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ABSTRACT 

In this study, the aerodynamics of a one-degree-of-freedom wing motion, a 

constant speed pitch ramp, were investigated to determine unsteady flow dynamics and 

force generation. This kinematics has discernible regions of constant rotation speed and 

motion acceleration, which helps isolate several effects. This pitching maneuver is 

analogous to the perching maneuver by birds and insects; a review of aerodynamics of 

natural flyers is provided. Maneuverability of natural flyers is difficult to emulate in 

engineered systems; the unsteady flow field of high degree-of-freedom wing kinematics 

complicates the analysis of the problem and the simpler one-degree-of-freedom 

kinematics considered here provides valuable insight for man-made fixed wing systems.  

In this study, dynamic flow field was investigated over thin finite-aspect-ratio-

four wings pitching at several constant pitch rates in constant free-stream flows, giving 

reduced pitch rate in a range of 0  K  , in an attempt to understand the interplay of 

time scale between wing motion and free-stream flow. All work was conducted in free-

surface water channel in a chord Reynolds number interval of 0 < Re < 13k by means of 

flow visualization, force measurement, and particle image velocimetry. A simple linear 

potential flow theory was implemented to elucidate experimental data; effects of reduced 

pitch rate, pivot axis location, and wing planform were included in the theory. Moreover, 

the identification of vortical flow structure was presented in correlation with force 

generation.  

The rapid increase of aerodynamic forces is associated with the formation of 

starting vortex in the wake and reduced-pitch-rate effect at the onset of the wing rotation; 

the gentle increase of aerodynamic forces is relevant to the simultaneous occurrence of 

leading-edge vortex formation and trailing-edge vortex shedding during constant rotation 

rate. Low taper-ratio wing enhances force generation at high reduced pitch rate. The 

pivot-axis location determines the location of the starting vortex. The leading-edge vortex 
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evolution after the end of the motion is delayed; the time delay is the convection time 

from the leading edge to the pivot-axis location. Linear potential flow theory with 

rotation-rate effects gives reasonable estimation of force coefficients.  
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CHAPTER 1 

INTRODUCTION 

1.1 BACKGROUND AND MOTATIVATION  

Biological flyers demonstrate remarkable agility and efficiency in flight. Birds, 

bats, and insects are able to generate relatively large forces very quickly in response to 

gust and other disturbances as well as during perching maneuvers. These flight features 

are of considerable interest to biologists and engineers, but remain poorly understood. 

They have been the subject of numerous research efforts and motivate the present 

research. The transient aerodynamic force and flow development during the pitch up 

motion of a wing is a canonical flow problem encountered in flapping wings and 

perching maneuvers of fixed wing vehicles. These phenomena are also relevant to 

development of advanced small Micro Air Vehicles, which might take advantage of the 

large forces generated at high pitch rates. Vortical flow features, such as leading edge 

vortex (LEV) and wing tip vortex (TIV), develop with characteristic time scales of the 

order of the convective time. On the other hand the pitch rate introduces independent 

time scale. One important goal of the present research is to determine the interplay 

between these two time scales and its impact on force and flow developments for 

different wing geometries and pivot axis locations. Here we review first biological flyers 

and highlight the main wing kinematics and maneuvers found in nature, which are the 

main motivation for the present research. A review of pitching wing aerodynamics 

follows, which is the focus of the present research. Finally the parameter space of 

pitching wings in a uniform stream considered in the present work is introduced and 

scope and objectives of the research outlined.  
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1.1.1 Biological Flyers  

In nature, animals evolve their flying skill in order to adapt to surroundings, to 

escape from predators, to seek food, and to migrate for better living conditions (Bishop, 

1997; Feduccia, 1997). Birds, bats, and insects are common natural flyers but they are 

from three different Classes in biological classification, which is Aves, Mammalia, and 

Insecta in sequence, as shown in Figure 1.1. Interestingly, birds and bats have backbones 

and are considered to be the same Chordata in Phylum, one level higher than Class; 

however, bats do not have feathers to cover their body and wings, and are the only 

mammals capable of flying. Insects are invertebrates and categorized to Arthropoda in 

phylum. These differences reveal two facts. The first fact is that the vertebrate spine is 

not vital for the flying behaviors of natural flyers but accommodates their body sizes. The 

second fact is that natural flyers do not require feathers to stay airborne but may use them 

to alter maneuverability.  

From an engineering point of view, Tennekes (2009) reported a log-log plot of 

weight as functions of cruising speed and wing load, intending to connect man-made 

aircrafts with natural flyers, presented as a straight line from bottom left to top right in 

Figure 1.2. This straight line was established using classical two-dimensional steady 

potential flow theory 2W/U
2S = 2 at  = 6 in the consideration of a long-distance 

cruising flight. Even though this straight line could not be truly correlated with natural 

flyers due to variations of wing configuration and kinematics, and the existence of three-

dimensional flow field, it suggests that small aircraft may need to be wing-flapping, as 

birds, bats and wing-beating insects do, rather than fixed wing. The performances of 

 

Figure 1.1 Biological classification of natural flyers.  
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present fixed-wing micro aerial vehicles (MAVs) are also presented and scattered within 

the shaded region in Figure 1.2; the demand of MAV is at the right upper margin of the 

shaded area (Pine and Bohorquez, 2006).  

1.1.1.1 Birds  

1.1.1.1.1Bird Wing Types  

Savile (1957) observed that bird wings could be categorized into the four 

following primary types of function regarding their flight behavior and wing shape: (i) 

elliptical wing suitable for narrow space operation, (ii) high-speed wing, (iii) high-aspect-

ratio wing, and (iv) high-lift wing (or slotted soaring wing) for carrying heavy loads. The 

representatives of these wings are illustrated in Figure 1.2. According to Savile’s 

calcification, some information, such as aspect-ratio and bird species, is tabulated in 

Table 1.1. The elliptical and high lift wings have more pronounced camber than the other 

two wing forms; their aspect ratio is no more than 7. For high-speed and high aspect-ratio 

wings, the aspect ratio could be higher than 10; most wingtips are pointed with fewer 

slots in appearance unlike the other two wings.  

1.1.1.1.2Bird Flight Types  

Kerlinger (1995) showed that behaviors of bird flight could be categorized 

according to their power source, which includes powered flight and unpowered flight. 

This classification is also considered in Table 1.1 in order to have a better idea of how 

birds maneuver their wings in terms of wing form.  

For powered flight, birds may continuously flap their wings to stay airborne, or 

flap their wings in short bursts, then either extend their wings out to glide or fold their 

wings to speed up, and then flap their wings again. They repeat the similar maneuver 

until getting tired. In biology, the flap-gliding flight was regarded as undulating flight and 

the flap-folding flight was regarded as bounding flight. While implementing the powered 

flight, birds can adjust their overall flight level, such as descending, ascending, or staying 

in the same flight level. For unpowered flight, birds need to extend their wings out and 

then take advantage of either air currents to soar or earth gravity to glide. As birds ride on 

updrafts, they circulate upward; as birds glide from the mountain or tree top, they 
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descend gently toward the surface. In fact, birds applied these types of flight with regard 

to conditions encountered, which are not limited to perching to prey/rest, taking-off from 

the ground, hovering for food. Among those flight behaviors, the unpowered flights are 

rational approaches to save energy, especially during migration reason.  

                                                 
* Feduccia (1996) 

 

Figure 1.2 Great Flight Diagram adopted from Tennekes (2009) together with wing 

planform. For birds, the representatives* are (a) albatross, (b) crow, (c) eagle, (d) falcon; 

For insects, the representatives are (e) stage beetle†, (f) bumble bee‡, (g) dragonfly§, (h) 

damselfly**, (i) swallowtail butterfly††, (j) privet hawk‡‡, (k) fruit fly§§, (l) crane fly§. All 

images were processed using Photoshop and presented in black and white.  
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1.1.1.1.3Birds Flight Performance  

Pennycuick (1990, 1996, and 2001) tracked and reordered numerous free-flying 

birds in many years; he attempted to characterize bird migration behavior. Data reported 

in his articles included bird species, weight, wing span, wing area, air density, flight 

speed, and wing-beat frequency. The flight speed is the speed relative to the air, regarded 

as airspeed in the articles, and was obtained using ornithodolite technology (Pennycuick, 

1983) and corrected to sea level condition by concepts of conservation of energy for 

effective comparison since different flight level was observed (Pennycuick, 2001). The 

wing-beat frequency was defined only within a period of continuous flapping without 

interruption, and determined from video recordings. We collected parts of his work and 

presented it in Figure 1.3 and Figure 1.4.  

                                                                                                                                                 
† Retrieved Aug. 4, 2013, from http://on-the-easel.blogspot.com/2011/09/wildlife-expo.html  
‡ Retrieved Aug. 4, 2013, from http://www.omlet.us/breeds/bees/bumblebee/  
§ Grimaldi and Engel (2005)  
** Retrieved Aug. 5, 2013, from http://www.metafysica.nl/wings/wings_7.html  
†† Retrieved Aug. 4, 2013, from 

http://commons.wikimedia.org/wiki/File:Papilio_machaon_01_04102009.jpg 
‡‡ Retrieved Aug. 4, 2013, from http://en.wikipedia.org/wiki/Sphinx_ligustri  
§§ Retrieved Aug. 4, 2013, from http://www.news.wisc.edu/newsphotos/fruitfly.html 
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Figure 1.3 Bird weight as a function of dynamic force calibrated at sea level during 

cruising flight. Data were collected from Pennycuick (1990, 1996, and 2001).  

http://on-the-easel.blogspot.com/2011/09/wildlife-expo.html
http://www.omlet.us/breeds/bees/bumblebee/
http://www.metafysica.nl/wings/wings_7.html
http://commons.wikimedia.org/wiki/File:Papilio_machaon_01_04102009.jpg
http://en.wikipedia.org/wiki/Sphinx_ligustri
http://www.news.wisc.edu/newsphotos/fruitfly.html
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In Figure 1.3, bird weight was obtained from body mass multiplied by 

gravitational acceleration 9.81 m/s2; dynamic force was evaluated from air density (), 

Table 1.1 A summary for bird wing.  

Wing 

Type1 
Features 

Type of 

Flight2  
Bird Species 

Elliptical 

wing 

 Low aspect ratio (4-5) 

 Pronounced camber  

 Wing tip slotted  

Bounding, 

undulating  

Charadriiformes (e.g., 

woodcocks), Passeriformes (e.g., 

crows, tits, sparrows, finches, 

wrens, dippers, thrush, starlings, 

warbles, jackdaw, American robin, 

American redstarts, kinglets, 

golden crests), Piciformes (e.g., 

woodpeckers, magpie), 

Columbidae (e.g., doves, 

pigeons), Galliformes (e.g., 

turkey, grouse, chicken, quail, 

ptarmigan, partridge, pheasant)  

High-lift 

wing 

(or slotted 

soaring 

wing) 

 Moderate aspect ratio 

(e.g., 5-7) 

 Pronounced camber 

 Wing tip slotted  

undulating, 

gliding, 

soaring,  

Falconiformes (e.g., buteos), 

Accipitriformes (e.g., eagles, 

vultures, ospreys, harriers, hawks), 

Srigiformes (e.g., owls), 

Ciconiiformes (e.g., storks)  

High-

speed 

wing 

 Moderately high 

aspect ratio (e.g., 7-9) 

 Lower camber  

 Typically no tip slots  

 Tapering to elliptical 

tip  

 Leading edge 

Sweepback  

continuous 

flapping, 

partially 

powered 

glide, 

gliding  

Charadriiformes (e.g., 

sandpipers, plovers) 

Passeriformes (e.g., swallows, 

purple martins), Falconiformes 

(e.g., falcons-slotted), 

Apodiformes (e.g., swifts, 

humming birds)  

Charadriiformes (e.g., terns, 

jaegers), Anseriformes (e.g., 

ducks)  

High-

aspect-

ratio wing 

 High aspect ratio 

(e.g., 8-10)  

 Typically no tip slot  

continuous 

flapping, 

partially 

powered 

glide, 

gliding 

Charadriiformes (e.g., gulls, 

kittiwakes, puffins, razorbills), 

Anseriformes (e.g., geese-slotted, 

swan), Procellariiformes (e.g., 

albatrosses, shearwaters, petrels), 

Phaethontiformes (e.g., 

tropicbirds), Suliformes (e.g., 

gannets), Pelecaniformes (e.g., 

pelicans-slotted)  
1Savile (1957); 2Kerlinger (1995)  
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flight speed (U), and wing area (S). According to force equilibrium, lift force is equal to 

body weight. Therefore, the slope of trend line in the figure gives lift coefficient and is 

equal to 0.868, which corresponds to angle of attack 7.9 assuming two-dimensional 

steady potential flow. This angle is higher than the one found by Tennekes (2009).  

Figure 1.4 shows wing-beat frequency as a function of convective time; the 

reciprocal of convective time is defined as convective frequency hereafter. Considering 

the flight is featured by plunge motion, Strouhal number (St) would be a better parameter 

to describe the dynamic system (Shyy et al., 2008). The definition of the Strouhal number 

is given in Equation (1.1).   

where f is wing-beat frequency, ha is plunge amplitude, c is mean chord length, and U is 

flight speed. Taylor et al. (2003) and Triantafyllou et al. (2000) revealed that Strouhal 

number often within the interval 0.2 < St < 0.4 for efficient cruising in nature; on the 

other hand, the time required for a cyclic flapping motion (tp) is within the interval of 

2.5tc < tp < 5tc. As shown in Figure 1.4, the slope gives non-dimensionless wing-beat 
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Figure 1.4 Bird wing-beat frequency as a function of convective frequency during 

cruising flight. Data were collected from Pennycuick (1990, 1996, and 2001). 
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frequency fc/U = 0.0371; Hence, the plunge amplitude normalized with chord length is 

suggested within the interval of 2.69 < ha/c <. 5.39.  

1.1.1.2 Bats 

Bullen and Mckenzie (2002) studied several bat species in tropical and temperate 

regions of Western Australia in free flight. They employed hand-held K-band radar to 

measure flight speed and video camera to determine wing-beat frequency. The flight 

speed we adapted from their work was called mode speed, which is the most probable 

measured speed. Since air density was not provided, we assume standard atmospheric 

conditions are applicable for all their data and comparable to bird data stated in preceding 

section. Data reported include bat species, weight, wing area, and wing span; however, 

their wing span was not determined from a horizontal distance from one wing tip to 

another but along the center of the wing through the body (Bullen and McKenzie, 2001). 

Since no other typical wing span was found in the literature for the bat species considered, 

we keep the reported data, which gives longer typical wing span and results in smaller 

mean chord estimates. In addition, only flying bats in open field are presented here. 

Figure 1.5 and Figure 1.6 show bat weight as a function of dynamic force and 

wing-beat frequency as a function of convective frequency, similar to Figure 1.3 and 

Figure 1.4 for birds, respectively. Lift coefficient, a slope of straight line in Figure 1.5, is 
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Figure 1.5 Bat weight as a function of dynamic force calibrated at sea level. Data were 

collected from Bullen and Mckenzie (2002).  
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0.74 with high coefficient of determination of 0.98. For most bat species in forward flight, 

the wing-beat frequency normalized with convective frequency gives fc/U = 0.0603, 

which is larger than bird flight in cruising/migration. The non-dimensional plunge 

amplitude (ha/c) is suggested to be within the interval of 1.66 < ha/c < 3.32. 

1.1.1.3 Insects  

1.1.1.3.1Insects Wing Types  

According to insect morphology (Dudley, 2000; Grimaldi and Engel, 2005), 

flying insects have one of two types of wings: one-paired wings and two-paired wings, as 

shown in Table 1.2. Insects with a pair of wings and a pair of halteres are categorized as 

one-paired wings. In general, one-paired wings are constructed by membranes and 

supported by branches of veins from body to wing tip. The halteres are like clubs and 

evolved from their old fore- or hind-wings, which are used to stabilize the insects in 

hover and control body rotation, just like a gyroscope (Zufferey, 2008). Insects with two-

paired wings have more diverse wing morphology, which includes scale wings (e.g., 

butterflies), membranous wings (e.g., dragonflies), hard/leathery wings (e.g., beetles), or 

fringed wings (e.g., thrips). Examples of these wing forms are illustrated in Figure 1.2.  
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Figure 1.6 Bat wing-beat frequency as a function of convective frequency. Data were 

collected from Bullen and Mckenzie (2002)  
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1.1.1.3.2Insect Flight Types 

Similar to bird flight, there are two categories of insect flight: powered and 

unpowered flight, even though insect wings are more diverse in appearance and 

arrangement than birds, as shown in Figure 1.2. The powered flight is commonly 

performed by insects for either forward flight or hovering; nevertheless, both undulating 

and bounding flights observed for birds are not found for insects. Hovering flight is of 

most interest to engineering due to its singular behavior. Ellington (1984a) suggested the 

position of the stroke plane could be used to classify hovering flight, which includes 

horizontal, inclined, and vertical. The stroke plane is the plane where gives a reference of 

entire wing stroke and contains a pivot/hinge. During migration season, unpowered 

flights, such as soaring and gliding, are considerably adapted by some insects, like 

butterflies (Danthanarayana, 1986).  

Another classification of insect flight was suggested by Grodnitsky (1999) 

according to wing function, which can be accompanied by wing types defined previously, 

as shown in Table 1.2. For insects with one-paired wings, active aerial flight is achieved 

by flapping a pair of forewings or hindwings since the other paired wings have been 

reduced to halteres. This type of flight can be found mostly for insects in the order of 

Diptera, whose are usually smaller than insects with two-paired wings. For insects with 

two-paired wings, there are four types of wing function depending on wing movement 

between forewings and hindwings; a short description is given as follows. (i) Coupled 

wings: insects operate both forewings and hindwings together as single wings. (ii) 

Uncoupled wings: insects keep one pair of wings open and maneuver the other pair of 

wings. (iii) In-phase stroke wings: insects produce a phase shift between forewing and 

hindwing during an entire stroke cycle; the shifted phase is short compared to entire 

stroke cycle. (iv) Anti-phase wings: insects perform their forewing and hindwing in a 

phase approximately a half of entire stroke; they are also capable of in-phase flight. The 

representative of each wing function is also provided in Table 1.2; apparently, two paired 

wings can be operated in very diverse manners. 
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Table 1.2 A summary for insect wing.  

Wing 

Type 
Features 

Type of 

Flight1 
Insect Species 

One 

paired 

wing  

Membranous 

(forewings with hind 

halteres) 

Forewings 

flapping  

Diptera1 (e.g., midges, fruit fly, 

hoverflies, house fly, crane fly, meat 

fly, gnats, mosquitoes), 

Membranous 

(hind-wing s with fore 

halteres) 

Hind-wings 

flapping 
Strepsiptera1  

Two 

paired  

wings 

Scale wings  

Coupled 

wings,  
Lepidotera (e.g., most of  

Papilionidae1)  

Uncoupled 

forewing 

flapping 

Lepidotera (e.g., Papilionidae1: 

common birdwing, Parides neophilus, 

Papilio) 

In-phase 

forewing 

leading 

Lepidotera (e.g., Micropterigoidea1, 

Eriocraniidae1) 

membranous wings 

Coupled,  

Hymenoptera1 (e.g., wasps, 

bumblebees), Hemiptera (e.g., 

cimicids1), Trichoptera (e.g., 

Phryganeidae1) 

In-phase 

forewing 

leading 

Neuroptera (e.g., lacewing1), 

Mecoptera (e.g., scorpion flies1), 

Plecoptera (e.g., Perlidae1, 

stoneflies1), Trichoptera (e.g., 

Rhyacophilidae1) 

In-phase 

hind-wing   

leading 

Odonata (e.g., Libellulidae1, 

damselflies) 

Anti-phase 

wings 
Odonata (e.g., Calopteryx Splendens2) 

Hard/leathery fore 

wings and membranous 

hind wings  

Uncoupled 

hind-wing  

flapping,  

Dictyoptera (e.g., cockroaches1, 

mantis1), Coleoptera (e.g., tiger 

beetle1),  

In-phase 

hind-wing  

leading 

Orthoptera (e.g., cricket1, 

grasshopper1), Mantodea (e.g., 

mantis1), Blattodea (e.g., cockroach1) 

Membranous fore wings 

and smaller/missing 

hind wings  

 
Ephemeroptera (e.g., mayflies),  

All are fringed wings Thysanoptera (e.g., thrips)  
1Grodnitsky (1999); 2Ruppell (1989)  
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1.1.1.3.3Insect Flight Performance  

There are numerous insects in nature, presented here are a few due to the limited 

information available in the literature. Data for the order of Diptera were collected from 

Wois-Fogh (1972 and 1973) and Vogel (1966), the order of Lepidoptera were from 

Bartholomew and Casey (1978), and Casey (1980 and 1981), the order of Hymenoptera 

were from Casey et al. (1985), and the order of Odonata were from May (1981) and 

Ruppell (1989).  

Since hovering flight is critical and insect flight velocities were hardly detected, 

here we would like to focus on hovering behavior without considering the following 

effects: stroke angle/amplitude, stroke plane, body angle, wing trajectory, phase shift, 

thoracic temperature and metabolic rate. The data collected here include wing-beat 

frequency, body weight, wing area, and wing span, and are presented as body weight as a 

function of normalized force based on wing-beat frequency, shown in Figure 1.7.  

The air density was obtained from ideal gas law based on mean ambient 

temperature given or averaged local temperature. The characteristic velocity Utip is wing-

beat frequency multiplied by wing length; the wing length is a distance of a single wing 

from the root to the tip. The weights were obtained by multipling body mass by 9.81 m/s2.  
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Figure 1.7 Insect weight as a function of dynamic force based on wing-beat frequency.  
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Most wing areas were measured manually from wing outline in natural flight 

position on paper using planimeter or ruler, or counting square enclosed on grid paper; 

overlapping coupled wings was necessary for two-paired wing insects to keep natural 

flight position. Exclusion is the work of Ruppell (1989) who employed a digital 

geometric analysis computer to determine wing area.  

Most of the wing-beat frequencies were determined using an oscillograph but 

Vogel (1966) used stroboscope and Ruppell (1989) used filming. Insects under 

consideration were in conditions of steady free flight. Most data were obtained while 

insects were flying in a confined space, whereas Ruppell (1989) and Wois Fogh (1973) 

obtained data from open field. In addition, the measurement of hovering insects may be 

coupled with slow forward flight, which may tamper with our intention.  

Figure 1.7 is a log-log plot and shows dynamic pressure increases exponentially 

as insect weight increases. The orders of Diptera, Lepidoptera, and Odonata have similar 

trend-line slopes; a higher slope is given by the order of Hymenoptera. The slope of the 

trend line gives a coefficient analogous to typical lift coefficient. If we estimate 

2W/Utip
2S over every tenfold increase of dynamic force under consideration of 

supporting insect weight by flapping frequency, we obtain Figure 1.8 showing that 

coefficient 2W/Utip
2S decreases exponentially with wing-beat frequency using the same 
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Figure 1.8 Insect lift coefficient estimation as a function of dynamic force based on 

wing-beat frequency.  
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wing at same level flight. If we consider the normalized force as an input and the body 

weight is an outcome, the coefficient 2W/Utip
2S can be regarded as flight efficiency, 

especially for hovering flight in current consideration. For insects at a given body weight, 

two-paired wings is more efficienct than one-paired wings. Insects in the order of 

Lepidoptera and Hymenoptera beat their wings more efficiently than insects in the order 

of Odonata and Diptera. 

Considering wing-beat frequency from birds and bats in steady flight together 

with insects in steady hover, a simple relation is observed among natural fliers in terms of 

body weight and wing-beat frequency normalized with air density and wing area, as 

shown as a trend line in Figure 1.9. The heavier the flyers the more wing-beat frequency 

is needed using the same wing at same level flight. This relation grows exponentially and 

is independent of wing form and structure. Surprisingly, Figure 1.9 also reveals the wing-
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Figure 1.9 Characteristics of natural flyer in terms of weight as a function of dynamic 

force based on wing-beat frequency in steady flight.  
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beat behavior is independent of flight types since data for birds and bats were in cruising 

flight and insects were in hover. The way that natural flyer stay airborne should depend 

on other factors, for example, wing kinematics.  

1.1.2 Wing Kinematics  

Wing kinematics used to study unsteady aerodynamics of flapping wings includes 

(i) pure pitch motion, (ii) pure plunge motion (either linear or angular), (iii) combination 

of pitch and plunge motion, (iv) combination of plunge and elevation motion, and (v) 

combination of pitch, plunge, and elevation motion. The first two are one-degree-of-

freedom motions; the next two are two-degree-of-freedom motions and the last is three-

degree-of-freedom motion. The pitch motion changes geometric angle of attack; however, 

the plunge motion does not alter the geometric angle of attack. The stroke plane is formed 

while the plunge motion gets involved and can contain either angular strokes (i.e., sweep 

angle larger than 0) or rectilinear strokes (i.e., zero sweep angle). The elevation motion 

is the motion deviated from the stroke plane; it could be angular or rectilinear. These 

motions could be implemented periodically or non-periodically; the periodic motion was 

mostly conducted to mimic flapping behaviors of natural flyers. The wing kinematics 

implemented to study flight status is briefly reviewed in the following, which is not 

limited to forward/cruising flight, hovering flight, and perching flight.  

