5.55 44.75 38.59
Unsafe Ratio 0.0424 0.175 0.194

uc ∈ Uc, rather than for each combination of uc ∈ Uc, uuc ∈ Uuc, and w ∈ W signif-

icantly reduces the number of safety tests. In simulation 3, |Postuc(q)| = 36 = 729.

Second, although the asymptotic complexity has a term of O(|Q̃||Uc||Postuc(q)|), this

term derives from verifying if q′ is deadlocked, for each successor q′ ∈ Postuc(q). Be-

cause uc is unsafe from q if there exists any such deadlocked q′, the algorithm ceases

to examine further members of Postuc(q) as soon as it finds any deadlocked successor

(line 16 of Algorithm 2). This also explains why the running time increases more

quickly in going from sub-scenario 1 to sub-scenario 3 in the presence of a distur-

bance: as the proportion of examined states that are safe increases, a larger number

of control actions become safe, and the average number of successor states that must

be examined on line 14 of Algorithm 2 increases more rapidly when |Postuc(q)| is

large.

The results of all sub-scenarios show that the majority of unsafe states examined

through the depth-first search without the optimization are states which are unsafe

because there exists no solution for a particular pair of vehicles (at least 79% in all

sub-scenarios). Nonetheless, the optimization does incur some overhead, so that the

computational savings are greatest when there is a large portion of the reachable state

space that consists of unsafe states. Because of this overhead, the running time is

actually greater with optimization than without in sub-scenario 3 of scenario 2.

Remark III.30. In scenario 3, the number of safe examined states differs when com-

paring simulations with and without the optimization. This is due to safe states

that are reached through non-determinism but which become unreachable in the final

119

Table 3.2: Scenario 2: Uncontrolled vehicles, no disturbance.
Int. Range α = 3 α = 2 α = 1

Optimization? ×
√

×
√

×
√

Examined 1044346 360067 1680685 891391 2130800 1515525
Safe 229581 735974 1420771

(Ex. States)|Uc||Postuc (q)| 6.68× 107 2.30× 107 1.08× 108 5.70× 107 1.36× 108 9.70× 107

Time (s) 5.74 3.39 12.76 11.66 20.36 22.87
Unsafe Ratio 0.160 0.165 0.133

Table 3.3: Scenario 3: Disturbance, no uncontrolled vehicles.
Int. Range α = 3/2 α = 1 α = 1/2

Optimization? ×
√

×
√

×
√

Examined 3385 1630 9850 5329 22866 16745
Safe 1575 1575 5623 5030 15179 15133

(Ex. States)|Uc||Postuc (q)| 1.01× 1010 4.87× 109 2.94× 1010 1.59× 1010 6.83× 1010 5.00× 1010

Time (s) 1.06 0.75 12.03 9.15 76.83 58.37
Unsafe Ratio 0.030 0.071 0.210

supervised system. As an example, suppose that q′, q′′ ∈ Postuc(q) and that q′ is

found to be safe, whereas q′′ is found to be unsafe. Then uc /∈ S(q), and q′ could

become unreachable, after having been examined by the algorithm. In some cases,

these states will not be examined by the algorithm using the capture set optimization,

resulting in a smaller number of examined safe states.

3.10 Conclusion

We considered the problem of supervising a set of vehicles approaching an intersec-

tion so as to avoid collisions, in the presence of environmental uncertainty in the form

of uncontrolled vehicles and a disturbance. We solved this problem by constructing a

DES abstraction and leveraging supervisory control methods of DES, a natural for-

mulation for problems involving uncontrolled elements in which it is desired to obtain

maximally permissive safe and non-deadlocking supervisors. We described the state

reduction and exact state reduction relations between systems and abstractions, and

used these to show that translating the supervisor for the abstraction back to the

original problem domain preserves not only safety and non-deadlockingness, but also

maximal permissiveness. Finally, we presented a customized algorithm for solving

this supervisory control problem, and demonstrated its scalability through simula-

120

tion. This works extends the range of applications of DES. Moreover, to the best of

our knowledge, it is the first DES application where the discrete event model is ob-

tained by building a state reduction abstraction of the underlying continuous system

model. Future work includes the extension of this work to the case of measurement

uncertainty, second order dynamics, and stochastic problem formulations.

Appendix : Equations for Checking Safety

This appendix provides the equations that were used in the simulations of Sec. 3.9

for verifying the safety of a DES transitions (Part 1), and the equations for the pair-

wise capture sets for vehicles that cannot simultaneously be inside the intersection

(Part 2).

Part 1: Verifying if Aq,uc(t) ∩B = ∅ for all t ∈ [0, τ].

In part 1 of this appendix, we prove the equations used for verifying the safety of

transitions. As stated in Sec. 3.8, there are equations for each pair of vehicles i, j ∈ N ,

and verifying the safety of a DES transition for some initial state q ∈ Q̃ and uc ∈ Uc is

done by verifying the corresponding equations for each pair of vehicles. We consider

three cases (see Sec. 3.4): xi, xj ≤ 0, |xi − xj| < γ (case 1a), xi, xj ≥ 0, |xi − xj| < γ

(case 1b), and [−αri,1 < xi < αri,2] ∧ [−αrj,1 < xj < αrj,2] (case 2). The equations for

these cases are provided in Props. (III.33)-(III.35), respectively. Note that there is

no “case 1c” when xi ≤ 0 and xj ≥ 0, since the vehicles would then be on different

roads.

We begin by defining the set Aq,uc([0, τ]) :=
⋃
t∈[0,τ] Aq,uc(t). Because the bad set is

defined as a union of sets of linear inequalities, with one set for each pair of vehicles,

we verify Aq,uc([0, τ]) ∩ B = ∅ by considering each pair of vehicles in turn. For any

vehicle i ∈ N and any set P ⊆ X, let πi(P) denote the projection of P onto the i

axis. Similarly, for any pair of vehicles i, j ∈ N and a set P ⊆ X, let πi,j(P) denote

the projection of P onto the i− j plane.

121

Proposition III.31. (xi, xj) ∈ πi,j(Aq,uc([0, τ])) iff all of the following inequalities

hold:

xi > qi − µτ/2 (3.21)

xj > qj − µτ/2 (3.22)

xi ≤ qi + µτ/2 + vuc,iτ (3.23)

xj ≤ qj + µτ/2 + vuc,jτ (3.24)

vuc,i(xj − qj + µτ/2)− vuc,j(xi − qi − µτ/2) > 0 (3.25)

vuc,j(xi − qi + µτ/2)− vuc,i(xj − qj − µτ/2) > 0 (3.26)

Proof. From Eqs. (3.17), (3.18) and the assumption that vmin + dmin ≥ µ > 0, we

have that πi(Aq,uc(t)) = (qi − µτ/2 + vuc,it, qi + µτ/2 + vuc,it] is an interval whose

lower and upper bounds are increasing in time, for every i ∈ N . It follows that the

set {t ∈ R : xi ∈ πi(Aq,uc(t)} will have the form [ti,min, ti,max), where ti,min := inf{t ∈

R : xi ∈ πi(Aq,uc(t))} and ti,max := sup{t ∈ R : xi ∈ πi(Aq,uc(t))} are given by:

ti,min =
xi − qi − µτ/2

vuc,i
(3.27)

ti,max =
xi − qi + µτ/2

vuc,i
(3.28)

Now define tj,min and tj,max analogously to ti,min and ti,max. Then:

∃t ∈ [0, τ] s.t. [xi ∈ πi(Aq,uc(t))] ∧ [xj ∈ πj(Aq,uc(t))]

⇔ [0, τ] ∩ [ti,min, ti,max) ∩ [tj,min, tj,max) 6= ∅

⇔
[ti,max > 0] ∧ [tj,max > 0] ∧ [ti,min ≤ τ] ∧ [tj,min ≤ τ]

∧[tj,max > ti,min] ∧ [ti,max > tj,min]

122

and these last six inequalities give Eqs. (3.21)-(3.26), in order.

As stated above, we can check if Aq,uc([0, τ]) ∩ B = ∅ by considering each pair of

vehicles in turn. There are three types of constraints to consider:

Case 1a: xi, xj ≤ 0, |xi − xj| < γ.

Lemma III.32. Consider any xi, xi, xj, xj ∈ R. Then:

(∃xi ∈ (xi, xi])(∃xj ∈ (xj, xj])(xi ≤ 0 ∧ xj ≤ 0 ∧ |xi − xj| < γ)

⇔ [xi < xi ∧ xi < 0 ∧ xj < xj ∧ xj < 0 ∧ xi − xj < γ ∧ xj − xi < γ]
(3.29)

Proof. (⇒):

xi ∈ (xi, xi]⇒ xi < xi ≤ xi ⇒ xi < xi

xi < xi ∧ xi ≤ 0 ⇒ xi < 0

xj ∈ (xj, xj]⇒ xj < xj ≤ xj ⇒ xj < xj

xj < xj ∧ xj ≤ 0 ⇒ xj < 0

xi − xj < γ ∧ xi < xi ∧ xj ≤ xj ⇒ xi − xj < γ

xj − xi < γ ∧ xj < xj ∧ xi ≤ xi ⇒ xj − xi < γ

(⇐) It cannot be that both xi − xj ≥ γ and xj − xi ≥ γ, as this would imply

0 ≥ 2γ > 0. Thus, at least one of xi−xj < γ, or xj−xi < γ holds. If they both hold,

we may take xi = xi + ε and xj = xj + ε for some sufficiently small ε > 0 and we are

done. Suppose without loss of generality then that xi − xj < γ but xj − xi ≥ γ. Let

xi = xj − γ. Thus, xj − xi = γ, xi − xj = −γ < γ and xi < 0 (since xj < 0). We

may therefore take xi = xi + ε and xj = xj + ε for some sufficiently small ε > 0 and

123

we are done.

Proposition III.33. The set {(xi, xj) ∈ πi,j(Aq,uc([0, τ])) : xi, xj ≤ 0∧ |xi−xj| < γ}

is non-empty iff all of the following inequalities hold:

qi < µτ/2 (3.30)

qj < µτ/2 (3.31)

vuc,j(qi + µτ/2 + γ)−max{vuc,i, vuc,j}(qj − µτ/2) > 0 (3.32)

vuc,i(qj + µτ/2 + γ)−max{vuc,j, vuc,i}(qi − µτ/2) > 0 (3.33)

[qi + µτ/2 + γ + τ max{vuc,i, vuc,j}]− [qj − µτ/2 + τvuc,j] > 0 (3.34)

[qj + µτ/2 + γ + τ max{vuc,j, vuc,i}]− [qi − µτ/2 + τvuc,i] > 0 (3.35)

Proof. Let πi(Aq,uc(t)) = (xi(t), xi(t)] and πj(Aq,uc(t)) = (xj(t), xj(t)]. By Lemma

III.32, it is necessary and sufficient to find some t ∈ [0, τ] such that xi(t) < 0,

xj(t) < 0, xi(t)− xj(t) < γ, and xj(t)− xi(t) < γ. Now define ti,max, tj,max, ti−j, and

tj−i by xi(ti,max) = 0, xj(tj,max) = 0, xi(ti−j)−xj(ti−j) = γ, and xj(tj−i)−xi(tj−i) = γ.

These are given by:

ti,max = −qi − µτ/2
vuc,i

(3.36)

tj,max = −qj − µτ/2
vuc,j

(3.37)

ti−j =
(qi − µτ/2)− (qj + µτ/2 + γ)

vuc,j − vuc,i
(3.38)

tj−i =
(qj − µτ/2)− (qi + µτ/2 + γ)

vuc,i − vuc,j
(3.39)

Obviously, ti−j is only well defined when vuc,j 6= vuc,i and tj−i is only well defined

124

when vuc,i 6= vuc,j. Because xi(t) and xj(t) are increasing in time, we have that:

xi(t) < 0 ⇔ t < ti,max (3.40)

xj(t) < 0 ⇔ t < tj,max (3.41)

On the other hand, xi(t) − xj(t) is increasing in time if vuc,j < vuc,i, decreasing in

time if vuc,j > vuc,i, and constant if vuc,j = vuc,i. It therefore follows that:

xi(t)− xj(t) < γ ⇔


t < ti−j, vuc,j < vuc,i

t > ti−j, vuc,j > vuc,i

(qj + µτ/2 + γ) > (qi − µτ/2), vuc,j = vuc,i

(3.42)

Similarly,

xj(t)− xi(t) < γ ⇔


t < tj−i, vuc,i < vuc,j

t > tj−i, vuc,i > vuc,j

(qi + µτ/2 + γ) > (qj − µτ/2), vuc,i = vuc,j

(3.43)

This would give nine cases to consider, but three are impossible, since vuc,j < vuc,i ⇒

vuc,j ≤ vuc,j < vuc,i ≤ vuc,i ⇒ vuc,j < vuc,i and similarly, vuc,i < vuc,j ⇒ vuc,i < vuc,j.

We will consider each of the six remaining cases in turn, but first prove the following

claims:

tj−i < tj,max ∧ ti,max > 0 ⇒ tj−i < ti,max (3.44)

ti−j < ti,max ∧ tj,max > 0 ⇒ ti−j < tj,max (3.45)

ti−j > 0 ∧ vuc,j < vuc,i ⇒ tj−i < ti−j (3.46)

tj−i > 0 ∧ vuc,i < vuc,j ⇒ ti−j < tj−i (3.47)

Clearly, Eq. (3.44) holds if tj−i ≤ 0. If tj−i > 0, then xi(tj−i) < xi(tj−i) =

125

xj(tj−i) − γ < xj(tj−i). From Eq. (3.41), we have that tj−i < tj,max ⇔ xj(tj−i) < 0.

Hence, xi(tj−i) < xj(tj−i) < 0 and therefore tj−i < ti,max follows from Eq. (3.40),

proving Eq. (3.44). Eq. (3.45) is proven similarly. To prove Eq. (3.46), suppose to

the contrary that tj−i ≥ ti−j > 0. As before, tj−i > 0 ⇒ xi(tj−i) < xj(tj−i). From

vuc,j < vuc,i, tj−i ≥ ti−j, and Eq. (3.42), we have that xi(tj−i) ≥ xj(tj−i)+γ > xj(tj−i).

Thus we have xj(tj−i) > xi(tj−i) > xj(tj−i), which is a contradiction since it cannot

be that xj(tj−i) > xj(tj−i) for tj−i > 0, proving Eq. (3.46). Eq. (3.47) is proven

similarly. We now proceed with the six cases. In what follows, note that Eqs. (3.32)

and (3.34) both reduce to (qi + µτ/2 + γ) > (qj − µτ/2) when vuc,i ≤ vuc,j and that

Eqs. (3.33) and (3.35) similarly both reduce to (qj + µτ/2 + γ) > (qi − µτ/2) when

vuc,j ≤ vuc,i.

Case (i): vuc,j = vuc,i and vuc,i = vuc,j.

∃t ∈ [0, τ] s.t. [xi(t) < 0] ∧ [xj(t) < 0]

∧[xi(t)− xj(t) < γ] ∧ [xj(t)− xi(t) < γ]

⇔

[0, τ] ∩ (−∞, ti,max) ∩ (−∞, tj,max) 6= ∅

∧[(qj + µτ/2 + γ) > (qi − µτ/2)]

∧[(qi + µτ/2 + γ) > (qj − µτ/2)]

(Eqs. (3.40)-(3.43))

⇔

[0 < ti,max] ∧ [0 < tj,max]

∧[(qj + µτ/2 + γ) > (qi − µτ/2)]

∧[(qi + µτ/2 + γ) > (qj − µτ/2)]

⇔ [(3.30)] ∧ [(3.31)] ∧ [(3.33) ∧ (3.35)] ∧ [(3.32) ∧ (3.34)]

Case (ii): vuc,j > vuc,i and vuc,i = vuc,j.

126

∃t ∈ [0, τ] s.t. [xi(t) < 0] ∧ [xj(t) < 0]

∧[xi(t)− xj(t) < γ] ∧ [xj(t)− xi(t) < γ]

⇔
[0, τ] ∩ (−∞, ti,max) ∩ (−∞, tj,max) ∩ (ti−j,∞) 6= ∅

∧[(qi + µτ/2 + γ) > (qj − µτ/2)]
(Eqs. (3.40)-(3.43))

⇔
[0 < ti,max] ∧ [0 < tj,max] ∧ [ti−j < τ] ∧ [ti−j < ti,max]

∧[ti−j < tj,max] ∧ [(qi + µτ/2 + γ) > (qj − µτ/2)]

⇔
[0 < ti,max] ∧ [0 < tj,max] ∧ [ti−j < τ] ∧ [ti−j < ti,max]

∧[(qi + µτ/2 + γ) > (qj − µτ/2)]
(Eq. (3.45))

⇔ [(3.30)] ∧ [(3.31)] ∧ [(3.35)] ∧ [(3.33)] ∧ [(3.32) ∧ (3.34)]

Case (iii): vuc,j = vuc,i and vuc,i > vuc,j.

This is case is symmetrical to Case (ii).

Case (iv): vuc,j < vuc,i and vuc,i > vuc,j.

∃t ∈ [0, τ] s.t. [xi(t) < 0] ∧ [xj(t) < 0]

∧[xi(t)− xj(t) < γ] ∧ [xj(t)− xi(t) < γ]

⇔ [0, τ] ∩ (−∞, ti,max) ∩ (−∞, tj,max) ∩ (−∞, ti−j) ∩ (tj−i,∞) 6= ∅ (Eqs. (3.40)-(3.43))

⇔
[0 < ti,max] ∧ [0 < tj,max] ∧ [0 < ti−j] ∧ [tj−i < τ]

∧[tj−i < ti,max] ∧ [tj−i < tj,max] ∧ [tj−i < ti−j]

⇔ [0 < ti,max] ∧ [0 < tj,max] ∧ [0 < ti−j] ∧ [tj−i < τ] ∧ [tj−i < tj,max] (Eqs. (3.44), (3.46))

⇔ [(3.30)] ∧ [(3.31)] ∧ [(3.33) ∧ (3.35)] ∧ [(3.34)] ∧ [(3.32)]

Case (v): vuc,j > vuc,i and vuc,i < vuc,j.

This is case is symmetrical to Case (iv).

Case (vi): vuc,j > vuc,i and vuc,i > vuc,j.

127

∃t ∈ [0, τ] s.t. [xi(t) < 0] ∧ [xj(t) < 0]

∧[xi(t)− xj(t) < γ] ∧ [xj(t)− xi(t) < γ]

⇔ [0, τ] ∩ (−∞, ti,max) ∩ (−∞, tj,max) ∩ (ti−j,∞) ∩ (tj−i,∞) 6= ∅ (Eqs. (3.40)-(3.43))

⇔

[0 < ti,max] ∧ [0 < tj,max]

∧[tj−i < τ] ∧ [tj−i < ti,max] ∧ [tj−i < tj,max]

∧[ti−j < τ] ∧ [ti−j < ti,max] ∧ [ti−j < tj,max]

⇔

[0 < ti,max] ∧ [0 < tj,max]

∧[tj−i < τ] ∧ [tj−i < tj,max]

∧[ti−j < τ] ∧ [ti−j < ti,max]

(Eqs. (3.44), (3.45))

⇔ [(3.30)] ∧ [(3.31)] ∧ [(3.34)] ∧ [(3.32)] ∧ [(3.35)] ∧ [(3.33)]

Case 1b: xi, xj ≥ 0, |xi − xj| < γ.

Proposition III.34. The set {(xi, xj) ∈ πi,j(Aq,uc([0, τ])) : xi, xj ≥ 0∧ |xi−xj| < γ}

is non-empty iff all of the following inequalities hold:

qi ≥ −µτ/2− vuc,iτ (3.48)

qj ≥ −µτ/2− vuc,jτ (3.49)

max{vuc,i, vuc,j}(qi + µτ/2 + τvuc,i)

−vuc,i(qj − µτ/2− γ + τvuc,j) > 0
(3.50)

max{vuc,j, vuc,i}(qj + µτ/2 + τvuc,j)

−vuc,j(qi − µτ/2− γ + τvuc,i) > 0
(3.51)

(qi + µτ/2 + τ max{vuc,j, vuc,i})

−(qj − µτ/2− γ + τvuc,j) > 0
(3.52)

(qj + µτ/2 + τ max{vuc,i, vuc,j})

−(qi − µτ/2− γ + τvuc,i) > 0
(3.53)

128

Proof. The proof is similar to that of Prop. III.33, and is omitted.

Case 2: [−αri,1 < xi < αri,2] ∧ [−αrj,1 < xj < αrj,2].

Proposition III.35. The set {(xi, xj) ∈ πi,j(Aq,uc([0, τ])) : [−αri,1 < xi < αri,2] ∧

[−αrj,1 < xj < αrj,2]} is non-empty iff all of the following inequalities hold:

qi < αri,2 + µτ/2 (3.54)

qj < αrj,2 + µτ/2 (3.55)

qi > −αri,1 − µτ/2− vuc,iτ (3.56)

qj > −αrj,1 − µτ/2− vuc,jτ (3.57)

vuc,j(qi + µτ/2 + αri,1)− vuc,i(qj − µτ/2− αrj,2) > 0 (3.58)

vuc,i(qj + µτ/2 + αrj,1)− vuc,j(qi − µτ/2− αri,2) > 0 (3.59)

Proof. We proceed similarly to the proof of Prop. III.31. From Eqs. (3.17), (3.18) and

the assumption that vmin + dmin ≥ µ > 0, we have that πi(Aq,uc(t)) = (qi − µτ/2 +

vuc,it, qi + µτ/2 + vuc,it] is an interval whose lower and upper bounds are increasing

in time, for every i ∈ N . It follows that the set {t ∈ R : (−αri,1 , αri,2)∩πi(Aq,uc(t)) 6=

∅} will have the form (t2i,min, t
2
i,max), where t2i,min := inf{t ∈ R : (−αri,1 , αri,2) ∩

πi(Aq,uc(t)) 6= ∅} and t2i,max := sup{t ∈ R : (−αri,1 , αri,2) ∩ πi(Aq,uc(t)) 6= ∅} are given

by:

t2i,min =
−qi − αri,1 − µτ/2

vuc,i
(3.60)

t2i,max =
−qi + αri,2 + µτ/2

vuc,i
(3.61)

129

Now define t2j,min and t2j,max analogously to t2i,min and t2i,max. Then:

∃t ∈ [0, τ] s.t. [(−αri,1 , αri,2) ∩ πi(Aq,uc(t))] ∧ [(−αrj,1 , αrj,2) ∩ πj(Aq,uc(t))]

⇔ [0, τ] ∩ (t2i,min, t
2
i,max) ∩ (t2j,min, t

2
j,max) 6= ∅

⇔
[t2i,max > 0] ∧ [t2j,max > 0] ∧ [t2i,min < τ] ∧ [t2j,min < τ]

∧t2j,max > t2i,min ∧ t2i,max > t2j,min

and these last six inequalities give Eqs. (3.54)-(3.59), in order.

Part 2: The Capture Set Optimization

Here we describe an optimization which allows for a substantial reduction of the num-

ber of unsafe examined states in Alg. 2. The optimization is based on the observation

that the bad set is convex (rectangular) for a pair of vehicles which cannot simul-

taneously be inside the intersection (Case 2 of Part 1). Thus it is straight-forward

to compute the capture set of states from which no supervisor can ensure avoidance

of the bad set for such a pair of vehicles. Before stating the theorem, we define the

minimal and maximal velocities which can be forced by the supervisor, given that it

does not control the uncontrolled vehicles or the disturbance:

vci =

 vmin + dmax, vehicle i is controlled

vmax + dmax, vehicle i is uncontrolled
(3.62)

vci =

 vmax + dmin, vehicle i is controlled

vmin + dmin, vehicle i is uncontrolled
(3.63)

Proposition III.36. Given two vehicles i and j on different roads, there does not

exist any safe and non-deadlocking supervisor σ : Q̃ → 2Uc with σ(q) 6= ∅, for any

130

q ∈ Q̃ such that ∃x ∈ `−1(q) satisfying all of the following equations:

xi < αri,2 (3.64)

xj < αrj,2 (3.65)

vci(xj + αrj,1)− vcj(xi − αri,2) > 0 (3.66)

vcj(xi + αri,1)− vci(xj − αrj,2) > 0 (3.67)

Proof. First, it follows from the definitions of vci and vci that, for any x satisfying

Eqs. (3.64)-(3.67) and uc ∈ Uc, there exists some uuc ∈ Uuc and d : [0, τ] → D such

that x(t) = x+ u(t/τ) + d(t) either remains inside the set given by Eqs. (3.64)-(3.67)

for t ∈ [0, τ], or enters the bad set for some t ∈ [0, τ] (see Fig. 3.7). Second, it follows

from vmin+dmin > 0 that no control strategy can prevent the vehicles from eventually

leaving the set given by Eqs (3.64)-(3.67). Thus either the system eventually reaches

some state q′ ∈ Q̃ such that σ(q′) = ∅, or σ allows the system to enter the bad set.

We can obtain the set of set of states q for which there exists some x ∈ `−1(q)

satisfying Eqs. (3.64)-(3.67) by taking this set and “inflating it” by µτ/2, to capture

the effect of the discretization. This gives one of two possibilities, depending on

whether the set of Eqs. (3.64)-(3.67) is open or closed. Then set will be open if

vcj
vci
≤ vcj

vci
and closed if

vcj
vci
>

vcj
vci

. If the set is open, the equations become:

qi < αri,2 + µτ/2 (3.68)

qj < αrj,2 + µτ/2 (3.69)

vci(qj + αrj,1 + µτ/2)− vcj(qj − αri,2 − µτ/2) > 0 (3.70)

vcj(qi + αri,1 + µτ/2)− vci(qi − αrj,2 − µτ/2) > 0 (3.71)

131

If the set is closed, then two more equations must be added in general (see Fig. 3.7)

qi >
vciv

c
jαri,1 + vciv

c
iαrj,2 + vciv

c
iαrj,1 + vciv

c
jαri,2

vciv
c
j − vcivcj

− µτ/2 (3.72)

qj >
vciv

c
jαrj,1 + vcjv

c
jαri,2 + vcjv

c
jαri,1 + vciv

c
jαrj,2

vciv
c
j − vcivcj

− µτ/2 (3.73)

If dmin and dmax are integer multiples of µ, then it can be shown these last two

equations become unnecessary. We first prove a lemma.

Lemma III.37. If dmin and dmax are integer multiples of µ,
vcj
vci
>

vcj
vci

, and q ∈ Q̃

satisfies Eqs. (3.70) and (3.71) then, for any uc ∈ Uc, there exists q′ ∈ Postuc(q) that

also satisfies Eqs. (3.70) and (3.71).

Proof. First note from Eqs. (3.62) and (3.63) that, if either vehicle is uncontrolled,

then
vcj
vci
≤ 1 and

vcj
vci
≥ 1, violating

vcj
vci
>

vcj
vci

. It follows that both vehicles are controlled,

and that vci = vcj > vci = vcj. We prove the following claim:

Claim: For any uc ∈ Uc, there exists some di ∈ [dmin, dmax] such that uc,i/τ + di ∈

[vci , v
c
i] and uc,i/τ + di is an integer multiple of µ.

It suffices to prove that, for any uc ∈ Uc, [vci−uc,i/τ, vci−uc,i/τ]∩ [dmin, dmax] contains

some integral multiple of µ, since we may then take such a value as di. Clearly, uc,i/τ ∈

[vmin, vmax], from which it follows that vci − uc,i/τ = vmin + dmax − uc,i/τ ≤ dmax and

that vci−uc,i/τ = vmax+dmin−uc,i/τ ≥ dmin. Thus, [vci−uc,i/τ, vci−uc,i/τ]∩[dmin, dmax]

is non-empty. Since it is non-empty, there must be at least one of dmin and vci −uc,i/τ

in the intersection of the two sets. Since both dmin and vci − uc,i/τ are multiples of µ,

the claim is proven.

Constructing di and dj as in the claim, we obtain

vcj
vci
≥ uc,j/τ + dj
uc,i/τ + di

≥
vcj
vci
.

It follows that we can take w ∈ W such that wi = diτ and wj = djτ , obtaining q′

132

with q′i = qi+uc,i+wi, q
′
j = qj +uc,j +wj such that q′ ∈ Postuc(q) satisfies Eqs. (3.70)

and (3.71).

Corollary III.38. If dmin and dmax are integer multiples of µ then, given two vehicles

i and j on different roads, there does not exist any safe and non-deadlocking supervisor

σ : Q̃ → 2Uc with σ(q) 6= ∅, for any q ∈ Q̃ satisfying Eqs. (3.68)-(3.71) only (i.e.,

without satisfying Eqs. (3.72) and (3.73)), even when
vcj
vci
>

vcj
vci

.

Proof. We have already shown that the result holds if
vcj
vci
≤ vcj

vci
, or

vcj
vci
>

vcj
vci

and q

satisfies Eqs. (3.68)-(3.73). It remains to be shown that the result also holds if dmin

and dmax are integer multiples of µ,
vcj
vci
>

vcj
vci

, and q satisfies Eqs. (3.68)-(3.71), but

not Eqs. (3.72) and (3.73). Consider any uc ∈ Uc. By Lemma III.37, there exists

q′ ∈ Postuc(q) that also satisfies Eqs. (3.70) and (3.71). There are now three cases

to consider:

Case 1: q′ satisfies Eqs. (3.68)-(3.73).

We have shown in this case there exists no safe and non-deadlocking supervisor from

q′.

Case 2: q′ satisfies Eqs. (3.68)-(3.71), but not both of Eqs. (3.72) and (3.73).

Because dmin+vmin > 0, Lemma III.37 can be applied repeatedly, until a q′ is obtained

which satisfies Eqs. (3.72) and (3.73).

Case 3: q′ does not satisfy both of Eqs. (3.68) and (3.69).

In this case, the line segment from q to q′ either crosses the bad set, or comes within

a distance of µτ/2 of it (see Fig. 3.7). In the latter case, we can find some pair

x ∈ `−1(q) and x′ ∈ `−1(q′) such that the line segment from x to x′ crosses the bad

set.

Figure 3.7 depicts the set described by Eqs. (3.64)-(3.67) of Prop. III.36, the

inflated set of Eqs. (3.68)-(3.73), and the special case of Cor. III.38. The simulations

of Sec. 3.9 satisfied the property that dmin and dmax were integer multiples of µ, and

133

(3.66)

(3.64)

(3.65)

(3.67)

(3.70)

(3.68)

(3.69)

(3.71)

(a) Open Case

(3.66)

(3.64)

(3.65)

(3.67)

(3.73)

(3.70)

(3.68)

(3.69)

(3.71)

(3.72)

(b) Closed Case

Figure 3.7: The capture sets of Eqs. (3.64)-(3.73) in the open (left) and closed (right)
cases. The blue square denotes the bad set. The set of Eqs. (3.64)-(3.67)
is depicted with solid lines, and its inflation by µτ/2 is depicted in dashed
lines. Right: If dmin and dmax are integer multiples of µ, then Eqs. (3.72)
and (3.73) are unnecessary, which is shown by the dotted lines.

hence the code used Eqs. (3.68)-(3.71) only.

134

CHAPTER IV

Vehicle Control : The case of imperfect

measurement

4.1 Abstract

We consider the problem of supervising a set of vehicles through an intersection,

in the presence of uncontrolled vehicles, bounded disturbances, and measurement

uncertainty. In real time, an estimate of the system’s state is updated through a

prediction-correction scheme, based on the actions of the controlled vehicles and the

obtained imperfect measurements. The corrected estimates are mapped to a set of

discrete states and sent to a supervisor, which outputs a set of allowable velocities

for the controlled vehicles. The supervisor must be safe (i.e., collision-free), non-

deadlocking (i.e., the vehicles must eventually cross the intersection), and maximally

permissive with respect to the chosen discretization. We show how to construct a

suitable Discrete Event System (DES) model of the prediction-correction estimator

of the continuous system and associated specifications such that solving for the max-

imally permissive supervisor of the DES yields a supervisor for the original system

that is safe, non-deadlocking, and maximally permissive. Building on previous work,

we present two new types of system abstractions: the state estimate reduction and

the exact state estimate reduction. We show that, when the DES model is a state

135

estimate reduction of the prediction-correction estimator, the supervisor constructed

through the above procedure will be maximally permissive among memoryless super-

visors. In the case of an exact state estimate reduction, the obtained supervisor will

be maximally permissive among all supervisors, not merely memoryless ones.

4.2 Introduction

We consider the problem of supervising a set of vehicles through an intersection,

in the presence of uncontrolled vehicles, bounded disturbances, and measurement

uncertainty. Rather than choosing a particular control action from every state, the

supervisor outputs a set of allowable control actions for the vehicles. The goal of this

work is to construct such a supervisor that is safe (i.e., the vehicles do not collide),

non-deadlocking (i.e., the vehicles eventually cross the intersection and do not reach

states where the set of allowable actions by the supervisor is empty), and maximally

permissive.

Approaches to the problem of controlling vehicles at an intersection generally

fall into one of three categories: computation of maximally controlled invariant sets;

scheduling techniques; and abstraction. Methods in the first category naturally re-

sult in supervisors that are safe, non-deadlocking, and maximally permissive, since a

control action can be allowed if and only if it keeps the system inside the maximally

controlled invariant set. Work in this category includes: Hafner and Del Vecchio

(2011); Verma and Del Vecchio (2011). These methods can also handle disturbances,

uncontrollability, and measurement uncertainty, but typically make assumptions such

as convexity or order preserving dynamics, without which they do not scale well to

systems with multiple dimensions.

Scheduling techniques work by treating the intersection as an indivisible resource

to be allocated to different vehicles at different times. The general version of the deci-

sion problem is NP-hard, but takes polynomial time when each job (vehicle) requires

136

the resource (the intersection) for the same amount of time. Mapping the vehicle con-

trol problem to the polynomial time scheduling problem therefore amounts to either:

assuming symmetries in the problem; or a problem relaxation when such symmetries

are not satisfied. Work in this category includes: Colombo and Del Vecchio (2012),

its extension to the case of dynamics with disturbances, Bruni et al. (2013), and

its extension to the case of uncontrolled vehicles, Ahn et al. (2014). To our knowl-

edge, these methods have not been extended to the case of measurement uncertainty.

Furthermore, the assumption of mutual exclusiveness of the intersection’s use is re-

strictive, as it precludes vehicles on common or non-intersecting trajectories (e.g., in

the case of right turns) from utilizing the intersection simultaneously.

Our approach falls in the category of abstraction. This approach generally con-

sists of the following three steps: mapping the original, large (usually infinite), state

space of a problem instance to a smaller, finite, set of states and defining the transi-

tions over the smaller space to model the possible behaviors of the original system;

computing a controller or supervisor for the finite model; and refining this controller

or supervisor to one for the original system. The type of relation ((bi)simulation,

alternating (bi)simulation, and various approximate variations of these) between the

original and abstracted system determines what kind of guarantees can be made on

the refined controller or supervisor. Work in this category includes: Colombo and

Del Vecchio (2011a,b); Colombo and Girard (2013), which use differential flatness to

guarantee bounds on the distance between safe trajectories and trajectories allowed

by the obtained supervisor. These methods have not been extended to the case of

measurement uncertainty, as the presence of measurement uncertainty typically re-

sult in a loss of the aforementioned guaranteed bounds. Our work is most similar to

that of Girard et al. (2010); Pola and Tabuada (2009); Zamani et al. (2012); Camara

et al. (2011), which construct abstract models satisfying simulation or alternating

simulation relations with the original system models. This work defines new types

137

of relations between systems and their abstractions, based on alternating simulation

relations.

In this work, we show how to construct suitable DES abstractions of systems

with safety and non-deadlocking specifications under the presence of measurement

uncertainty. We then obtain a maximally permissive safe and non-deadlocking super-

visor for the abstracted system by solving the basic supervisory control problem in

the non-blocking case (BSCP-NB), Ramadge and Wonham (1987); Cassandras and

Lafortune (2008). This supervisor, when applied to the continuous system, preserves

safety and non-deadlockingness, as well as maximal permissiveness, with respect to

the discretization of the abstraction. Given any control system with imperfect mea-

surements, one can define a prediction-correction estimator for the system. Given an

initial state estimate and a control action, this estimator predicts the possible sets of

states after some duration τ , and then corrects this estimate upon a new measure-

ment. In this work, we define two types of relations between these estimators and

their abstractions: the state estimate reduction and the exact state estimate reduc-

tion. We show that, when an abstraction is a state estimate reduction of the estimator

of the original system, the supervisor obtained through the procedure described at the

beginning of this paragraph will be maximally permissive among memoryless super-

visors. On the other hand, when the abstraction is an exact state estimate reduction

of the estimator of the original system, the obtained supervisor will be maximally

permissive among all supervisors, not merely memoryless ones.