Hereafter, sectional wings are referred to wall-to-wall wing configuration in 

experiments and two-dimensional wings in modeling; finite-aspect-ratio wings are 

referred to the wings with free wingtips (at least one chord away from wall) in 

experiments and three-dimensional wings in modeling.  

1.1.2.1 Forward/Cruising Flight  

Platzer et al. (2008) reviewed the progress of flapping-wing aerodynamics and 

determined that thrust performance is the main feature in forward flight. The wing 

kinematics employed is shown in Equation (1.2), which is a one-degree-of-freedom pure 

plunging motion with rectilinear strokes.  

    sinah t h kt  (1.2) 
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where h  is non-dimensional stroke amplitude h/c, k  is twice of reduced frequency k  = 

2k = 2fc/U, 
ah  is non-dimensional plunge amplitude 

ah  = ha/c, and t  is non-

dimensional time tU/c.  

The product k  h  was used to determine the transition from drag-producing 

Kármán vortex street on stationary wing to thrust-producing reverse Kármán vortex street 

on oscillatory wing under attached flow conditions; they are shedding of trailing edge 

vortices into the wake. Young and Lai (2004) showed this transition was very sensitive at 

chord Reynolds number within an order of 104 for a k  h  value of 0.1. The product k  h  

was also used to find induced angle of attack due to plunge motion using i = 

arctan( k  h ); efficient propulsion was found approximately at k  h  = 0.4 for chord 

Reynolds numbers 10,000 to 30,000, which corresponds to maximum induced angle of 

attack of about 22 (Platzer et al., 2008). Tuncer et al. (1998) computed k  h  = 0.35 gave 

efficient propulsion at chord Reynolds numbers of 106, corresponding to 19 induced 

angle of attack.  

Considering the product k  h  in terms of plunge time (tp) and convective time (tc), 

as shown in Equation (1.3). A k  h  value of 0.4 for efficient propulsion gives plunge 

time (tp) equal to approximately 9 convective times. As k  h  increases to 1.5, a shorter 

plunge time is obtained tp = 2tc, where vortex shedding was computed not only from the 

trailing edge but also from the leading edge (Platzer et al., 2008). All aforementioned 

results were based on two-dimensional NACA 0012 airfoil.  

 

Figure 1.10 Wing kinematic coordinates.  
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      2 / / /a c ph k h f c c U t t    (1.3) 

1.1.2.2 Hovering Flight  

Shyy et al. (2008) investigated the aerodynamics of flyers in low Reynolds 

number. For three-degree-of-freedom wing motion in hover, where there is no free-

stream velocity, wing kinematics was defined in terms of angle change in time with 

respect to Cartesian coordinates, typically used for aircraft with fixed wing as shown in 

Figure 1.10. Considering the stroke plane was the y-z plane, the wing motion includes (i) 

positional angle  (t) about roll axis (i.e., x-axis), regarded as sweep angle by Ellington 

(1984b); it corresponds to plunge motion in angular form, (ii) feathering angle (t) about 

pitch axis (i.e., y-axis), also recognized as angle of attack; it corresponds to pitch motion, 

and (iii) elevation angle  (t) about yaw axis (z-axis). The motion for plunge  (t), pitch 

(t), and elevation  (t) were suggested in Equations (1.4)-(1.6), respectively (Liu et al., 

1998; Aono and Liu, 2006; Anon et al, 2008; Aono et al., 2009).  

      
3

0

cos 2 sin 2cn sn

n

t n ft n ft    

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n

t n ft n ft    

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Figure 1.11 Three-degree-of-freedom wing kinematics for hovering flight in 

representative of (a) hawk-moth (Shyy et al., 2008) and (b) fruit fly (Sane and Dickinson, 

2001) 
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where cn, sn, cn, sn, cn, and sn were determined by fitting empirical data of moth 

species Manduca sexta in free flight from Willmott and Ellington (1997); the kinematics 

is shown in Figure 1.11(a). Similar approach was adapted by Fry et al. (2005) to study 

fruit fly Drosophila melanogaster in tethered and free flight. The kinematics shown in 

Figure 1.11(b) were used by Sane and Dickinson (2001) to study fruit fly species 

Drosophila melanogaster, which were approximate patterns for most of insects 

(Ellington, 1984c; Zanker, 1990).  

For two-degree-of-freedom motion in hover, the formula most employed are 

represented in Equation (1.7) and (1.8) for plunge motion and pitch motion using 

sectional wings (Freymuth, 1990; Tuncer et al., 1998; Sunada et al., 2001; Tang et al., 

2008; Ol et al., 2009; Baik et al., 2012; Rival and Tropea, 2010) and finite-aspect-ratio 

wings (Wang et al., 2004; Young and Lai, 2007; Trizila et al., 2011).  

    * * *sin * *ah t h k t    (1.7) 

 

Figure 1.12 Two-degree-of-freedom wing kinematics for hovering flight in study of (a) 

ventral fins of fish (Freymuth, 1990), (b) fruit fly (Dickinson et al., 1999), (c) bumble 

bees (Nagai et al., 2009), and (d) hawk-moth (Vandenheede et al., 2012).  
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    0 sin * *at k t     (1.8) 

where  is phase difference between plunge and pitch motion, 0 is initial angle of attack, 

and a is pitch amplitude; other notations are the same as Equation (1.2). An example of 

this wing kinematics is shown in Figure 1.12(a), which is “water threading mode” to 

resemble the action of the ventral fins of fishes; the parameters a and   are 0 and 90, 

respectively. As parameters a is adjusted to 90 and  is shifted to -90, the wing 

kinematics is regarded as” normal hovering mode” for humming birds in hover. 

(Freymuth, 1990) 

Figure 1.12(b)-(c) show wing kinematics employed to characterize delayed stall, 

rotational effects, and wake capture. Figure 1.12(b) displays patterns based on fruit fly 

and were introduced by Dickinson et al. (1999) to study Drosophila wing, and were 

employed by Gopalakrishnan and Tafti (2009) to study a finitely thin rectangular wing; 

three pitching phases in terms of plunge motion were categorized into advanced, 

symmetric, and delayed modes. Figure 1.12(c) shows the pitch motion has 180-degree 

phase difference with one in Figure 1.12(b); it was employed by Sane and Dickinson 

(2002) to study Drosophila wing and Nagai et al. (2009) to study bumblebee wings. 

Figure 1.12(d) was derived from hawk-moth kinematics by Vandenheeds et al. (2012), as 

shown in Figure 1.11(a); the Zimmerman wing was employed in their study.  

1.1.2.3 Perching Flight  

Another natural flight maneuver is perching, often observed when birds approach 

to nest or prey. Their body and wings are rotated to a high angle of attack, maybe up to 

90 degrees, while their flight speed is descending to near stationary. Reich et al. (2009) 

 

Figure 1.13 Visualization of a successful perching maneuver by Cory and Tedrake 

(2008).  
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gave a definition of perching as landing with approximately zero vertical and horizontal 

velocity on a specific point, for designing Micro Aerial Vehicle (MAV) landing 

maneuver. Some valuable information of perching landing using fixed-wing glider was 

given in Cory and Tedrake (2008), the perching maneuver was illustrated in Figure 1.13.  

The transition from attached flow to massive separation flow is the main feature 

of perching maneuver and remains to be fully understood. Ol et al. (2009) abstracted the 

perching maneuver as a classical pitch-up motion to investigate the relation between 

motion time history and aerodynamics, which is relevant to the interest of this study. The 

perching motion or pitch-up motion was also considered as an important motion to 

produce rotational force while using higher degree-of-freedom motions (Dickinson, 1994; 

Dickinson et al., 1999; Sane and Dickinson, 2002; Kim et al, 2005; Gopalakrishnan and 

Tafti, 2009).  

1.2 REVIEW OF PITCHING WING AERODYNAMICS  

Maneuverability for manned aerial vehicles required the ability to turn, to climb, 

and to accelerate (Herbst, 1973). The key of a successful maneuver was the capibility to 

sustain lift at an angle-of-attack typically higher than static-stall angle during turning and 

 

Figure 1.14 An illustration of the dynamic character for typical post stall maneuver. 

Adopted from Herbst (1980).  
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was considered as post-stall (PST) maneuver (Herbst, 1980 and 1983). Herbst (1980) 

reported a characteristic motion of PST maneuver together with demanded airspeed (V), 

as shown in Figure 1.14, in comparison with normal aircraft. This dynamic character is a 

rapid pitch up to 90-deg, maintaining this condition for 2-3 s, followed by a fast return to 

normal flight. As reported the maneuvaring in 30- to 50-deg angle of attack arose most 

difficulties in flight and control.  

Herbst (1983) simulated requirements of rate of turn in terms of flight speed for 

conditions of short-range combat and medium-range combat, as shown in Figure 1.15. 

The turn-of-rate for short-range combat in demand was significantly higher than one for 

medium-range combat; the maximum turn-of-rate was about 28 /s at Mach number M  

0.5, which was limited by structure and maximum lift. Under these circumstances and 

considering the maximum turn-of-rate as pitch rate m, reduced pitch rate (K = 

cm/2U) for F-16 flighter (wing mean chord S/b = 9.146 ft) *** is equal to 0.004 at 

                                                 
*** F-16 flighter dimension: wing area, S = 300 ft2 and wingspan b = 32.8 ft. Retrieved March 5, 2014, from 

http://www.lockheedmartin.com/us.   

 

Figure 1.15 Time history maneuver conditions simulated for (left) short range combat 

and (right) medium range combat. SEP stands for Specific Excess Power; n denotes load 

factor in terms of g-level. Adopted from Herbst (1983) 

http://www.lockheedmartin.com/us
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standard temperature and pressure (STP)†††. K was an important normalized parameter 

for separation flow due to pitching airfoils (Daley and Jumper, 1984) and is adapted to 

characterize the flow in present study.  

Ol et al. (2010) summarized the discussion of the AIAA Fluid Dynamic Technical 

Committee (FDTC) Low Reynolds Number Discussion Group and introduced a similar 

pitch up-hold-return motion as a canonical wing kinematics in an attempt to understand 

unsteady problems intrigued from micro air vehicles (MAVs) maneuver and control 

design. This one-degree-of-freedom canonical kinematics give a constant pitch rate and is 

featured by maximum pitch angle m = 45, reduced pitch rate K = /16, smoothing angle 

of 4.5, and one convective time sustained at m.  

MAVs are uninhabited air vehicles (UAVs); their sustainability at high turn-of-

rate supposedly much higher than inhabited air vehicles. Fixed wing MAVs were 

designated to be operated within chord Reynolds number 104  Re  105 (Mueller, 1999) 

like birds and bats. Flapping wing MAVs like insects would have much smaller size and 

could be operated within even lower chord Reynolds number Re < 104 (Ma et al., 2013). 

The potential wing kinematics shown by Wootton (2000) had a three-degree-of-freedom 

motion and exhibited pitching motion relevant to the canonical wing kinematics. During 

wing downstroke, the wing moves from near zero geometric angle of attack to a high 

geometric angle of attack and then returns to its initial position during upstroke. The 

progress of MAV development was reported by Pines and Bohorquez (2006); the design 

requirements in terms of weight, flight speed, and wing loading are highlighted in 

Figure 1.2. Reviews of flapping wing aerodynamics were given by Sane (2003), Platzer 

et al. (2008), and Shyy et al. (2010).  

The intriguing problems associated with MAV flight in low Reynolds number 

regions include (i) circulatory vs. non-circulatory contributions to force, (ii) steady vs. 

unsteady flow model, (iii) two- vs. three-dimensional flow fields, (iv) vortex dynamics, 

(v) motion-history effects, (vi) separation effects, and (vii) laminar to turbulent transition. 

In this study, the complex flow problems are going to be studied using rigid wings and 

                                                 
††† Condition for standard temperature and pressure is dry air at temperature 20C, pressure 101.325 kPa, 

density 1.205 kg/m3, kinematic viscosity 15.12710-6 m2/s, and speed of sound 340.29 m/s.  



 

 23 

the canonical wing kinematics, which is pitch up-hold-return wing kinematics. The 

canonical wing kinematics is considered as a non-oscillatory motion for constant pitch 

rate. The studies of the sinusoidal oscillatory motion for non-constant pitch rate involved 

research subjects in 1970s and were typified by the works of McCroskey and Philippe 

(1975), McAlister and Carr (1979), McCroskey (1982), and Currier and Fung (1992).  

Experimental works using constant pitch rate motion are reviewed below. The 

approaches and test conditions considered are summarized in Table 1.3; most works were 

conducted for NACA0015 airfoil in the 1980s- and 1990s. These test cases are displayed 

in a parameter space of Reynolds number (Re) and Stokes number (St), as shown in 

Figure 1.16; most test cases had reduced pitch rates K less than 0.39 and were conducted 

in wind tunnel within a Reynolds number range of 2104 < Re < 3105. Surprisingly, 

aerodynamic force data obtained from surface pressure did not reveal non-circulatory 

effects, in contrast with direct force measurement.  
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Figure 1.16 Summary of test cases considered in the literature in Re-St parameter space. 

Red symbols represent experiments in wind tunnel, and blue symbols represent 

experiments in water channel.  
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1.2.1 Quarter-Chord Separation  

Daley and Jumper (1984) revealed an approach to quantify dynamic separation. 

They instrumented four pressure transducers at upper surface of NACA0015 airfoil 

pitching at mid-chord; the one at about quarter-chord was used as an indicator of 

occurrence of separation, where adverse pressure gradient in time (dP/dt > 0) was 

observed. The angle of quarter-chord separation was considered from a dynamic-

separation angle and its difference from static-separation angle was favorable for 

normalizing angular rate with free-stream velocity, as shown in Equation (1.9). The 

normalized angular rate was valid over a range of Reynolds number from 15k to 300k, 

and is called reduced pitch rate in the present study. Moreover Jumper et al. (1987) 

pointed out that the dynamic stall was occurred at much higher angle of attack than the 

dynamic-separation angle using the same airfoil pitching at the same location.  

1.2.2 Basic Flow Structure  

The flow past a constant pitch-rate airfoil had several distinguishable features, 

including flow reversal, leading edge vortex or dynamic stall vortex, shear layer vortex, 

and starting vortex. The first three are structures on upper airfoil surface; the last one is 

structure in the wake.  

The flow reversal occurred typically in a laminar separation bubble and indicated 

a propagation of laminar boundary layer to turbulent boundary layer (Leishman, 2006). 

McAlister and Carr (1979) evidenced that the flow reversal was uncoupled with flow 

separation for unsteady flow over oscillating airfoil and usually moved toward the 

leading edge from the trailing edge. For constant pitching airfoil, Shih et al. (1992) 

identified the similar flow reversal at trailing edge and expanded toward the leading edge. 

They also noted that the flow reversal does not imply a significant departure of the 

boundary layer on the rear portion of the airfoil due to finite Reynolds number effects 

(Sears and Teliouis, 1975; Shen, 1978).  
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Table 1.3 A summary of experimental work and approaches using pitching wings.  

Authors Pivot axis K Wing type m, 
Pressure 

transducer 

Direct 

force 

Near 

surface 

velocity 

Flow 

visualizat

ion 

PIV 

Daley & Jumper 

(1984)3 
c/2 

0.0057-

0.0651 

NACA 

0015* 
 V     Smoke    

Helin & Walker 

(1985)3 

c/4, c/2, 

3c/4 
0.1,0.2,0.3 

NACA 

0015* 
60     Hot film 

Smoke 

wire 
  

Walker et al. 

(1985a)3 
c/4 0.1, 0.3 

NACA 

0015* 
60      Hot wire 

Smoke 

wire  
  

Walker et al. 

(1985b)3 
c/4 0.025-0.3 

NACA 

0015* 
60 V        

Strickland & 

Graham (1986a-

b,1987)2 

c/4 0.088-0.99 
NACA 

0015* 
90 V     

Bubble 

wire 
  

Walker&Chou 

(1987)3 
c/4 0.025-0.6 

NACA 

0015* 
60 V   Hot film 

Smoke 

wire 
  

Jumper et al. 

(1987)3 
c/2 

0.005-

0.023 

NACA 

0015* 
50 V         

Albertson et al. 

(1988)3 

c/4, c/2, 

3c/4 
0.0025-0.1 

NACA 

0015* 
60 V     

Tungsten 

wire 
  

Jumper et al. 

(1989)3 

2c/25, c/4, 

c/2 

0.0089-

0.064 

NACA 

0015* 
40 V         

Acharya et al. 

(1992)3  
c/4 0.018-0.39 

NACA 

0012 
40 V         

Shih et al. (1992)2 c/4 0.066 
NACA 

0012 
30         V 

Ol (2009)1 c/4 0.1-2.8 
Flat plate

*†
, 

SD7003
*
 

20, 

40 
      Dyes    

Grandlund et al. 

(2010)1 

 0.03 SD7003* 45  
  V   Dyes    

0, c/4, c/2, 

3c/4 
0.0025-0.2 Flat plate* 90 

Yilmaz et al. 

(2010)1  

0, c/4, c/2, 

3c/4, c 
0.1-0.35 Flat plate† 40    Dyes  

Baik et al. (2010)1 c/4 0.2, 1 Flat plate* 90       Dyes  V 

Grandlund et al. 

(2011a-b)1 
0, c/2, c 0.1-1 Flat plates† 90  V  Dyes  

Yu et al. (2012)1 0 0.2 Flat plate* 

33, 

45, 

57 

  V     V 

Yilmaz & Rockwell 

(2012)1 
c/4 0.098 Flat plate† 45         V 

Yu & Bernal 

(2013)1 
0, c/2, c 

0, 0.022, 

0.065, 

0.13, 0.19, 

0.39,  

Flat plate† 45  V   V 

Yu et al. (2013)1 0, c/2, c 0, 0.39 Flat plates† 45  V  Dyes  

Granlund et al. 

(2013)1 

0, c/4, c/2, 

3c/4, c 
0.01-0.5 Flat plate* 90  V  Dyes  

c, chord length; 1water channel/channel; 2tow tank; 3wind/smoke tunnel; *sectional wing; †finite-aspect-

ratio wing.  
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The appearances of leading edge vortex (LEV) and shear layer vortex (SLV), as 

interpreted by Shih et al. (1992), were due to unsteady separation by means of local 

thickening of the boundary layer on the upper airfoil surface. The upper part of the 

boundary layer forms a free shear layer and rolls up into an individual vortex in a 

mechanism resembling Kelvin-Helmholtz instability. The lower part of the boundary 

layer was known as shear layer vortex (Visbal, 1989). The shear layer vortex seemed to 

disappear at high Reynolds numbers, leaving only leading edge vortex (Walker et al. 

1985).  

The starting vortex (SV) is a counterclockwise vortex that usually rolls up at 

trailing edge and sheds into the wake from the lower airfoil surface, where the flow is 

fully attached as the pitch motion begins (Visbal and Shang, 1988; Shih et al., 1992; 

Pullin, 1978). The starting vortex was considered to accelerate the downstream 

convection process along the upper surface and some accumulation occurs near the 

trailing edge (Shih et al., 1992). According to Kelvin’s circulation theorem (Anderson, 

2011), for inviscid and incompressible flow, the circulation around the starting vortex is 

equal to the circulation around the airfoil.  

1.2.3 Effect of Pitch Rate  

Effect of pitch rate refers to a comparison among cases whose pitch rate is 

changed while holding Reynolds number constant, resulting in changing reduced pitch 

rate K. The reduced pitch rate increase as pitch rate is increased in a constant free-stream 

velocity.  

Most studies of effect of pitch rate were conducted using a NACA0015 airfoil 

pitching at quarter-chord and can be found in the work of Helin and Walker (1985) who 

compared K = 0.1, 0.2, and 0.3 in Re = 45k, Walker et al. (1985a) who compared K = 0.1 

and 0.3 in Re = 45k, Walk et al. (1985b) who compared K = 0.005, 0.1, 0.2, and 0.3 in Re 

= 47.5k, K = 0.05 and 0.1 in Re = 95k, and K = 0.025 and 0.05 in Re = 190k, Strickland 

and Graham (1986a, 1987) who compared K = 0.088-0.99 in Re = 100k, Walker and 

Chou (1987) who compared K = 0.05 and 0.1 in both Re = 50k and 100k, and Albertson 

et al. (1988) who compared K = 0.075, 0.05, and 0.015 in Re = 60k.  
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The works used NACA0015 airfoil pitching at mid-chord were given by Jumper 

et al. (1987) who compared K = 0.009, 0.015, 0.02, and 0.026 in Re = 180k, and K = 0.01, 

0.018, 0.023, and 0.03 in Re = 160k. The work using flat plate was provided by Ol (2009) 

who showed flow visualization for K = 0.1 0.2, 0.35, 0.7, and 1.4 in Re = 10k at quarter-

chord, by Granlund et al. (2010) who provided force history for K = 0.0025, 0.005, 0.01, 

0.02, 0.03, 0.05, 0.075, 0.1, 0.125, 0.15, 0.2 in Re = 20k at quarter-chord and three-

quarter-chord, and by Baik et al. (2010) who attempted to determine force history from 

PIV data for K = 0.2 and 1 in Re = 5k at quarter-chord.  

From surface pressure data, the dependence of pitch rate was less pronounced at 

lower free-stream velocities; maximum lift was increased while increasing pitch rate. The 

change of maximum lift was less pronounced as Reynolds number was increasing 

(Walker et al., 1985b). The lift and drag coefficients could be correlated using simple 

trigonometric function to a function of angle of attack and pitch rate (Strickland and 

Graham, 1987). The dynamic stall phenomena were reproducible; dynamic lift-curve 

slope prior to separation was less than static lift-curve slope in agreement with theory 

(Jumper et al., 1987).  

From flow visualization data, several features were disclosed. (i) The initiation of 

the dynamic stall vortex was delayed to higher angle of attack as the pitch rate was 

increased; more cohesive vortices appeared. However, the delay was not a linear function 

of the pitch rate (Helin and Walker, 1985). (ii) The stall delay angle at leading edge 

determined from images was proportional to the square root of the reduced pitch rate; the 

delay in the onset of dynamic stall was partially due to the effective angle of attack at 

airfoil leading edge that decreased with increasing pitch rate (Strickland and Graham, 

1986a and 1987). (iii) As pitch rate increased, leading edge vortex became more compact 

and a pair of vortices was formed in the near wake (Ol, 2009).  

From direct force data, the stall angle was delayed as pitch rate was increased. A 

range of reduced pitch rate 0.005 < K < 0.02 was determined to be quasisteady due to 

constant slope consistent with theory; the reduced pitch rate 0.03 < K < 0.1 was 

determined to be a rate-dependent range. At higher reduced pitch rate K > 0.15, 

noncirculatory lift was present (Granlund et al., 2010).  
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From near-surface velocity data, the slope of velocity profile with respect to angle 

of attack, at a position of 6.7% chord, was relatively independent of pitch rate; maximum 

velocities were increased as the pitch rate was increasing, which was 140 and 210 % of 

the free-stream velocity (Helin and Walker, 1985; Walker et al. 1985a).  

1.2.4 Effect of Reynolds Number  

Effect of Reynolds number refers to a comparison among cases whose free-stream 

velocity is changed while holding the Strokes number constant, also resulting in the 

change of reduced pitch rate K. The reduced pitch rate decreased as the free-stream 

velocity increased at a constant pitch rate. The effect was studied using by NACA0015 

airfoil pitching at quarter-chord by Walk et al. (1985b) for K = 0.025, 0.05, and 0.1 at St 

= 9.5k, K = 0.05, 0.1, and 0.2 at St = 19k, and K = 0.1 and 0.3 at St = 28.5k, and by 

Walker and Chou (1987) for K = 0.05 and 0.1 at St = 10k and 20k.  

The effect of varying Reynolds number contrasted effects of varying pitch rate. 

Maximum lift was reduced when increasing Reynolds number and was inversely 

dependent on Reynolds number (Walker et al., 1985b).  

1.2.5 Effect at Reduced Pitch Rate  

Effect of reduced pitch rate refers to a comparison among cases whose reduced 

pitch rate remains the same whereas pitch rate and free-stream velocity are adjusted with 

same ratio. The effect was studied using NACA0015 airfoil pitching at quarter-chord by 

Walk et al. (1985b) and Walker and Chou (1987) for K = 0.05 and 0.1. Granlund et al. 

(2010) employed both flat plate and SD7003 pitching at quarter-chord at K = 0.03 in Re = 

20k and 50k.  

As a function of angle of attack, lift coefficient quantified by dynamic surface 

pressure on NACA0015 airfoil showed very similar tendency before stall in Reynolds 

number regions 47.5k < Re < 200k (Walker and Chou, 1987; Walk et al.,1985b). The 

aerodynamic forces were not generated by the dynamic stall vortex; effects of Reynolds 

numbers were limited to freestream velocity variations (Walker and Chou, 1987). Similar 

force history was also observed for flat plate in 20k < Re < 50k from data obtained by 

direct force sensor; however, SD7003 airfoil appeared to be dependent on Reynolds 
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number (Granlund et al., 2010). The reduced pitch rate was proved to be a determining 

factor (Walker and Chou, 1987). 

1.2.6 Effect of Pivot Location  

A position where pitch or rotation shaft is located refers to a pivot point for 

sectional wings and pivot axis for finite-aspect-ratio wings. Experimental data 

considering effect of pivot location was obtained based on NACA-0015 airfoil by Helin 

and Walker (1985) for pivot locations of c/4, c/2, and 3c/4 at K = 0.2 in Re = 45k, 

Albertson et al. (1988) for pivot locations of c/4, c/2, and 3c/4 at K = 0-0.2 in Re = 60k, 

and Jumper et al. (1989) for pivot locations of 0.08c, c/4, and c/2 at K up to 0.04. Some 

work considering flat plate were given by Ol et al. (2009) for pivot locations of 0, c/4, c/2, 

3c/4, and c at K = 0.7 in Re = 10k, Granlund et al. (2010) for pivot locations of 0, c/4, c/2, 

and 3c/4 at both K = 0.05 and 0.2 in Re = 20k, and Granlund et al. (2011a) for pivot 

locations of 0, c/2, and c at K = 0.2 in Re = 10k. These works were for sectional wings. 

Granlund et al. (2011b) considered a finite-aspect-ratio rectangular flat plate for pivot 

locations of 0, c/4, c/2, 3c/4, and c at K = 1 in Re = 5k.  

From surface pressure data, lift-to-drag ratios were found to depend on pivot 

location (Albertson et al., 1988); effects of pitch-location dynamic-stall could be inferred 

from the theoretical prediction based on quarter-chord separation approach (Jumper et al., 

1989).  

From near surface velocity data, the velocity profile with respect to angle of 

attack at 6.7% chord had decrease in slope as pitch-axis distance from leading edge was 

increased; the peak velocity was also decreased (Helin and Walker, 1985).  

From flow visualization data, as pitch-location was moved to three-quarter chord 

the onset of dynamic stall was delayed, similar to effects by increasing pitch rate (Helin 

and Walker, 1985). The vertical extent of the wake becomes smaller with pivot point 

further aft (Ol. 2009). The leading edge vortex was delayed as the pivot point was taken 

downstream; the LEV first formed on the plate pressure side before switching to suction 

side (Granlund et al., 2011a-b).  
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From direct force measurement, both effect of pitch rate and acceleration 

depended on pivot location; force coefficients were generally higher as pivot location was 

upstream (Granlund et al., 2010). Non-circulatory effects were present for pivot locations 

other than mid-chord, where acceleration occurred. The unaccelerated portion of pitch 

motion had constant offset between pivot locations; all curve evolved to zero lift at 90 

incidence (Granlund et al., 2011b).  

1.2.7 Effect of Wing Section 

The effect of wing section was studied using SD7003 airfoil and flat plate 

pitching at quarter-chord by Ol (2009) who obtained flow visualization data at K = 0.7 in 

Re = 10k and Granlund et al (2010) who obtained the force data at K = 0.03 in both Re = 

20k and 50k.  

The flow around SD7003 airfoil was observed to have much stronger dye 

concentration in trailing edge vortex and tighter leading edge vortex (Ol, 2009). SD7003 

airfoil exhibited the dependency of Reynolds number on force history and more 

pronounced flow separation in a range 8 <  < 20 (Granlund, 2010).  

1.2.8 Effect of Wing Planform 

The effect of wing platform was studied using aspect-ratio-of-two flat plates 

pitching at quarter-chord by Granlund et al. (2011a-b) who compared Zimmerman and 

rectangular plates for K = 0.03, 0.2, 0.3, and 0.5 in Re = 20k, and K = 1 in Re = 5k, 

Yilmaz and Rockwell (2012) who compared elliptical (K = 0.098) and rectangular plate 

(K = 0.084) in Re = 10k.  

Zimmerman and rectangular plates showed very similarities in force history, 

higher reduced pitch rate gave lower lift and drag (Granlund et al., 2011a-b). 

Stereoscopic particle image velocimetry data showed three-dimensional leading edge 

vortex formed at high angle of attack for both elliptical and rectangular plates (Yilmaz 

and Rockwell, 2012). The leading edge vortex was lifted up the elliptical plate surface at 

a higher angle of attack (45 at 4 convectime times) than the rectangular plate, where the 

leading edge vortex was lifted up at a lower angle of attack (27 at 2.4 convective times).  
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1.2.9 Sectional Wing vs. Finite-Aspect-Ratio Wing  

The effect of 2D and 3D wings were inspected using flat plates pitching at 

quarter-chord by Ol (2009) who obtained flow visualization data for K = 0.1 and 0.2 in 

Re = 10k, and Granlund et al. (2011a) who obtained force history for K = 0.03 and 0.2 in 

Re = 20k. Finite-aspect ratio model had a tighter leading edge vortex (Ol, 2009), and 

stalled at higher angle of attack and smaller maximum lift (Granlund et al., 2011a).  

1.3 PITCHING WING AERODYNSMIC PARAMETER SPACE  

For fixed wing geometry (i.e., aspect-ratio-of-four flat-plate wings), maximum 

pitch angle, pivot location, there are two independent parameters that define the flow: 

free stream velocity and wing pitch rate. Normalizing both parameters with relevant 

combination of wing chord and fluid kinematic viscosity gives Reynolds number (U∞c/ʋ) 

and Stokes number (άmc2/ʋ), shown as coordinates in Figure 1.17. The abscissa is 

Reynolds number, which is a ratio of flow advection time to viscous diffusion time; the 

ordinate is Stokes number, which is a ratio of pitch rate characteristic time to viscous 

diffusion time.  

 
2 2Re 2 2

m m c m

p

c tSt
K

U t

  




     (1.9) 

An important parameter for flow dynamics is reduced pitch rate K, which is a 

straight line in Figure 1.17 through the origin with increased slope as reduced pitch rate 

increases. As given in Equation (1.9), the reduced pitch rate gives the relationship 

between Stokes number and Reynolds number, but also characteristic times for a given 

maximum angle of attack. The characteristic times are pitch time tp = m/m and 

convective time tc = c/U∞; the ratio of tp to tc is denoted by .  

Figure 1.17 shows test cases in the study. There were conducted in four free-

stream velocities (U∞): 0 cm/s (Re = 0k), 8.6 cm/s (Re ~ 4.3k), 17.5 cm/s (Re ~ 8.9k), and 

25.6 cm/s (Re ~ 13k), and five pitch rates: 12.5/s (St ~ 0.5k), 25.6/s (St ~ 1.1k), 37.5/s 

(St ~ 1.7k), 76.4/s (St ~ 3.4k), and 155/s (St ~ 7.0k). In Figure 1.17, square symbols 

represent the use of only rectangular wing; triangle symbols represent the use of several 

wing planforms. The wings were pitched at three pivot locations from 0 to 45, which 
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are leading edge, mid-chord, and trailing edge. The ratio of pitch time to convective time 

is also presented in parenthesis in Figure 1.17; they are from  = 1, 2, 3, 6, to 18. Those 

are representatives for unsteady flow K > 0. Steady flow measurements K = 0 were also 

considered to quantify steady flow around fixed wings at fixed angle of attack; they are 

represented by the horizontal axis.  

1.4 SCOPE AND OBJECTIVE  

The scope of this study is to experimentally investigate unsteady flow field over 

pitching flat-plate wings with a mean finite-aspect-ratio in a water channel, covering 

Reynolds number 0  Re < 1.3104. The wings had rectangular-shaped planforms, two 

trapezoids, and two triangles; they had two-inch mean chord and four-effective-aspect 

ratio. Three approaches were conducted, including flow visualization, force measurement, 

and particle image velocimetry (PIV). The primary objectives of the study are listed 

below.  

1. To determine the relation between wing kinematics and two- and three-

dimensional flow structure, as well as lift generation mechanism. 

2. To identify scaling properties of these flow processes. 
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Figure 1.17 Test cases of interest in St-Re parameter space.  
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3. To explore simple theoretical models suitable for these flows.  

In addition, several effects are going to be presented, including effects of pivot 

location, wing planform, and reduced pitch rate. The case of zero free-stream velocity 

will also be considered to investigate the contribution to force and flow dynamics of non-

circulatory effects.  
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CHAPTER 2 

FLOW FACILITY AND INSTRUMENTATION 

The study of unsteady flow over pitching wings was conducted by three 

experimental approaches: direct force measurement, PIV measurement, and flow 

visualization. In this chapter, facilities and procedures for these approaches are described, 

including water channel for constant free-stream velocity in Section 2.1. The geometry of 

wing planform is described in Section 2.2. All methods need stepper motors to carry out 

wing kinematics of interest, which is discussed in Section 2.3. Figure 2.1 shows road map 

for each approach. For dye injection, the evolution of streaklines is recorded by camera; it 

is considered as direct flow visualization and discussed in Section 2.4. Force 

 

Figure 2.1 Road map for experimental approaches.  
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measurement is discussed in Section 2.5, which includes transformation of calibration 

matrix about any reference coordinate of interest, determination of filter and cutoff 

frequency, and post-processing. For flow visualization, since PIV measurement presents 

flow topology quantitatively using mathematical algorism, it is regarded as indirect flow 

visualization and discussed in Section 2.6.  

2.1 WATER CHANNEL  

The free surface water channel at University of Michigan was employed to 

conduct experiments performed in this study, as shown in Figure 2.2; free-stream velocity 

was produced by a propeller controlled through AC motor controller within a region of 6 

cm/s  U  60 cm/s. The AC motor controller applied pulse-width modulation (PWM) 

technique to modulate line-power and to adjust the rotation rate of a motor for the 

propeller; the motor is an AC induction motor EM3665T by BLADOR. As a result, the 

free-stream velocity is changed and in turn the corresponding motor frequency (MF) is 

revealed on LED display. If the power-line or motor controller is not grounded perfectly, 

the sensor used for force measurement would detect signals at a phase of motor frequency, 

which is identified in Figure 2.25. The room temperature of the water channel was kept at 

72 F.  

2.1.1 Free-Stream Velocity  

 

Figure 2.2 University of Michigan water channel.  
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To assure steady performance of a propeller is vital for producing constant free-

stream velocity, which is evidenced in Figure 2.3. The free-stream velocity was measured 

using 2D particle image velocimetry in a test section with 7” wide and 22 11/16” height. 

The laser sheet with thickness of about 2 mm was positioned horizontally at the middle 

ofwater height. Each snapshot was taken by every 0.3 seconds for 10 snapshots. The 

average of the snapshots at each motor frequency is shown in Figure 2.4. At the given 

water height, free-stream velocity is related to motor frequency by Equation (2.1). For 
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Figure 2.3 Free-stream velocity at constant motor frequency by the water channel in 

use.  
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Figure 2.4 Freestream velocity as function of motor frequency.  
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detail PIV configuration, see Section 2.6.  

 2.55 0.58U MF    (2.1) 

Two parameters are important to control free-stream velocity, which are water 

height and motor frequency. Keeping one parameter constant, three linear relations could 

be employed to facilitate experiment progress, as given in Equations (2.2)-(2.4).  

 
,1 ,2 1 2/ /U U MF MF    at constantH   (2.2) 

 
,1 ,2 2 1/ /U U H H    at constantMF   (2.3) 

 
1 2 1 2/ /H H MF MF  at constantU   (2.4) 

2.2 WING PLANFORM  

The impact of flow structure on wing dynamics was studied using various wing 

shapes: one rectangular wing, two trapezoidal wings, and two triangular wings, as shown 

in Figure 2.5. All wings have 2” mean chord and 4” span immersed in the water, which 

give a constant effective aspect ratio of 4. These wings were made of Acrylic with wetted 

round edges and thickness of 1/8”; the ratio of thickness to mean chord is 6.25%. Small 

holes are used to fasten the wings to sensor adapter and align with pitch axis. There are 

three pivot-axis locations, which are leading edge (LE), mid-chord (MC), and trailing 

edge (TE). In addition, the wing geometry is given in Table 2.1. The taper ratio for 

rectangular, trapezoidal, and triangular wings is 1, 0.5, and 0, respectively. Leading-edge-

sweep angle depends on both wing planform and pivot axis location; the minimum edge 

angle is 0 for the rectangular wing and the maximum edge angle is 45 for triangular 

 

Figure 2.5 Illustrations of wing planforms (from left to right) rectangular wing, two 

trapezoidal wings (isosceles and right), two triangular wings (isosceles and right) (draw 

water-line).  
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wing at trailing-edge pivot. The total mass contributed to sensor is less than 19 grams, 

including wing itself, sensor adapter, and screws.  

2.3 WING KINEMATICS AND IMPLEMENTATION  

Pitch up-hold-return motion is a pure pitching wing motion and applied to 

investigate development of unsteady flow field throughout this study. Wings were 

pitched up linearly from a zero-degree angle of attack to a maximum angle of attack with 

a constant pitch rate, held for certain convective times for transient behaviors, then 

returned with the same constant pitch rate to initial position. In position-time space, wing 

motion has a trapezoidal shape, as shown in Figure 2.6. There are five phases defined (Yu 

and Bernal, 2013): start phase, pitch-up phase, hold phase, pitch-return phase, and 

relaxation phase. Additionally, this motion is considered a non-periodic motion due to the 

existence of start phase, hold phase, and relaxation phase. However, the wing motion was 

repeated several times in force measurement and PIV measurement; associated 

realizations are reported after phase averaging in order to obtain reasonable experimental 

uncertainty. The data presented in the study were averaged over 60 samples in phase.  

As instantaneously starting or stopping with a constant pitch rate, the wing moves 

with infinite amount of acceleration, contributing infinite inertia to force sensor and 

making measurements impossible. This problem also challenges the field in 

computational fluid dynamics. In order to prevent such singular behavior at transition 

corners, shown as ti with i = 1 to 4 in Figure 2.6, the smooth maneuvering was conducted 

and controlled using smoothing function, which yields finite acceleration regions. 

Table 2.1 Wing geometry.  

Properties 
Rectangular wing Trapezoidal wing Triangular wing Sensor 

adaptor & 

screws LE/TE MC LE TE MC LE TE MC 

Mass (g) 22.9  24.2  24.1  27.9  27.7  18.3  

Leading-edge 

sweep angle 

(degrees) 

0 0 18.43 9.46  0 45 26.57   

Taper ratio 

(ct/cr) 
1 0.5 0  

LE = leading edge pivot axis; MC = mid-chord pivot axis; TE = trailing-edge pivot axis 
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Therefore, during the pitch-up phase, the wing gradually moves to a constant pitch rate 

and then gently stops at a maximum angle of attack. During the pitch-return phase, the 

wing is maneuvered in the same manner. 

In principle, the smoothing function gives wing angular position in time, and we 

proposed this smoothing function as a function of pitch time. The pitch time, tp = m/m, 

is defined as the time required to move the wing from zero incidence to a maximum angle 

of attack m, or vice versa with constant pitch rate m. Consequently, unsteady flow field 

induced by wing motion acceleration and constant pitch rate under a constant free-stream 

velocity can be studied distinctly.  

2.3.1 Smoothing Function  

The first smoothing function was proposed by Visbal (1986), as indicated by the 

reviewed articles, for two-dimensional pitching NACA-0015 airfoil to prevent unrealistic 

acceleration introduced by instantaneous startup. The focus of his work was on testing the 

Beam-Warming scheme coupled with a developed two-dimensional Navier-Stokes solver 

on separated flow during the pitch-up phase from 0° to 60° angle of attack.  

    04.6 /

0 1
t t

t e
      

where + is non-dimensional pitch rate parameter (c/U∞), and t0 denotes the time 

required to reach 99% of the nominal pitch rate 0
+.  

For practical convenience, Eldredge et al. (2009) proposed a smoothing function 

giving homologous trapezoidal trajectory in position-time space, being able to not only 

pitch the wing during the pitch-up phase but also return the wing from a high angle of 

attack to initial zero-degree angle of attack with same constant pitch rate. The corrected 

expression (Eldredge and Wang, 2010) is shown below, which is a function of convective 

time.  
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where 0  is maximum angle of attack and a  is a parameter defined to control the speed 

of the transitions around ti. The maximum value of  G t  is equal to a0/k, as formulated 

in Yu et al. (2012).  

The utilization of this function yields two questions. The first question is how 

wing kinematics would be in the still water since free-stream velocity is zero (i.e., 

0U  ). One possible answer is to consider the free-stream velocity in smoothing 

function is specified to be independent of actual flow condition, which supports the 

 

Figure 2.6 An illustration of linear pitch up-hold-return kinematics.  
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argument that pitch rate and free-stream velocity are independent. However, this causes 

the second question of how reasonable free-stream velocity should be specified.  

To avoid confusion, a smoothing function as a function of pitch time is proposed, 

as shown in Equation (2.5). The first and second derivative of the smoothing function 

give motion speed and motion acceleration in Equation (2.6) and Equation (2.7), 

respectively, which in turn determines smoothing regions by parameter B (B = tp/ta). The 

definition of parameter B will be discussed in the following section. All angles presented 

in the equations are in radians. Figure 2.6 also gives profiles of motion speed and motion 

acceleration.  
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2.3.2 Behavior around Corner  

To better design smooth maneuvering around corners, denoted by it t  in 

Figure 2.6, Equations (2.5)-(2.7) are rearranged into exponential forms shown in 

Equations (2.8)-(2.10), respectively. The duration of the smoothing is regarded as smooth 

region, acceleration region, or transition region.  
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where  

   exp 2 /i i pG t B t t t       
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2.3.2.1 Position Kinematics  

Equation (2.8) represents the motion angular position in time. The first term at 

right hand side is the motion without smoothing. It can be expanded as shown in 

Equation (2.11) for each phase. The second term contributes to smooth maneuvering, 

which is negligible as the parameter B is significantly large. For instance, assuming the 

angle change during smoothing region is the smallest angle Rotary Table B4836TS can 

be implemented, which is the resolution 0.025°; hence, the parameter B is found to be 

5400. Rotary Table is the positioning device for wing kinematics. As the parameter B is 

larger than 5400, there is no smoothing region in effect using Rotary Table B4836TS. 

Moreover, the angle change during the smoothing region cannot be larger than m/2 in 

order to maintain maximum angle of attack m, which indicates parameter B has to be 

equal to or higher than 6. As a result, the parameter B is nontrivial if 6  B  5400 is 

satisfied, particularly for Rotary Table B4836TS.  
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 (2.11) 

Now consider smoothing region being confined within times it t , where 

maximum acceleration occurs at it  with a bell-like profile. The corresponding angle 

change can be evaluated using Equation (2.12), which is derived from Equation (2.11).  

    i i mt t t t          (2.12) 

Introducing pitch time tp, the ratio of angle change to maximum angle of attack, 

denoted by , is obtained using Equation (2.13). This is the first important parameter to 

define smooth maneuvering  
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For Rotary Table B4836TS and 45 maximum angle of attack,   is bounded by 

resolution of the Rotary Table and by maximum allowable smoothing range (i.e., m/2), 

which give 1/180    2.  

2.3.2.2 Angular Speed Kinematics  

Equation (2.9) represents motion angular speed in time. The first term at the right 

hand side is the first derivative of the first term of Equation (2.11) and can be expressed 

in Equation (2.14).  
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 (2.14) 

The second term is determined from smooth maneuvering, the amplitude at corner 

ti is found to be half of maximum pitch rate, shown in Equation (2.15), the speed is 

positive during pitch-up phase, and negative during pitch-return phase.  

   / 2i mt    (2.15) 

2.3.2.3 Angular Acceleration Kinematics  

Equation (2.10) represents motion angular acceleration in time around corners. To 

find the existence of maximum value of motion acceleration, the third derivative of 

smooth function would be equal to zero, as shown in Equation (2.16).  

    
   

 

2 4
1

33
1

14
1 0

1

i i im

ip i

G t G tB
t

t G t








      
  

  (2.16) 

Non-trivial solution could be found only if following condition is satisfied.  

  1 0iG t   or 2 / 0i pB t t t     

which shows the occurrence of maximum acceleration is at transition corners it  and the 

corresponding magnitude is given in Equation (2.17).  
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The corresponding acceleration at ti + t or ti - t is approximated by Equation 

(2.18).  
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The ratio of acceleration to maximum acceleration, denoted by , could be defined 

using Equation (2.19), which is obtained by substituting Equation (2.13) into Equation 

(2.18); this is the second important parameter to define smooth maneuvering.  
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Consider Rotary Table B4836TS and 45 maximum angle of attack,  is nontrivial 

if 0    1 is satisfied. As  equal to 0, smooth maneuvering is over region of m/2. As   

is close to one, smooth maneuvering will be operated within one step of stepper motor.  

2.3.2.4 Role of Parameter B 

In previous sections,   and   are discovered to be beneficial in determining 

smoothing region and controlling stepper motor, as defined in Equations (2.13) and 

(2.19), respectively. And parameter B would be obtained once   and   are given; for 

example, as  = 5/45 and  = 0.01, parameter B is found to be 26.939. However, the role 

of parameter B is not well described and will be discussed as follows.  

Consider Equation (2.17) where maximum pitch acceleration is defined. After 

proper arrangement, the parameter B could be formulated into Equation (2.20).  

 

2
2

22

pm m m m m
p

m m m m m a

tB
t

t

    

    

  
   

  
 (2.20) 

which gives the ratio of pitch time to pitch acceleration time. The pitch acceleration time 

is defined as ta = m/m. The factor of two in Equation (2.20) indicates numbers of 

occurrence of motion acceleration during pitch-up/pitch-return phase. Larger the 

parameter B gives narrower acceleration/smoothing region. As discussed previously, the 

maximum parameter B is limited by the resolution of the stepper motor and m/2. In 
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addition, the parameter B is analogous to Am and am/2K defined in Yu and Bernal 

(2013) and Eldredge et al. (2009), respectively.  

2.3.3 Wing Kinematics of Interest  

Figure 2.7 gives guidance to design and generate wing kinematics. There are two 

types of input parameters. The first one defines ideal linear pitching ramp motion, which 

includes maximum angle of attack (m) and maximum pitch rate (m). The second type 

defines smooth maneuvering around transition corners, which are the ratio of angle 

change to maximum angle of attack () and the ratio of acceleration to maximum 

acceleration (). The time required for smooth maneuvering is two times that smoothing 

duration (Δt), defined in Equation (2.12), but not two times ta due to . We may consider 

 to be another type of smoothing transition parameter for ideal ramp-type acceleration.  

There were two Velmex Rotary Tables employed to carry out the kinematics of 

interest, which are B4836TS and B4818TS, depending on maximum pitch rate. For 

B4836TS Rotary Table, maximum capable pitch rate is 100 degrees per second with 

resolution of 40 steps per degree. For B4818TS Rotary Table, maximum capable pitch 

rate is 200 degrees per second and resolution of 20 steps per degree. Both Rotary Tables 

are driven by same stepper motor model RK266-03 and controlled through COSMOS 

software.  
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Figure 2.7 Equation flowchart in designing kinematics of interest.  



 

 46 

As shown in Table 2.2, there are five wing kinematics of interest being tested in 

this study with the same m = 45 and  = 0.01. Since m and  are unchanged, the 

duration of the smoothing was adjusted according to m and m. The parameters A (Yu 

and Bernal, 2013) and a (Eldredge et al., 2009) are also provided for comparison.  

Figure 2.8 shows the comparison among wing kinematics as a function of pitch 

time. Since pitch-return phase has similar profile and there is no wing position change 

during hold phase, only motion-time trajectory during pitch up phase. Typically, lower 

pitch rate results in narrower smoothing regions and lower acceleration magnitude. The 

wing kinematics with pitch rate 155 /s and B = 11 gives widest smoothing regions, 

smooth angle is 12.2 ( = 27.2). The wing kinematics with pitch rate 12.6 /s and B = 
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Figure 2.8 Kinematics of interest as a function of pitch time during smoothing 

maneuvering: (top) motion speed; (bottom) motion acceleration.  
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64.47 gives narrowest smoothing region, smooth angle is 2 ( = 4.64). Additionally, the 

wing kinematics with pitch rate of 155 /s is designed for using Rotary Table B4818TS; 

the others require the use of Rotary Table B4836TS since their pitch rate are less than 

100 /s.  

Furthermore, to study effects of motion acceleration, two pitch rates with the 

same B = 21.60 were generated, which are 76.4/s, and 37.5/s, respectively. For 37.5/s, 

lower m was generated and operated in flow condition to produce K = 0.065. Wing 

kinematics with smaller pitch rate 25.7 /s were generated to yield the same K = 0.065 

with the same m but smaller smooth angle.  
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Predict motion form VMX Command and 
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Figure 2.9 Motion command generation procedure  

Table 2.2 Parameters to generate wing kinematics of interest.  