This work extends our previous work in Dallal et al. (2014) in which we considered

systems with perfect measurement. In that work, we defined the state reduction and

exact state reduction relations between systems and abstractions and showed how to

construct a DES abstraction G that is a state reduction of the system under consid-

eration in the vehicle control problem (but in the case of perfect measurement), by

discretizing the system in time and in space using a lattice. We also proved conditions

138

under which G would be an exact state reduction of the vehicle control system. The

system G used controllable events to model the actions of the controlled vehicles and

uncontrollable events to model the uncontrolled vehicles and the disturbance. In this

work, we define a set of equivalence classes for the set of measurements, given the

chosen discretization of the abstraction. These equivalence classes then constitute a

new set of “measurement events” which are observable but uncontrollable, whereas

the events modelling the uncontrolled vehicles and the disturbance are defined as

unobservable and uncontrollable. This yields a new DES abstraction G′ containing a

mix of uncontrollable and unobservable events. We show in this work that the dis-

cretization parameters can be chosen so that the observer G of G′ is a state estimate

reduction of the prediction-correction estimator of the imperfectly measured vehicle

control system. Furthermore, we show that when G is an exact state reduction of

the perfectly measured vehicle control systems, then G will be an exact state esti-

mate reduction of the prediction-correction estimator of the imperfectly measured

vehicle control system. It is also important note that, for this system, state estimates

will always be boxes (products of intervals), so that the determinization step in the

construction of the observer only increases the state space quadratically, rather than

exponentially.

The contributions of this work are, first, in the leveraging of supervisory control

theory of DES, which is particularly well suited to finding maximally permissive so-

lutions to control problems over finite state spaces subject to safety and non-blocking

specifications. Second, the definitions of state estimate reduction and exact state es-

timate reduction are general concepts which allow for the construction of maximally

permissive memoryless supervisors in the presence of measurement uncertainty. Pre-

liminary versions of some of the results presented here have appeared in Dallal et al.

(2013a), Dallal et al. (2013b).

The organization of this work is as follows. In section 4.3, we define the vehicle

139

control system and present the supervisory control problem to be solved. In section

4.4, we recall results from our previous work in Dallal et al. (2014), including the

DES abstraction G of the perfectly measured case, the definitions of state reduction

and exact state reduction, and the associated theorems. In section 4.5, we define the

modified abstraction G′ for the system with measurement uncertainty and proceed

to define the notions of partially observed systems and estimator systems. Using

these notions, we define the state estimate reduction and the exact state estimate

reduction and prove associated theorems. In section 4.6, we prove results relating

the (in)exact state reduction of the perfectly measured case to the (in)exact state

estimate reduction of the imperfectly measured case. Finally, we conclude in section

4.7.

4.3 Model

Consider a set of vehicles N = {1, . . . , n} with dynamics

ẋ = v + d, (4.1)

where x ∈ X is the vehicles’ position, v ∈ V is the control input, and d ∈ D is a

disturbance input. It is assumed that X is compact, that D = [dmin, dmax]
n for some

dmin, dmax ∈ R satisfying dmin ≤ 0 ≤ dmax, and that V is the set of vectors whose

elements are in the set {aµ, (a + 1)µ, . . . , bµ}, for some a, b ∈ N. Denote values aµ

and bµ by vmin and vmax, respectively. Let the set of vehicles be partitioned as N =

Nc ∪Nuc, where Nc is the set of controlled vehicles and Nuc is the set of uncontrolled

vehicles (an uncontrolled vehicle is one whose actions cannot be constrained by the

supervisor). With this partition, we write V = Vc × Vuc and v = (vc, vuc), for any

v ∈ V .

We begin by discretizing system (4.1) in time with parameter τ ∈ R+. Thus,

140

control actions are chosen at times 0, τ, 2τ, . . . and kept constant for the following

interval of duration τ . This gives the discrete-time system:

xk+1 = xk + uk + δk, (4.2)

where xk = x(kτ), uk = v(kτ)τ , and δk =
∫ (k+1)τ

kτ
d(t)dt. If we define U := V τ and

∆ := Dτ , then we obtain u ∈ U and δ ∈ ∆. As we did with V , we write U = Uc×Uuc

and u = (uc, uuc), where uc ∈ Uc denotes the discrete action of the controlled vehicles

and uuc ∈ Uuc denotes the discrete action of the uncontrolled vehicles.

We proceed to discretize the system in space by defining a set Q̃ of discrete states

and a mapping ` : X → Q̃ as follows:

`i(xi) :=


cτµ, for c ∈ Z s.t.

cτµ− τµ/2 < xi ≤ cτµ+ τµ/2,
if xi ≤ αri,2

qi,m, if xi > αri,2

(4.3)

where ri,2 is the road on which vehicle i leaves the intersection, αri,2 is the location

of the end of the intersection on that road, and qi,m is a “special” state denoting

that a vehicle has crossed the intersection. The function `(x) is then defined as

`(x) := (`1(x1), . . . , `n(xn)). In words, `(·) maps continuous states to a lattice of

discrete states with a spacing of τµ for vehicles before the end of the intersection.

We denote by qm = (q1,m, . . . , qn,m) the unique discrete state where all vehicles have

crossed the intersection. Assume that, for all q ∈ Q̃, there exists some x ∈ X such

that `(x) = q. Additionally, we define `−1 and extend both ` and `−1 to sets as follows:

for any q ∈ Q̃, `−1(q) = {x ∈ X : `(x) = q}; for any I ⊆ X, `(I) =
⋃
x∈X `(x); and

for any ι ⊆ Q̃, `−1(ι) =
⋃
q∈ι `

−1(q).

We assume that the inputs of the uncontrolled vehicles and the disturbance are

not directly observable. Instead, we obtain information about these through a state

141

measurement χ ∈ X satisfying x ∈ L(χ), where L : X → 2X defines the set of states

consistent with measurement χ. Given some maximal error emax ∈ R+, L is defined

by:

L(χ) = [χ− 1emax, χ+ 1emax], (4.4)

where 1 = (1, . . . , 1) ∈ Rn and, for any a, b ∈ Rn, [a, b] := {x ∈ Rn : ai ≤ xi ≤ bi, i =

1, . . . , n} denotes a box in Rn. With these definitions we can define a prediction-

correction estimator for the discrete-time system of Eq. (4.2), consisting of the two

functions Ip : 2X × Vc → 2X and Ic : 2X ×X → 2X defined by:

Ip(I, vc) =
⋃

x∈I,vuc∈Vuc,δ∈∆

(x+ vτ + δ) (4.5)

Ic(I, χ) = I ∩ L(χ) (4.6)

This prediction-correction estimator correctly computes the smallest state estimate

compatible with the sequence of control inputs and measurements seen thus far (see

e.g., LaValle (2006)). Additionally, we define L−1 and extend both L and L−1 to

sets as follows: for any x ∈ X, L−1(x) = {χ ∈ X : x ∈ L(χ)}; for any I ⊆ X,

L(I) =
⋃
χ∈I L(χ); and for any I ⊆ X, L−1(I) =

⋃
x∈I L

−1(x).

Finally, assume that there is some set B of bad states (representing collision

points) and that we would like to define a supervisor so that x(t) /∈ B, ∀ t ≥ 0. Let

the set of roads be R = {1, . . . ,m}. We assume that vehicle i travels on road ri,1 ∈ R

for xi ≤ 0, and on road ri,2 ∈ R for xi ≥ 0 (i.e., vehicle i turns from road ri,1 to

road ri,2 when xi = 0). For road r, we take the intersection region to be of size αr,

so that vehicle i entering the intersection on road r is inside the intersection when

xi ∈ (−αr, 0] and vehicle j exiting the intersection on road r is inside the intersection

when xj ∈ [0, αr). We assume that the bad set has the form B =
⋃
i,j∈N ,i≤j Bij, where

Bij has one of three forms:

• Bij = ∅, if vehicles i and j are on non-intersecting paths.

142

• Bij = {x ∈ X : xi, xj ≤ 0 ∧ |xi − xj| < γ} or Bij = {x ∈ X : xi, xj ≥

0∧ |xi − xj| < γ}, if vehicles i and j enter the intersection on the same road or

exit the intersection on the same road, respectively. Here γ ∈ R is a parameter

defining the minimal separation distance between vehicles while on the same

road.

• Bij = {x ∈ X : xi ∈ (−αri,1 , αri,2) ∧ xj ∈ (−αrj,1 , αrj,2)}, if vehicles i and j’s

paths could result in a collision as the vehicles turn.

We wish to solve the following problem:

Problem IV.1. Let 2X/` denote the quotient set of 2X with respect to the equiva-

lence relation E ⊆ 2X × 2X defined by (I1, I2) ∈ E ⇔ `(I1) = `(I2). Given Q̃, define

a supervisor σ : 2X/`→ 2Vc that associates to each I(kτ) ⊆ X a set of inputs vc ∈ Vc

allowed for the interval [kτ, (k + 1)τ] and constant over this time interval, with the

following properties:

• if vc(t) ∈ σ(I(bt/τcτ)) for t ∈ [kτ, (k + 1)τ], then x(t) /∈ B in the same time

interval (safety)

• if σ(I(kτ)) 6= ∅, vc(t) ∈ σ(I(bt/τcτ)) for t ∈ [kτ, (k+ 1)τ], and `(I((k+ 1)τ)) 6=

{qm}, then σ(I((k + 1)τ)) 6= ∅ (non-deadlockingness)

• if σ̃ 6= σ and σ̃ satisfies the two properties above, then σ̃(I(kτ)) ⊆ σ(I(kτ)) for

all k ≥ 0 (maximal permissiveness),

where I(kτ) is a state estimate after the correction step of Eq. (4.6) and I((k+1)τ) =

Ic(Ip(I(kτ), vc), χ).

See Fig. 4.1 for a graphical depiction of Prob. IV.1.

143

Figure 4.1: The system process in real time. At times 0, τ, 2τ, . . ., a measurement
χ ∈ X is obtained. This measurement is used to correct the previous state
estimate Ipred through I = Ic(Ipred, χ) = Ipred∩L(χ). The corrected state
estimate I is then discretized to a lattice with spacing τµ as `(I), and
`(I) is sent to the supervisor. The controlled vehicles then choose some
control action vc allowed by the supervisor, and this control action, along
with the state estimate I and knowledge of the bounds on the actions of
the disturbance and the uncontrolled vehicles (shown with dashed lines
because they are not observed) are used to predict a new state estimate
of possible positions at the next time instant that is a multiple of τ , given
by Ipred = Ip(I, vc), where Ip is the function of Eq. (4.5).

4.4 Results from the Case of Perfect Measurement

This section provides a summary of results from the case of perfect measure-

ment. We begin by defining the initial discrete event system (DES) abstraction G. In

Sec. 4.5, we will modify this abstraction to include a finite set of measurement events

to model measurement uncertainty, resulting in a new abstraction G′. We then pro-

ceed to recall results about state reductions and exact state reductions, which are

types of relations between systems and abstractions, using alternating similarity as a

basis. The definitions of state reductions and exact state reductions will be adapted

to the case of imperfect measurement in Sec. 4.5, yielding the state estimate reduction

and exact state estimate reduction, which are relations between prediction-correction

estimators and abstractions.

144

4.4.1 The Initial Abstraction

Definition IV.2 (Discrete Event System Automaton). A (deterministic) discrete

event system is a tuple G = (Q,E, ψ, q0, Qm) where Q is a set of states, E is a set

of events, ψ : Q× E → Q is a partial transition function, q0 ∈ Q is the initial state,

and Qm ⊆ Q is a set of marked states indicating the completion of some behavior of

interest.

We model the discrete time system of Eq. (4.2) by constructing a DES abstraction

with three types of events: Uc, to model the actions of the controlled vehicles; Uuc

to model the actions of the uncontrolled vehicles; and W , to model the effect of the

disturbance. The sets Uc and Uuc were already described in Section 4.3. The set W

consists of a set of “discretized disturbances” and is defined by W = {kτµ : k ∈

Z ∧ bδmin/(τµ)c ≤ k ≤ dδmax/(τµ)e}n. It can be shown that this set W satisfies the

following property: For any q, q′ ∈ Q̃ and u ∈ U , there exist x ∈ `−1(q), x′ ∈ `−1(q′),

and δ ∈ ∆ such that x+ u+ δ = x′ if and only if ∃w ∈ W such that q + u+ w = q′.

Each of the three event types constitutes one layer of a three layer DES automaton

transition function ψ. In order to have a well defined DES automaton, this requires

the introduction of two sets of intermediate states QI1 and QI2. More specifically,

we have ψ ⊆ (Q̃ × Uc × QI1) ∪ (QI1 × Uuc × QI2) ∪ (QI2 × W × Q̃), satisfying

ψ(q, ucuucw) = q + u+ w, for all q ∈ Q̃, uc ∈ Uc, uuc ∈ Uuc and w ∈ W . See Fig. 4.2

for a depiction of the transition function ψ.

In order to allow for the possibility of multiple initial states, we define a set Q0

of possible initial states, which we model through a dummy initial state q0 and a set

of events EQ := {eq : q ∈ Q0} with ψ(q0, eq) = q. The final DES abstraction is then

defined as:

G := (Q,E, ψ, q0, Qm), (4.7)

145

Figure 4.2: The transition function ψ of DES automaton G, consisting of three lay-
ers, one for each of the event categories Uc, Uuc, W , and separated by
intermediate states.

where Q = q0 ∪ Q̃∪QI1 ∪QI2, E = EQ ∪Uc ∪Uuc ∪W , and Qm = {qm}. The events

in Uc are defined to be controllable, whereas the events in Uuc and W are defined to

be uncontrollable.

4.4.2 State Reductions & Exact State Reductions

This section presents definitions and theorems about state reductions and exact

state reductions found in Dallal et al. (2014). With the exceptions of Props. IV.11

and IV.15, the results are generic and hence the notation X and U in the following

definitions need not be the same as in this work’s vehicle control problem.

4.4.2.1 Preliminaries

Definition IV.3 (System, Dallal et al. (2014)). A system S is defined as a tuple

S = (X,U,→, Y,H), where X is the set of states, U is a set of control inputs,

→⊆ X × U ×X is a transition relation, Y is an output set, and H : X → Y is the

output function.

For a system S = (X,U,→, Y,H), we will use the notation Postu(x) := {x′ ∈ X :

146

(x, u, x′) ∈→} and U(x) := {u ∈ U : Postu(x) 6= ∅}. In the remainder of this work,

it will be assumed that all systems satisfy the property H(x1) = H(x2) ⇒ U(x1) =

U(x2), for all x1, x2 ∈ X. In words, this means that any two states with the same

output should not be distinguishable by their available set of inputs. In the context

of the vehicle control application, the system is defined by Eqs. (4.2) and (4.3).

Definition IV.4 (Run, Dallal et al. (2014)). A run ρ of length n for a system

S = (X,U,→, Y,H) is a sequence of past states and inputs (x0, u0, . . . , xn−1, un−1, xn),

such that ui ∈ U(xi) and xi+1 ∈ Postui(x
i) for i = 0, . . . , n − 1. The set of runs of

length n is denoted by Rn(S) and the set of runs is R(S) =
⋃∞
i=0 Rn(S). Given

run ρ = (x0, u0, . . . , xn−1, un−1, xn), we define the notation tgt(ρ) := xn and ρ(k) :=

(x0, u0, . . . , xk−1, uk−1, xk), called a prefix of ρ.

Definition IV.5 (History, Dallal et al. (2014)). A history θ of length n for a system

S = (X,U,→, Y,H) is a sequence of past outputs and inputs (y0, u0, . . . , yn−1, un−1, yn),

such that there exists a run ρ = (x0, u0, . . . , xn−1, un−1, xn) ∈ Rn(S) that is consistent

with θ, in the sense that yi = H(xi) for i = 0, . . . , n. The set of histories of length

n is denoted by Θn(S) and the set of histories is Θ(S) =
⋃∞
i=0 Θn. We will also

write θ(ρ) to mean the unique history produced by a run ρ ∈ R. Given history θ =

(y0, u0, . . . , yn−1, un−1, yn), we define the notation θ(k) := (y0, u0, . . . , yk−1, uk−1, yk)

and tgt(θ) := yn, as was the case with runs.

Definition IV.6 (Supervisor, Dallal et al. (2014)). A supervisor σ for a system

S = (X,U,→, Y,H) is a function σ : Θ → 2U that chooses which control inputs to

enable/disable after each history. A supervisor is called memoryless if it is of the form

σ : Y → 2U . A run ρ = (x0, u0, . . . , xn−1, un−1, xn) ∈ Rn(S) is allowed by supervisor

σ if ui ∈ σ(θ(ρ(i))), for i = 0, . . . , n− 1.

Definition IV.7 (Specification, Dallal et al. (2014)). A safety specification for a

system S = (X,U,→, Y,H) is a subset Safe ⊆→ of transitions that we would like

147

the system S to be restricted to. A marking specification for S is a set Xm ⊆ X of

“special” or marked states. We say that S is deadlocking if there exists a run ρ such

that U(tgt(ρ)) = ∅ and tgt(ρ) /∈ Xm.

4.4.2.2 The State Reduction

Definition IV.8 (State Reduction, Dallal et al. (2014)). Given two systems Sa and

Sb with Ya = Yb := Y , we say that Sa is a state reduction of Sb with state relation

R ⊆ Xa × Xb and output dependent control relation C : Y → 2Ua×Ub (hereafter

referred to only as control relation) if:

1. R−1 = {(xb, xa) ⊆ Xb ×Xa : (xa, xb) ∈ R} is a function.

2. For every y ∈ Y , the relation C(y) ⊆ Ua × Ub is a bijection relation.

3. Ha(xa) = Hb(xb) if and only if (xa, xb) ∈ R.

4. ∀(xa, ua, x′a) ∈→a, ∃(xb, ub, x′b) ∈→b such that (xa, xb) ∈ R, (ua, ub) ∈ C(Ha(xa)),

and (x′a, x
′
b) ∈ R.

5. ∀(xb, ub, x′b) ∈→b, ∃(xa, ua, x′a) ∈→a such that (xa, xb) ∈ R, (ua, ub) ∈ C(Hb(xb)),

and (x′a, x
′
b) ∈ R.

Definition IV.9 (Induced Specification, Dallal et al. (2014)). Given system Sb with

state reduction Sa, along with safety and marking specifications Safeb ⊆→b and

148

Xm,b ⊆ Xb on system Sb, define the induced specification on Sa as follows:

(xa, ua, x
′
a) ∈ Safea ⊆→a

⇔



(xb, ub, x
′
b) ∈→b s.t.