# m , % , %  m c 
tp, 
s 

m B  
Yu & Bernal 

(2013) 
Eldredge et al. (2009) 

A a U∞ K 

1 155 27.2 1 

45 2 

0.290 2937 11.00 14.00 11 17.500 /8 

2 76.4 13.9 1 0.588 1402 21.60 27.50 11 16.944 0.2 

3 37.5 13.9 1 1.199 338 21.60 27.50 11 8.314 0.2 

4 25.6 6.49 1 1.754 338 46.15 58.76 11 12.153 0.0936 

5 12.6 4.64 1 3.581 113 64.47 82.09 11 8.314 0.067 
Unit of m is degrees per second, m is degrees, c is inch, m is degrees per second squared.  
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2.3.4 Motion Generation  

Motion commands to control stepper motor are in ASCII characters; they were 

programmed according to wing kinematics of interest and then uploaded to the VMX 

controller from the Velmex COSMOS software through the RS-232 interface. Results 

presented in later chapters were using stepper motor PK266-03, which was embedded 

with Rotary Table by Velmex, Inc. This type of stepper motor has a two-phase unipolar 

motor, and a rotor with 50 teeth and 8 poles on its stator, resulting in 200 steps per 

revolution and 1.8° step-angle. Using gear ratio of 36 to 1, for instance, Rotary Table 

B4836TS can be operated in half-step mode at an even smaller step angle of 0.025°; this 

step resolution is utilized to program motion commands at 40 steps per degree.  

;Rotary Table B4836TS with stepper motor

;PK266-03A is used

E, ;Enable On-Line mode with

;echo "on"

PM-1, ;Select and clear program

A1M127, ;Set base acceleration/speed

U5, ;Output1 pulse high

P-2182, ;Pause 0.2182 seconds

U4, ;Output1 pulse low

U77, ;Start continuous index with

;no output

setP1M0 ;Disable pulse every steps

;on output2

setPA1, ;Disable pulse width, 2ms

SA1M 639,I1M  63,

SA1M2674,I1M  62,

SA1M3002,I1M  63,

SA1M3016,I1M  62,

U5, ;Output1 pulse high

SA1M3057,I1M1300,

U4, ;Output1 pulse low

SA1M3064,I1M  63,

SA1M2955,I1M  62,

SA1M2717,I1M  63,

SA1M 629,I1M  62,

U99, ;End of continuous index with

;no deceleration

U5, ;Output1 pulse high

P-1366, ;Pause 0.1366 seconds

U4, ;Output1 pulse low

J2, ;Jump to program

PM-2, ;Select and clear program

U77, ;Start continuous index with

;no output

setP1M200, ;Pulse every 20 steps on output2

setPA200, ;Set pulse width, 2ms

SA1M 629,I1M -62,

SA1M2717,I1M -63,

SA1M2955,I1M -62,

SA1M3064,I1M -63,

U5, ;Output1 pulse high

SA1M3057,I1M-1300,

U4, ;Output1 pulse low

SA1M3016,I1M -62,

SA1M3002,I1M -63,

SA1M2674,I1M -62,

SA1M 639,I1M -63,

U99, ;End of continuous index with

;no deceleration

U5, ;Output1 pulse high

P-2182, ;Pause 0.2182 seconds

U4, ;Output1 pulse low

P60, ;Pause 6 seconds

PM-0, ;Select and clear program

JM1, ;Jump to program and come back

;for more

L 11, ;10 loops

U5, ;Output1 pulse high

P5, ;Pause 0.5 seconds to indicate

;the end of motion

U4, ;Output1 pulse low
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Figure 2.10 An example of motion commands to VMX controller.  



 

 49 

In addition, operation frequency of stepper motor corresponds to half of step-

speeds given in motion commands, which is “x” in “SmMx” and “SAmMx”. For instance, 

when the step-speed of Rotary Table is set to x = 40 steps per second, the operation 

frequency of stepper motor is 20 Hz, which is also considered as 20 pulses/steps per 

second. If the stepper motor is not well shielded, these electrical pulses/frequency will be 

detected by force transducer and interfere with true measurements. To ensure quality of 

force measurements, operation frequency of stepper motor is suggested to be higher than 

frequency region of interest and less than half of the sampling rate if an anti-aliasing filter 

is not in use. The frequency region of interest is associated with motion acceleration and 

is discussed in Section 2.5.  

Figure 2.9 shows the workflow used to generate the motion commands for wing 

kinematics of interest. The continuous smoothing function was first discretized using the 

timestep of 1/10000 seconds, giving a piecewise continuous motion for succeeding 

interpolation. After defining m, m, , and , smoothing regions were obtained and all  

angles were rounded, consistent with stepper motor resolution. These regions were then 

divided into numbers of segments in turns of steps and linearly interpolated to obtain 

corresponding timing. As absolute positions in step and timing were obtained, the Rotary 

Table is commanded by specifying step speeds and indices, representative of rigid wing 
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Figure 2.11 Comparison of VMX commands and smoothing function in angle of attack  
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motion. An example of motion commands is given in Figure 2.10; large angle increment 

during smoothing regions is displayed as an example. 

First of all, the continuous index command (i.e., U77 or U99) is employed to 

prevent stepper motor from slowing down or stopping between motor indexes. Secondly, 

the higher timing accuracy for pausing is achieved by introducing the command “P-x” for 

phases, such as the start phase, the hold phase, and the relaxation phase. The time 

resolution is tenth milliseconds. If a longer pause is requested, the command “Px” would 

be used to account for additional pausing time. 

To ensure the correctness of wing motion implementation, the position course of 

Rotary Table is predicted using motion commands and compared with the ones from 

smooth function. Figure 2.11 gives an example of comparison. Circle open symbols 

represent selected points for motion command and solid curve represents expected curve 

from smooth function. Our points used to generate motion commands are in good 

agreement with smooth function as expected for all kinematics of interest.  

The corresponding angular speed is shown as the red curve in Figure 2.13, which 

is stair-like. Look closely to the beginning and the end of the pitch-up/return phase the 

difference in speed is significantly larger than the others. In conjunction with motor index, 

this difference may trigger structure vibrations of wings and tarnish force measurement. 

Therefore, it is suggested to have smaller motor index at the beginning and the end of 

smooth maneuvering together with higher operation frequency of stepper motor. The 

 

Figure 2.12 Correlation of pulses and kinematics.   
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operation frequency should be higher than frequency region of interest of kinematics. The 

MATLAB program to generate commands for wing kinematics is given in Appendix A.  

To distinguish samples within motion phases, auxiliary pulses were generated 

from Velmex controller, as commanded using U5 and U4 in motion commands in 

Figure 2.10, and saved to a computer through DAQ board. Figure 2.12 illustrates pulse 

pattern, for example, regions of acceleration, deceleration, constant pitch rate, and other 

pause phases are defined, which advantages post-processing of force measurements in 

transforming signals from sensor frame of reference to laboratory frame of reference, and 

displaying results for corresponding motion phase.  

2.4 FLOW VISUALIZATION  
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Figure 2.13 Comparison of VMX commands and smoothing function in angular speed  

 

Figure 2.14 Instruments for dye injection  
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Flow visualization by injecting dyes over wings was conducted using a camera, 

syringe pumps, food dyes, and dye rake, as shown in Figure 2.14. The flow visualization 

data were recorded using Nikon D3100 camera. The perspective of flow was observed by 

two aspects, which are side view and top view. The side view provides field of view of 

flow about wing chord; the top view gives field of view of flow about wing span. Two 

colored dyes were used, which were blue dyes and red dyes by ESCO Foods with density 

of 1012 kg/m3. They were mixed with 70% isopropyl alcohol (density of 685 kg/m3) to 

match the water density, 998 kg/m3. 

Figure 2.15 is an illustration of wing configuration used for dye injection, the 

background board with thickness of 0.24” was employed to exclude distracting 

background features and reflection from water surface. The injection rake was placed at 

50 % of wing span for all wing planforms, as shown as red line, and about three-mean-

chord upstream of leading edge.  

2.4.1 Dye Injection Post-Processing 

All images were recorded by Nikon D3100 camera with a constant frame rate of 

30 Hz and saved to a personal computer for post-processing. The data was stored in a 

format of MOV using 854  480 pixel images. Two-step procedures were conducted in 

the post-processing.  

The first step was to abstract sequent images of interest using Windows Movie 

Maker. We selected the first image at the phase where the wing starts to move and the 

 

Figure 2.15 An illustration of wing configuration for flow visualization.  
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last image at the phase where the flow reaches the steady state during the hold-phase at 

maximum angle of attack, which is about 27 convective times.  

The second step was to edit image field of view using MATLAB for closer view 

 

Figure 2.16 Schematics of field of view for dye-injection in side view.  

 

Figure 2.17 Schematics of field of view for dye-injection in top view.  
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of flow around wings and produce a constant image size for all cases. Several actions 

were taken to process images, which included flipping, rotating, cropping, resizing, 

annotating, and merging. Figure 2.16 and Figure 2.17 illustrate image region of interest 

for side view and top view, respectively. The outer edges present original image size; the 

shadow areas represent the areas to be trimmed. The region of interest, shown as inner 

white region, was determined using reference point (xr, yr) at pivot location. The 

magnification factor was found using geometry of wing or passive plate; all resultant 

images were scaled to 320  190 pixels.  

2.5 FORCE MEASUREMENT  

Force and torque were measured using force transducer, Nano43 (series number 

FT12311) by ATI industrial automation. Resolutions for force and torque are 1/256 N 

and 1/20 Nmm, respectively; maximum capability for force is 18N and 250 Nmm for 

torque. The sensor mounting side is attached to a handle clamped to Rotary Table and the 

tool side is mounted to sensor adapter, see Figure 2.18 for illustration. All forces and 

torques are measured with respect to center surface of tool side, which is also defined as 

factory point of origin and aligned with pitching axis to facilitate data analysis.  

 

 

(a) (b) 

Figure 2.18 An illustration of wing configuration for force measurement at different 

pivot-axis locations.  
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Wing configuration at the LE and the MC is illustrated at the right and the left of 

Figure 2.18 (a), respectively; the TE uses the same wing configuration as the LE, but 

wing is rotated by 180 to position pitching axis at downstream edge. In the sensor frame 

of reference of the LE/MC configuration, positive x-direction is toward leading edge and 

positive y direction is in the direction of positive lift force. For the TE pivot, positive 

directions of the x- and y-axes are in opposite direction because of 180-degree rotation; 

normal force (denoted by FN) and axial force (denoted by FA) are obtained by simply sign 

change, shown in Figure 2.18 (b). 

Force/torque measured by the sensor (i.e., Fx  and Fy ) are first converted to the 

axial and normal forces and then to laboratory frame of reference components using 

Equations (2.21)-(2.24) for lift ( L ), drag ( D ), and their corresponding force coefficients.  

 sin cosL A N     (2.21) 

 cos sinD A N    (2.22) 

  2/ / 2LC L U S   (2.23) 

  2/ / 2DC D U S   (2.24) 

Moreover, estimation of moment inertia, torque, and center of are given 

in Appendix G. Using maximum angular acceleration, the torque is estimated within 

tolerance of force transducer Nano43 for all wing planform geometries.  

2.5.1 Transformation of Calibration Matrix 

Force transducer provides six-channel signals for three forces (Fx, Fy, Fz) and 

three torques (Tx, Ty, and Tz). Inside the force transducer are strain gages attached to 

three beams, which are deformed due to applied loads and results in changing resistance 

of strain gages. By recording changes in resistance, the forces and torques can be 

evaluated using Equation (2.25) in reference coordinates at the center of beams.  

  

11 12 13 14 15 16

21 22 23 24 25 26

31 32 33 34 35 36

41 42 43 44 45 46

51 52 53 54 55 56

61 62 63 64 65 66

0
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x

y

z

C C C C C CF SG

C C C C C CF SG

C C C C C CF SG
FT

C C C C C CT SG

C C C C C CT SG

C C C C C CT SG

    
    
    
     

      
    
   
   
       

  C SG




 (2.25) 
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where {SG} are strain gage vectors in voltages, and C matrix is calibration matrix at the 

center of beams.  

According to ATI manuals, all sensing ranges and resolutions of the forces and 

torques are measured at a point, which is sketched at center surface of tool adapter plate. 

This point is defined as factory point of origin and aligned with pitching axis of wings for 

all cases considered. Therefore, C matrix needs to be transformed from center of beams 

to factory point of origin by either translation or rotation or both, which will be discussed 

in detail. If point of origin is different than factory point of origin, the same approach to 

transform C matrix is applicable; sensing ranges of force transducer have to be adjusted 

to avoid strain gauge saturation.  

2.5.1.1 Calibration matrix subject to coordinate translation  

First, consider point of origin in Cartesian coordinates is translated to positions 

where distances of dx, dy, and dz are displaced in order, as shown in Figure 2.19 from the 

left to the right.  

The coordinates in black color at the left of Figure 2.19 represent the coordinates 

at center of beams. After moving distance of dx, new coordinates are defined and marked 

with apostrophe in red color. Forces with respect to new coordinates stay the same; 

however, torques with respect to y-axis and z-axis are changed. New forces and torques 

are given in Equation (2.26). Similar consideration is also applied to the other two axis-

translations.  

 'x xF F , 'y yF F , 'z zF F , (2.26) 

 

Figure 2.19 Coordinate transformation according to translational displacements.  
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'x xT T ,  'y y z xT T F d  ,  'z z y xT T F d   

New coordinates after displacement of dy are obtained and denoted by double 

apostrophes in red color, as shown at the middle of Figure 2.19, which results in new 

forces and torques, as given in Equation (2.27).  

 
'' 'x xF F , '' 'y yF F , '' 'z zF F  

'' ' 'x x z yT T F d  , '' 'y yT T ,  '' ' 'z z x yT T F d   
(2.27) 

The last coordinate translation is accomplished by moving coordinates along z-

axis with distance of dz and denoted using capital letters, as shown in red color at the 

right of Figure 2.19. The corresponding new forces and torques are given in Equation 

(2.28).  

 
''X xF F , ''Y yF F , ''Z zF F  

 '' ''X x y zT T F d  ,  '' ''Y y x zT T F d  , ''Z zT T  
(2.28) 

Combining Equations (2.26)-(2.28) gives forces and torques in turns of matrix, 

shown in Equation (2.29). This matrix is denoted by [CT]; the force and torques before 

coordinate translation are represented by {FT}.  

     

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

X x

Y y

Z z

TT
z yX x

z xY y

y xZ z

F F

F F

F F
FT C FT

d dT T

d dT T

d dT T

    
    
    
       

      
    

    
    

        

 (2.29) 

Substituting Equation (2.25) to Equation (2.29), calibration matrix about new 

point of origin is obtained in Equation (2.30), and related to the voltage measured at 

center of beams.  

          T TT new
FT C C SG C SG   (2.30) 

2.5.1.2 Calibration matrix subject to coordinate rotation 

Now consider point of origin in Cartesian coordinate is rotated. As shown in 

Figure 2.20, coordinates in black color indicate coordinates before rotating; coordinates 

in red color are results after rotating. The angle of rotation is positive in counterclockwise 

direction and denoted using its rotation axis. For example, x is a rotation angle around x-
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axis in x-y plane. Moreover, coordinates are first rotated by angle z along z-axis, which 

is shown at the left of Figure 2.20, and denoted with an apostrophe. Following by the 

rotation angle of y along y-axis, as shown at the middle of Figure 2.20, new coordinates 

are obtained with double apostrophes. Finally, coordinates are rotated by angle of x 

along x-axis, which is shown with upper case in the right of Figure 2.20. The 

consequence due to rotations in z, y, and x are formulated in Equations (2.31)-(2.33), 

respectively.  

     

' cos sin 0

' ' sin cos 0

' 0 0 1

z z

z z rz

x x

p y y C p

z z

 

 

     
    

       
         

, (2.31) 

    

'' cos 0 sin '

'' '' 0 1 0 ' '

'' sin 0 cos '

y y

ry

y y

x x

p y y C p

z z

 

 

    
    

         
        

, (2.32) 

     

1 0 0 ''

0 cos sin '' ''

0 sin cos ''

x x rx

x x

X x

P Y y C p

Z z

 

 

     
    

      
         

, (2.33) 

where [Crz], [Cry], and [Crx] are defined as rotation matrix due to rotation axis at z-axis, y-

axis, and x-axis, respectively. Since each torque is evaluated from 6 channels of strain 

gauges and not from three measured forces, {p} vectors can represent both force and 

torque in three individual directions.  

Consider the coordinate rotation is conducted in a sequence of z, y, and x, 

from the beginning of rotation to the end of rotation the resultant forces or torques can be 

 

Figure 2.20 Coordinates transformation according to rotational displacements.  
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expressed in Equation (2.34) by multiplying Equation (2.33), (2.32), and (2.31) in 

sequence.  

 

      

 

cos cos cos sin sin

sin sin cos cos sin sin sin sin cos cos sin cos

cos sin cos sin sin cos sin sin sin cos cos cos
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r
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           

           

   

   
   

     
      



 (2.34) 

Consider both force and torque, the rotational calibration matrix [CR] is obtained 

in Equation (2.35), which is different from the translational calibration matrix [CT] in 

Equation (2.29).  

 

 
 

 
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FT C FT

CrT T
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   
   
   
       

      
    

   
   
      

 (2.35) 

Substituting Equation (2.25) into Equation (2.35) the corrected calibration matrix 

due to coordinate rotation is obtained in Equation (2.36).  

        [ ]R R newR
FT C C SG C SG   (2.36) 

2.5.1.3 Calibration matrix due to both translation and rotation 

We have considered the corrected calibration matrix due to coordinate translation 

and coordinate rotation individually in preceding sections. Now we are looking for a 

general form of calibration matrix with respect to an arbitrary point of origin, which is 

transformed from the center of beams. The procedure is simply combining results 

discussed before, first by coordinate translation and then by coordinate rotation, the 

consequence is shown in Equation (2.37). It is assumed that the coordinate translation 

and coordinate rotation are independent to each other, and the influences on forces and 

torques are linear.  
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              

X x

Y y

Z z

T R T Rnew new
X x

Y y

Z z

F F

F F

F F
FT C C C C C SG C SG

T T

T T

T T

   
   
   
      

      
   
   
   
      

 (2.37) 

2.5.1.4 Verification of calibration matrix transformation 

The approach of calibration matrix transformation was established and discussed 

previously, now we are going to verify this approach. The example demonstrated here is 

based on the data stored on CD, packed with force transducer Nano43, from ATI 

Company. The calibration matrix at center of beams, shown in Equation (2.38), was 

scaled and given in the text file named with sensor series number, for instance 

FT12311.cal. Converted with scaling factors found in the same CD, the calibration matrix 

before being scaled can be found and saved into MAT-file for MATLAB user.  

 

 

-0.34399/S1 -0.19774/S1 -0.19564/S1 36.23983/S1 1.30320/S1 -36.36261/S1

-0.02564/S2 -42.11838 /S2 -0.27911/S2 20.99353/S2 -0.68996/S2 21.13467/S2

21.16568/S3 0.50868/S3 21.04355 /S3 -0.04462/S3 21.40718/S3 -0.59299/

C


S3

-0.17765/S4 -0.27939/S4 36.97439/S4 0.18729/S4 -37.27381/S4 0.93695/S4

-41.65443/S5 -1.22311/S5 21.04006/S5 -0.27136  /S5 21.13962/S5 -0.13057/S5

0.13396/S6 -21.41515/S6 0.23018/S6 -21.22951 /S6 0.66187 /S6 -21.29024/S6

 
 
 
 
 
 
 
 
 

 

(2.38) 

where Si are scaling factors for channel i,  

 

1 16.3268754027456

2 16.3268754027456

3 13.8694114323035

4 1.65167278491634

5 1.65167278491634

6 1.14951433321416

S

S

S

S

S

S

   
   
   
   

   
   
   
   
   

   

Equation (2.39) gives the translational and rotational displacements in three axes, 

which is found in the same text file. The D and R, represent displacement in coordinate 

translation and rotation, respectively, following the corresponding axis.  

    0 0 4.3434 0 0 0Dx Dy Dz Rx Ry Rz   (2.39) 
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After translating and rotating coordinates from center of beams to the factory 

point of origin, the calibration matrix with respect to this new location is then evaluated, 

as shown in Equation (2.40). It is then compared to the estimation from ATIDAQFT.NET 

software by ATI under Tools\Calibration Info, out precision is found to be at least five 

digits, which indicates our approach is applicable. The consistent values are underlined.  

 

 

-0.021068942 -0.012111319 -0.011982696 2.2196427 0.079819314 -2.2271628

-0.0015704168 -2.5796962 -0.017095126 1.2858265 -0.042259157 1.2944712

1.5260690  0.036676394 1.5172633 -0.0032171516 1.5434815  -0.04275523

new
C 

8

-0.11437857 -11.373808  22.311775 5.6982532 -22.750857 6.1896795

-25.128030 -0.68792372 12.790682 -9.8050901 12.452228 9.5944058

0.11653617 -18.629737  0.20024108 -18.468242 0.57578229 -18.521073

 
 
 
 
 
 
 
 
 

 

(2.40) 

2.5.2 Butterworth Filter 

Butterworth filter is a type of infinite impulse response (IIR) filter. Unlike the 

Chebyshev and Elliptic filters, the flat pass-band of the Butterworth filter ensures 

information is passed without distortion. Being aware of Butterworth filter is phase lag. 

For instance, first order filter produces phase lag of 45° at cutoff frequency, the 

magnitude is attenuated by 3 dB. Second order filter produces twice larger phase lag than 

first order filter (i.e., 90°, and so on). Hence, to prevent phase distortion, zero-phase 

Butterworth filter is considered.  

Higher order Butterworth filter typically has transfer function composed of first 

order, or second order, or both, whose transition band is much shorter in order to retain 

frequency of interest precisely. Moreover, lower order filter yields slower roll-off (i.e., 

wider transition band), resulting in less noise attenuation than higher order filter. The 

selection of order of filter in this study depends on the ability of removing noises without 

introducing any digital interference.  

To have better idea in determining the order of the filter, we inspect the response 

of motion acceleration. As shown in Figure 2.21 is the motion acceleration with pitch rate 

76.4 deg/s, for example, higher order filter generates stronger overshoots oscillating 

around the startup and the end of motion acceleration, and is capable of maintaining its 

magnitude. These overshoots would be confusing with physical vibration and noises, 

therefore, utilization of first order filter is recommended. By the way, all filtered profiles 
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in Figure 2.21 are presented using low-pass filter with a cutoff frequency to retain 90% of 

frequency content of motion acceleration.  

Due to slower roll-off, the first-order filter may not be able to sufficiently remove 

structural vibration/noise at phases higher than the cutoff frequency, which gives 

demands in multi-path filtering. Figure 2.21 also shows multi-path effects. Increasing 

number of path enlarges the width of profile and reduces the magnitude. Force data 

presented in the study are obtained using two-path filter.  

2.5.3 Cutoff Frequency  

The conclusion of the preceding discussion is the use of low-pass zero-phase first-

order two-path Butterworth filter. Now curiosity in finding cutoff frequency is arisen, 

which intuitionally depends on frequency region of interest, and noise frequency and its 

strength. However, at current stage, frequency region of interest and noise source are 

unknown, and how noise interferes with force measurement is uncertain.  

Practically, we are going to assume that there is no noise and frequency region of 

interest is found from driven source, such as wing kinematics. The cutoff frequency is 

determined by capability of preserving wing kinematics. We particularly inspect motion 
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Figure 2.21 Motion acceleration response to a zero-phase low-pass Butterworth filter.  
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acceleration due to two reasons. The first reason is that motion acceleration contains 

considerable frequency region compared to lower-order derivatives of wing kinematics. 

As possibly as most motion acceleration is maintained; motion position and velocity 

would be less influenced by filtering. The second reason is that motion acceleration is 

theoretically associated with non-circulatory force, playing as a critical role of generating 

significant aerodynamics.  

Figure 2.22 shows spectrum distribution of motion acceleration by the pitch rate 

of 76.4 /s. A non-dimensional frequency (fP = f/fp = m/mt), is used for abscissa, which 

is equivalent to the time normalized with pitch time. Ordinate on the left is power spectral 

density (PSD) and on the right shows the accumulation of PSD. The former is normalized 

with the maximum magnitude of the first frequency envelope; the latter would indicate 

energy content at specific phase. As shown in Figure 2.22, frequency envelopes are 

coupled with pitch frequency; the magnitude decaies with increasing frequency. In 
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Figure 2.22 Filtering effect on frequency response of motion acceleration from wing 

kinematics with pitch rate 76.4 /s.  
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addition, data cursor shown in the figure reveals 99-percent energy/information of 

kinematics is contained within frequency of 14.4 Hz, which would be selected as cutoff 

frequency if determinative noise is removable after applying digital filter. An effect of 

filtering is also presented by using zero-phase first-order two-path Butterworth filter to 

retain 90% of kinematics. Without changing the coupling behaviors of frequency 

envelope, the information with frequency higher than cutoff frequency is attenuated; most 

information is retained at frequency lower than cutoff frequency. For detail spectrum 

analysis in use, see Appendix D.  

Since the determination cutoff frequency is presumably unnecessary to include all 

information from kinematics, effects of filtering becomes important, especially for the 

investigation of non-circulatory effect. Figure 2.23 and Figure 2.24 show effects of 

filtering on magnitude and width of motion acceleration, respectively. All kinematics of 

interest have the same effect when the cutoff frequency is chosen to maintain at the same 

level of energy/information. In this study, the cutoff frequency for all force data was 

selected to retain 90 % of motion acceleration. See Appendix E for more information on 

cutoff frequency.  
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Figure 2.23 Effect of filtering on signal magnitude.  
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2.5.4 Noise  

The selection of cutoff frequency depends not only on preservation of energy 

according to wing kinematics, but also on the capability of removing noises. The former 

was discussed in a previous section; the latter can only be achieved after identifying noise 

sources. There are two types of noises contributed to force transducer. One is electronic 

magnet interference resulting from imperfect grounded devices; this type of noises could 

be contributed from power-line, AC motor controller, and stepper motor controller. The 

other is mechanical vibration, which may be induced from the transmission mechanism 

of Rotary Table and wing resonance while interacting with dynamic fluid.  

Figure 2.25 shows an example of force signal in terms of power spectrum density 

after Fourier transform; the signals are the measured force data of rectangular wing 

pitching at leading edge in running water and air. The wing kinematics was programmed 

for the pitch rate of 76.4 /s and repeated 20 times. As shown in Figure 2.25, most noises 

are detected from the vibration by transmission mechanism of Roraty Table in a 

frequency region higher than 50 Hz. Since the frequency region of interest for the present 

kinematics is 15 Hz, in order to retain 99% of information, the vibration from the Roraty 

Table has less influence on the frequency region of interest. In addition, there are two 

resonant frequencies of the clamped wing. One is 15 Hz for the wing partially immersed 
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Figure 2.24 Effect of filtering on signal width.  
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in the water, which overlaps with the frequency region of interest and enforces the cutoff 

frequency to be lower within the frequency region of interest. The other is 50 Hz for the 

wing in the air, as expected to be higher than the one in the water. The motor frequency is 

harmonically distributed and may interfere with the measured force, which comes from 

AC motor controller.  

Figure 2.26 shows the force data in response to the filter with cutoff frequency of 

8.7 Hz for 90% preservation of information; the force data contains 20 kinematic samples 

and were obtained using wing kinematics with pitch rate 76.4 /s in the still water. The 

distribution profile is very similar to Figure 2.22 where only mass acceleration was 

considered, indicating the importance of non-circulatory effect under this circumstance. 

The noises with frequencies higher than cutoff frequency are removed to an acceptable 

level. The structural resonance was detected at frequency higher than 15Hz, which is 

discussed below.  
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Figure 2.25 An example of noise distribution. Based on a leading-edge-pivot 

rectangular wing, the input signal is the measured Fy in transducer frame of reference. 
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2.5.4.1 Structure Resonance 

The resonant frequencies (also called fundamental frequencies or natural 

frequencies) of wings in water and air were determined by comparing the spectra of 

unsteady force data Fy with wing and without wing; the force data contained 20 wing-

kinematic samples. The structural resonance of wing depends on surrounding fluid 

properties (e.g. density and temperature); the resonant frequency should be independent 

of flow condition (e.g. still water and running water) and wing kinematics. The spectrum 

analysis is given in Appendix D.  
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Figure 2.26 Filtering effects on frequency response of normal force in transducer frame 

of reference. The input signal is the measured Fy from a leading-edge-pivot rectangular 

wing in still water. 
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Table 2.3 shows resonant frequency depends on pivot-axis location and wing 

geometry, as well as surrounding fluid, which were determined and averaged from 

different flow conditions and wing kinematics. The wings at both leading-edge and 

trailing-edge pivot axes give lower resonant frequeny than the wings at mid-chord pivot 

axis; the wings in the water have lower resonant frequency than the wings in the air. 

Additionally, the resonant frequencies of triangular wing are higher than trapezoidal wing 

and rectangular wing. These resonant frequencies are higher than 15 Hz, which would 

justify the cutoff frequency.  

2.5.4.2 Sensor Drift  

Drift in force transducer is mainly caused by the heat transported from two media. 

One is a metal handle rod, which was attached with Rotary Table and conducted the heat 

to the sensor by the Rotary Table after intensive operation. The other is our hand-

temperature. While being affixed to sensor adapter and handle rod, the force transducer 

increases its temperature. The former was prevented using the handle rod made of wood, 

which has poor thermal conductivity and electrical conductivity. The wooden rod also 

improves electromagnetic interference. The latter could not be avoided; therefore, we had 

to wait for the force transducer to dissipate the heat naturally before experiments could be 

conducted.  

Figure 2.27 suggests force measurement to be conducted at least one hour after 

the assembly while Nano43 with series number FT12311 is in use. The averaged values 

and standard deviations were obtained every 60 seconds. Data were recorded while force 

transducer was at rest on a table after being held for a couple minutes by hands; no other 

Table 2.3 Wing resonant frequency in water and air.  

pivot 

axis 

Rectangular wing trapezoidal wing Triangular wing 

water air Water air water air 

LE 15.5(0.5) 51.4(1.8) 16.4(0.6) 53.2(0.2) 21.4(0.2) 57.1(0.5) 

MC 19.4(0.1) 59.2(1.0) 22.0(0.5) 66.3(0.8) 29.2(0.6) 85.1(0.6) 

TE 15.4(0.6) 51.4(1.5) 16.5(0.5) 53.2(0.2) 21.3(0.3) 56.9(0.2) 

Unit is Hz; LE = leading edge; MC = mid-chord; TE = trailing edge; standard 

deviation is given in parentheses 
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devices were attached to the force transducer. Moreover, all forces and torques except Fy 

and Mx are sensitive to temperature.  

Figure 2.27 also reveals continuous variation of averaged Fy even though the 

variation of the corresponding standard deviations stay constant, this type of variation 

changes over time. However, the changes for the forces over one minute are within 1 mN 

and 0.4 N-mm for the torques, and are within the corresponding resolutions of force 

transducer. This observation gives the time limit for the acquisition and the demand to 

bias the data for every signal wing kinematics. In this study, the time durations for all 

wing kinematics of interest are less or about one minute.  

2.5.5 Force and Torque Acquisition  

 

Figure 2.27 Thermal drift in force transducer on each sensor channel.  

Table 2.4 Types of force measurement.  

Flow condition 

Kinematics  
Running Water Still Water Air 

Dynamic Unsteady  Unsteady  Dynamic Tare  

Static Steady  Static Tare  Static Tare  
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According to test flow condition and wing kinematics, direct force measurement 

is divided into four types: unsteady, steady, static tare, and dynamic tare. As shown in 

Table 2.4, dynamic measurement is the measurement wings move with kinematics of 

interest, and static measurement is the measurement wings move to fixed angle of attack 

without specified pitch rate. With different flow conditions, the measured data give 

unsteady and steady results after applying tare procedure as described in Yu.et al. (2012).   

2.5.5.1 Hardware Connection  

Hardware configuration for direct force measurement is shown in Figure 2.28. 

Two external delay/pulse generators are used as external triggers, which is BNC555 and 

DG535; the timing for data acquisition and wing kinematic activation is controlled 

through DG535. First of all, BNC555 triggers DG535 with a pulse signal of 5 VDC from 

Channel A. While DG535 receives the trigger signal, a pulse signal with 1.4 VDC is sent 

from Channel A to data acquisition board USB NI 6225 on pin PFI0 to start data 

acquisition. After 5 second delay DG535 delivers an active low signal from Channel CD 

to active the stepper motor through pin 4 on auxiliary I/O connections from VELMEX 

 

Figure 2.28 Direct force measurement control flow chart.  
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controller. Once the stepper motor starts to run, it indexes Rotary Table following motion 

command stored in VELMEX controller. Positions of Rotary Table are confirmed by 

auxiliary pulses from VELMEX controller and recorded to USB NI 6225.  

For non-triggered configuration, the delay/pulse generators are not used; signals 

from VELMEX controller may be recorded to USB NI 6225 as needed. This 

Waiting For Trigger
 

Figure 2.29 Input panels for force/torque acquisition.  
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configuration is applied mostly to investigate sensor properties (such as drifting) or to 

calibrate hardware connection.  

2.5.5.2 Data Acquisition Software Control 

Acquisition software was programmed in MATLAB using section based interface 

in 64-bits operation system. The input dialogs shown in Figure 2.29 are for unsteady 

measurement, which request information of wing geometry, kinematics of interest, flow 

condition, and F/T series. The first three inputs give filename for raw data; the 

composition of filename is illustrated in Figure 2.30. The latter updates the corresponding 

sensor calibration matrix, which is generated using criteria demonstrated in Section 2.5.1. 

For steady and static-tare type measurement, only notation “Wing Kinematics” is 

changed with regard to type of measurement. For instance, steady measurement is notated 

by “Steady”. Moreover, one test section includes samples from repeated wing kinematics, 

and several test sections were conducted to ensure sensor drifting under measurement 

uncertainty within one wing kinematics.  

R C02 AR02 P00 k04h138deg45 sd20 A0 w

Data Type

R=Test Section Data in

Voltage

A=Data for Each Sample

     in Voltage
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       number
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       number
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0=Default
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Figure 2.30 Filename notation for F/T data for unsteady measurement.  
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2.5.5.3 F/T Post-Processing  

The post-processing includes data filtering and tare procedure, the work flow of 

data processing is shown in Figure 2.31. As discussed in 2.5.2, a digital filter, low pass 

zero-phase first-order two-path Butterworth filter, was employed, which is to avoid phase 

distortion, to reduce spurious oscillations introduced by the filter, and to provide 

sufficient attenuation of noise. The cutoff frequency was determined using criteria 

demonstrated in Section 2.5.3. For most kinematics of interest, cutoff frequency is to 

retain 90% of energy level of kinematics if not specifically stated, which gives the same 

level of filtering effects.  

A tare procedure was employed to remove model inertia and weight contributions 

due to wing position and acceleration, which includes static tare and dynamic tare. The 

static tare is the measurement in air and still water at fixed angle of attack from 0 to 45. 

The dynamic tare is the measurement in air with same kinematics in the flow experiments. 

The same filter and cutoff frequency as in the flow experiment were used.  

 

Figure 2.31 Force/torque acquisition data processing and tare procedure.  



 

 74 

Figure 2.32 shows axial and normal forces as a function of time normalized with 

pitch time before and after tare procedure. The force data were obtained in still water and 

Re = 13k, using rectangular wing at leading-edge axis and wing kinematics with 76.4 /s. 

The force data were filtered and the average of 60 kinematic samples. As shown in 

Figure 2.32, the force curves are very similar before and after static tare, which is due to 

very small mass of the wing and mounting hardware (less than 46.2 g). There is a little 

difference at the phases where undergo motion acceleration after dynamic tare; the 

difference is less than 10 mN. See CHAPTER 5 for detail discussion of force data.  
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Figure 2.32 An example of force-data tare procedure. The black curves are for initial 

force data after filter; the blue curves are for force data after static tare; the red curves 

are for force data after dynamic tare. The solid curves are for Re = 13k; the dashed 

curves are for Re = 0k; the dotted cures are the motion acceleration.  
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2.6 PIV MEASUREMENT  

Particle Image Velocimetry (PIV) applies optical technology to quantify flow 

field. Two aspects are considered in the study; the first is conventional PIV for two-

dimensional flow field using single camera, and the second is lens-shifted stereoscopic 

PIV for three-dimensional flow field using two cameras.  

2.6.1 Conventional PIV  

Conventional PIV system includes a double-pulsed Nd-YAG laser (Spectra 

Physics PIV 300), light sheet optics, a dual frame digital camera (Cooke Corp. 

PCO.4000), computer image acquisition system and control electronics.  

 

Figure 2.33 PIV system control flow chart.  
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Figure 2.33 illustrates connections among components in PIV system. The onset 

of PIV acquisition was triggered by pushing run button on front panel of BNC555 pulse 

generator, which controls signals synchronizing with laser pulses. The frequency of laser 

pulse is 10Hz. These signals go through Control Box to laser chamber and power supply, 

and to Shutter and Camera for synchronization with wing kinematics. Numbers of images 

(Ni) and laser pulses within one pitch up-hold-return motion (Np) were specified to 

Control Box. The phase where images were taken was controlled through DG535 pulse 

generator, which was also used to trigger NI USB 6225 data acquisition board and VMX 

controller for wing kinematics. Data from either NI USB 6225 or Camera were saved to 

personal computers for post-processing.  

In addition, PCO.4000 camera was installed underneath the test section of water 

channel and equipped with either Nikon 105-mm or PC-E 85 mm Micro-Nikkor lens. The 

camera had 14 bits dynamics at 4008  2672 pixels. In order to minimize particle loss 

due to spanwise flow, the exposure time was specified to have particle displacement of 3 

pixels in free stream.  

The seedings for PIV data were titanium dioxide particles (Sigma-Aldrich) with a 

diameter of less than 5μm. To produce a uniform distribution of particles, a small amount 

(~1 cc) of dispersant (DARVAN CN, Vanderbilt) was added to a one-gram-particle 

solution. The dispersant also helped particles suspend in the water for a much longer 

period. We also used Sonicator to break down huddled particles and improve mixing 

quality.  

2.6.1.1 Synchronization  

There were two parts of synchronizations considered in the study: one was wing 

kinematics synchronized with laser pulses and the other one was phase of interest 

synchronized with camera/shutter. The phase of interest was the timing where images 

were taken and usually within wing kinematics.  

To synchronize wing kinematics with laser pulses, firstly we needed to measure a 

period of wing kinematics (TVMX) and then multiply by pulse frequency, which is 10Hz; 

the resultant value (Np) was rounded and becomes one of inputs to Control Box. Np 
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indicated number of laser pulses occur within wing kinematics. Dividing TVMX by Np gave 

a period of signals for BNC pulse generator (T0), which had to be greater than 1/10. The 

parameters TVMX, Np, and T0 were the resultant of the first part of synchronizations. 

Figure 2.34 shows an example of signal distribution among laser pulses and wing 

kinematics. Once the first part of synchronization was complete, camera and shutter were 

designed to work together with wing kinematics.  

To synchronize the phase of interest with camera/shutter, we aligned a falling 

edge of signal from VMX with a falling edge of signal from Camera. The difference in 

time (T) became a delay input for DG535 pulse generator, which delivered a signal to 

activate VMX controller. It is noted that the signal from VMX controller was much 

 

Figure 2.34 Illustration of synchronization signals among laser pulses, wing kinematics, 

and camera.  
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simpler than the ones shown in Figure 2.12 for force measurement; here, raising edge was 

at the start of wing kinematics and falling edge was at the phase where images were taken.  

2.6.1.2 Post-Processing  

An in-house developed MATALB-based PIV software was employed to analyze 

the PIV images. The particle displacement was determined using cross-correlation 

analysis between displaced interrogation windows. Particle displacement measurements 

were validated using two criteria: the correlation peak value must be large compared to 

the noise level in the cross-correlation function, and a region of interest criterion. A two-

pass procedure was used to increase the spatial resolution of the measurement. The first 

pass used a 64 by 64 pixels non-displaced interrogation window, and the second high-

resolution pass used a 32 by 32 pixels displaced interrogation window, the displacement 

was measured in the first pass. The flow velocity was measured in a uniform grid with 16 

pixel spacing. A median filter is used to remove outliers and to interpolate points where 

the validation criteria failed. The time between exposures was selected to minimize the 

number of failed validation points due to spanwise flow. Based on these PIV parameters 

the spatial resolution of the PIV measurements was approximately 1 mm. A total of 60 

PIV image pairs were recorded for each flow condition and wing angle. Results presented 

here are phase-averaged over 60-image samples.  

2.6.2 Lens Shifted Stereoscopic PIV 

Typically, Stereoscopic PIV has two configurations: lens-tilted configuration and 

lens shifted configuration (Prasad, 2000).  

The lens-tilted configuration uses the Scheimpflug principle to capture the out-of-

plane particle displacement; since lens plane is not parallel to image plane, images 

perceived by camera are distorted, a.k.a. perspective distortion, and need to be 

compensated (Soloff et al, 1997). This configuration was used by Sakakibara et al. (2004) 

on goldfish, and Suryadi et al. (2010) and Suryadi and Obi (2011) on flapping rigid plate 

in the condition where liquid-air interface is present.  

The lens-shifted configuration is much simpler. The perspective distortion is 

avoided since object plane, lens plane, and image plane are parallel to each other, which 
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also results in the same magnification factor over the images when refractive index is the 

same among planes. In this study, we applied lens-shifted Stereo PIV system to quantify 

unsteady flow field in the water channel. The object plane was in the water, and the lens 

plane and image plane were in the air. According to the observation of Prasad and Adrian 

(1993), the liquid-air interface would cause astigmatic aberration, which is resulted by the 

curved surface of least confusion. Slightly different magnification was detected in an area 

close to the edge of field of view; the difference is considered as the part of measurement 

uncertainty.  

2.6.2.1 Lens-Shifted Stereo PIV configuration  

The configurations of lens shifted Stereo PIV are shown in Figure 2.35 and 

Figure 2.36 for coordinates on X-Z plane and Y-Z plane, respectively. The distance from 

object plane to lens plane is denoted by p, and the distance from image plane to lens 

plane is denoted by q. The subscripts, such as 1 and 2, represent Camera 1 and Camera 2, 

respectively.  

 

Figure 2.35 Schematics of a lens shifted Stereo PIV geometry in the x-z plane.   
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Coordinates on object plane are defined at the center of field of view. As shown 

on the left in Figure 2.35, the positive X-axis is in the upward direction on the object 

plane, the positive Z-axis is normal to the object plane and positive toward lens; the Y-

axis is out of the paper. Figure 2.36 shows the positive Y-axis is in the upward direction, 

the positive Z-axis is normal to the object plane and positive toward the lens; the X-axis 

is toward the paper. Coordinates on image planes are shown on the right of Figure 2.35 

and Figure 2.36 for positive x- and y-axis downward, respectively. The z-axes on image 

planes are not necessary; however, the particle displacements in Z-axis are determined by 

planar images acquired simultaneously from two individual cameras. The positions of the 

cameras follow the coordinates on object plane. In current configuration, camera lenses 

are shifted along the x-axis. In the object-plane coordinates, the lens of Camera 1 is 

shifted upward by X1, which is positive; the lens of Camera 2 is shifted downward by 

X2, which is negative.  

2.6.2.2 Particle displacement on image plane  

 

Figure 2.36 Schematics of a lens shifted Stereo PIV geometry in the y-z plane.   



 

 81 

Since the configurations for both cameras are similar, the following derivation is 

based on one camera, saying only Camera 1, except magnification factor. If the distance 

from lens toward object (p) or the distance from lens toward camera (q) is not the same, 

the magnification factors are different, as determined using Equations (2.41) and (2.42). 

 1 1 1/M q p  (2.41) 

 
2 2 2/M q p  (2.42) 

Considering a particle initially at location O (X, Y, Z) within the thickness of 

laser sheet (green shaded area in the figures), the corresponding position captured on 

Camera 1 is (x1, y1). The relations between the particle on object plane and image plane 

are given in Equations (2.43) and (2.44).  

      1 1 1 1 1/ /X x X X q p Z       (2.43) 

  1 1 1/ /y Y q p Z   (2.44) 

After the time interval dt, this particle moves to a new location (X + dX, Y + dY, Z 

+ dZ), resulting in the new position (x1 + dx1, y1 + dy1) on image plane. The relations for 

particle position on object plane and image plane are given in Equations (2.45) and (2.46).  

      1 1 1 1 1 1/ /X x dx X X dX q p Z dZ                   (2.45) 

      1 1 1 1/ /y dy Y dY q p Z dZ        (2.46) 

Rearranging Equations (2.45) and (2.46), the particle displacements on image 

plane in x and y directions are obtained and given in Equations (2.47) and (2.48). 

  
 

 1
1 1 1 1

1

q
dx X x X X dX

p Z dZ
         

 (2.47) 

 

 
 1

1 1

1

q
dy Y dY y

p Z dZ
  

 
 (2.48) 

Substituting Equations (2.43) and (2.44) into Equations (2.47) and (2.48), 

respectively, we obtain displacements on image plane (dx1, dy1) in terms of displacement 

on object plane (dx, dy), as shown in Equations (2.49) and (2.50). It is noted that the 

distances lens shifted for two cameras, X1 and X2, are not important.  

  
 

 1 1
1 1 1

1 1

q q
dx X X X X dX

p Z p Z dZ
          

 (2.49) 

 

 
 1 1

1

1 1

q q
dy Y dY Y

p Z dZ p Z
  

  
 (2.50) 
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In practice, 1p Z , the Equation (2.49) and (2.50) can be arranged into Equations 

(2.51) and (2.52) after substituting Equations (2.41) and (2.42) for x- and y- 

displacements, respectively.  

 

 

 

1 1
1 1 1

1 1 1

1 1 1 1

1

q qdZ
dx X X dx dX

p p p

dZ
M X X dx M dX

p

 
    

 

     

 (2.51) 

 

 

1 1
1 1

1 1 1

1 1 1

1

q qdZ
dy Y dy dY

p p p

dZ
M Y dy M dY

p

 
   

 

  

 (2.52) 

2.6.2.3 Particle displacement and velocity on object plane  

Now we know in-plane particle displacements captured by cameras through 

Equations (2.51) and (2.52) in a time interval of dt, which are evaluated using the in-

house MATLAB-based PIV software similar to the two-dimensional PIV. Two different 

flow images of the same flow field are expected since both cameras are placed at a 

distance apart with lens shifted. To determine the displacements of particle in the flow 

field (dX, dY, dZ), firstly we look at the particle displacement in X direction.  

Consider x-displacements in Camera 1 and Camera 2, since both cameras have 

similar behavior, we simply change notation of Equation (2.51) from 1 to 2 for Camera 2. 

After proper rearrangement, we obtain Equation (2.53).  

    1 2
1 2

1 1 2 2

dx dxdZ dZ
X X X X

M p M p
      (2.53) 

where dx1 and dx2 are evaluated using cross-correlation technology, and M1, M2, p1, p2, 

x1, and x2 are going to be determined during calibration process and will be discussed 

later. The unknown quantity dZ is, therefore, determined using Equation (2.54).  

 2 1 2 1 2 1

2 1 2 1 2 2 1 1

dx dx X X X X dx dx
dZ

M M p p M p M p

    
       
   

 (2.54) 

Substituting Equation (2.54) into Equation (2.51), the particle displacement in X-

direction is obtained and given in Equation (2.55).  
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 1 1
1

1 1 1

p dZ X X
dX dx dZ

p M p

 
   (2.55) 

Similarly, substituting Equation (2.54) into Equation (2.52), the particle 

displacement in Y-direction is obtained and given in (2.56).  

 1
1

1 1 1

p dZ Y
dY dy dZ

p M p


   (2.56) 

Finally, the velocity of the particle is obtained using Equation (2.57).  

   /V dx dy dz dt    (2.57) 

where dt is the time between camera exposures. It is noted that two cameras have to 

acquire images at the same time.  

The particle displacement in Z-direction can also be determined using equations 

of y-displacement, such as Equation (2.52), on Camera 1 and Camera 2. However, 

singular behavior is observed as p1 and p2 are the same, it is not considered to determine 

Z-displacement on object plane.  

2.6.2.4 Calibration procedure  

The calibration process helps us to ensure the same field of view for two cameras, 

to determine parameters such as magnifications factors (M1 and M2), lens-shifted 

distances (X1 and X2), and distances from object plane to lens plane (p1 and p2) for two 

cameras, and understand individual camera behavior. The determination of exposure time 

is unnecessary.  

 

Figure 2.37 Lens-shifted SPIV for air-air interface configuration. 
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The first calibration is to ensure both cameras having the same field of view. We 

employed a Cartesian-grid board to represent the object plane, which is 18 cm wide and 

24 cm height, the grid size is 1 cm by 1 cm. The grid helps in detecting the presence of 

image distortion and roughly estimate magnification factor over selected index points on 

images. The center of the Cartesian-grid board has to be oriented at the center of the 

image for both cameras. Once the same field of view is perceived by two cameras, the 

sandpaper is employed for the next calibration procedure and proper illumination may be 

used as needed.  
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Figure 2.38 Vector field example for determining magnification factor using calibration 

procedure with air-air interface. The magnification factor is 13.1 px/mm, grid size is 16 

pixels. 
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Figure 2.39 Magnification factor determined using calibration procedure with air-air 

interface.  
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The second calibration process is to find the magnification factor. Substituting dZ 

= 0 into Equation (2.51), Equation (2.58) is obtained to find the magnification factor.  

 1
1

dx
M

dX
  (2.58) 

where dx1 is the displacement evaluated using cross-correlation technology and dX is the 

displacement of object plane adjusted manually through micrometer or transversal 

mechanism.  

The third calibration process is to find the lens-shifted distance (X) and distance 

from object plane to lens plane (p) for each camera. Substituting dX = 0 into Equation 

-500 0 500 1000 1500 2000 2500

0

500

1000

1500

2000

2500

Camera1

x, pixel

y
, 

p
ix

e
l

0 500 1000 1500 2000 2500 3000

0

500

1000

1500

2000

2500

Camera2

x, pixel

y
, 

p
ix

e
l

 

Figure 2.40 Vector field example for dZ displacement only in calibration procedure with 

air-air interface. The magnification factor is 13.1 px/mm, grid size is 16 pixels. 
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Figure 2.41 The relation of dZ displacement expected and evaluated with air-air 

interface. 
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(2.51), we obtain Equation (2.59).  

 
1 1 1

1

1 1

dx M M
X X

dZ p dZ p dZ
  

 
 (2.59) 

where X is the particle location on object plane. We can replace the particle location X 

with the particle position x on image using Equation (2.60).  