(xa, xb) ∈ R

∧(ua, ub) ∈ C(Ha(xa))

∧(x′a, x
′
b) ∈ R


⊆ Safeb (4.8)

Xa ∈ Xm,a ⊆ Xa

⇔ {xb ∈ Xb s.t. (xa, xb) ∈ R} ⊆ Xm,b (4.9)

Theorem IV.10. (from Dallal et al. (2014)) Suppose that system Sa is a state re-

duction of system Sb with state relation R and control relation C and that we are

given safety and marking specifications Safeb ⊆→b and Xm,b ⊆ Xb for system Sb.

Let Safea and Xm,a be the corresponding induced specifications for system Sa and

suppose that we have a maximally permissive, safe, and non-deadlocking supervi-

sor σa : Y → 2Ua, where Y is the (common) output space. Define the supervisor

σb : Y → 2Ub by ub ∈ σb(y) iff ∃ua ∈ σa(y) such that (ua, ub) ∈ C(y). Then σb

is safe, non-deadlocking, and maximally permissive among supervisors of the form

σb : Y → 2Ub.

Proposition IV.11. (from Dallal et al. (2014)) Define the output maps HX(x) :=

`(x), HQ̃(q) := q, the relation R := {(x, q) ∈ X × Q̃ : `(x) = q}, and the control

relation C(q) := {(vc, uc) : vcτ = uc ∈ Uc}, for all q ∈ Q̃. Then DES abstraction G

of Sec. 4.4.1 is a state reduction of system (4.2).

149

4.4.2.3 The Exact State Reduction

Definition IV.12 (Exact State Reduction, Dallal et al. (2014)). Given two systems

Sa and Sb with Ya = Yb = Y , we say that Sa is an exact state reduction of Sb with

state relation R ⊆ Xa × Xb and control relation C : Y → 2Ua×Ub if Sa is a state

reduction of Sb with state and control relations R and C and:

6. ∀(xa, ua, x′a) ∈→a, ∀x′b ∈ Xb : (x′a, x
′
b) ∈ R, ∃(xb, ub, x′b) ∈→b such that (xa, xb) ∈

R and (ua, ub) ∈ C(Ha(xa)).

Lemma IV.13. (from Dallal et al. (2014)) Suppose that system Sb has an exact

state reduction Sa. Then, for any history θb for system Sb and any xb ∈ Xb such that

H(xb) = tgt(θb), there exists a run ρb such that θb = θ(ρb) and xb = tgt(ρb).

In words, the above lemma implies that, when there exists an exact state reduction

for system Sb, a history θb gives no more information about the current state of Sb

than does the last output tgt(θb). The following theorem follows immediately from

this observation.

Theorem IV.14. (from Dallal et al. (2014)) Suppose that system Sa is an exact

state reduction (2) of system Sb and that all other conditions of Thm. IV.10 are sat-

isfied. Then the obtained supervisor σb will be safe, non-deadlocking, and maximally

permissive among supervisors of the form σb : Θ→ 2Ub.

Proposition IV.15. (from Dallal et al. (2014)) Define HX(·), HQ̃(·), R, and C as in

Prop. IV.11. If δmin and δmax are both integer multiples of τµ, then DES abstraction

G of Sec. 4.4.1 is an exact state reduction of system (4.2).

4.5 Observers and State Estimation

In this section, we show how to modify the DES abstraction G of Sec. 4.4.1 to

deal with measurement uncertainty. Specifically, we accomplish this by obtaining

150

a finite set of equivalence classes for the measurements, given the discretization of

Eq. (4.3). This set of equivalence classes will then be used as a fourth type of event in

our DES abstraction, resulting in a modified DES abstraction G′. We then proceed

to define two new relations between estimators of partially observed systems and

abstractions, the state estimate reduction and exact state estimate reduction, which

are modified versions of the state reduction and exact state reduction. We then show

that analogous versions of Thms. IV.10 and IV.14 hold with these two new relations.

4.5.1 The modified abstraction

Given the discretization function ` : X → Q̃ of Eq. (4.3) and the observation

function L : X → 2X of Eq. (4.4), define the equivalence relation ≡o⊆ X × X over

measurements by:

χ1 ≡o χ2 ⇔ `(L(χ1)) = `(L(χ2)). (4.10)

For any χ ∈ X, let [χ] denote the equivalence class of χ under relation ≡o and let

Λ denote the set of equivalence classes. These equivalence classes will constitute the

set of discrete measurement events. Now define the discrete observation function

LΛ : Λ→ 2Q̃ by:

LΛ(λ) = {q ∈ Q̃ : (∃χ ∈ X : [χ] = λ)[L(χ) ∩ `−1(q) 6= ∅]}, (4.11)

for any λ ∈ Λ.

We now define ψc : Q̃ × Λ → Q̃, the analogue of the correction operator of

Eq. (4.17) in the DES domain:

ψc(q, λ) =

 q, if q ∈ LΛ(λ)

undefined, else
(4.12)

In words, ψc(q, λ) is defined if there exists measurement χ satisfying [χ] = λ and state

151

x satisfying `(x) = q such that x is consistent with measurement χ.

We then use ψc as a fourth layer in the transition function ψ of DES abstraction

G defined in Sec. 4.4.1 in order to obtain a new DES abstraction G′. Whereas the

language of G satisfied L(G) ⊆ EQ(UcUucW)∗, the language of G′ should satisfy

L(G′) ⊆ EQ(ΛUcUucW)∗. We therefore create a new layer of states Q̃′ that is a

copy of Q̃ and precedes Q̃. This yields a set of states Q′ = Q ∪ Q̃′, a set of events

E ′ = E ∪ Λ, and a transition function ψ′ : Q′ × E ′ → Q′ defined by:

ψ′(q, e) =


q′ ∈ Q̃′, if q = q0 ∧ e = eq′ ∈ EQ

ψc(q, e), if q ∈ Q̃′ ∧ e ∈ Λ

ψ(q, e), else

(4.13)

The DES automaton G′ is defined as G′ := (Q′, E ′, ψ′, q0, Qm). Finally, we take

the events of Uuc and W to be uncontrollable and unobservable, the events of Uc to be

observable and controllable, and the events of Λ to be observable but uncontrollable.

Now consider the observer Obs(G′) of this modified abstraction, in the terminology

of supervisory control theory of DES (see Sec. 2.5.2 of Cassandras and Lafortune

(2008)). Let Eo = Uc ∪ Λ and Euo = EQ ∪ Uuc ∪W be the sets of observable and

unobservable events of G′, respectively. Define UR : Q′ → 2Q
′

by UR(q) = {q′ ∈ Q′ :

∃s ∈ E∗uo s.t. q′ = ψ′(q, s)} (called the Unobservable Reach) and extend this definition

to sets by UR(ι) = ∪q∈ιUR(q), for any ι ⊆ Q′. Also define OR : 2Q
′ × Eo → 2Q

′

by OR(ι, e) = ∪q∈ιψ′(q, e). Then Obs(G′) is defined as the accessible part of the

automaton (2Q
′
, Eo, ψ, UR(q0), ιm), where ψ and ιm are defined by

ψ(ι, eo) =

 undefined, OR(ι, eo) = ∅

UR(OR(ι, eo)), else

ιm = {ι ⊆ Qm}

152

The observer Obs(G′) is therefore defined over state estimates of G′. Furthermore,

for any string s ∈ (ΛUc)
∗, ψ(UR(q0), s) will consist of the set of states of G′ that are

consistent with the sequence s of measurements and control actions. More specifically,

we can define prediction and correction functions ψ
p

: 2Q̃×Uc → 2Q̃ and ψ
c

: 2Q̃×Λ→

2Q̃ similar to Ip and Ic of Eqs. (4.5) and (4.6), but for state estimates ι ⊆ Q̃:

ψ
p
(ι, uc) =

⋃
q∈ι

⋃
uuc∈Uuc

⋃
w∈W

ψ(q, ucuucw) (4.14)

ψ
c
(ι, λ) = ι ∩ LΛ(λ) (4.15)

With these definitions, it can be shown that ψ is closely related to ψ
p

and ψ
c
. We

will return to this issue in Sec. 4.6.1.3.

It should be noted that the above definition of the set of marked states ιm of the

observer is not standard. The usual definition would be ιm = {ι ⊆ Q′ : ι ∩Qm 6= ∅}.

We use ιm = {ι ⊆ Qm} here because we will use this observer in a supervisory control

problem and we wish to be certain that all vehicles have crossed the intersection when

the observer reaches a marked state.

4.5.2 State Estimate Reductions & Exact State Estimate Reductions

As was the case in Sec. 4.4.2, the results of this section are generic and hence the

notation X and U in the following definitions need not be the same as in this work’s

vehicle control problem.

Definition IV.16 (Partially Observed System). A partially observer system is a

tuple S = (X,U,→, Y,H,O, L), where the first five elements have the same interpre-

tation as in Def. IV.3, O is a set of observations, and L : O → 2X defines the set of

states that are consistent with any given observation.

In the above definition, we differentiate between outputs and observations. Out-

puts should be thought of as states corresponding to a discretization, whereas ob-

153

servations should be thought of as physical measurements. For every state of the

system, there is a single output, but many possible consistent observations. In the

context of the vehicle control application, the partially observed system is defined by

Eqs. (4.2)-(4.4).

Definition IV.17 (Estimator System). Given a partially observed system S =

(X,U,→, Y,H,O, L), define the prediction and correction functions Ip : 2X×U → 2X

and Ic : 2X ×O → 2X by

Ip(I, u) =
⋃
x∈I

{x′ ∈ X : (x, u, x′) ∈→} (4.16)

Ic(I, o) = I ∩ L(o) (4.17)

With these definitions, we denote S’s estimator system by S = (I(S), U,→, 2Y , H)

where

I(S) = {I ′ ∈ 2X \ {∅} : (∃I ⊆ X)(∃o ∈ O) s.t. I ′ = Ic(I, o)} (4.18)

and, for any (I, u, I ′) ∈ I(S)× U × 2X \ {∅},

(I, u, I ′) ∈ → ⇔ ∃o ∈ O s.t. I ′ = Ic(Ip(I, u), o). (4.19)

Note that, from Eqs. (4.18) and (4.19), it will indeed be the case that (I, u, I ′) ∈ →

yields I ′ ∈ I(S), so that we do in fact have that → ⊆ I(S)× U × I(S).

In the above definition, we use I(S) rather than simply 2X because the estimator

system is meant to model only state estimates reached after correction steps (as in

Eq. (4.17)), and not those reached after prediction steps (as in Eq. (4.16)). This is

because we will again define a supervisor for the estimator system and new control

actions occur only after observations.

Remark IV.18 (Systems Defined over State Estimates). In the definitions that fol-

low, we will refer to “systems defined over state estimates”. These are systems of the

154

form: S = (I(S), U,→, 2Y , H), where I(S) ⊆ 2X for some set X. Thus, any estimator

system is a system defined over state estimates. However, a system defined over state

estimates need not be the estimator system of any partially observed system. In par-

ticular, a system defined over state estimates can be obtained directly by abstraction

of some estimator system (or of any other system defined over state estimates). In

order to avoid differentiating between the cases where S is or is not the estimator of

some partially observed system S, we will abuse notation and use I(S) in both cases

as the set of state estimates over which S is defined.

Definition IV.19 (State Estimate Reduction). Given partially observed system Sb

with corresponding estimator system Sb and system Sa defined over state estimates

and sharing the same set of outputs 2Y , we say that Sa is a state estimate reduction of

Sb with state relation R ⊆ 2Xa×2Xb and control relation C : Ha(I(Sa))∪Hb(I(Sb))→

2Ua×Ub if:

0. Ha(I(Sa)) = Hb(I(Sb)) := Y .

1. R
−1

is a function.

2. For every y ∈ Y , the relation C(y) ⊆ Ua × Ub is a bijection.

3. Ha(Ia) = Hb(Ib) if and only if (Ia, Ib) ∈ R.

4. ∀(Ia, ua, I ′a) ∈ →a, ∃(Ib, ub, I ′b) ∈ →b such that (Ia, Ib) ∈ R, (ua, ub) ∈ C(Ha(Ia)),

and (I ′a, I
′
b) ∈ R.

5. ∀(Ib, ub, I ′b) ∈ →b, ∃(Ia, ua, I ′a) ∈ →a such that (Ia, Ib) ∈ R, (ua, ub) ∈ C(Hb(Ib)),

and (I ′′a , I
′
b) ∈ R, for some I ′′a ⊆ I ′a.

This is almost identical to a state reduction, with the main difference being

property 5. Given two transitions (Ib,1, ub, I
′
b,1) and (Ib,2, ub, I

′
b,2), both in →b with

Hb(Ib,1) = Hb(Ib,2) but Hb(I
′
b,1) ⊆ Hb(I

′
b,2), the state estimate reduction requires the

155

existence of some (Ia,2, ua, I
′
a,2) ∈ →a satisfying (Ia,2, Ib,2) ∈ R, (ua, ub) ∈ C(Hb(Ib,2)),

and (I ′a,2, I
′
b,2) ∈ R, but does not require the existence of some (Ia,1, ua, I

′
a,1) ∈ →a

satisfying (Ia,1, Ib,1) ∈ R, (ua, ub) ∈ C(Hb(Ib,1)), and (I ′a,1, I
′
b,1) ∈ R. The intuition for

this definition is as follows. A memoryless supervisor σ (for either the a or b system)

with domain Y must satisfy σ(H(I1)) = σ(H(I2)) if H(I1) = H(I2). If H(I ′1) ⊆ H(I ′2)

then we will logically have σ(H(I ′1)) ⊇ σ(H(I ′2)), since a supervisor cannot be more

permissive with less information. Hence, the existence of transition (I1, u, I
′
1) will not

place any further restrictions on σ(H(I1)) = σ(H(I2)) than those restrictions placed

by the existence of transition (I2, u, I
′
2).

Definition IV.20 (Specifications for Partially Observed Systems). Given a partially

observed system S with corresponding estimator system S, along with safety and

marking specifications Safe ⊆→ and Xm ⊆ X, define the safety and marking speci-

fications Safe and Im on S as follows:

(I, u, I ′) ∈ Safe ⊆ →

⇔ {(x, u, x′) ∈→ s.t. x ∈ I ∧ x′ ∈ I ′} ⊆ Safe (4.20)

I ∈ Im ∈ I(S)⇔ I ⊆ Xm (4.21)

Definition IV.21 (Induced Specification for Partially Observed Systems). Given

partially observed system Sb with corresponding estimator system Sb and system Sa

defined over state estimates such that Sa is a state estimate reduction of system Sb,

along with safety and marking specifications Safeb and Im,b on Sb, the safety and

156

marking specifications Safea and Im,a on system Sa are obtained as follows:

(Ia, ua, I
′
a) ∈ Safea ⊆ →a

⇔



(Ib, ub, I
′
b) ∈ →b s.t.

(Ia, Ib) ∈ R

∧(ua, ub) ∈ C(Ha(Ia))

∧∃I ′′a ⊆ I ′a : (I ′′a , I
′
b) ∈ R


⊆ Safeb (4.22)

Ia ∈ Im,a ∈ I(Sa)

⇔ {Ib ∈ I(Sb) s.t. (Ia, Ib) ∈ R} ⊆ Im,b (4.23)

This definition is almost precisely analogous to Def. IV.9, with the exception that

we must use ∃I ′′a ⊆ I ′a : (I ′′a , I
′
b) ∈ R rather than simply (I ′a, I

′
b) ∈ R in Eq. (4.22).

This is due to Property 5 of Def. IV.19.

Theorem IV.22. Given partially observed system Sb with corresponding estimator

system Sb and system Sa defined over state estimates, suppose that Sa is a state

estimate reduction of system Sb with state relation R and control relation C. Suppose

that both systems Sa and Sb satisfy the property that x1, x2 ∈ I ∈ I(S) ⇒ U(x1) =

U(x2) and that we are given safety and marking specifications Safeb ⊆→b and Xm,b ⊆

Xb for system Sb. Let Safea and Im,a be the corresponding induced specifications

for system Sa and suppose that we have a maximally permissive, safe, and non-

deadlocking supervisor σa : Y → 2Ua, where Y is the (common) output space. Define

the supervisor σb : Y → 2Ub by ub ∈ σb(y) iff ∃ua ∈ σa(y) such that (ua, ub) ∈ C(y).

Then σb is safe, non-deadlocking, and maximally permissive among supervisors of the

form σb : Y → 2Ub.

Proof. We proceed in three claims.

Claim 1: (Ia, Ib) ∈ R ∧ (σa(Ha(Ia)) 6= ∅ ∨ Ia ∈ Im,a)⇒ (σb(Hb(Ib)) 6= ∅ ∨ Ib ∈ Im,b).

157

By definition of Im,a, Ia ∈ Im,a ⇔ Ib ∈ Im,b, for all Ib : (Ia, Ib) ∈ R, so that (Ia, Ib) ∈

R ∧ Ia ∈ Im,a ⇒ Ib ∈ Im,b. By definition of σb, ub ∈ σb(y) iff ∃ua ∈ σa(y) such

that (ua, ub) ∈ C(y). But (Ia, Ib) ∈ R ⇒ Ha(Ia) = Hb(Ib), so that (Ia, Ib) ∈ R ∧

σa(Ha(Ia)) 6= ∅ ⇒ σb(Hb(Ib)) 6= ∅.

By assumption, xb,1, xb,2 ∈ Ib ⇒ Ub(xb,1) = Ub(xb,2), from which it follows that, if

σb(Hb(Ib)) 6= ∅, then any xb ∈ Ib is not deadlocked under σb.

Claim 2: ∀Ib ∈ I(Sb), ub ∈ σb(Hb(Ib)) ⇒ ∀I ′b ∈ Postub(Ib), (Ib, ub, I
′
b) ∈ Safeb ∧

[σb(Hb(I
′
b)) 6= ∅ ∨ I ′b ∈ Im,b].

Consider any Ib ∈ I(Sb) and any ub ∈ σb(Hb(Ib)). By property (1) of Def. IV.19, R
−1

is a function. Therefore let Ia be the unique member of I(Sa) such that (Ia, Ib) ∈ R.