  1 0 1/ 2 /X x x H M    (2.60) 

The x1 is particle position on the image, x0 is the first pixel location on CCD 

sensor for the selected image region, and H is the horizontal pixel resolution for the CCD 

sensor, which is 4008 pixels. Substituting Equation (2.60) into Equation (2.59), we obtain 

 

Figure 2.42 Lens-shifted SPIV for water-air interface configuration. 
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Figure 2.43 Magnification factor determined using calibration procedure with water-air 

interface.  
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a linear expression as shown in Equation (2.61).  

 
 0 1 11

1 1 0 1 1

1 1

1

/ 21
/ 2

x H M Xdx
x mx m x H M X

dZ p dZ p dZ

mx n

  
      

 

 

 (2.61) 

where dx1 is particle displacement on image plane with respect to the dZ displacement on 

object plane. Considering x1 to be independent variable and dx1/dZ is a function of x1. 

The slope, m, can be used to find p1. Once p1 is found, the zero intersection, n, gives X1. 

The same procedure works for Camera2 to find p2 and X2.  

For convenience, we define the displacement on object plane has unit of 

millimeter and the displacement on image plane has unit of pixel. The position of camera 

follows the unit used on object plane. Therefore, the unit for variables X, Y, Z, X, p, and 

H is in millimeter, and the unit for variables x, y, dx, dy, q, and x0 is in pixel. Moreover, 

the calibration procedure demonstrated here uses Equation (2.51) only, which is the 

displacement in x-direction. We can also employ the y-displacement expression shown as 

Equation (2.52) to find M and p, but X cannot be found. Some calibration results are 

provided in Figure 2.38 - Figure 2.44 to test our approaches.  
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Figure 2.44 The relation of dZ displacement expected and evaluated with water-air 

interface.  
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CHAPTER 3 

LINEAR POTENTIAL FLOW THEORY  

Lifting-line theory is the simplest model to predict aerodynamic force for thin 

finite-aspect-ratio wings in a uniform flow field at steady state. The flow is assumed to be 

inviscid, irrotational and incompressible, known as potential flow. The lifting-line theory 

was proposed by Ludwig Prandtl and his colleagues in the early 1900s. The concept was 

to assume the wing itself being composed of bound vortices following Helmholtz’s 

vortex theorems; aerodynamic loadings on the wings were evaluated by integrating the 

superposed steady circulations over wingspan. More description can be found in 

Anderson (2011), Bertin and Cummings (2009), and Kuethe and Chow (1976). In this 

chapter, we are going to apply the lifting-line theory for thin wings subject to a constant 

pitch rate in a uniform flow field, and estimate aerodynamic loadings as functions of 

reduced pitch rate (K) and geometric angle of attack (); effect of pivot-axis location (xp) 

are also considered. The geometric angle of attack is abbreviated to angle of attack in the 

following discussion.  

3.1 SECTIONAL WING  

Figure 3.1 presents a cross-section of a thin cambered wing. The wing is pitched 

about a point in clockwise direction with a pitch rate  (t); this point is called pivot point 

for a sectional wing and pivot axis for a finite-aspect-ratio wing, shown as circle symbol 

in Figure 3.1. In the right of Figure 3.1, pitching motion produces normal velocity on the 

camber line, which is proportional to a distance r with respect to the pivot point. The 

direction of normal velocity due to pitching motion is consistent with pitching direction 

but may not be in the same direction as others due to free-stream velocity. The left panel 

of Figure 3.1 shows instant position of the wing at an angle of attack  (t) in a uniform 

flow U∞; camber line z is a function of distance s from leading edge.  
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Following classical thin airfoil theory, a vortex sheet on camber line is placed on 

the chord line. The strength of the vortex sheet is a function of distance x along wing 

chord from leading edge,  (x), and satisfies the Kutta condition at trailing edge,  (c) = 0, 

where there is not velocity gradient. Hence, the strength of the vortex sheet can be 

evaluated by considering the camber line as streamline. All velocities normal to the 

camber line must be zero at any point along the camber line. There are three contributions 

to the normal velocity, which are uniform free-stream, pitch motion, and bound vortices, 

as shown in Equation (3.1) for a given time. The velocity induced from the vortices in the 

wake is not considered since being washed far downstream.  

      , ,, , , 0n nU x t U x t w s t 
    (3.1) 

3.1.1 Normal Velocity from Free-Stream  

The first term in Equation (3.1) is normal velocity on the camber line from free-

stream flow, U,n, and evaluated using Equation (3.2), where effect of wing position and 

camber line are considered. U,n is positive as the flow is moving toward the wing from 

upstream, as shown on the right of Figure 3.1. 

      1

, , sin tan /nU x t U t dz dx 

 
      (3.2) 

Assuming the wing is subject to a small angle of attack and the slope of the 

camber line dz/dx is also small, Equation (3.2) could be approximated to Equation (3.3) 

using sin   and tan-1(–dz/dx)  –dz/dx.  

    , , /nU x t U t dz dx 
     (3.3) 

 

Figure 3.1 Illustration of (left) pitching wing at leading edge and (right) classical thin 

airfoil theory.  
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3.1.2 Normal Velocity from Pitch Motion  

The second term in Equation (3.1) is normal velocity due to pitching motion, U,n, 

and is evaluated using Equation (3.4).  

 

 

         

,

1/ 2
2

2 1 1

,

cos tan / tan /

n

p p

U x t

x x t z x x dz dx z x




            

 (3.4) 

where xp denotes the pivot point. The positive sense of the pitching motion is clockwise 

about pivot point. Consider the normal velocity on the wing; however, the positive 

pitching normal velocity is counterclockwise, being consistent with free-stream normal 

velocity. Assuming the small slope of the camber line and z(x)/x << 1, Equation (3.4) 

could be approximated to Equation (3.5).  

     , ,n pU x t t x x
   (3.5) 

3.1.3 Induced Velocity from Bound Vortices  

The third term in Equation (3.1) is the velocity induced on the camber line by 

vortex sheet, w(s), and due to the presence of the wing in the flow, which is regarded as 

induced velocity from bound vortices. Since the wing is thin and the camber line is close 

to the chord line, the induced velocity on the camber line could be approximated by the 

velocity at the chord line w(x), as given in Equation (3.6), which is negative while 

vectoring downward.  

    
 

 0

,
, ,

2

c t
w s t w x t d

x

 


 
   

  (3.6) 

Substituting the coordinate transformation in Equation (3.7) to Equation (3.6), we obtain 

Equation (3.8) for induced velocity from bound vortices.  

  1 cos , 0
2

c
          (3.7) 

  
   

   0

, sin1
,

2 cos cos x

t
w x t d

   


  
 

  (3.8) 

where x corresponds to any fixed point x in Equation (3.7).  
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3.1.4 Sectional Force Coefficient  

Substituting Equations (3.3), (3.5), and (3.8) into Equation (3.1), we obtain 

Equation (3.9).  

     
   

   0

, sin1
/

2 cos cos
p

x

t
U t dz dx t x x d

   
  

  


        (3.9) 

The terms on the left-hand side of Equation (3.9) are geometric specification or 

control parameters we have known; the strength of vortex sheet () on the right-hand 

side is unclear and needs to be found. A typical solution is given in Equation (3.10) using 

superposition principle.  

    
 

 
   0

1

1 cos
, 2 sin

sin
n

n

t U A t A t n


  








 
  

  
  (3.10) 

The first term of the square bracket in Equation (3.10) implies a singular behavior at the 

leading edge (i.e.,  = 0) and a stagnation behavior at the trailing edge (i.e.,  = ), effects 

of wing planform and pitch rate are included in the second term of the square bracket in 

Equation (3.10).  

Substituting Equation (3.10) to the term on the right-hand side of Equation (3.9), 

we obtained Equation (3.11), which indicates the solution of Equation (3.9) can be found 

once the coefficients, A0 and An are determined.  

 

   

   

 
 

   
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   

   

     

0

0
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1

0

1

, sin1

2 cos cos

1 cos sin sin

cos cos cos cos

cos

x

n

nx x

n x

n

t
d

nU
A t d A t d

U A t A t n



 

  


  

  
 

    
















  
  

   

 
  

 



 



 (3.11) 

Substituting Equation (3.11) to Equation (3.9), effective camber line could be 

obtained using Equation (3.12); both effects of pivot point location and pitch rate are 

included.  

             0

1

/ / / cosp n xeff
n

dz dx dz dx t x x U t A t A t n  






       (3.12) 
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It is noted that Equation (3.12) is a form of a Fourier cosine series expansion; the 

coefficients A0 and An can be found by solving Equation (3.13) and Equation (3.14), 

respectively.  

      0
0

1
/ x

eff
t A t dz dx d



 


    (3.13) 

      
0

2
/ cosn x x

eff
A t dz dx n d



 


   (3.14) 

Substituting Equation (3.12) into Equations (3.13) and (3.14), the coefficients A0 

and An are obtained and given in Equations (3.15) and (3.16).  

      
 

 0 0
0

1
/ cos

2
p

t c
A t t dz dx d

U

 
  

 


    (3.15) 

      
 

0

2
/ cos

2
n x x

t c
A t dz dx n d

U

 
 

 


   (3.16) 

where p corresponds to the pivot point xp, and xp = c(1-cosp)/2. As pivot point is at 

leading edge p = 0; as pivot axis is at trailing edge p = 1.  

Finally, sectional lift coefficient CL and pitching moment coefficient CM,LE at 

leading edge could be evaluated using Equations (3.17) and (3.18), respectively, 

according to the Kutta-Joukowski theorem (L = U ). Since steady Bernouli equation 

is assumed, the results are valid for steady flow conditions. Also non-circulatory effects 

and normal velocity due to vortices generated by pitching motion in the flow are not 

considered.  

  0 12

2
2L

U
C A A

U S










     (3.17) 

   2
, 0 12 0

2

2 2

c

M LE

A
C U d A A

U Sc


   






 
        

 
  (3.18) 

where  is circulation around the vortex sheet on the sectional wing and evaluated using 

Equation (3.19).  

  
0 0

c c

d d        (3.19) 

According to Kelvin circulation theorem, the circulation around the sectional 

wing is equal to the circulation around vortices in the wake.  
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3.1.5 Sectional Thin Flat Plate  

For a sectional thin flat plate, the slope of the camber line is zero (dz/dx = 0); the 

sectional lift coefficient is evaluated using Equation (3.20) and presumably applied on 

center of pressure where pitching moment is absent by definition (Anderson, 2011). 

    0 0 0

1
2 cos

2
L L eff pC a a K     

  
        

  
 (3.20) 

where the square bracket give effective angle of attack eff; zero-lift angle of attack L=0 

is given in the second term of square bracket and is negative. The slope of lift-coefficient-

curve (dCL/d) is a0 = 2 , which is the same as classical thin airfoil theory. This 

expression also shows the effect of pitch rate disappeared as the pivot point positioned at 

three-quarter chord.  

In addition, the sectional pitching moment coefficient around leading edge is 

found using Equation (3.21); effect of pitch rate is attenuated as the pivot point is at the 

trailing edge.  

   , cos 1
2

M LE pC K


      
 

 (3.21) 

By the definition of zero pitching moment production, the center of pressure xcp is 

determined using Equation (3.22). The force distribution on sectional flat plate is 

illustrated in Figure 3.2.  

 , /cp M LE Lx cC C    (3.22) 

 

Figure 3.2 Force distribution on sectional thin flat plate.  
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Substituting Equations (3.20) and (3.21) into Equation (3.22), we obtain the center of 

pressure as a function of reduced pitch rate, pivot axis location and angle of attack, as 

shown in Equation (3.23).  

 
 

 

cos 1

4 cos 1/ 2

p

cp

p

Kc
x

K

 

 

       
     

 (3.23) 

As center of pressure is at quarter-chord, effects of reduced pitch rate are unimportant, 

which is consistent with typical steady flow approximation.  

Moreover, sectional pitch moment coefficient at pivot point CM,xp can be found 

using Equation (3.24).  

 , , /M xp M LE L pC C C x c     (3.24) 

Substituting Equations (3.20) and (3.21) into Equation (3.24), CM,xp is obtained 

and given in Equation (3.25).  

    2

, 1/ 2 cos cosM xp p pC K          
   

 (3.25) 

As the pivot point is at leading edge, p = 0, Equation (3.25) and Equation (3.21) give the 

same Cm,xp as expected.  

We can also evaluate a distance between pivot point and center of pressure, xp - 

xcp, using Equation (3.26), which is a function of reduced pitch rate, pivot point, and 

angle of attack; this relationship is going to apply for finding pitching moment coefficient 

at any pivot axis location for finite-aspect-ratio wings.  

 

Figure 3.3 (left) Illustration of Prandtl’s lifting line theory over a finite-aspect-ratio 

wing; (right) effect of downwash velocity illustrated on a sectional wing.  
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   

 

2

,
1 2cos 2cos

4 4cos 2

p pp cp M xp

L p

Kx x C

c C K

  

 

         
   

 

 (3.26) 

3.2 FINITE ASPECT RATIO WING  

For a finite-aspect-ratio wing, Prandtl’s lifting line theory assumes that uniform 

free-stream velocity is along chord line at rest. Even the leading edge of the wing may be 

swept backward or forward with respect to wing span; effect of swept angle is not 

considered and gives a straight vortex-filament along wing span. The vortex-filament is 

composed of vortices with constant strength of d (y) changing along wing span.  

3.2.1 Downwash Velocity  

According to Helmholtz’s vortex theorem, vortex-filament is going to terminate at 

fluid boundaries or in a closed path. Prandtl and his colleagues proposed U-shape vortex-

filament for a finite-aspect-ratio wing in steady flow. The center portion of the vortex-

filament along wing span produces vortices regarded as bound vortices; portions of the 

vortex-filament at two ends terminate far away downstream. The vortices on wing span 

are unlike bound vortices from the sectional-thin wing discussed previously; these 

vortices do not generate velocity on the wing because wing chord is relatively small 

compared to filament length and is considered a point source in cross section. However, 

the vortices by the vortex-filament terminating downstream produce downwash velocity 

on wing span; these vortices are regarded as free-trailing vortices. The velocity induced 

by free trailing vortices is evaluated using Equation (3.27) at any fixed point y0 along 

wing span, according to the Biot-Savart law.  

  
 

 0

/

4

d dy dy
dw y

y y


 


 (3.27) 

Distributions of vortices over wing span by superposing numerous U-shape 

vortex-filaments are shown in the left panel of Figure 3.3. Integrating Equation (3.27) 

over entire wing span, total downwash velocity at y0 is obtained and given in Equation 

(3.28).  

  
 / 2

0
/ 2

0

/1

4

b

b

d dy dy
w y

y y 


 

  (3.28) 
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3.2.2 Force Coefficients  

Effect of downwash velocity is shown in the right panel of Figure 3.3, which 

indicates lift force L is smaller than one from the sectional wing at same angle of attack 

(α). L corresponds to a smaller angle, regarded as effective angle of attack (αeff). 

Furthermore, a pressure-like drag, called induced drag Di, is generated due to induced 

angle of attack (αi). The relation among α, αi, and αeff is shown in Equation (3.29) at y0.  

      0 0 0i effy y y     (3.29) 

where αi can be found using Equation (3.30).  
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Substituting Equation (3.28) into Equation (3.30) and assuming w(y0) << U∞, we obtain 

Equation (3.31) for αi at y0.  
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To find eff, we have to consider sectional lift coefficient CL as follows. 

  0 0L eff LC a   
   , (3.32) 

where L=0 is zero-lift angle of attack to account for effects of wing camber line and pitch 

rate, and a0 is the slope of lift-coefficient-curve. Both are from the sectional wing 

approximation in previous section. Using Kutta-Joukowski theorem based on steady 

Bernoulli equation, the sectional lift coefficient is given in Equation (3.33).  
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
   (3.33) 

Combining Equations (3.32) and (3.33), the effective angle of attack is obtained 

and given in Equation (3.34). 
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Substituting Equations (3.31) and (3.34) into Equation (3.29), we obtain new 

expression for angle of attack as shown in Equation (3.35).  
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To solve Equation (3.35) we still need to know strength of vortex filament, (y). 

The general solution is given in Equation (3.36).  

    
1

2 sin
N

nbU D n    ,  cos
2

b
y   , 0     (3.36) 

Equation (3.35) would be well defined if coefficients Dn could be found. The approach 

applied to find Dn is similar to Glauert (1926) and is demonstrated in the following 

discussion. 

Finally, lift coefficient (CL) and induced drag coefficient (CDi) are evaluated by 

integrating distributed forces on wing span and obtained in Equations (3.37) and (3.38), 

respectively, for the flow at steady-state. It is noted that both CL and CDi depend on aspect 

ratio (b2/S), and not depend on wing swept angle.  
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To obtain pitching moment coefficient about pivot axis CM,xp, as shown on the 

right of Figure 3.3, the sectional pitching moment can be found using force-torque 

equivalence shown in Equation (3.39) in accordance with small angle approximation, for 

example, cos(eff )  1 and sin   . Both forces L(y0) and Di(y0) are assumed to act on 

center of pressure at a fixed point y0 on wing span.  
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 (3.39) 

Integrating the pitching moment over entire wing span and normalized with 

U
2Sc/2, we obtain Equation (3.40).  
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   
   (3.40) 

Recall from Equation (3.36), the term (xp - xcp) is independent of span location y; 

therefore, we can pull this term out of the integration. After substituting Equation (3.36) 

into Equation (3.40), the final expression for CM,xp is given in Equation (3.42), which is a 

function of CL and CDi, K, and p.  
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3.2.3 Thin Flat Plate with Finite Aspect Ratio  

To find coefficients of CL, CDi, and CM,xp, coefficients Dn need to be determined. 

Equation (3.42) shows angle of attack  at a span location y from Equation (3.35) with 

coordinate transform y=-bcos()/2 for flat plate. The number of D coefficient depends on 

number of span location in use; more D coefficients give more accurate estimation.  
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The first term on the right-hand side of Equation (3.42) presents induced angle of 

attack, the last two terms presents effective angle of attack. The a0 in the second term is 

the slope of lift-coefficient-angle curve, for instance, a0 = 2 for a flat plate. The last term 

presents zero-lift angle of attack (L=0). Both two parameters a0 and L=0 are obtained 

from estimation of sectional wing as discussed previously. Equation (3.42) can be 

expanded in matrix form, as shown in Equation (3.43) to find coefficients Dn.  
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(3.43) 

For simplicity, Equation (3.43) is expressed in terms of algebra, as shown in 

Equation (3.44).  

          I J M N D Q   (3.44) 
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Figure 3.4 Illustrations of wing planforms and pivot axes of interest: (a) rectangular 

wing, (b) trapezoidal wing, and (c) triangular wing.  

 

Figure 3.5 Force coefficients as a function of angle of attack using lifting-line theory 

by rectangular wing at leading edge pivot for (a) lift coefficient (b) induced drag 

coefficient.  
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The coefficient vector {D} is obtained by inversing the matrices in the 

parentheses. Once each component of D coefficients is found, CL and CDi are obtained by 

substituting coefficients Dn into Equations (3.37) and (3.38), respectively; CM,xp can also 

be found by Equation (3.41). It is noted that these force coefficients are approximated by 

small angle assumption.  

3.3 APPLICATION FOR FLAT PLATE WING 

In previous discussion, the lifting line theory was developed to include effects of 

pivot axis location, reduced pitch rate, and taper ratio. Now we are going to apply the 

theory for test cases of interest in the study. There are three pivot-axis locations (i.e., 

leading edge pivot, mid-chord pivot, and trailing edge pivot), three wing planform 

geometries (i.e., rectangular, trapezoidal, and triangular wings), and six finite reduced 

pitch rate (i.e., K = 0, 0.022, 0.065, 0.132, 0.193, and 0.394). The wings are rigid and do 

not exhibit elastic deformation. In other words, there is no wash-out (rot > tip) or wash-

in (rot < tip), angle of attack  is the same at any span location y.  

 

Figure 3.6 Force coefficients as a function of angle of attack using lifting-line theory 

by rectangular wing at mid-chord pivot for (a) lift coefficient (b) induced drag coefficient.  
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Figure 3.4 illustrates various wing planforms in full span at pivot axis location 

under consideration. From top to bottom are rectangular, trapezoidal, and triangular 

wings, and from left to right are pivot axes at leading edge, mid-chord, to trailing edge. 

The leading/trailing edge swept angles are different for wings with taper ratio  < 1. The 

wing geometries are given in Section 2.2.  

Both CL and CDi were predicted using D coefficients equal to 203, which are 

determined from 203 locations on wing span uniformly distributed from one wingtip to 

another. The angle of attack is the same along the wing span since rigid wing is assumed. 

For taper ratio  < 1, wing chord varies along wing span and is evaluated using Equation 

(3.45).  

 
   1 cos cosr tc c c      for / 2     

   1 cos cosr tc c c     , for 0 / 2    
(3.45) 

Figure 3.5 - Figure 3.7 show predicted force coefficients as a function of angle of 

attack for leading edge, mid-chord, and trailing edge pivot axes using the rectangular 

wing. It is noted that effect of reduced pitch rate (K) is attenuated at three-quarter chord, 

 

Figure 3.7 Force coefficients as a function of angle of attack using lifting-line theory 

by rectangular wing at trailing-edge pivot for (a) lift coefficient (b) induced drag 

coefficient.  
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as discovered in Equation (3.20) and (3.21). The force curves, shown in both Figure 3.5 

and Figure 3.6, give similar tendency since their pivot axes are located before three-

quarter chord. Both CL and CDi increase with increasing reduced pitch rate K at fixed 

angle of attack. Higher force coefficients are obtained at a fixed K as pivot axis location 

is moved toward to the leading edge. Additionally, CL increases linearly with angle of 

attack; however, CDi increases exponentially. For pivot axis location after three-quarter 

chord, shown in Figure 3.7, force coefficients have contrary behaviors with increasing K. 

For a given angle of attack, the force coefficients decrease with increasing reduced pitch 

rate. As angle of attack is increased, both CL and CDi are increased in the same manner as 

pivot axis location at leading edge or mid-chord. Additionally, the effective camber line 

at given pivot axis is also plotted in the figures using Equation (3.12) and scaled with 

chord length, which is stimulated by effects of reduced pitch rate and pivot axis location. 

The pivot axis location is denoted by circle symbol.  

Figure 3.8 shows effects of wing planform at leading edge pivot. Even though a 

trapezoidal wing gives higher forces than the other wing planforms for a given K, the 

 

Figure 3.8 Force coefficients as function of angle of attack using lifting-line theory for 

selected wing planforms at leading edge pivot, (left) lift coefficient (right) induced drag 

coefficient.  
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differences of force coefficients are fairly small for different taper-ratio wings. As the 

location of pivot axis is moved toward trailing edge, much smaller variances are 

predicted, which is not shown.  
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CHAPTER 4  

FLOW VISUALIZATION  

Flow visualization data by injecting dyes at 50% span of several flat-plate wings 

are presented. The wings were pitched at two constant pitch rates in a uniform free-

stream U = 17.5 cm/s (Re = 9k), which are 155 /s and 25.6 /s. As a result, dynamic 

flow is incorporated to two reduced pitch rates K = 0.39 and 0.065 and highlighted as 

solid symbol in St-Re space in Figure 4.1. The wing planforms under consideration were 

rectangle, trapezoid, and triangle; all wings had the same effective aspect ratio of 4, 

thickness to mean chord ratio of 6.25%, mean chord of 2”, and rounded edges. The 

details of wing geometry, wing-kinematic implementation, and dye-injection procedure 

are given in Sections 2.2, 2.3, and 2.4, respectively.  

A injection rake was placed at three-mean-chord upstream of leading edge, which 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

S
to

k
es

 N
u
m

b
er

,
S
t

x 10000

Reynolds Number, Re x 10000

K = 2.356
( = 1/6)

K = 0.065
( = 6)

K = 0.19
( = 2)

K = 0.39
( = 1)

K = 0.13
( = 3)

K = 0.022
( = 18)K = 0

K = 0.065
( = 6)

K = 0.39
( = 1)

 

Figure 4.1 Test cases of dye injection in St - Re space.  
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had 7 probes with 1” spacing; there were three probes for red dyes and four probes for 

blue dyes. The center probe released the red dye to the leading edge of wings at initial 

position, which is zero angle of attack. These dyes move with the flow and are 

representative of streaklines in fluid mechanics. Two views were used to determine the 

flow characteristics, which are side view and top view. All flow visualization data were 

recorded using a camera with a frame rate of 30Hz; the onset of time scale was set to t1 as 

shown in Figure 2.6.  

4.1 EFFECT OF PITCH RATE  

Figure 4.2 and Figure 4.3 show comparisons of reduced pitch rates of K = 0.39 

and 0.065 in a constant free-stream from side view and top view, respectively; the top 

view would reveal the evolution of three-dimensional flow. A single event sequence of 

flow over a rectangular wing was recorded as it pitched up about leading edge in angle of 

attack from 0 to 45; the flow visualization data at same angle of attack for K = 0.39 and 

0.065 are presented. The pitching wings with K = 0.065 have pitch time equal to six 

convective times; whereas the pitching wings with K = 0.39 has pitch time equal to one 

convective time.  