By property (3) of Def. IV.19, Ha(Ia) = Hb(Ib) = y for some y ∈ Y . By property (2)

of Def. IV.19, C(y) is a bijection. Therefore let ua be the unique member of Ua such

that (ua, ub) ∈ C(y). From the definition of σb, it follows that ua ∈ σa(Ha(Ia)). Thus,

∀I ′a ∈ Postua(Ia), (Ia, ua, I
′
a) ∈ Safea ∧ [σa(Ha(I

′
a)) 6= ∅ ∨ I ′a ∈ Im,a]. From the way

that Safea was defined, this implies that (Ib, ub, I
′
b) ∈ Safeb, for all I ′b ∈ Postub(Ib)

such that there exist I ′a ∈ Postua(Ia) and I ′′a ⊆ I ′a with (I ′′a , I
′
b) ∈ R. But property (5)

of Def. IV.19 states that ∀I ′b ∈ Postub(Ib), ∃I ′a ∈ Postua(Ia) satisfying (I ′′a , I
′
b) ∈ R,

for some I ′′a ⊆ I ′a. From this and the previous statement, it follows that (Ib, ub, I
′
b) ∈

Safeb, for all I ′b ∈ Postub(Ib). It similarly follows from property (5) of Def. IV.19

along with Claim 1 that σb(Hb(I
′
b)) 6= ∅ ∨ I ′b ∈ Im,b, for all I ′b ∈ Postub(Ib).

Thus σb is safe and non-deadlocking. Given any supervisor σ′b : Y → 2Ub , let σ′a :

Y → 2Ua be defined by ua ∈ σ′a(y) iff ∃ub ∈ σ′b(y) such that (ua, ub) ∈ C(y) and let

the function σb→a be the mapping which takes a supervisor σ′b for system b to the

supervisor σ′a for system a in this way.

Claim 3: If σ′b is safe and non-deadlocking then so is σ′a = σb→a(σ
′
b).

Suppose that σ′b is safe and non-deadlocking and take σ′a = σb→a(σ
′
b). Consider

any Ia ∈ I(Sa), any ua ∈ σ′a(Ha(Ia)), and any I ′a ∈ Postua(Ia). By property (4)

158

of Def. IV.19, there exists (Ib,1, ub, I
′
b,1) ∈ →b such that (Ia, Ib,1) ∈ R, (ua, ub) ∈

C(Ha(Ia)), and (I ′a, I
′
b,1) ∈ R. From the definition of σb→a(σ

′
b), it must be that

ub ∈ σ′b(Hb(Ib,1)). By property (3) of Def. IV.19, any Ib,2 such that (Ia, Ib,2) ∈ R must

satisfyHb(Ib,1) = Ha(Ia) = Hb(Ib,2). It follows that ub ∈ σ′b(Hb(Ib)), for any Ib ∈ I(Sb)

such that (Ia, Ib) ∈ R. Since σ′b is safe and non-deadlocking, it follows that, for all

(Ib, ub, I
′
b) ∈ →b such that (Ia, Ib) ∈ R, we have that (Ib, ub, I

′
b) ∈ Safeb∧[σ′b(Hb(I

′
b)) 6=

∅ ∨ I ′b ∈ Im,b]. It follows from the definition of Safea that (Ia, ua, I
′
a) ∈ Safea and

from the definitions of σb→a(σ
′
b) and Im,a that σ′a(Ha(I

′
a)) 6= ∅ ∨ I ′a ∈ Im,a. Since

I ′a ∈ Postua(Ia) was arbitrary, it follows that ua is a safe and non-deadlocking control

decision from Ia. Since Ia ∈ I(Sa) and ua ∈ σ′a(Ha(Ia)) were arbitrary, it follows that

σ′a = σb→a(σ
′
b) is safe and non-deadlocking.

It is obvious from the definition of σb→a that σ′b ⊇ σb ⇒ σb→a(σ
′
b) ⊇ σb→a(σb). Thus,

if there exists a safe and non-deadlocking supervisor σ′b ⊇ σb then it follows that σa

is not maximally permissive, a contradiction.

We next define the exact state estimate reduction. As in the case of the state

estimate reduction, the definition of the exact state estimate reduction is not directly

analogous to the corresponding definition in the perfectly measured case, for reasons

that will be explained shortly. We begin by defining a notion of “reachable” state

estimates and work with those in the definition of an exact state estimate reduction.

Definition IV.23 (Reachable State Estimates). Given a system defined over state

estimates S, let I ′(S) ⊆ I(S) be some subset of state estimates, hereafter referred

to as the set of reachable state estimates and let →′b be the transition function →b,

restricted to the domain of such states. Mathematically,

→′b =→b ∩ I ′(S)× Ub × I ′(S) (4.24)

159

Definition IV.24 (Exact State Estimate Reduction). Given partially observed sys-

tem Sb with corresponding estimator system Sb and system Sa defined over state esti-

mates and sharing the same set of outputs 2Y , we say that Sa is an exact state estimate

reduction of Sb with state relation R ⊆ 2Xa × 2Xb , control relation C : Y → 2Ua×Ub ,

and reachable set of state estimates I ′(Sb) if Sa is a state estimate reduction of Sb

with state and control relations R and C and:

5. ∀(Ib, ub, I ′b) ∈ →b, ∃(Ia, ua, I ′a) ∈ →a such that (Ia, Ib) ∈ R, (ua, ub) ∈ C(Hb(Ib)),

and (I ′a, I
′
b) ∈ R.

6. ∀(Ia, ua, I ′a) ∈ →a, [∀I ′b ∈ I ′(Sb) : (I ′a, I
′
b) ∈ R], ∃(Ib, ub, I ′b) ∈ →′b such that

(Ia, Ib) ∈ R, and (ua, ub) ∈ C(Ha(Ia)).

7. ∀y ∈ Y , ∀xb ∈ Xb : Hb(xb) ∈ y, ∃Ib ∈ I ′(Sb) such that Hb(Ib) = y and xb ∈ Ib.

Note that Property 5 here replaces (strengthens) Property 5 of Def. IV.19.

Thus, the exact state estimate reduction (unlike the state estimate reduction) uses

the direct analogue of Property 5 of Def. IV.8. Property 6 of this definition, however,

is not directly analogous to Property 6 of Def. IV.12. The analogous condition would

require the existence of some (Ib, ub, I
′
b) ∈ →b, for every I ′b ⊆ Xb such that (I ′a, I

′
b) ∈ R.

This would constitute an unreasonable requirement since, in particular, it would

require reachability of state estimates that are not connected sets or even of “stranger”

sets like the set of points in a region whose coordinates are all irrational. What is

required here is a property that would yield the equivalent of Lemma IV.13. Lemma

IV.25 below shows that properties 6 and 7 above suffice.

Lemma IV.25. Given partially observed system Sb with corresponding estimator

system Sb and system Sa defined over state estimates, suppose that Sa is an exact

state estimate reduction of system Sb with state relation R and control relation C.

Then, for any history θb for system Sb and any xb ∈ Xb such that Hb(xb) ∈ tgt(θb),

there exists a run ρb such that θb = θ(ρb) and xb ∈ tgt(ρb).

160

Proof. We first claim that, for any history θb ∈ Θ(Sb) and any I ′b ∈ I ′(Sb) such

that Hb(I
′
b) = tgt(θb), there exists a run ρb such that θ(ρb) = θb and tgt(ρb) = I ′b.

We proceed by induction. The base case is trivially true, so assume that the claim

holds up to histories of length k and consider a pair of histories θb ∈ Θk(Sb) and

θ
′
b ∈ Θk+1(Sb) such that θb is a prefix of θ

′
b. Let ρ′b = (I0

b , . . . , I
k
b , u

k
b , I

k+1
b) ∈ Rk+1(Sb)

be such that θ
′
b = θ(ρ′b) and consider any I ′b ∈ I ′(Sb) such that Hb(I

′
b) = tgt(θ

′
b). Since

(Ikb , u
k
b , I

k+1
b) ∈ →b, it follows from Property 5 that there exists (Ika , u

k
a, I

k+1
a) ∈ →a

such that (Ika , I
k
b) ∈ R, (uka, u

k
b) ∈ C(Hb(I

k
b)), and (Ik+1

a , Ik+1
b) ∈ R. By Property

3, Hb(I
′
b) = Hb(I

k+1
b) = Ha(I

k+1
a) and hence (Ik+1

a , I ′b) ∈ R. It therefore follows by

Property 6 that there exists (Ib, ub, I
′
b) ∈ →′b such that (Ika , Ib) ∈ R, and (uka, ub) ∈

C(Ha(I
k
a)). Since (Ika , I

k
b) ∈ R and (Ika , Ib) ∈ R, we have by Property 3 that Ha(I

k
a) =

Hb(I
k
b) = Hb(Ib) and hence that C(Ha(I

k
a)) = C(Hb(I

k
b)). By Property 2, C(·) is a

bijection and hence it follows from (uka, u
k
b) ∈ C(Hb(I

k
b)) and (uka, ub) ∈ C(Ha(I

k
a)) that

ub = ukb . By the induction hypothesis, there exists some run ρb such that θ(ρb) = θb

and tgt(ρb) = Ib. Then the run ρb.ub.I
′
b satisfies θ(ρb.ub.I

′
b) = θ

′
b and tgt(ρb.ub.I

′
b) = I ′b,

which completes the proof of the claim.

Now consider any history θb for system Sb and any xb ∈ Xb such that H(xb) ∈

tgt(θb) := y. By Property 7, there exists some Ib ∈ I ′(Sb) such that Hb(Ib) = y and

xb ∈ Ib. By the claim, we can find ρb such that θ(ρb) = θb and xb ∈ Ib = tgt(ρb),

which completes the proof.

As was the case with Lemma IV.13, the above lemma implies that, when esti-

mator system Sb has an exact state estimate reduction, a history θb gives no more

information about the current state of Sb than does the last output tgt(θb). Once

again, the following theorem follows immediately from this observation.

Theorem IV.26. Given partially observed system Sb with corresponding estimator

system Sb, suppose that system Sa defined over state estimates is an exact state esti-

mate reduction of Sb and that all other conditions of Thm. IV.22 are satisfied. Then

161

the obtained supervisor σb will be safe, non-deadlocking, and maximally permissive

among supervisors of the form σb : Θ(Sb)→ 2Ub.

We next turn our attention to finding conditions under which it is possible to

obtain a state estimate reduction, using a state reduction as a basis. Specifically,

suppose we have a system Sb with observations given by Ob and Lb yielding partially

observed system S ′b, along with a state reduction Sa of system Sb. Procedure IV.27

shows how to construct an associated partially observed system S ′a and Thm. IV.28

shows that the estimator Sa of S ′a will “almost” be a state estimate reduction of

estimator Sb of S ′b.

Procedure IV.27. Given partially observed system S ′b = (Xb, Ub,→b, Y,Hb, Ob, Lb),

let Sb be the system Sb = (Xb, Ub,→b, Y,Hb) and suppose that Sa = (Xa, Ua,→a

, Y,Ha) is a state reduction of Sb with state relation R ⊆ Xa × Xb and control

relation C : Y → 2Xa × 2Xb . Define the partially observed system S ′a = (Xa, Ua,→a

, Y,Ha, Oa, La) as follows:

1. Let the equivalence relation ≡o,b⊆ Ob × Ob be defined by ob,1 ≡o,b ob,2 ⇔

Hb(Lb(ob,1)) = Hb(Lb(ob,2)). Then let [ob] denote the equivalence class of ob ∈ Ob

under ≡o,b and define Oa as the set of such equivalence classes.

2. Define La : Oa → 2Xa by La(oa) = {xa ∈ Xa : (∃ob ∈ Ob : oa = [ob])(∃xb ∈

Lb(ob) : (xa, xb) ∈ R)}.

Theorem IV.28. Given partially observed system S ′b = (Xb, Ub,→b, Y,Hb, Ob, Lb), let

Sb be the system Sb = (Xb, Ub,→b, Y,Hb) and suppose that Sa = (Xa, Ua,→a, Y,Ha)

is a state reduction of Sb with state relation R ⊆ Xa × Xb and control relation C :

Y → 2Xa × 2Xb. Obtain partially observed system S ′a = (Xa, Ua,→a, Y,Ha, Oa, La) as

in Procedure IV.27 and let Sa and Sb be the estimator systems corresponding to S ′a

and S ′b, respectively. Suppose that C satisfies the property that y1, y2 ∈ y ⇒ C(y1) =

162

C(y2), for all y ∈ Ha(I(S ′a)) ∪ Hb(I(S ′b)). Define the state and control relations

R ⊆ 2Xa × 2Xb and C : Ha(I(S ′a)) ∪Hb(I(S ′b))→ 2Ua × 2Ub by:

(Ia, Ib) ∈ R⇔ Ha(Ia) = Hb(Ib) (4.25)

C(y) = C(y) for any y ∈ y (4.26)

Then Sa satisfies properties 0, 1, 2, 3, and 5 of the state estimate reduction (w.r.t.

Sb).

Proof.

Claim 1: For any partially observed system S = (X,U,→, Y,H,O, L),

I(S) = {I ⊆ X : ∃o ∈ O s.t. I ⊆ L(o)}. (4.27)

From Eq. (4.18), we have that I ∈ I(S) ⇒ I ⊆ L(o), for some o ∈ O. Furthermore,

if I ⊆ L(o) for some o ∈ O, then I = I ∩ L(o), and hence I ∈ I(S) follows from

Eq. (4.18), which proves the claim.

Claim 2:

oa = [ob]⇔ Ha(La(oa)) = Hb(Lb(ob)). (4.28)

Ha(La(oa))

=


y ∈ Y : (∃xa ∈ Xa : Ha(xa) = y)

(∃ob ∈ Ob : oa = [ob])

(∃xb ∈ Lb(ob) : (xa, xb) ∈ R)


=

 y ∈ Y : (∃ob ∈ Ob : oa = [ob])

(∃xb ∈ Lb(ob) : Hb(xb) = y)


= Hb(Lb(ob)),

163

for any ob ∈ Ob such that oa = [ob], proving the claim.

From Claim 1, it follows that:

H(I(S)) =

 y ∈ 2Y : (∃I ⊆ X)(∃o ∈ O)

s.t. y = H(I) ∧ I ⊆ L(o)


= {y ∈ 2Y : (∃o ∈ O) s.t. y ⊆ H(L(o))} (4.29)

Clearly, for every ob ∈ Ob, there exists oa ∈ Oa such that oa = [ob], and vice versa.

It follows from this and Claim 2 that {y ∈ 2Y : (∃oa ∈ Oa) s.t. y = Ha(La(oa))} =

{y ∈ 2Y : (∃ob ∈ Ob) s.t. y = Hb(Lb(ob))}. From Eq. (4.29), we therefore have that

Ha(I(Sa)) = Hb(I(Sb)), which is Property 0. Property 3 follows immediately from

Eq. (4.25), and Property 1 follows from this and the fact that R−1 is a function.

Property 2 follows from Eq. (4.26) and the fact that C(y) is a bijection for all y ∈ Y .

Claim 3: If Hb(Ib) ⊆ Ha(Ia) and oa = [ob], then Hb(Ib ∩ Lb(ob)) ⊆ Ha(Ia ∩ La(oa)).

Since Hb is a function, Hb(Ib ∩Lb(ob)) ⊆ Hb(Ib)∩Hb(Lb(ob)). Since Ha is one-to-one,

Ha(Ia∩La(oa)) = Ha(Ia)∩Ha(La(oa)). From Claim 2, oa = [ob] implies Hb(Lb(ob)) =

Ha(La(oa)). Thus, Hb(Ib ∩ Lb(ob)) ⊆ Hb(Ib) ∩ Hb(Lb(ob)) ⊆ Ha(Ia) ∩ Ha(La(oa)) =

Ha(Ia ∩ La(oa)), proving the claim.

To prove Property 5, consider any (Ib, ub, I
′
b) ∈ →b. From Properties 0 and 3, we

have that there exists Ia ∈ I(Sa) such that (Ia, Ib) ∈ R. From Property 2, we have

that there exists ua ∈ Ua such that (ua, ub) ∈ C(Hb(Ib)). From the definition of

→b in Eq. (4.19), we have that there exists ob ∈ Ob such that I ′b = ∪xb∈Ib{x′b :

(xb, ub, x
′
b) ∈→b} ∩ Lb(ob). Now let Ipb = ∪xb∈Ib{x′b : (xb, ub, x

′
b) ∈→b}, oa = [ob], I

′
a =

∪xa∈Ia{x′a : (xa, ua, x
′
a) ∈→a} ∩ La(oa), and Ipa = ∪xa∈Ia{x′a : (xa, ua, x

′
a) ∈→a}, so

that I ′b = Ipb ∩Lb(ob) and I ′a = Ipa ∩La(oa). From Property 5 of the state reduction, we

have that, for all (xb, ub, x
′
b) ∈→b, there exists (xa, ua, x

′
a) ∈→a such that (xa, xb) ∈ R

and (x′a, x
′
b) ∈ R. It therefore follows from Property 3 of the state reduction that

Hb(I
p
b) ⊆ Ha(I

p
a). From Claim 3, it then follows that Hb(I

′
b) = Hb(I

p
b ∩ Lb(ob)) ⊆

164

Ha(I
p
a ∩La(oa)) = Ha(I

′
a). Now remark that, from the definition of I ′a and Eq. (4.19),

we have that (Ia, ua, I
′
a) ∈ →a. From Property 0, we have that there exists I ′′a ∈ I(Sa)

such that Ha(I
′′
a) = Hb(I

′
b) ⊆ Ha(I

′
a). Property 3 then gives (I ′′a , I

′
b) ∈ R and the fact

that Ha is one-to-one gives I ′′a ⊆ I ′a, completing the proof.

Note, however, that Proc. IV.27 is not guaranteed to produce a state estimate

reduction when Sa is a state reduction of Sb, since Property 4 may fail to hold between

Sa and Sb. Moreover, if Sa is an exact state reduction of Sb, then all of properties 4-7 of

the exact state estimate reduction may fail to hold between Sa and Sb. See Ex. IV.29

for an example where Property 4 of the state estimate reduction and Property 5 of

the exact state estimate reduction fail to hold.

Example IV.29. Consider the system Sb of Fig. 4.3. It can be verified that system

Sa of Fig. 4.4 is an exact state reduction of Sb. Now define S ′b as the partially

observed system Sb, with the set of observations Ob = {ob,1, ob,2, ob,3} and observation

function Lb : Ob → 2Xb given by Lb(ob,1) = {1}, Lb(ob,2) = {2, 3}, and Lb(ob,3) =

{4, 5, 6}. Following Proc. IV.27, we find that Hb(Lb(ob,1)) = Hb(Lb(ob,2)) = {y1} and

Hb(Lb(ob,3)) = {y2, y3} and hence we define Oa = {oa,1, oa,2} with [ob,1] = [ob,2] = oa,1,

[ob,3] = oa,2, La(oa,1) = {y1}, and La(oa,2) = {y2, y3}. From Eqs. (4.18) and (4.19),

we obtain →b = {({1}, u, {4}), ({2}, u, {5}), ({3}, u, {6}), ({2, 3}, u, {5, 6})}. On the

other hand,→a = {({y1}, u, {y2, y3})}. This violates Property 4 of the state estimate

reduction, since there does not exist (Ib, ub, I
′
b) ∈ →b such that Hb(I

′
b) = {y2, y3}.

Furthermore, it also violates Property 5 of the exact state estimate reduction, since

there doesn’t exist (Ia, ua, I
′
a) ∈ →a satisfying either Ha(I

′
a) = {y2} or Ha(I

′
a) = {y3}.

In fact, there does not exist any set of observations Oa and observation function

La : Oa → 2Xa for partially observed system S ′a such that the estimator system

of S ′a will be a state estimate reduction of Sb. Because Hb(Lb(ob,3)) = {y2, y3},

satisfaction of Property 0 requires that there exist some oa ∈ Oa with Ha(La(oa)) ⊇

{y2, y3}. But Hb(Lb(ob,1)) = {y1}, so that satisfaction of Property 0 also requires

165

Figure 4.3: An example system Sb. Rectangles are used to denote states with the
same output.

Figure 4.4: The system Sa that is an exact state reduction of system Sb of Fig. 4.3.

that there exist some Ia ∈ I(Sa) such that y1 ∈ Ha(Ia). For this Ia and oa, we have

∪xa∈Ia{x′a ∈ Xa : (xa, u, x
′
a) ∈→a} ∩ La(oa) = {y2, y3}, yielding (Ia, u, {y2, y3}) ∈ →a

and hence the same violation of Property 4 as before. As previously noted, it is

still possible to construct a state estimate reduction of Sb in such cases, but this

must be accomplished by directly abstracting Sb, rather than by abstracting Sb and

constructing the estimator of this abstraction.

4.6 Conditions for State Estimate Reductions and Exact State

Estimate Reductions

We next turn attention to the vehicle control problem of Prob. IV.1. Denote by

Sb the time-discretized system of Eq. (4.2) and by S ′b the partially observed system

Sb with observations given by Eq. (4.4). We show in this section that, when the

166

discretization parameters µ and τ are chosen so that emax = kµτ/2 for some k ∈ N,

then Obs(G′) is a state estimate reduction of the estimator Sb of S ′b. Furthermore,

when G is an exact state reduction of Sb, we show that Obs(G′) is an exact state

estimate reduction of Sb. To prove these results, we would like to treat G as a

transition system as in Def. IV.3, G′ as a partially observed transition system as in

Def. IV.16, and Obs(G′) as an estimator system as in Def. IV.17. This will require

defining a translation between the various types of transition systems used in this

work and the automata models used in supervisory control theory of DES, as well

as some unification of notation. This translation is described in Sec. 4.6.1, parts of

which are recalled from Dallal et al. (2014).

4.6.1 Translating Between Transition Systems and Discrete Event Sys-

tems

In Thm. IV.10, we obtain the maximally permissive, safe, and non-deadlocking su-

pervisor σb of a system Sb = (Xb, Ub,→b, Yb, Hb) with respect to a safety specification

Safeb ⊆→b and set of marked states Xm,b ⊆ Xb, which is done by first constructing

the maximally permissive, safe, and non-deadlocking supervisor σa of the abstracted

system Sa = (Xa, Ua,→a, Ya, Ha) with respect to the induced safety and marking

specifications Safea ⊆→a and Xm,a ⊆ Xa, and then using state and control relations

to obtain σb from σa. In Thm. IV.22, we do the same, but with a system and its

specifications defined over state estimates. In either of the above cases, the super-

visor computation is achieved by constructing two DES automata G and H, where

G (the system automaton) models the possible system behavior and H (the spec-

ification automaton) models the restricted system behavior that we wish to allow.

In the fully observed case (or in the case of systems defined over state estimates),

the supervisor is produced by solving the basic supervisory control problem in the

non-blocking case (BSCP-NB). See Cassandras and Lafortune (2008); Ramadge and

167

Wonham (1987); Wonham and Ramadge (1987) for a description of this problem and

associated algorithms for obtaining the supervisor.

We describe here how to construct equivalent automata for systems (as in Def. IV.3),

partially observed systems (as in Def. IV.16), and estimator systems (as in Def. IV.17).

4.6.1.1 Translating Systems

Given system Sa = (Xa, Ua,→a, Ya, Ha) along with safety and marking specifica-

tions Safea and Xm,a, the equivalent DES system automaton is G := (Xa ∪ Za, Ec ∪

Euc, ψG, xa,0, Xm,a), where:

Ec = Ua (4.30)

ψG ⊆ (Xa × Ec × Za) ∪ (Za × Euc × (Xa ∪ Za)) (4.31)

ψG(xa, ua)!⇔ ua ∈ Ua(xa) (4.32)

∃t ∈ E∗uc : ψG(xa, uat) = x′a ⇔ (xa, ua, x
′
a) ∈→a . (4.33)

The sets Ec and Euc are, respectively, the sets of controllable and uncontrollable

events of G and the set Za is a set of intermediate states. All events are taken to be

observable. Eq. (4.30) signifies that the set of controllable events of G is simply the

set of control inputs of Sa. Eq. (4.31) signifies that controllable events are defined

only from the states of Xa and lead only to states in Za, whereas uncontrollable

events are defined only from states in Za and may lead either to states in Xa or

to other states in Za. Eq. (4.32) signifies that controllable event ua is defined from

state xa if and only if Postua(xa) is non-empty (recall the definition of Ua(xa) from

Def. IV.3). Finally, Eq. (4.33) signifies that there exists a sequence of uncontrollable

events following controllable event ua from state xa leading to state x′a if and only if

(xa, ua, x
′
a) is a transition of Sa.

168

The initial state xa,0 may be a single fixed initial state or a dummy initial state

with transitions to each of some set of states Xa,0. In the absence of any initial state

information, it is assumed that any state can be an initial state and hence that there

are transitions from xa,0 to each state in Xa.

Constructing the specification automaton H is achieved through the same process

as constructing G, but with the system (Xa, Ua, Safea, Ya, Ha) instead. With H and

G defined, problem BSCP-NB is solved, yielding the desired supervisor. Because

H is a sub-automaton of G and controllable events are defined only from Xa, the

supervisor will have the form S : Xa → 2Ua , rather than a more general language

based form (see, e.g. (Hadj-Alouane et al., 1994)).

In order to have the same notation when working with systems as in Def. IV.3

and DES as above, we use the notation U(x) := {u ∈ Ec : ψ(x, u)!} and Postu(x) :=

{x′ ∈ Xa : (∃t ∈ E∗uc)(x′ = ψ(x, ut))} for x ∈ Xa and (in an abuse of notation) will

write (x, u, x′) ∈ ψ if x ∈ Xa and x′ ∈ Postu(x).

4.6.1.2 Translating Partially Observed Systems

Given partially observed system S ′a = (Xa, Ua,→a, Ya, Ha, Oa, La) along with

safety and marking specifications Safea and Xm,a, the equivalent DES system au-

tomaton is G := (Xa ∪ Xp
a ∪ Za, Ec ∪ Euc, ψG, xa,0, Xm,a), where Xp

a is a copy of Xa

169

with xa ≡ xpa used to denote that xpa ∈ Xp
a is the copy of xa ∈ Xa and:

Ec = Ua (4.34)

Euc = Oa ∪ Euc,uo (4.35)

ψG ⊆
(Xp

a ×Oa ×Xa) ∪ (Xa × Ec × Za)

∪(Za × Euc,uo × (Xp
a ∪ Za))

(4.36)

ψG(xpa, oa)!⇔ ∃xa ∈ La(oa) : xa ≡ xpa (4.37)

ψG(xpa, oa) = xa ⇔ xa ∈ La(oa) : xa ≡ xpa (4.38)

ψG(xa, ua)!⇔ ua ∈ Ua(xa) (4.39)

∃t ∈ E∗uc,uo : ψG(xa, uat) = xpa ∈ Xp
a

⇔ (xa, ua, x
′
a) ∈→a: x

′
a ≡ xpa.

(4.40)

As before, the sets Ec and Euc are, respectively, the sets of controllable and uncon-

trollable events of G and the set Za is a set of intermediate states. The observable

events are Ec ∪ Oa and the unobservable events are Euc,uo. Eq. (4.36) signifies that

observation events in Oa are defined only from states in Xp
a and lead to states in Xa,

controllable events in Ua are defined only from states in Xa and lead to states in Za,

whereas the events of Euc,uo are defined only from states in Za and lead to states in

either Za or Xp
a . Eqs. (4.37) and (4.38) signify that event oa ∈ Oa is defined from

xpa ∈ Xp
a if and only if xpa is the copy of some state xa ∈ Xa such that xa ∈ L(oa),

in which case the transition leads to xa. This constitutes the correction step for the

partially observed system. Finally, Eqs. (4.39) and (4.40) have the same interpreta-

tion as Eqs. (4.32) and (4.33), with the exception that the string t ∈ E∗uc,uo takes the

system to a state in Xp
a rather than a state in Xa.

Initial states are dealt with in the same way as in the fully observed case, except

that any transitions from a dummy initial state should lead to states in Xp
a , rather

than to states in Xa.

170

4.6.1.3 Translating Estimator Systems

Given system defined over state estimates Sa = (I(Sa), Ua,→a, 2
Ya , Ha) along

with safety and marking specifications Safea and Im,a, the equivalent DES system

automaton is G := (I(Sa) ∪ Ip(Sa), Ec ∪ Euc, ψG, Ia,0, Im,a), where:

Ec = Ua (4.41)

ψG ⊆
(I(Sa)× Ec × Ip(Sa))

∪(Ip(Sa)× Euc × I(Sa))
(4.42)

ψG(Ia, ua)!⇔ ∃(Ia, ua, I ′a) ∈ →a (4.43)

∃euc ∈ Euc : ψG(Ia, uaeuc) = I ′a

⇔ (Ia, ua, I
′
a) ∈ →a

. (4.44)

The sets Ec and Euc are, respectively, the sets of controllable and uncontrollable

events of G and the set Ip(Sa) is a set of intermediate states. All events are taken to

be observable. Eqs. (4.41)-(4.44) have the same interpretations as Eqs. (4.30)-(4.33)

in the fully observed case, except for the fact that events in euc lead directly to states

in I(Sa), rather than leading to states in either I(Sa) or Ip(Sa).

It can be shown that, if G is obtained as Obs(G) for some DES abstraction G

representing a partially observed system, then G will indeed have the above form. In

this case, we will additionally have the following properties:

Euc = Oa (4.45)

(Ia, ua, I
p
a) ∈ ψG ⇔ Ipa ∩Xp

a ≡ Ipa(Ia, ua) (4.46)

(Ipa , oa, I
′
a) ∈ ψG ⇔ I ′a = Ica(I

p
a ∩Xp

a , oa), (4.47)

where Ipa(·, ·) and Ica(·, ·) are the prediction and correction functions of Eqs. (4.16)

and (4.17). In words, the states of Ip(Sa) represent state estimates reached after

prediction steps, whereas states of I(Sa) represent state estimates reached after cor-

171

rection steps. However, because the observer is constructed through the unobservable

reach operation, the states of Ip(Sa) will be subsets of Za ∪Xp
a , which is why we use

Ipa ∩Xp
a rather than just Ipa in Eqs. (4.46) and (4.47). Thus, constructing the observer

of a DES automaton representing a partially observed system yields a DES automaton

representing the estimator of the partially observed system.

The initial state Ia,0 may be a single fixed initial state or a dummy initial state.

In the latter case, there are observable transitions from the dummy initial state to

each state of some subset of I(Sa). In the absence of any initial state information, it

is assumed that any state can be an initial state and hence that there are transitions

from Ia,0 to each state in I(Sa). Constructing the specification automaton H and

solving for the desired supervisor is not done by taking the observer of any system.

Instead, it must be constructed from G, by pruning the transitions of ψ, in accordance

with Defs. IV.20 and IV.21.

In order to have the same notation when working with systems as in Def. IV.17

and DES as above, we will abuse notation and write (I, u, I ′) ∈ ψ if Ia ∈ I(Sa) and

there exists some euc ∈ Euc such that I ′ = ψ(Ia, ueuc).

4.6.2 Proofs of state estimate reductions between the observer and the

continuous estimator

We now prove the results relating state reductions to state estimate reductions

and exact state reductions to exact state estimate reductions, as discussed at the

beginning of this section.

Remark IV.30. In the theorems that follows, we will limit attention to state estimates

that are boxes (i.e., products of intervals). This is justified by the fact that both

the prediction and correction functions of Eqs. (4.5) and (4.6) map boxes to boxes.

Thus, if the initial state estimate is a box, then all future state estimates will be

boxes as well. Furthermore, because both dynamics and estimation are uncoupled

172

(estimation is uncoupled in the sense that a measurement χi of vehicle i’s position

tells us nothing about vehicle j 6= i’s position), we can establish the existence of some

transition (I, u, I ′) by examining each vehicle in turn.

Before proceeding, we define notation for the following proofs. For any two vectors

a, b ∈ Rn, define [a, b] := {x ∈ Rn : ai ≤ xi ≤ bi, i = 1, . . . , n}. For any qi,lo, qi,hi ∈ Q̃i,

we will use {[qi,lo, qi,hi]} to denote the set {qi,lo, qi,lo + µτ, . . . , qi,hi}. Next, let wmin =

µτbδmin/(µτ)c, wmax = µτdδmax/(µτ)e, εmin = δmin − wmin, and εmax = wmax − δmax,

so that 0 ≤ εmin, εmax < µτ . Additionally, note that we will generally use I to denote

state estimates for the continuous system and ι to denote state estimates for the

abstracted system. The notation Ib and Ia will continue to be used only for general

results (i.e., not specific to the vehicle control problem under consideration). Finally,

take Sb to be the system of Eq. (4.2) with the output map of Eq. (4.3), S ′b to be the

partially observed system Sb with observations given by Eq. (4.4), Sa to be the state

reduction G of Sb, and S ′a to be G′. Then, Xb = X, Xa = Ya = Yb = Q̃, Ub = Vc,

Ua = Uc, Hb = `, Ha is the identity map, Ob = X, Lb = L, Oa = Λ, La = LΛ, Ipb = Ip,

Icb = Ic, Ipa = ψ
p
, and Ica = ψ

c
.

Proposition IV.31. Let Sb be the estimator system of the system of Eq. (4.2) with

the output map of Eq. (4.3) and observations of Eq. (4.4). If emax = kµτ/2 for

some k ∈ N, then Obs(G′) is a state estimate reduction of Sb, with state and control

relations R and C given by Eqs. (4.25) and (4.26).

The proof is contained in the appendix.

Theorem IV.32. Suppose that emax = kµτ/2 for some k ∈ N, let G = Obs(G′),

as described in Sec. 4.5.1, and let H be the specification automation obtained by

pruning the transitions of G, in accordance with Defs. IV.20 and IV.21. Solve for

the supremal controllable sublanguage (Lm(H))↑C of Lm(H) with respect to L(G) and

uncontrollable event set Euc = Λ, obtaining a maximally permissive safe and non-

173

blocking supervisor S : 2Q̃ → 2Uc. Then the supervisor σ : 2X/` → 2Vc defined by

vc ∈ σ(I)⇔ uc = τvc ∈ S(`(I)) solves Prob. IV.1.

Proof. Immediate from Thm. IV.22 and Prop. IV.31.

Next, we prove the equivalent theorem for the case where G is an exact state

reduction of the system of Eq. (4.2) with the output map of Eq. (4.3). We first prove

the following lemma, however.

Lemma IV.33. For any two intervals I1 = [I1
lo, I

1
hi] and I2 = [I2

lo, I
2
hi] such that

I1 ∩ I2 6= ∅, `i(I1 ∩ I2) = `i(I
1) ∩ `i(I2).

Proof. Given any non-empty interval I = [Ilo, Ihi], we have `i(I) = {[`i(Ilo), `i(Ihi)]}.

Since `i is monotonic, we have min{`i(x1), `i(x2)} = `i(min{x1, x2}) and max{`i(x1), `i(x2)} =

`i(max{x1, x2}), for any x1, x2 ∈ R. It follows that I1∩I2 = [max{I1
lo, I

2
lo},min{I1

hi, I
2
hi}]

and, if I1 ∩ I2 6= ∅, then `i(I
1 ∩ I2) = {[`i(max{I1

lo, I
2
lo}), `i(min{I1

hi, I
2
hi})]}

= {[max{`i(I1
lo), `i(I

2
lo)},min{`i(I1

hi), `i(I
2
hi)}]} = {[`i(I1

lo), `i(I
1
hi)]}∩{[`i(I2

lo), `i(I
2
hi)]} =

`i(I
1) ∩ `i(I2).

Proposition IV.34. Let Sb be the estimator system of the system of Eq. (4.2) with

the output map of Eq. (4.3) and observations of Eq. (4.4). If δmin and δmax are both

integer multiples of τµ and emax = kµτ/2 for some k ∈ N, then Obs(G′) is an exact

state estimate reduction of Sb, with state and control relations R and C given by

Eqs. (4.25) and (4.26), and set of reachable state estimates I ′(Sb) as follows:

I ′(Sb) =
∏

i∈N I
′
i(Sb)

I ′i(Sb) =

 [qi,lo + εi, qi,hi + εi] s.t.

qi,lo, qi,hi ∈ Q̃i ∧ −µτ/2 < εi ≤ µτ/2


(4.48)

Proof. Beyond what has been shown in Prop. IV.31, it remains to prove that Prop-

erties 5-7 of Def. IV.24 also hold. We begin with Property 5. Consider any transition

174

(I, vc, I
′) ∈ →b and let χ be such that I ′ = Ic(Ip(I, vc), χ). We show that ι′ =

ψ
c
(ψ

p
(ι, uc), λ), for ι = `(I), uc = vcτ , ι′ = `(I ′), and λ = [χ], from which it follows

that (ι, uc, ι
′) ∈ ψ, as required for Property 5. As in the proof of Prop. IV.31, we con-

sider one vehicle at a time. Let Ii = [xi,lo, xi,hi] and ιi = `i(Ii) = {[qi,lo, qi,hi]}. Since

δmin and δmax are both integer multiples of τµ, we have Ipi (I, vc) = [xi,lo+ki,loµτ, xi,hi+

ki,hiµτ] and ψ
p
(ι, uc) = {[qi,lo + ki,loµτ, qi,hi + ki,hiµτ]} for some ki,lo, ki,hi ∈ N. Now,

for any xi ∈ R and ci ∈ Z, `i(xi + ciµτ) = `i(xi) + ciµτ . Since ιi = `i(Ii), it

therefore follows that ψ
p

i (ι, uc) = `i(I
p
i (I, vc)). Finally, LΛ

i (λ) = `i(Li(χ)) and ι′i =

ψ
c

i(ψ
p
(ι, uc), λ) = ψ

p

i (ι, uc)∩LΛ
i (λ) = `i(I

p
i (I, vc))∩ `i(Li(χ)) = `i(I

p
i (I, vc)∩Li(χ)) =

`i(I
′), using Lemma IV.33.