As shown in Figure 4.2, Kármán Vortex Street is observed on stationary wing at 

zero-degree angle of attack in the wake for both reduced pitch rate; the flow is typically 

two dimensional; outer streaklines are straight around the wing. As the angle of attack is 

increased to 16, a starting vortex can be clearly seen in the near wake for K = 0.39 and 

causes the outer streaklines to deflect. The incoming center-streakline swirls around the 

leading edge, which is called leading-edge swirling and indicates the formation of 

leading-edge vortex. Some residual center-streakline stays on the leeward side of the 

wing surface. The residual dyes on the leeward surface indicate regions of lower pressure 

extending from the trailing edge. For K = 0.065 the starting vortex is weak but the 

deflected outer streaklines identify its presence at further downstream. The incoming 

center-streakline swirls around the leading edge; the residual center-streakline does not 

attach to the wing surface but interacts with some residual red-dyes at trailing edge. The 

flow development at angle of attack of 15 is two-dimensional from the top view. As the 

angle of attack is further increased, the starting vortex for K = 0.39 convects further 
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downstream, followed by several vortices with same counter rotation from the trailing 

edge. The leading edge swirling becomes much larger, but does not cover the entire wing 

chord. A portion of residual center-streakline is pushed away from the wing surface and 

starts to undergo wavy-like distortion, which indicates the viscous-inviscid interface. The 

flow is likely two-dimensional from the top view. For K = 0.065, the starting vortex 

moves out of the sight, followed by several vortices, unlike typical Kármán vortex street. 

The leading-edge swirling covers entire wing chord and starts to curl upward into wing 

leeward surface. The streaklines in the wake deviate from their incoming plane. As the 

angle of attack is increased to 44, for K = 0.39 the starting vortex is convected about 

one-chord downstream consistent with free-stream flow; the leading-edge swirling 

becomes much larger on the same plane with one end attached to the wing surface on the 

leeward side. The residual center-streakline moves a little upward from the top view; the 

outer streaklines seem likely to deviate from their incoming plane. For K = 0.065, the 

leading-edge swirling moves upward, then curls to the leeward surface, and then is 

washed down to wing tip along leading edge.  

According to the evolution of dyes over the pitching wing, several features are 

summarized as follows: 

1. At early stage of pitching flat-plate wing and higher reduced pitch rate, the 

flow is essentially two dimensional.  

2. The strength of starting vortex is much stronger at higher reduced pitch rate 

and formed at lower angle of attack. The formation of the starting vortex may 

be associated with wing motion acceleration and is discussed in the next 

chapters.  

3. The leading-edge swirling for lower reduced pitch rate is much larger at a 

lower fixed angle of attack. However, this leading-edge swirling is also 

demolished much earlier at high angle of attack by a three-dimensional flow 

developed in the wake, leading to the saturation of forces.  
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Figure 4.2 Effect of pitch rate in side view during pitch-up phase.  
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K = 0.39 K = 0.065 
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Figure 4.3 Effect of pitch rate in top view during pitch-up phase.  
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4.2 EFFECT OF PIVOT AXIS LOCATION  

Figure 4.4 and Figure 4.5 show effect of pivot axis location of rectangular wing in 

side view and top view, respectively. The location of pivot axis includes leading edge, 

mid-chord, and trailing edge. The pitching wing at K = 0.39 was studied due to simply 

two-dimensional flow even at higher angle of attack, as observed previously. The top 

view was used to determine the onset of three-dimensional flow.  

As shown in Figure 4.4, a center streakline reveals the attached flow over the 

wing and Kármán vortex street in the wake at lower angle of attack. As the angle of 

attack is increased to 21, for leading-edge-pivot wing, a typical starting vortex is 

observed in the near wake. For trailing-edge-pivot wing, a center-streakline swirls at 

about quarter-chord on the windward surface and presents a formation of a starting vortex 

at leading edge. In the near wake, there is a vortex with clockwise rotation shed from the 

leeward surface at trailing edge, different from the typical starting vortex with 

counterclockwise rotation. The deflections of outer streaklines by leading-edge-pivot and 

trailing-edge-pivot wings move in the opposite direction. The deflection of outer 

streaklines by mid-chord-pivot wing indicates the presence of a weak starting vortex in 

the wake; it is unclear that there is another starting vortex formed at leading edge. Detail 

review of the video disclosed the typical starting vortex at trailing edge was formed at 6 

(0.125 tc) and 16 (0.355 tc) by leading-edge-pivot wing and mid-chord-pivot wing, 

respectively; the “reverse” starting vortex was formed at 16 (0.355 tc) by trailing-edge-

pivot wing. This disclosure indicates there would be no vicinity of starting vortex by 

three-quarter-chord-pivot wing. As the angle of attack is increased to 45, the starting 

vortex by leading-edge-pivot wing convects further downstream; however, the starting 

vortex by trailing-edge-pivot wing grows in size at the same location, determined from an 

increase of red-dye concentration.  

Since injection rake probes were positioned at the same place while center dyes 

were injected to the chord line at zero-incidence; the incoming streaklines confronted the 

pitching wing at different places on the wing, depending on pivot axis location. The 

evolution of vortical structure is not captured in detail by flow visualization data. 

However, it was revealed that leading-edge-pivot wing produces a starting vortex at 
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trailing edge, and trailing-edge-pivot wing produces a starting vortex at leading edge on 

the windward surface and a reverse starting vortex at trailing edge. The streaklines stay 

on the same plane during the formation of starting vortex, indicating two-dimensional 

flow evolution.  
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Figure 4.4 Effect of pivot axis location in side view during pitch-up phase. 
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4.3 EFFECT OF WINGPLANFORM  

The flow visualization data have revealed two-dimensional flow field over a 

rectangular flat-plate wing pitching at a higher reduced pitch rate K = 0.39, where the 
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Figure 4.5 Effect of pivot axis location in top view during pitch-up phase.  
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pitch time is equal to one convective time. There is a starting vortex at trailing edge by 

leading-edge-pivot wing and a starting vortex at leading edge by trailing-edge-pivot 

wing. Now the impact of wing planform on dynamic flow is presented under the same 

circumstance, which includes rectangular, trapezoidal, and triangular wings. The flow 

visualization data are selected to represent the flow structure in three states: unsteady 

state, transient state, and steady state. For leading-edge-pivot and trailing-edge-pivot 

wings, the pivot axis is always at an axis with zero-degree sweep angle; the sweep angle 

on the other edge is 0, 18.4, and 45 for rectangular, trapezoidal, and triangular wings, 

respectively. For mid-chord-pivot wings, the leading-edge and trailing-edge sweep angles 

increase with decreasing taper ratio. The geometry of wing planform is given in 

Table 2.1.  

4.3.1 Unsteady Flow  

Flow structure in an unsteady state is characterized using streaklines at a phase 

where uniform free-stream flow was disturbed by wings for one-chord convective time 

and the wing position was near the maximum angle of attack (i.e., m = 45). The flow 

visualization data shown in Figure 4.6-Figure 4.8 are for leading-edge-pivot, mid-chord-

pivot, and trailing-edge-pivot wings, subsequently.  

As shown in Figure 4.6, for rectangular wing in the side view, there are Kármán 

vortices in the far wake, which were formed as the wing was at zero-degree angle of 

attack. A typical starting vortex with a count clockwise rotation is observed in the wake 

at a distance of one-chord downstream from the trailing edge, which was formed at 6-

degree angle of angle detached from the chord line. After forming the starting vortex, 

most of the dyes from the center streakline resided on the rear portion of the leeward 

surface during pitch motion. Meanwhile, the center streakline near the leading edge 

deflects upward and swirls over three-quarter chord of the wing, and then becomes 

wrinkled before merging with the residual dyes on the leeward surface. The center 

streakline behind the merging point moves slightly upward in a spanwise direction, as 

shown in the top view. The streaklines before the merging progress (i.e., at lower angle of 

attack) remain on the same plane, as observed in the top view, which indicates flow 

dynamic is two-dimensional.  
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For trapezoidal wing in the side view, there are few vortices in the far wake with 

more diffusion due to trailing-edge sweep angle. Unlike the rectangular wing, there were 

no residual dyes in the vicinity of the leeward surface; the merging process was not 

observed. The center streakline over leading edge has similar profile as that for the 
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Figure 4.6 Effect of wing planform for pivot axis location at leading edge in 

unsteady flow. 
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rectangular wing. Even though there is no merging progress, the center streakline near the 

trailing edge swirls upward in the spanwise direction, as shown in the top view, 

indicating an occurrence of spanwise flow. The deflection of outer streaklines indicates 

the existence of a weak starting vortex in the wake; from the top view, this starting vortex 

is stretched due to trailing-edge sweep angle. In addition, the expansion of outer 

streaklines in the near wake is more pronounced than that by the rectangular wing; the 

vortices in the far wake move downward.  

For triangular wing in the side view, vortices in the far wake have more diffusion 

than that for the other two wing planforms. The center streakline produces similar 

structure over the leading edge on the same plane as that for the other wing planforms; 

however, there is no starting vortex observed in the wake. In the top view, the center 

streakline is pushed upward along the trailing edge at a distance of about one-chord 

downstream, which indicates an existence of axial flow. The outer streaklines on the 

leeward side deflects significantly upward from their original path; however, the outer 

streaklines on the windward side move downward. As a result, a significant streakline 

expansion is observed in the near wake, forming an oval profile. A dye concentration is 

also observed at the center of streakline expansion, where the starting vortex was 

observed from the other wing planforms as taper ratio is higher than 0.5. This dye 

concentration is attributed to an out-of-plane starting vortex and enhances the force 

generation. The vortices in the far wake stay on the same plane as they were at earlier 

stage.  

Figure 4.7 shows flow visualization data for mid-chord-pivot wings; leading-edge 

sweep angle is same as trailing edge sweep angle, which is 0, 9.5, and 26.5, 

respectively. For rectangular wing in the side view, the Kármán vortices are in the 

vicinity of the far wake, just like the leading-edge-pivot wing but with weaker 

circulation, which was determined from the amount of deflection of outer streaklines. 

There is an in-plane starting vortex located at a closer downstream distance from the 

trailing edge than the leading-edge-pivot wing. The incoming center streakline moves 

toward the quarter-chord on the windward surface, instead of swirling around the leading 

edge as the leading-edge-pivot wing, because the position of center-dye-probe was half-
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chord projection distance lower from the leading edge. In the top view, residual dyes on 

the leeward surface remained on the same plane as incoming dyes, similar to that by the 

leading-edge-pivot wing.  
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Figure 4.7 Effect of wing planform for pivot axis location at mid-chord in unsteady 

flow. 



 

 116 

For trapezoidal wing in the side view, the structure of vortices in the far wake is 

different from the rectangular wing due to leading-edge and trailing edge sweep angles. A 

starting vortex is in the vicinity of the wake at the same location as the rectangular wing. 

In the top view, the center of far-wake-vortex is pulled downward and toward the 

wingtip. Some dye-concentration is observed at the location of starting vortex; some of 

residual dyes on the leeward surface are pushed upward at trailing edge but stay close to 

the leeward surface. Some of residual dyes on the windward surface swirl upward around 

leading edge, indicating a stagnation axis.  

For triangular wing in the side view, the far-wake vortices have very different 

patterns from higher taper-ratio wings due to sweep angle at leading edge and trailing 

edge. A starting vortex is present in the wake at the same location as the other two wing 

planforms. In the top view, the centers of far-wake vortices were pulled away from the 

wingtip. Much more dye concentration is significantly appeared at the location of the 

starting vortex by the other two wing planforms, indicating the occurrence of starting-

vortex re-orientation and the formation of out-of-plane starting vortex. The process of 

starting-vortex re-orientation promotes the force generation, similar to the observation 

from the leading-edge-pivot wing, and is accompanied by an expansion of outer 

streaklines. 

Figure 4.8 shows flow visualization data for trailing-edge-pivot wings; leading-

edge sweep angle for rectangular, trapezoidal, and triangular wings is 0, 18.4, and 45, 

respectively. For rectangular wing in the side view, the Kármán vortices in the far wake 

were formed at zero-degree angle of attack before the onset of pitch motion, similar to 

that by the other axis-pivot wings. A vortex with clockwise rotation was formed at higher 

angle of attack of 16 and is shown at a distance of less than one chord downstream from 

trailing edge. This vortex is different from the typical starting vortex and regarded as a 

reverse-starting vortex. The outer streaklines are deflected in the opposite direction of the 

leading-edge-pivot wing, which could be employed to identify the occurrence of the 

reverse-starting vortex. During the pitch motion, some dyes from the center streakline 

stayed at the rear portion of the leeward surface, whereas some dyes remained on the 

windward surface around the quarter chord. Consequentially, a vortex structure with 
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counterclockwise rotation is observed close to the leading edge, which is akin to the 

typical starting vortex, like one by leading-edge-pivot wing but being formed at different 

location. As the angle of attack was increasing, the upstream center streakline moved 

along the chord line on the windward side toward the trailing edge until 45° angle of 

attack. Once this center streakline meets with residual dyes on the leeward surface at 

trailing edge, the formation of trailing edge vortex with counterclockwise rotation is 

initiated. The vortical flow evolution over the wing during the pitch-up phase is two-

dimensional from the top view.  

For trapezoidal wing in the side view, the far-wake vortices are significantly 

different from the Kármán vortices shown by the rectangular wing. A reverse-starting 

vortex with clockwise rotation is presented at the same location in the wake as that by the 

rectangular wing. During pitch-up phase some dyes from center streakline remained on 

the rear portion of the leeward surface; at the same time, the center streakline moves 

toward the windward surface and travels along wing chord to trailing edge. Once this 

center streakline encounters the residual dyes on the leeward surface at trailing edge, the 

formation of trailing edge vortices is initiated. This flow evolution is similar to that by the 

rectangular wing. There is no indication of a starting vortex at leading edge in the side 

view, but a dye accumulation at the leading edge on the windward surface is observed 

from the top view. Also observed from the top view is the in-plane streaklines during the 

pitch–up phase, indicating two-dimensional flow dynamic.  

For triangular wing in the side view, the dye evolution is very similar with the 

other wing planforms, except vortices in the far wake have much more diffusion. A 

reverse-starting vortex is formed in the wake at a distance of less than one chord 

downstream of trailing edge, which is similar to the other two wing planforms. No 

starting vortex at leading edge is observed from either the side view or the top view. 

Some dyes from center streakline resided on the leeward surface during pitch motion; 

meanwhile the upstream center streakline moved toward the windward surface and 

traveled to trailing edge along the chord-line to initiate the formation of trailing edge 

vortex. The in-plane streaklines from the top view reveals two-dimensional flow 

evolution as that for the other wing planforms. 
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4.3.2 Transient Flow  

Dynamic flow in transient state is characterized using streaklines at a phase where 

wings stayed at 45° angle of attack for one-chord convective time. Figure 4.9-Figure 4.11 
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Figure 4.8 Effect of wing planform for pivot axis location at trailing edge in unsteady 

flow.  
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show flow visualization data over wings as their pivot axis locations were at leading edge, 

mid-chord, and trailing edge, subsequently.  

As shown in Figure 4.9, for the rectangular wing in the top view, the center 

streakline over the leading edge undulates and swirls upward, indicating there is a 
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Figure 4.9 Effect of wing planform for pivot axis location at leading edge in 

transition flow.  
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spanwise flow on the leeward side and turbulent flow in progress. And also push some 

residual dyes circulating toward the leading edge on the leeward surface, forming a well-

known secondary vortex in the side view. The leading-edge swirling enforces outer 

streaklines on the leeward side to curl in the same direction and promote the deflection of 

outer streaklines caused by the starting vortex. The outer streaklines on the windward 

side curl downward. This progress expands the streaklines in the wake, as shown in the 

top view, and forms in-transition streaklines. The expansion of streaklines was also 

observed on the wings with lower taper ratio during pitching motion due to trailing-edge 

sweep angle. Some residual dyes meet with the center streakline from the windward 

surface at trailing edge and form trailing-edge vortices. A blue streakline below the center 

streakline moves toward the quarter chord of the windward surface and follows the 

surface downstream at a later time. After four convective times, this blue streakline 

reveals the formation of another type of trailing edge vortex, where normal force 

decreases and axial force increases (Yu et al., 2013). In the top view, the center of the 

starting vortex rotates downward and toward the wingtip, shown at a distance of two-

chord downstream from the trailing edge.  

For the trapezoidal wing in the side view, the evolution of center streakline over 

the leading edge is similar to that for the rectangular wing. After one-chord convective 

time at maximum angle of attack, the center streakline around the leading edge swirls 

upward, like the rectangular wing, and produces the same force. The leading-edge 

swirling evolves into the direction of normal force at a later time. This progress is quicker 

than that by the rectangular wing. There are no residual dyes on the leeward surface. A 

blue streakline below the center streakline moves toward the quarter chord on the 

windward surface and follows the surface downstream, which is similar to that for the 

rectangular wing. The development of trailing-edge vortex is also observed after four 

convective times, which corresponds to a decrease of normal force and an increase of 

axial force (Yu et al., 2013). In the top view, the in-transition streaklines in the wake are 

more pronounced than that for rectangular wing, but have less influence on force 

generation.  
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For the triangular wing in the side view, the leading edge swirling covers entire 

wing chord; its evolution toward normal-force direction is more pronounced and earlier 

than the other two wing planforms, which deteriorates the force generation. There is no 

evidence of residual dyes on the leeward surface. A blue streakline below the center 
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Figure 4.10 Effect of wing planform for pivot axis location at mid-chord in transition 

flow.  
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streakline moves toward the quarter chord on the windward surface, similar to the other 

wing planforms, and follows the surface downstream. However, unlike the rectangular 

and trapezoidal wings, the development of trailing-edge vortex is imperceptible at a later 

time. Additionally, the in-transition streaklines are much more pronounced than the other 

two wing planforms. 

Figure 4.10 show flow visualization data based on mid-chord-pivot wings in 

transient flow. For the rectangular wing in the side view, the starting vortex is convected 

one-chord further downstream in accordance with free-stream velocity. There are few 

trailing-edge vortices shed from the windward surface, following the starting vortex. 

Some residual dyes on the leeward surface are in attempt to travel reversely toward 

leading-edge and form a well-known secondary vortex, which is driven by axial flow on 

the leeward side and progressed in circulation, as shown in the top view. The upper 

streakline reveals a leading-edge swirling over entire wing chord. The expansion of in-

transient streaklines is less pronounced than that by the leading-edge pivot wing.  

For the trapezoidal wing in the side view, the starting vortex is convected to a 

location in correspondence with free-stream velocity and is pushed upward. Several 

trailing-edge vortices were formed in the wake and followed the starting vortex. Some 

residual dyes on the leeward surface close to the trailing edge move upward and travel 

toward the leading edge to form a secondary vortex at a later time. The dye-diffusion at 

the location of secondary vortex discloses a paired axial flow in progress. There is an 

axial flow washing toward wingtip close to the leeward surface and an axial flow toward 

wingroot on the outer of the leeward surface. The leading-edge swirling is revealed by a 

blue streakline above the center streakline, covering the entire wing chord similar to the 

rectangular wing. The in-transition streaklines are more pronounced than the rectangular 

wing and less pronounced than the leading-edge-pivot wing, which indicates the 

expansion of in-transition streaklines depends on the trailing-edge sweep angle.  

For the triangular wing in the side view, the starting vortex in the far wake is 

diffused significantly in comparison with the other wing planforms. Its presence at an 

upper position from the top view indicates an axial flow from the wingtip toward 

wingroot in the wake. There are no trailing-edge vortices in the vicinity of near wake, 
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like the other two wing planforms. Some residual dyes on the leeward surface at trailing 

edge were pushed upward and are convected into the wake. Simultaneously, some dyes 

on the windward surface traveled downward and convected downstream in the same path. 

The leading-edge swirling revealed by the blue streaklines has similar appearance to the 

other two wing planforms. The incoming center streakline is moving to a lower leading 

edge; portion of its dyes reveals a sharp shear layer across the leading edge and in front 

of the secondary vortex on the leeward surface. The in-transition streaklines are more 

pronounced than other two wing planforms and less pronounced than the leading-edge-

pivot wing, which supports a conclusion that the expansion of in-transition streaklines is 

dependent of trailing-edge sweep angle.  

As shown in Figure 4.11, for the rectangular wing in the side view, the reverse-

starting vortex is convected in a distance of one-chord further downstream. As the center 

streakline on the windward surface met the residual dyes on the leeward surface at 

trailing edge, a trailing-edge vortex in counterclockwise rotation was formed, which is at 

a distance of about one-chord downstream from the trailing edge. This trailing-edge 

vortex is larger than following trailing edge vortices. The starting vortex at leading edge 

was broken into two portions, observed from video. One portion is sucked toward and 

turns around the leading edge to form the leading-edge vortex; the other portion moves 

downstream along wing chord on the windward surface to form a trailing-edge vortex. 

On the leeward surface, residual dyes transport reversely toward the quarter chord of the 

wing and form a secondary vortex at a later time, where the dyes are washed toward 

wingtip. Simultaneously, the leading edge swirling curls upward in spanwise direction, 

which is represented by a blue streakline above the center streakline and red dyes from 

the starting vortex at leading edge. The in-transition streaklines are indistinguishable at 

this phase.  
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For the trapezoidal wing in the side view, the reverse-starting vortex is convected 

downstream in accordance with free-stream velocity, similar to that for the rectangular 

wing. A trailing-edge vortex was formed while the center streakline met with the residual 

dyes on the leeward surface, which is shown at a distance of one-chord downstream from 
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Figure 4.11 Effect of wing planform for pivot axis location at trailing edge in transition 

flow.  
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the trailing edge. The breaking progress of the starting vortex as observed from the 

rectangular wing is imperceptible. The dye accumulation at leading edge on the 

windward surface, observed in Figure 4.8, is convected downstream and diffused very 

quickly into spanwise direction. On the leeward surface, the residual dyes near the 

trailing edge travel reversely toward the leading edge and form a secondary vortex, which 

is similar to that by the rectangular wing. These reversed dyes meet with blue dyes 

upstream at leading edge. A portion of these dyes is washed downward on the leeward 

surface and a portion of them is pushed toward wingroot, which indicates the presence of 

a pair of axial flow. The expansion of in-transition streaklines is less pronounced than the 

other pivot-axis wings. However, the occurrence of the in- transition streaklines is shifted 

upstream, which is influenced by leading-edge sweep angle.  
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Figure 4.12 Effect of wing planform for pivot axis location at leading edge in a steady 

state.  
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For the triangular wing in the side view, similar to the other wing planforms, a 

trailing edge vortex was formed as the center streakline met the residual dyes on the 

leeward surface at trailing edge, which is present at a distance of one-chord downstream 

from the trailing edge. The residual dyes on the leeward surface transport toward the 

leading edge, unlikely forming a secondary vortex, the reversed dyes was washed down 

along the leading edge and meet with upstream blue streakline at leading edge. The 

formation of leading edge swirling is hardly identified from the blue streakline above the 

center streakline, unlike the other wing planforms. The expansion of in-transition 

streaklines is more pronounced than that by the other two wing planforms.  

4.3.3 Steady Flow  
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Figure 4.13 Effect of wing planform for pivot axis location at mid-chord in a steady 

state.  
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As revealed from force data by Yu and Bernal (2013), steady flow was achieved 

after 27 convective times, where oscillatory force behavior due to transient vortex was 

not in the vicinity; effects of pivot-axis location and taper ratio are less pronounced. The 

steady-flow force data are given in Section 5.1. Figure 4.12-Figure 4.14 show flow 

visualization data of wings at 28 convective times as their pivot axis locations were at 

leading edge, mid-chord, and trailing edge, subsequently.  

The streaklines in Figure 4.12 show the flow over leading-edge-pivot wings in the 

steady state. For the rectangular wing, the unsteady flow structures are not observed even 

for trapezoidal and triangular wings, which are not limited to a starting vortex in the wake, 

residual dyes on the leeward surface, reversal flow on the leeward surface, a leading-edge 

swirling, trailing-edge-vortex shedding, and in-transition streaklines. In addition, the 
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Figure 4.14 Effect of wing planform for pivot axis location at trailing edge in a steady 

state.  
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center streakline and the blue streakline below the center streakline flow around the wing; 

both streaklines stay almost on the same plane as shown in top view. For the trapezoidal 

wing in the side view, the streaklines around the wing have similar profiles to less dye-

diffusion on wing leeward side while compared to the rectangular wing. However, as 

shown in the top view, the streaklines at lower position move downward across the wing 

downstream. For the triangular wing in the side view, both streaklines are closer together 

across the wing, which is because the blue streakline below the center streakline deflects 

more downward.  

Figure 4.13 shows the steady flow over mid-chord-pivot wings. There are no 

unsteady flow structures in the vicinity, which are not limited to a leading-edge swirling, 

trailing-edge vortex shedding, residual dyes on the leeward surface, reversal flow on the 

leeward surface, trailing-edge-vortex shedding, a typical starting vortex in the wake, and 

in-transition streaklines. Instead, massive dye diffusion is present. As taper ratio is 

decreased, the center streakline moves across the leading edge at a lower position; 

however, less dye diffusion is observed from the top view.  