We next prove Property 6. Consider any transition (ι, uc, ι
′) ∈ ψ and any box

I ′ = [I ′lo, I
′
hi] ∈ I ′(Sb) such that `(I ′) = ι′ and let λ ∈ Λ be such that ι′ =

ψ
c
(ψ

p
(ι, uc), λ). We construct I ∈ I ′(Sb), vc = uc/τ , and χ such that `(I) = ι,

and I ′ = Ic(Ip(I, vc), χ), from which it follows that (I, vc, I
′) ∈ →b, as required for

Property 6. As before, we consider a single vehicle at a time. Let ιi = {[qi,lo, qi,hi]},

ιpi = ψ
p
(ι, uc) = {[qpi,lo, q

p
i,hi]}, and LΛ

i (λ) = {[qoi,lo, qoi,hi]}, so that ι′i = ψ
c

i(ψ
p
(ι, uc), λ) =

ψ
p

i (ι, uc)∩LΛ
i (λ) = {[max{qpi,lo, qoi,lo},min{qpi,hi, qoi,hi}]}. Given Eq. (4.48), and the fact

that `(I ′) = ι′, it must be that I ′i = [q′i,lo + ε, q′i,hi + ε] for some ε ∈ (−µτ/2, µτ/2].

Take Ii = [qi,lo + ε, qi,hi + ε] and χi = (qoi,lo + qoi,hi)/2 + ε, so that `i(Ii) = ιi,

Ipi (I, vc) = [qpi,lo + ε, qpi,hi + ε], `i(I
p
i (I, vc)) = ιpi , and Li(χ) = [qoi,lo + ε, qoi,hi + ε].

Thus, Ici (I
p
i (I, vc), χ) = [qpi,lo + ε, qpi,hi + ε] ∩ [qoi,lo + ε, qoi,hi + ε] = [max{qpi,lo, qoi,lo} +

ε,min{qpi,hi, qoi,hi}+ ε], from which it follows that `i(I
c
i (I

p
i (I, vc), χ)) = ι′i. This implies

that I ′i = Ici (I
p(I, vc), χ) (otherwise it could not be that `(I ′i) = ι′i), which proves

Property 6.

Finally, we prove Property 7. By assumption, all state estimates are boxes, so that

any y ∈ Y has the form y =
∏

i∈N{[qi,lo, qi,hi]}. Once again, we consider one ve-

hicle at a time. Since yi = {[qi,lo, qi,hi]}, `−1
i (yi) = (qi,lo − µτ/2, qi,hi + µτ/2] =

175

⋃
ε∈(−µτ/2,µτ/2][qi,lo + ε, qi,hi + ε]. Since each of the intervals [qi,lo + ε, qi,hi + ε] are in the

set I ′i(Sb), this proves Property 7.

Theorem IV.35. If emax = kµτ/2 for some k ∈ N and δmin and δmax are both

integer multiples of τµ, then the supervisor σ of Thm. IV.32 solves Prob. IV.1, and

is maximally permissive among the class of all supervisors, not merely memoryless

ones.

Proof. Immediate from Thm. IV.26 and Prop. IV.34.

The solution method presented in this work is depicted in Fig. 4.5. It should be

noted that for a DES automaton with m states, the observer of the DES automaton

can have up to 2m states. However, because state estimates in the system under

consideration will always be boxes, the number of states of G = Obs(G′) is quadratic

in |Q̃| (any box is uniquely parametrized by two states). Furthermore, because the

specification automaton H is a subautomaton of G and G is acyclic (by virtue of the

asumption that velocities are bounded below by µ), the computation of the supervisor

in Thm. IV.32 takes only time linear in the size of G (see, e.g. (Hadj-Alouane et al.,

1994)). See Dallal et al. (2014) for a more thorough discussion of running time.

4.7 Conclusion

We considered the problem of finding a safe, non-deadlocking, and maximally

permissive supervisor for a set of vehicles at an intersection, in the presence of un-

controlled vehicles, bounded disturbances, and measurement uncertainty. We showed

how to construct a suitable DES abstraction for this partially observed system, by

discretizing the system in space and time, grouping the set of possible measurements

into a finite set of equivalence classes, and using a combination of uncontrollable

and unobservable events to model the uncontrolled vehicles, the disturbance, and

the measurement uncertainty. We described a procedure for obtaining supervisors

176

Figure 4.5: The solution method. Given the time discretized system of Eq. (4.2) with
the space discretization given by `(·) of Eq. (4.3), constituting system
Sb, we can construct DES abstraction G that is a state reduction of this
system. Given system Sb with measurement uncertainty given by L(·)
of Eq. (4.4), constituting partially observed system S ′b, we can construct
DES abstraction G′ that models the measurement uncertainty of L(·)
by partitioning the set of measurements X into equivalence classes Λ, in
accordance with Proc. IV.27. Given the estimator Sb of partially observed
system S ′b, we can construct DES abstraction G that is a state estimate
reduction of Sb. Furthermore, when emax = kµτ/2 for some k ∈ N, G
can be obtained as the observer of G′ (Props. IV.31 and IV.34). A DES
supervisor S is then computed by solving problem BSCP-NB, from which
a continuous domain supervisor σ is obtained which solves Prob. IV.1
(Thms. IV.32 and IV.35).

for partially observed systems, by abstracting the system and specifications, solving

for a supervisor in the abstracted domain, and translating this supervisor back to

the original problem domain. We presented the general notions of state estimate

reduction and exact state estimate reduction relating prediction-correction estimator

systems to abstractions and showed that the obtained supervisors will be maximally

permissive among the class of memoryless supervisors, in the case of a state estimate

reduction, or maximally permissive among the class of all supervisors, in the case of

an exact state estimate reduction. Finally, we showed that, when the discretization

parameters are properly chosen for the vehicle control problem under consideration,

177

it is possible to obtain a state estimate reduction or an exact state estimate reduction.

Future work includes generalizing the methods presented here to systems with more

complex dynamics, and extensions to stochastic problem formulations.

Appendix: Proof of Prop. IV.31

Proof. First, note that Prop. IV.11 shows that G is a state reduction of the system

of Eq. (4.2) with the output map of Eq. (4.3). Furthermore, Prop. IV.11 defines the

control relation C of this state reduction by C(q) := {(uc, vc) : vcτ = uc ∈ Uc}, for

all q ∈ Q̃ and therefore C satisfies the property that q1, q2 ∈ y ⇒ C(q1) = C(q2),

for all y ∈ Ha(I(S ′a)) ∪ Hb(I(S ′b)). Finally, G′ is the DES automaton equivalent of

a partially observed system constructed in accordance with Proc. IV.27 and hence

Obs(G′) is the DES automaton equivalent of the corresponding estimator system,

as per the discussion of Sec. 4.6.1.3. Therefore, the conditions of Thm. IV.28 are

satisfied and it remains only to prove that Property 4 of the state estimate reduction

also holds. We begin by proving the following claim:

Claim 4: Consider any two systems Sa and Sb such that Sa is a state reduction of Sb.

For any Ia ⊆ Xa, ua ∈ Ua, and ub ∈ Ub : (ua, ub) ∈ C(Ha(Ia)), let Ib = {xb ∈ Xb :

∃xa ∈ Ia s.t. (xa, xb) ∈ R}. Then (Ipa(Ia, ua), I
p
b (Ib, ub)) ∈ R.

Recall from Eq. (4.16) that Ip(I, u) = ∪x∈I{x′ ∈ X : ∃(x, u, x′) ∈→}. Consider any

(xb, ub, x
′
b) ∈→b with xb ∈ Ib and x′b ∈ I

p
b (Ib, ub). By Property 1 of Def. IV.8, there

is a unique xa ∈ Xa such that (xa, xb) ∈ R and a unique x′a such that (x′a, x
′
b) ∈ R.

From the definitions of Ia and Ib above, xa ∈ Ia. From Property 5 of Def. IV.8,

it must be that (xa, ua, x
′
a) ∈→a, so that x′a ∈ Ipa(Ia, ua). Conversely, consider any

(xa, ua, x
′
a) ∈→a with xa ∈ Ia and x′a ∈ Ipa(Ia, ua). By Property 4 of Def. IV.8,

there must exist some (xb, ub, x
′
b) ∈→b with (xa, xb) ∈ R and (x′a, x

′
b) ∈ R. From the

definitions of Ia and Ib above, it follows that any such xb is in Ib, and hence that

x′b ∈ I
p
b (Ib, ub), which completes the proof of the claim.

178

The remaining property to be proven states that, for all (ι, uc, ι
′) ∈ ψ, there exists

(I, vc, I
′) ∈ →b such that (ι, I) ∈ R, (uc, vc) ∈ C(ι), and (ι′, I ′) ∈ R. As stated in

Remark IV.30, it is sufficient to consider each vehicle separately. Thus, we wish to

construct, for each vehicle i, an interval Ii = [xi,lo, xi,hi] such that: xi,hi−xi,lo ≤ 2emax;

`i(Ii) = ιi; and `i(I
′
i) = ι′i, for I ′i = Ici (I

p
i (Ii)).

Suppose that emax = kτµ/2. Then, for any χ ∈ X, Li(χ) = [χi − kτµ/2, χi +

kτ/mu/2], which is an interval of size kτµ. It follows that `i(Li(χ)) has the form

{[qi, qi + kµτ]}, for some qi ∈ Q̃i. From Claims 1 and 2 of the proof of Thm. IV.28,

it follows that any ι ∈ I(G′) has the form ι =
∏n

i=1{[qi,lo, qi,hi]}, where qi,lo, qi,hi ∈ Q̃i

and 0 ≤ qi,hi − qi,lo ≤ kτµ, for all i = 1, . . . , n (i.e., the discrete version of a box).

Consider some transition (ι, uc, ι
′) ∈ ψ. For vehicle i, we have ιi = {[qi,lo, qi,hi]} and

ι′i = {[q′i,lo, q′i,hi]}. Let ιpi = ψ
p
(ι, uc) := {[qpi,lo, q

p
i,hi]}. For a controlled vehicle, this is

given by ιpi = {[qi,lo+uc,i+wmin, qi,hi+uc,i+wmax]} whereas for an uncontrolled vehicle

this is given by ιpi = {[qi,lo + umin + wmin, qi,hi + umax + wmax]}. For any λ ∈ Λ, we

have that LΛ
i (λ) = {[qoi,lo, qoi,hi]}, for some qoi,lo, q

o
i,hi ∈ Q̃i such that qoi,hi − qoi,lo = kµτ .

It follows that ι′i = ιpi ∩ LΛ
i (λ) = {[max{qoi,lo, q

p
i,lo},min{qoi,hi, q

p
i,hi}]}. Now remark

that `−1
i (ιi) = (qi,lo − µτ/2, qi,hi + µτ/2] and that from Claim 4 we therefore have

(ιp, Ip((qi,lo − µτ/2, qi,hi + µτ/2], vc)) ∈ R. Since `−1
i (qi) = (qi − µτ/2, qi + µτ/2], it

follows that Ipi ((qi,lo−µτ/2, qi,hi +µτ/2], vc) = (βi,lo, βi,hi] for some βi,lo and βi,hi such

that qpi,lo−µτ/2 < βi,lo ≤ qpi,lo +µτ/2 and qpi,hi−µτ/2 < βi,hi ≤ qpi,hi +µτ/2. This fact

will be used in the analysis of each of four cases separately:

Case 1: qoi,lo > qpi,lo and qoi,hi < qpi,hi.

This gives ι′i = {[qoi,lo, qoi,hi]}. Take Ii = [qi,lo, qi,hi] and χi = (qoi,lo + qoi,hi)/2 so that

Ipi (I, vc) = [βi,lo + µτ/2, βi,hi − µτ/2] := [xpi,lo, x
p
i,hi], `i(Ii) = {[qi,lo, qi,hi]} = ιi and

Li(χ) = [qoi,lo, q
o
i,hi]. Since qoi,lo > qpi,lo and qoi,hi < qpi,hi, it must be that qoi,lo ≥ qpi,lo + µτ

and qoi,hi ≤ qpi,hi − µτ . Thus, xpi,lo = βi,lo + µτ/2 ≤ qpi,lo + µτ ≤ qoi,lo and xpi,hi =

βi,hi − µτ/2 > qpi,hi − µτ ≥ qoi,hi, from which it follows that I ′i = Ici (I
p(I, vc), χ) =

179

[xpi,lo, x
p
i,hi] ∩ [qoi,lo, q

o
i,hi] = [qoi,lo, q

o
i,hi], so that `i(I

′
i) = {[qoi,lo, qoi,hi]} = ι′i.

Case 2: qoi,lo > qpi,lo and qoi,hi ≥ qpi,hi.

This gives ι′i = {[qoi,lo, q
p
i,hi]}. Consider some ε such that 0 ≤ εmax < ε < µτ and take

Ii = [qi,lo − µτ/2 + ε, qi,hi − µτ/2 + ε] and χi = (qoi,lo + qoi,hi)/2, so that Ipi (I, vc) =

[βi,lo + ε, βi,hi − µτ + ε] := [xpi,lo, x
p
i,hi] and Li(χ) = [qoi,lo, q

o
i,hi]. Since 0 < ε < µτ ,

we have `i(Ii) = {[qi,lo, qi,hi]} = ιi. Since εmax = wmax − δmax < ε < µτ , we have

wmax < ε + δmax < µτ + δmax ≤ µτ + wmax. It follows that qi,hi − µτ/2 + wmax <

qi,hi−µτ/2+ε+δmax < qi,hi+µτ/2+wmax, and hence that `i(qi,hi−µτ/2+ε+δmax) =

qi,hi +wmax. The same reasoning shows that we must have `i(x
p
i,hi) = qpi,hi, and hence

that qpi,hi − µτ/2 < xpi,hi ≤ qpi,hi + µτ/2. Since qoi,lo > qpi,lo and qoi,hi ≥ qpi,hi, we have

that qoi,lo > qpi,lo + µτ and qoi,hi ≥ qpi,hi + µτ . Using this and 0 < ε < µτ gives xpi,hi =

βi,hi − µτ + ε < βi,hi ≤ qpi,hi + µτ/2 ≤ qoi,hi − µτ/2 < qoi,hi. Similarly, xpi,lo = βi,lo + ε <

βi,lo + µτ ≤ qpi,lo + 3µτ/2 < qoi,lo + µτ/2. Hence, qoi,lo ≤ max{xpi,lo, qoi,lo} < qoi,lo + µτ/2.

Also, it follows from qoi,hi ≥ qpi,hi and qpi,hi−µτ/2 < xpi,hi ≤ qpi,hi+µτ/2 that qpi,hi−µτ/2 <

min{xpi,hi, qoi,hi} ≤ qpi,hi + µτ/2. Finally, this gives I ′i = Ici (I
p(I, vc), χ) = [xpi,lo, x

p
i,hi] ∩

[qoi,lo, q
o
i,hi] = [max{xpi,lo, qoi,lo},min{xpi,hi, qoi,hi}], so that `i(I

′
i) = {[qoi,lo, q

p
i,hi]} = ι′i.

Case 3: qoi,lo ≤ qpi,lo and qoi,hi < qpi,hi.

This gives ι′i = {[qpi,lo, qoi,hi]}. Consider some ε such that 0 ≤ εmin < ε < µτ and take

Ii = [qi,lo + µτ/2 − ε, qi,hi + µτ/2 − ε] and χi = (qoi,lo + qoi,hi)/2. The remainder is

symmetrical to Case 2.

Case 4: qoi,lo ≤ qpi,lo and qoi,hi ≥ qpi,hi.

This gives ι′i = {[qpi,lo, q
p
i,hi]}. Furthermore, since qoi,lo ≤ qpi,lo and qoi,hi ≥ qpi,hi, we have

that qpi,hi−q
p
i,lo ≤ qoi,hi−qoi,lo = kµτ . Also, it must always be that qi,hi−qi,lo ≤ qpi,hi−q

p
i,lo,

with equality possible only if i is a controlled vehicle and δmin = δmax = 0, so that

qi,hi − qi,lo ≤ kµτ .

Suppose first that qi,hi−qi,lo = kµτ . Then kµτ = qi,hi−qi,lo ≤ qpi,hi−q
p
i,lo ≤ qoi,hi−qoi,lo =

kµτ , and hence it follows that vehicle i is controlled and δmin = δmax = 0. Thus,

180

qpi,lo = qi,lo+uc,i and qpi,hi = qi,hi+uc,i. Therefore, taking Ii = [qi,lo, qi,hi] and χi = (qoi,lo+

qoi,hi)/2 yields `i(Ii) = {[qi,lo, qi,hi]} = ιi, Li(χ) = [qoi,lo, q
o
i,hi], I

p
i (I, vc) = [qpi,lo, q

p
i,hi], I

′
i =

Ici (I
p(I, vc), χ) = [qpi,lo, q

p
i,hi]∩[qoi,lo, q

o
i,hi] = [qpi,lo, q

p
i,hi], and hence `i(I

′
i) = {[qpi,lo, q

p
i,hi]} =

ι′i.

Now suppose instead that qi,hi− qi,lo < kµτ . Then qi,hi− qi,lo ≤ (k− 1)µτ and we can

take χi = (qoi,lo + qoi,hi)/2 and Ii = [qi,lo + µτ/2 − εlo, qi,hi − µτ/2 + εhi] := [xi,lo, xi,hi]

for εlo and εhi such that εmin < εlo < µτ and εmax < εhi < µτ , yielding xi,hi − xi,lo =

(qi,hi − µτ/2 + εhi)− (qi,lo + µτ/2− εlo) = qi,hi − qi,lo − µτ + εlo + εhi < qi,hi − qi,lo +

µτ ≤ kµτ . By the same reasoning as in Case 2, `i(Ii) = ιi, Li(χ) = [qoi,lo, q
o
i,hi]

and Ipi (I, vc) = [xpi,lo, x
p
i,hi], for some xpi,lo and xpi,hi such that qpi,lo − µτ/2 < xpi,lo ≤

qpi,lo + µτ/2 and qpi,hi − µτ/2 < xpi,hi ≤ qpi,hi + µτ/2. Since qoi,lo ≤ qpi,lo and qoi,hi ≥ qpi,hi,

it follows that qpi,lo − µτ/2 < max{xpi,lo, qoi,lo} ≤ qpi,lo + µτ/2 and that qpi,hi − µτ/2 <

min{xpi,hi, qoi,hi} ≤ qpi,hi + µτ/2. Thus, I ′i = Ici (I
p(I, vc), χ) = [xpi,lo, x

p
i,hi] ∩ [qoi,lo, q

o
i,hi] =

[max{xpi,lo, qoi,lo},min{xpi,hi, qoi,hi}], so that `i(I
′
i) = {[qpi,lo, q

p
i,hi]} = ι′i.

181

CHAPTER V

Conclusion & Future Work

5.1 Dynamic Diagnosability

This work considered the problem of dynamic fault diagnosis under the constraint

of maintaining K-diagnosability. Using an appropriately defined information state,

we constructed a structure called the MPO that contains all the solutions to the

problem. Our contributions are as follows. By defining the information state as we

have, we reduce the space complexity of the MPO from O(2|X|
2·K·2|E|) in Cassez and

Tripakis (2008) to O(2|X|·(K+2)2|E|). Furthermore, the monotonicity property on the

extended specification and the resulting reduction of the information state reduces

this complexity to O(2|X|(K+2)|X|2|E|), yielding a complexity that is polynomial inK,

rather than exponential in K. Finally, the use of the extended specification allows for

an efficient quadratic time test for determining the safety of a control decision from

any given information state. This potentially allows for a minimal solution to be

computed on-line, simply by taking a minimal control decision from each information

state (all such controllers will be minimal but not all minimal controllers will have

this form).

Implementation of the results of this work on real world systems may require

further effort. In particular, the reduction of the size complexity of the MPO and

the efficient algorithmic implementation for its construction are unlikely to be able

182

to deal with systems containing thousands of states, much less millions. Although we

have constructed MPOs with millions of states in minutes, those MPOs corresponded

to automata that had only a hundred states. The problem here is that the MPO

scales exponentially with the size of the automaton to diagnose and therefore its full

construction is impractical for real world systems. One way to deal with this issue is

to compute minimal solutions on-line, as discussed above. The running time of this

is exponential in the number of events, but only quadratic in the number of states

of the automaton to diagnose. Since the number of events is typically much smaller

than the number of states, this method should scale to much larger automata. A

second possible solution to the problem of computationally intractable MPOs is to

seek a single controller C that is optimal according to some cost criterion. Indeed,

both the works of Thorsley and Teneketzis (2007) and Cassez and Tripakis (2008)

use this approach. In Cassez and Tripakis (2008), the construction of the MPO is

used as a first step, however. In Thorsley and Teneketzis (2007), a dynamic program

is solved over a similarly sized structure (essentially an MPO without Z states). In

general, the optimal sensor activation policy from any given state depends on that

state’s successors (and so on...), so that a large portion of the state space must be

explored in order to determine the optimal policy. This could potentially be mitigated

by heuristics like alpha-beta pruning, since the optimization is of the min-max form.

A possible direction for future work is the extension of this work to the decentral-

ized case of co-diagnosability, in which a number of sites each have a distinct (but

possibly overlapping) set of sensors and must jointly diagnose the occurrence of a

fault. Specifically, co-diagnosability requires that any fault is eventually diagnosed

by at least one site. The problem may be analyzed with or without communication

between the various diagnosing sites. It should however be noted that maximally

permissive solutions will generally not exist in the decentralized setting, since one

site may be required to turn more sensors on if another turns fewer sensors on. Thus,

183

a feasible solution concept would be either the construction of a minimal sensor acti-

vation policy, or the computation of an optimal policy.

5.2 Vehicle Control

We considered the problem of finding a safe, non-deadlocking, and maximally

permissive supervisor for a set of vehicles at an intersection, in the presence of un-

controlled vehicles, bounded disturbances, and measurement uncertainty. We showed

how to compute the desired supervisor by creating an abstraction, solving for the

maximally permissive supervisor in the abstracted domain, and translating back to

the original problem domain. Our contributions are threefold. First, in the domain

of modelling, we showed how to construct DES abstractions for systems with envi-

ronmental uncertainty by discretizing the state space, using uncontrollable events to

model sources of environmental uncertainty and, in the case of imperfect measure-

ment, using observable but uncontrollable events to model measurement uncertainty.

We also showed how to translate safety and marking specifications defined over a

continuous state space to the DES domain, yielding a language based specification.

Second, we defined new relations between systems and their DES abstractions, al-

lowing for supervisors to be computed using a “abstract-solve-translate” method and

characterizing the class of supervisors over which the result will be maximally permis-

sive. Finally, in the case of perfect measurement, we provided customized algorithms

for computing the desired supervisors and demonstrated their scalability through

simulations. Notably, these algorithms can be applied to the case of imperfect mea-

surement with little modification.

Whereas we have developed solution methods capable of dealing with environmen-

tal uncertainty and measurement uncertainty, there remains further work to be done

in order to implement these methods on real world systems. One significant issue is

that, because we make no assumptions on the behaviour of the uncontrolled vehicles,

184

their presence severely restricts the set of problem instances that have non-empty

supervisors. A possible solution would be to model driver behaviour. Another prob-

lem characteristic which restricts the set of problem instances that have non-empty

supervisors is the requirement of absolute safety. A possible solution would be to

consider a stochastic model (especially for the disturbance) and to require only that

the supervisor prevent collisions with some probability 1− ε. Finally, a more realistic

model of the system dynamics would be as a second order differential equation.

Possible avenues for future work include extensions to a stochastic model or to

more complex dynamics, as described above. Another direction for future work is

the improvement of scalability. The simulations we have conducted in the case of

perfect measurement indicate that memory utilization is the bottle-neck, not running

time. Two possibilities to address this issue are the computation of a minimal set of

boundary states between safe and unsafe states and the use of dynamic discretization.

In this context, dynamic discretization would consist of computing an initial super-

visor at a coarse discretization, refining the discretization at states not known to be

safe, recomputing a supervisor, and so on... This method could be improved upon by

determining the set of safe, unsafe, and uncertain states at each discretization level.

Specifically, the supervisor synthesis problem can be thought of as a game against

an adversary: the winning states for the controller are safe; the winning states for

the adversary are unsafe; and the states that are losing to both controller and adver-

sary are uncertain. Refining the discretization would then be performed only on the

uncertain states.

185

BIBLIOGRAPHY

186

BIBLIOGRAPHY

Ahn, H., A. Colombo, D. Del Vecchio, and S. Lafortune (2014), Supervisory Control
for Intersection Collision Avoidance in the Presence of Uncontrolled Vehicles, in
American Control Conference (ACC), 2014.

Alur, R., T. Henzinger, G. Lafferriere, and G. Pappas (2000), Discrete abstractions
of hybrid systems, Proceedings of the IEEE, 88 (7), 971–984, doi:10.1109/5.871304.

Au, T.-C., C.-L. Fok, S. Vishwanath, C. Julien, and P. Stone (2012), Evasion planning
for autonomous vehicles at intersections, in Intelligent Robots and Systems (IROS),
2012 IEEE/RSJ International Conference on, pp. 1541–1546, doi:10.1109/IROS.
2012.6385936.

Belta, C., A. Bicchi, M. Egerstedt, E. Frazzoli, E. Klavins, and G. Pappas
(2007), Symbolic planning and control of robot motion [Grand Challenges of
Robotics], IEEE Robotics Automation Magazine, 14 (1), 61–70, doi:10.1109/MRA.
2007.339624.

Bruni, L., A. Colombo, and D. Del Vecchio (2013), Robust multi-agent collision
avoidance through scheduling, in Decision and Control (CDC), 2013 IEEE 52nd
Annual Conference on.

Camara, J., A. Girard, and G. Gossler (2011), Safety controller synthesis for switched
systems using multi-scale symbolic models, in Decision and Control and European
Control Conference (CDC-ECC), 2011 50th IEEE Conference on, pp. 520–525,
doi:10.1109/CDC.2011.6160424.

Cassandras, C. G., and S. Lafortune (2008), Introduction to Discrete Event Systems,
2nd ed., Springer.

Cassez, F., and S. Tripakis (2008), Fault Diagnosis with Static and Dynamic Ob-
servers, Fundamenta Informaticae, 88 (4), 497–540.

Cassez, F., S. Tripakis, and K. Altisen (2007a), Sensor Minimization Problems with
Static or Dynamic Observers for Fault Diagnosis, in Application of Concurrency
to System Design, 2007. ACSD 2007. Seventh International Conference on, pp.
90–99, doi:10.1109/ACSD.2007.27.

Cassez, F., S. Tripakis, and K. Altisen (2007b), Synthesis Of Optimal-Cost Dynamic
Observers for Fault Diagnosis of Discrete-Event Systems, in Theoretical Aspects of

187

Software Engineering, 2007. TASE ’07. First Joint IEEE/IFIP Symposium on, pp.
316–325, doi:10.1109/TASE.2007.51.

Cassez, F., J. Dubreil, and H. Marchand (2009), Dynamic Observers for the Synthesis
of Opaque Systems, in Automated Technology for Verification and Analysis, Lecture
Notes in Computer Science, vol. 5799, pp. 352–367, Springer Berlin / Heidelberg.

Colombo, A., and D. Del Vecchio (2011a), Enforcing Safety of Cyberphysical Systems
Using Flatness and Abstraction, SIGBED Rev., 8 (2), 11–14, doi:10.1145/2000367.
2000369.

Colombo, A., and D. Del Vecchio (2011b), Supervisory control of differentially flat
systems based on abstraction, in Decision and Control and European Control
Conference (CDC-ECC), 2011 50th IEEE Conference on, pp. 6134–6139, doi:
10.1109/CDC.2011.6160759.

Colombo, A., and D. Del Vecchio (2012), Efficient Algorithms for Collision Avoid-
ance at Intersections, in Proceedings of the 15th ACM International Conference on
Hybrid Systems: Computation and Control, HSCC ’12, pp. 145–154, ACM, New
York, NY, USA, doi:10.1145/2185632.2185656.

Colombo, A., and A. Girard (2013), An approximate abstraction approach to safety
control of differentially flat systems, in Control Conference (ECC), 2013 European,
pp. 4226–4231.

Cormen, T. H., C. E. Leiserson, R. L. Rivest, and C. Stein (2009), Introduction to
Algorithms, MIT Press and McGraw-Hill.

Dallal, E., and S. Lafortune (2010), On Most Permissive Observers in Dynamic Sen-
sor Optimization Problems for Discrete Event Systems, in Proceedings of the 48th
Annual Allerton Conference on Communication, Control, and Computing.

Dallal, E., and S. Lafortune (2011a), A framework for optimization of sensor ac-
tivation using most permissive observers, in Decision and Control and European
Control Conference (CDC-ECC), 2011 50th IEEE Conference on, pp. 2711–2717,
doi:10.1109/CDC.2011.6160506.

Dallal, E., and S. Lafortune (2011b), Efficient Computation of Most Permissive Ob-
servers in Dynamic Sensor Activation Problems, in 2nd International Workshop on
Logical Aspects of Fault-Tolerance (LAFT), doi:10.1109/CDC.2011.6160506.

Dallal, E., and S. Lafortune (2014), On most permissive observers in dynamic sensor
activation problems, Automatic Control, IEEE Transactions on, 59 (4), 966–981,
doi:10.1109/TAC.2013.2294613.

Dallal, E., A. Colombo, D. Del Vecchio, and S. Lafortune (2013a), Supervisory control
for collision avoidance in vehicular networks using discrete event abstractions, in
American Control Conference (ACC), 2013, pp. 4380–4386.

188

Dallal, E., A. Colombo, D. Del Vecchio, and S. Lafortune (2013b), Supervisory control
for collision avoidance in vehicular networks with imperfect measurements, in Deci-
sion and Control (CDC), 2013 IEEE 52nd Annual Conference on, pp. 6298–6303,
doi:10.1109/CDC.2013.6760885.

Dallal, E., A. Colombo, D. Del Vecchio, and S. Lafortune (2014), Supervisory Control
of Systems under Imperfect Measurements with Applications to Vehicle Control,
submitted to Discrete Event Dynamic Systems.

Daws, C., and S. Tripakis (1998), Model checking of real-time reachability properties
using abstractions, in Tools and Algorithms for the Construction and Analysis of
Systems, Lecture Notes in Computer Science, vol. 1384, edited by B. Steffen, pp.
313–329, Springer Berlin Heidelberg, doi:10.1007/BFb0054180.

Girard, A., G. Pola, and P. Tabuada (2010), Approximately Bisimilar Symbolic Mod-
els for Incrementally Stable Switched Systems, Automatic Control, IEEE Transac-
tions on, 55 (1), 116–126, doi:10.1109/TAC.2009.2034922.

Hadj-Alouane, N. B., S. Lafortune, and F. Lin (1994), Variable lookahead supervisory
control with state information, Automatic Control, IEEE Transactions on, 39 (12),
2398–2410.

Hafner, M., and D. Del Vecchio (2011), Computational Tools for the Safety Control of
a Class of Piecewise Continuous Systems with Imperfect Information on a Partial
Order, SIAM Journal on Control and Optimization, 49 (6), 2463–2493, doi:10.1137/
090761203.

Hafner, M., D. Cunningham, L. Caminiti, and D. Del Vecchio (2013), Cooper-
ative collision avoidance at intersections: Algorithms and experiments, Intel-
ligent Transportation Systems, IEEE Transactions on, 14 (3), 1162–1175, doi:
10.1109/TITS.2013.2252901.

Haji-Valizadeh, A., and K. Loparo (1996), Minimizing the cardinality of an events
set for supervisors of discrete-event dynamical systems, IEEE Transactions on Au-
tomatic Control, 41 (11), 1579–1593.

Jiang, S., R. Kumar, and H. Garcia (2003), Optimal sensor selection for discrete-event
systems with partial observation, IEEE Transactions on Automatic Control, 48 (3),
369–381.

Kowshik, H., D. Caveney, and P. Kumar (2011), Provable Systemwide Safety in
Intelligent Intersections, Vehicular Technology, IEEE Transactions on, 60 (3), 804–
818, doi:10.1109/TVT.2011.2107584.

LaValle, S. M. (2006), Planning algorithms, Cambridge university press.

Piterman, N., A. Pnueli, and Y. Sa’ar (2006), Synthesis of reactive (1) designs, in Ver-
ification, Model Checking, and Abstract Interpretation, Lecture Notes in Computer

189

Science, vol. 3855, edited by E. Emerson and K. Namjoshi, pp. 364–380, Springer
Berlin / Heidelberg.

Pola, G., and P. Tabuada (2009), Symbolic Models for Nonlinear Control Systems:
Alternating Approximate Bisimulations, SIAM Journal on Control and Optimiza-
tion, 48 (2), 719–733, doi:10.1137/070698580.

Ramadge, P., and W. Wonham (1989), The control of discrete event systems, Pro-
ceedings of the IEEE, 77 (1), 81–98, doi:10.1109/5.21072.

Ramadge, P. J., and W. M. Wonham (1987), Supervisory control of a class of discrete
event processes, SIAM journal on control and optimization, 25 (1), 206–230.

Rowaihy, H., S. Eswaran, M. Johnson, D. Verma, A. Bar-Noy, T. Brown, and T. La
Porta (2007), A survey of sensor selection schemes in wireless sensor networks,
in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series,
Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol.
6562, doi:10.1117/12.723514.

Sampath, M., R. Sengupta, S. Lafortune, K. Sinnamohideen, and D. Teneketzis
(1995), Diagnosability of discrete event systems, IEEE Transactions on Automatic
Control, 40 (9), 1555–1575.

Tabuada, P. (2009), Verification and control of hybrid systems: a symbolic approach,
Springer.

Thorsley, D., and D. Teneketzis (2007), Active Acquisition of Information for Diag-
nosis and Supervisory Control of Discrete Event Systems, Discrete Event Dynamic
Systems: Theory and Applications, 17 (4), 531–583.

Tomlin, C. J., I. Mitchell, A. M. Bayen, and M. Oishi (2003), Computational tech-
niques for the verification of hybrid systems, Proceedings of the IEEE, 91 (7), 986–
1001.

Verma, R., and D. Del Vecchio (2011), Semiautonomous multivehicle safety, Robotics
& Automation Magazine, IEEE, 18 (3), 44–54.

Wang, W., S. Lafortune, and F. Lin (2007), An algorithm for calculating indistin-
guishable states and clusters in finite-state automata with partially observable tran-
sitions, Systems & Control Letters, 56 (9-10), 656–661, doi:10.1016/j.sysconle.2007.
03.006.

Wang, W., S. Lafortune, F. Lin, and A. Girard (2009), An online algorithm for
minimal sensor activation in discrete event systems, in Proceedings of the 48th
IEEE Conference on Decision and Control, CDC/CCC 2009, pp. 2242–2247, doi:
10.1109/CDC.2009.5400888.

Wang, W., S. Lafortune, A. Girard, and F. Lin (2010), Optimal sensor activation for
diagnosing discrete event systems, Automatica, 46 (7), 1165–1175.

190

Wonham, W. (2013), Supervisory Control of Discrete-Event Systems, http://www.
control.toronto.edu/people/profs/wonham/wonham.html.

Wonham, W., and P. Ramadge (1987), On the Supremal Controllable Sublanguage
of a Given Language, SIAM Journal on Control and Optimization, 25 (3), 637–659,
doi:10.1137/0325036.

Yoo, T.-S., and H. E. Garcia (2008), Diagnosis of behaviors of interest in partially-
observed discrete-event systems, Systems & Control Letters, 57 (12), 1023–1029,
doi:10.1016/j.sysconle.2008.06.009.

Yoo, T.-S., and S. Lafortune (2002), NP-completeness of sensor selection problems
arising in partially observed discrete-event systems, IEEE Transactions on Auto-
matic Control, 47 (9), 1495–1499, doi:10.1109/TAC.2002.802762.

Zamani, M., G. Pola, M. Mazo, and P. Tabuada (2012), Symbolic Models for Non-
linear Control Systems Without Stability Assumptions, Automatic Control, IEEE
Transactions on, 57 (7), 1804–1809, doi:10.1109/TAC.2011.2176409.

Zaytoon, J., and M. Sayed Mouchaweh (2012), Discussion on fault Diagnosis methods
of Discrete Event Systems, in Proceedings of the 11th International Workshop on
Discrete Event Systems (WODES’12).

191