Figure 4.14 shows the streaklines around trailing-edge-pivot wings in a steady 

state. Similar to leading-edge-pivot wings, the unsteady flow are inevident for all wings, 

also indicating minor effect of pivot-axis location. The unsteady-flow features are not 

limited to a leading-edge swirling, trailing-edge vortices, residual dyes on the leeward 

surface, reversal flow on the leeward surface, and in-transition streaklines. The 

characteristic features of trailing-edge-pivot wings, such as a reverse-starting vortex in 

the wake and a typical starting vortex at leading edge, are not in the vicinity. Moreover, 

the center streakline and blue streakline above the center streakline are far apart across 

the wing in the wake; they are closer for the rectangular and the triangular wings because 

streaklines deflect toward wingtip, less dye diffusion is also observed as taper ratio is 

decreased.  
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CHAPTER 5 

DIRECT FORCE MEASUREMENT  

5.1 STEADY FLOW  

Steady flow measurements were conducted at 15 different fixed angles of attack 

from 3° to 45° in 3° increments under a uniform flow field U∞ = 17.5 cm/s (i.e., Re = 

8.9k); each fixed angle was repeated 60 times from initial zero angle of attack. Data were 

processed using zero-phase first-order two-path Butterworth filter with cutoff frequency 

of 8.76 Hz, which is same filter and cutoff frequency as cases with K = 0.39 in the same 

free-stream flow. For each fixed angle of attack, the averaged forces and standard 

deviation were evaluated as the flow was in a steady state; the sample duration was 50 

convective times. The steady-state flow was determined to be after 80 convective times at 

fixed angle, where the transient force-oscillation was not in the vicinity.  
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Figure 5.1 Cases for steady-flow force measuremen in St – Re space.  
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Figure 5.2 and Figure 5.3 show effect of wing planform in the steady state; the 

theoretical estimation was obtained using lifting-line theory based on rectangular wing 

and is denoted by “lifting-line” in the figures.  

Figure 5.2 shows lift coefficient and drag coefficient as a function of angle of 

attack. Two main features are observed for lift coefficient. The first is, for both 

rectangular and trapezoidal wings (i.e., taper ratio higher than 0.5) the lift coefficient 

follows the lifting-line theory up to 9°; effect of taper ratio is absent. Lower taper ratio 

wing (i.e., triangular wing) gives lower lift coefficient. The second is that trapezoidal and 

triangular wings at trailing edge pivot give higher stall-angle-of-attack, which is 15 and 

21 respectively. For drag coefficient, effect of taper ratio is small; drag coefficient 

increases linearly with angle of attack, which is not estimated by lifting-line theory.  

Figure 5.3 shows pitching moment coefficient about the pivot axis as a function of 

angle of attack. Leading edge pivot gives negative pitching moment coefficient; whereas 

mid-chord and trailing edge pivots produce positive pitching moment coefficient. At 

lower angle of attack, effect of taper ratio is small. The triangular wing at trailing edge 
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Figure 5.2 Force coefficients as a function of angle of attack for (left) lift coefficient 

and (right) drag coefficient.  
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pivot gives stall angle of attack at 21, which is consistent with the observation from the 

lift coefficient in Figure 5.2. In addition, the fluctuation of lift coefficient at post-stall 

angle of attack is not observed on the pitching moment coefficient. 

Figure 5.3 also shows location of center of pressure xcp as a function of angle of 

attack, which is evaluated using Equation (5.1) and normalized with wing mean chord. 

For taper ratio higher than 0.5, the center of pressure fluctuates about quarter chord at 

lower angle of attack in accordance with wing planform and pivot axis location. They 

move to about 40% of wing chord for post-stall condition. For triangular wing shown as 

red symbols, different profiles are obtained according to pivot axis location, which is 

possibly due to three-dimensional effects.  

 /cp p p Nx x M F   (5.1) 
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Figure 5.3 (left) Pitching moment coefficient as a function of angle of attack and (right) 

center of pressure as a function of angle of attack. Square, circle, star symbols represent 

pivot axes at leading edge, mid-chord, and trailing edge, respectively. The black, blue, 

and red colors represent rectangular wing, trapezoidal wing, and triangular wing, 

respectively.  
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where xp is pivot axis location, Mp is pitching moment about pivot axis, and FN is normal 

force.  

5.2 UNSTEADY FLOW  

The unsteady flow measurements were taken in conditions shown in Figure 5.4, 

highlighted as solid symbols; they were cases K > 0 in St- Re space. The triangle symbols 

represent cases in consideration of three wing planforms, which are rectangular, 

trapezoidal, and triangular wings; the square symbols represent cases in consideration of 

only rectangular wing. The wing property is given in Section 2.2. 

5.2.1 Wall Effect  

To investigate the influence of the channel side walls, force measurements were 

conducted using a rectangular wing at several wing initial positions across the water 

channel, as shown in Figure 5.5, which may have dramatic impact on our measured force 

dynamically or statically (Granlund et al., 2010). The wing had two-inch chord, an aspect 

ratio of 4, and rounded edges. Nine locations across the water channel were considered, 

as shown in Figure 5.5. One location was at the center of water channel, four locations 

were at the upper side of the center of the water channel, and four locations were at the 
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Figure 5.4 Cases for unsteady-flow force measurement in St - Re space.  
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lower side of the center of water channel. The first three locations on either side of water 

channel center were displaced by a distance d, which was half of projected length of wing 

chord. The furthest location from the center of water channel was placed by 6d, which 

gave 3.8-chord distance away from the wall. The red solid line represents the wing 

location where most experiments were conducted, such that the wing-chord center would 

be at the center of water channel at m = 45. The upper locations are presented in dotted 

lines, and the lower locations are presented in solid lines. The blue lines indicate the wing 

locations were close to the wall. The line style and color also apply for normal force and 

axial force shown in Figure 5.6.  

Figure 5.6 shows normal and axial forces as a function of time normalized with 

pitch time; a comparison of wing location at water channel is displayed. The wing 

kinematics was maneuvered to generate a constant pitch rate of 155 /s (St = 7.0k). A 

rectangular wing was pitched at leading edge pivot axis in two flow conditions, which are 

still water Re = 0k and running water Re = 9k. The incorporation of constant pitch rate 

and free-stream velocity gives reduced pitch rate K = 0.39 for Re = 9k and K =  for Re = 

0. All forces were normalized with dynamic pressure based on characteristic speed cm, 

instead of free-stream velocity, which results in pitch velocity pressure (qp) being four 

times of finite reduced pitch rate squared of free-stream velocity pressure (qU). As 

 

Figure 5.5 Schematics of pitching wing at initial positions to study wall effects. The 

wing position was drawn to scale with respect to water channel width, but wing chord 

was not drawn to scale. The solid circle represents pivot axis location.  
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observed in Figure 5.6, both normal and axial forces have same tendency at different 

crosswise locations; this independence does not change with flow condition. The 

variations of forces at crosswise locations are less pronounced than computation results 

by Lian and Ol (2010), who modeled two-dimensional flat plate pitching at leading edge 

for K = 0.2. Our results suggest a wide operation range for experiments using two-inch-

chord pitching wing in the water channel.  

5.2.2 Effect of Reduced Pitch Rate and Pivot Axis Location for Rectangular 

wing 

Presenting here are data obtained using an aspect-ratio-four rectangular wing. The 

wing had two-inch chord and rounded edges; the thickness to chord ratio was 6.25%. The 
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Figure 5.6 Forces as a function of time normalized with pitch time for (top) normal 

force (bottom) axial force. The color code and curve style represent wing positions shown 

in Figure 5.5; wing acceleration is plotted as dashed curve; wing kinematics was for pitch 

rate of 155 /s.  
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wing property is given in Section 2.2. The test cases discussed here are highlighted in 

Figure 5.7. There are three constant pitch rates (i.e., m = 76.4 /s, 37.5 /s, and 12.6 /s) 

implemented to maneuver the wing in a free-stream flow U = 25.6cm/s, incorporated to 

three reduced pitch rate K = 0.13, 0.065, and 0.022. While pitching the wing with 76.4 /s 

in free-stream conditions of U = 0, 8.6, and 17.5 cm/s, we obtained yields K = , 0.39, 

and 0.19. Conditions used to generate the three pitch rates are given in Table 2.2.  

5.2.2.1 Axial Force and Normal Force as a Function of Convective Time  

Figure 5.8 - Figure 5.10 show axial and normal forces as a function of time 

normalized with convective time for pivot axis location at leading edge, mid-chord and 

trailing edge, sequentially. The onset of normalized time is at the first sharp transition 

corner of ideal pitch up-hold-return motion, which is denoted by t1 as illustrated in 

Figure 2.6. The blue, green and red lines represent Reynolds number from low to high; 

the solid, dashed, and dotted lines represent reduced pitch rate from high to low. The 

corresponding motion position is plotted as gray line. Error bars are representative of the 

95% confidence intervals of the measurement; they are of the order of 10 mN or less for 

both axial and normal force. For the axial force these error bars are small but significantly 

compared to the measured force. For the normal force these error bars are very small and 
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Figure 5.7 Cases in study of pivot axis location effect.  
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hardly to identify while comparing with the significant normal force. As expected the 

error bars are larger for measurements in higher free-stream velocity and for 

measurements at both leading and trailing edge pivot axis. Note also that the forces for 

the low Reynolds number cases are very small due to small dynamic pressure.  

Figure 5.8 - Figure 5.10 show that the normal force increases rapidly during the 

pitch-up motion, followed by a decrease until a constant steady value is reached. The 

decrease in normal force reveals some oscillatory behavior at early times, which is in 

phase with the axial-force oscillation. An increase in normal force occurs at the same 

phase as a more negative axial force (i.e., increased axial force towards the leading edge). 

This is consistent with an increase of leading edge suction associated with a lower 

pressure on the leeward side of the plate. The period of these oscillations is consistent 

with a transient vortex shedding process. The oscillations disappear before the flow 
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Figure 5.8 Forces as a function of time normalized with convective time for 

rectangular wing at leading edge pivot (top) normal force (bottom) axial force.  
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reaches steady state, which suggests that there is no vortex shedding at steady state 

conditions. Close examinations of individual realization do not show oscillatory behavior 

at steady state conditions, which supports this conclusion. Maximum normal force 

depends on both pivot axis location and reduced frequency, which will be addressed in 

the following discussion by means of force coefficients.  

Figure 5.8 - Figure 5.10 also show the axial force is significantly smaller than the 

normal force at steady sate. The axial force at steady state is negative which implies 

forward force and significant leading edge suction. The magnitude of the leading edge 

suction force is very small compared to potential flow theory estimates, as expected for 

separated flow at the leading edge. It is not clear at this point how this suction force 

depends on the geometry of the leading edge (e.g., a sharper leading edge may promote 
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Figure 5.9 Forces as a function of time normalized with convective time for 

rectangular wing at mid-chord pivot (top) normal force (bottom) axial force.  
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leading edge suction). The axial force reaches its steady-state values at approximately the 

same convective time as the normal force (t/tc > 30).  

Figure 5.11 shows a preliminary study of effect of pivot location on normal force 

coefficients in a uniform free-stream flow Re = 13k. The solid, dashed, and dotted lines 

are for leading edge pivot, mid-chord pivot, and trailing edge pivot, respectively. The red, 

blue, and black lines represent pitch rate of 76.4 /s, 37.5 /s, and 12.6 /s, respectively; 

the corresponding reduced pitch rate is K = 0.132, 0.065, and 0.022, respectively. All 

cases show that normal force coefficients converge to the same value of approximately 

CN = 1.1 after about 30 convective times in the same free-stream flow. Leading edge 

pivot produces larger normal force coefficients compared to mid-chord pivot, which in 

turn produces larger normal force coefficients compared to trailing edge pivot. At low 

reduced pitch rate K = 0.022, the normal force coefficient increases rapidly until the wing 
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Figure 5.10 Forces as a function of time normalized with convective time for 

rectangular wing at trailing edge pivot (top) normal force (bottom) axial force.  
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reaches an angle of about 20 degrees at 8 convective times and remains slightly above 

this value for the remaining pitch time. For a given phase during pitch-up phase, effect of 

pivot location is more pronounced as reduced pitch rate is increased. For higher reduced 

pitch rate K > 0.065, the maximum normal force coefficient occurs at approximately the 

maximum angle of attack; the maximum normal force coefficient changes as pivot 

location is adjusted. Figure 5.11 also shows the oscillatory behavior discovered earlier in 

the range of 8-20 convective times for lower reduced pitch rate K = 0.022; for higher 

reduced pitch rate K > 0.065, the oscillatory behavior occurs after the end of wing pitch 

motion. This oscillatory behavior is attributed to transient vortex shedding.  

5.2.2.2 Non-Circulatory Effect  

Figure 5.12-Figure 5.14 show normal force as a function of time normalized with 

pitch time; the attention is focused on pitch-up phase (t1-t2) as labeled from 0 to 1. In this 

time scale, non-circulatory apparent mass effect associated with motion acceleration 

would be observed around phases denoted by 0 and 1; constant pitch rate effect would be 

displayed between these two time points. The black, blue, green and red lines represent 

Reynolds number from low to high; the solid, dashed, and dotted lines represent the 
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Figure 5.11 A comparison of normal forces as a function of time normalized with 

convective time for rectangular wing at selected pivot locations. The solid, dashed, and 

dotted curves represent the leading edge pivot, the mid-chord pivot, and the trailing edge 

pivot, respectively. The red, blue, and black curves denote the cases for K = 0.13, K = 

0.065, and K =0.022, respectively.  
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reduced pitch rate from high to low. The corresponding motion acceleration is plotted as 

gray line with line style corresponding to the pitch rate; as shown in the figures, the 

kinematics of higher pitch rate has wider and higher acceleration.  

Figure 5.12 shows normal-force course for leading edge pivot. The main feature 

in this plot is the non-circulatory apparent mass spikes occurring at the start and the end 
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Figure 5.12 Normal force as a function of time normalized with pitch time for 

rectangular wing at leading edge pivot. The black solid curve is for K = ∞, the blue 

solid curve is for K = 0.39, the green solid curve is for K = 0.19, the red solid curve is 

for K = 0.13, the red dashed curve is for K = 0.065, and the red dotted curve is for K = 

0.022.  
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Figure 5.13 Normal force as a function of time normalized with pitch time for 

rectangular wing at mid-chord pivot. The black solid curve is for K = ∞, the blue solid 

curve is for K = 0.39, the green solid curve is for K = 0.19, the red solid curve is for K 

= 0.13, the red dashed curve is for K = 0.065, and the red dotted curve is for K = 0.022. 
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of rotation for reduced frequencies above 0.065. These spikes have been documented by 

many researchers (Eldredge et al., 2009; Granlund et al., 2010; Ramesh et al., in 2011). 

The normal force spike is positive at the start of pitching and negative at the end of 

pitching, as would be expected from simple consideration of mass loading due to pitching 

acceleration. The magnitude of the spikes increases with the free-stream velocity at the 

start of pitching, which suggests that non-circulatory apparent mass effects are enhanced 

by circulatory pitch rate effects. The constant pitch rate portion of the motion between 

time scale 0 and 1 shows an increase in normal force with time and angle of attack. The 

slope increases as reduced pitch rate decreases with increasing free stream velocity; this 

portion of the motion will be discussed in detail in the next section in terms of lift and 

drag coefficients as a function of angle of attack.  

Figure 5.13 shows the normal-force course for mid-chord pivot. In this case there 

is no non-circulatory contribution to the normal force, as would be expected from 

symmetry of the pitch acceleration. It should be noted that non-circulatory apparent mass 

effects are not found at the end of pitch where circulatory effects must have introduced 

asymmetry vortex structure between the leading edge and the trailing edge.  

Figure 5.14 shows normal force-course for trailing edge pivot. In this case non-

circulatory effects are in the opposite direction compared to cases with leading edge pivot. 
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Figure 5.14 Normal force as a function of time normalized with pitch time for 

rectangular wing at trailing edge pivot. The black solid curve is for K = ∞, the blue 

solid curve is for K = 0.39, the green solid curve is for K = 0.19, the red solid curve is 

for K = 0.13, the red dashed curve is for K = 0.065, and the red dotted curve is for K = 

0.022.  
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A negative normal force spike is produced at the start of pitching and a positive spike is 

produced at the end of pitching for K > 0.065. The magnitude of the spike decreases with 

the increasing free-stream velocity in contrast with the results from leading edge pivot, 

which suggests that non-circulatory apparent mass effect at the start of pitching are 

reduced by circulatory pitch rate effect. However the increase in normal force during the 

constant pitch rate portion of the motion shows the same trend of increasing slope with 

reduced pitch rate as for leading edge pivot.  

5.2.2.3 Effect of Reduced Pitch Rate K 

Figure 5.15 shows the lift and drag coefficients of the rectangular wing pitching at 

leading edge. At the lowest reduced pitch rate (i.e., K = 0.022) the lift coefficient follows 

the theoretical result closely up to an angle of attack of 20 degrees, which corresponds to 

the steady stall angle of attack. The slope of lift-curve is slightly depressed due to the 

onset of rotation; this characteristic was noticed by Jumper et al. (1987) for NACA0015 

at K < 0.01. The drag coefficients are significantly higher than the prediction by the 
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Figure 5.15 Force coefficients as a function of angle of attack using rectangular wing at 

leading edge pivot (left) lift coefficient (right) drag coefficient.  
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lifting-line theory, a better estimate consistent with the relatively small value of the 

leading edge suction is assumed that the aerodynamic force is normal to the plate, which 

follows the dashed line in the right panel of Figure 5.15. For larger angles of attack the 

drag coefficient increases while the lift coefficient remains approximately constant which 

implies smaller L/D values. These data suggest that for K < 0.022 the flow is quasi-steady 

and the lifting-line theory provides good estimates of the lift coefficients up to the stall 

angle of attack. In this regime the drag coefficient is under predicted by the lifting line 

theory by a factor of two. Thus the lifting-line theory appears to correctly account for 

finite wing effects in the slope of the lift curve (i.e. a 33% reduction of the lift coefficient 

according to the infinite wing), but fails to account for the significant reduction in leading 

edge suction which results in largest drag coefficients compared to induced drag 

calculations.  

For K > 0.022 unsteady effects are important; the flow visualization data revealed 

two-dimensional flow is more pronounced as the reduced pitch rate increases. There are 

two main effects for the lift coefficient: a non-circulatory peak during wing acceleration, 
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Figure 5.16 Force coefficients as a function of angle of attack using rectangular wing at 

mid-chord pivot (left) lift coefficient (right) drag coefficient.  
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and pitch rate effects within regions of constant pitch rate, the lift coefficients shift 

upward with same amount as reduced pitch rate increases. Similar effects were 

documented for 2D flow by Granlund et al. (2010). Both effects are very strong at much 

higher reduced pitch rate K = 0.39. As noted earlier, non-circulatory effects produce a 

positive spike at the start of pitch-up phase and a negative spike at the end of pitch-up 

phase within acceleration region. These force spikes are associated with the formation of 

the starting vortex and will be discussed in the next chapter. The shift in the lift 

coefficient curve due to pitch-rate effect is similar to mean camber effects as would be 

expected from linear potential flow theory. Unsteady effects result in an increase in drag 

coefficient. At K = 0.39 there is a significant increase of drag at small angle of attack 

during the acceleration portion of the pitching motion.  

Figure 5.16 shows the lift and drag coefficients at mid-chord pivot axis as a 

function of angle of attack. At the lowest reduced pitch rate (K = 0.022) the lift 

coefficient follows the theoretical results closely up to an angle of attack of 20 degrees. 

-1.5

-1

-0.5

0

0.5

1

1.5

m
o
ti
o
n
 a

c
c
e
le

ra
ti
o
n
, 

x
1
0

3
 d

e
g
/s

2

0 10 20 30 40
-4

-3

-2

-1

0

1

2

3

4

 ,degree

C
L

 

 

-1.5

-1

-0.5

0

0.5

1

1.5

m
o
ti
o
n
 a

c
c
e
le

ra
ti
o
n
, 

x
1
0

3
 d

e
g
/s

2

0 10 20 30 40
-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

 ,degree

C
D

 

 

K=0.39

K=0.19

K=0.13

K=0.065

K=0.022

K=0

K=0(theory)

 

Figure 5.17 Force coefficients as a function of angle of attack using rectangular wing at 

trailing edge pivot (left) lift coefficient (right) drag coefficient.  
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The drag coefficient follows similar trends as for the leading edge pivot axis. These data 

confirm the conclusion that for K < 0.022 the flow is quasi-steady and the lifting line 

theory provides good estimates of the lift coefficient up to the stall angle of attack.  

For values of K > 0.022 unsteady effects are important. However the trends are 

different compared to leading edge pivot. In this case non-circulatory effects are very 

small. Pitch rate effects between the initial and final acceleration are much stronger at K 

> 0.065, which increases the lift coefficient at small angles of attack. Within the constant 

pitch rate region, the lift coefficient curves are likely shifting upward as reduced pitch 

rate increases, but not with the same amount for leading edge pivot axis. The drag 

coefficient shows small change in the drag coefficient for K < 0.39. The case K = 0.39 

shows larger effects in both the lift and drag coefficients.  

Figure 5.17 shows the lift and drag coefficients for trailing edge pivot axis. At the 

lowest reduced pitch rate (K = 0.022) the lift coefficient and drag coefficient show similar 

quasi steady behavior as for other pivot axes. At higher reduced pitch rate the lift 

coefficients are less than the estimation from the lifting line theory, and not very different 

compared to the results at K = 0.022, except for K = 0.39. Non-circulatory effects result 

in a negative lift coefficient at the beginning of pitch and a positive spike at the end of 
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Figure 5.18 Cases in study of wing planform effect.  



 

 146 

rotation. The magnitude of the spike is moderate except for the K = 0.39 case. For K = 

0.39 the initial acceleration persist well beyond the end of the acceleration period where 

the lift coefficient is negative. The drag coefficient is also negative in this region.  

5.2.3 Wing Planform Effect and Pivot-Axis Location at K = 0.065 

Presenting in current and next sections are force data obtained for K = 0.065 and 

0.39, sequentially, using aspect-ratio-four wings. Three wing planforms were considered, 

which were rectangular, trapezoidal, and triangular wings. All wings had two-inch mean 

chord and rounded edges; the thickness to chord ratio was 6.25%. The wing property is 

given in Section 2.2. The wings underwent two reduced pitch rates in a uniform free-

stream velocity U = 7.5 cm/s, which are K = 0.065 and 0.39; they are highlighted in 

Figure 5.18. Two constant pitch rates were programmed; they were m = 155 /s (St = 7k) 

and m = 25.6 /s (St = 1.1k). The same kinematics was also implemented in still water. 

Conditions used to generate the three pitch rates are given in Table 2.2.  

5.2.3.1 Normal Force as a Function of Time Normalized with Pitch Time 

Figure 5.19 through Figure 5.21 show normal force for K = 0.065 as a function of 

time normalized with pitch time for rectangular, trapezoidal, and triangular wings, 
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Figure 5.19 Normal force as a function of time normalized with pitch time for 

rectangular wing. Blue, black, and red curves represent the pivot axis at leading edge, 

mid-chord, and trailing edge, respectively. The solid curves are for K = 0.065, and the 

dotted curves are K = ∞ (still water). 
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respectively. The blue, black, and red curves represent pivot location at leading edge, 

mid-chord, and trailing edge, respectively. The solid and dotted curves represent K = 

0.065 (St = 1.1k and Re = 8.9k) and K = ∞ (still water), respectively. The motion 

acceleration is given as a black dashed curve. 
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Figure 5.20 Normal force as a function of time normalized with pitch time for 

trapezoidal wing. Blue, black, and red curves represent the pivot axis at leading edge, 

mid-chord, and trailing edge, respectively. The solid curves are for K = 0.065, and the 

dotted curves are K = ∞ (still water).  
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All wing planform shapes produce same trends in force course as higher reduced 

pitch rate K = 0.39 at a given pivot location. The positive and negative normal force 

spikes are consistent with motion acceleration as pivot location is at leading edge; 

however, they are contrary to motion acceleration as pivot location is at trailing edge. 

This is because the asymmetric motion acceleration is exhibited on both wing-chord ends. 

As pivot location is at mid-chord, normal force spikes are not observed due to 

symmetrical motion acceleration on both wing-chord ends. Moreover, effect of non-

circulatory apparent mass is much pronounced as taper ratio decreases; similar tendency 

is also observed for higher reduced pitch rate K = 0.39. 
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Figure 5.21 Normal force as a function of time normalized with pitch time for triangular 

wing. Blue, black, and red curves represent the pivot axis at leading edge, mid-chord, 

and trailing edge, respectively. The solid curves are for K = 0.065, and the dotted curves 

are K = ∞ (still water).  
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The symmetrical force courses shown among pivot locations in still water are also 

observed, which indicates good data accuracy and proper wing positioning. Unlike K = 

0.39, there are no significant forces measured during the portion of constant pitch rate of 

wing motion; the difference is partially due to pronounced vortical flow induced by 

motion acceleration for higher reduced pitch rate K = 0.39. Referring to Table 2.2, the 

kinematics of K = 0.39 has maximum acceleration (m = 2937 /s2) 8.7 times higher 

than maximum acceleration of K = 0.065 (m = 338 /s2). The acceleration duration of K 

= 0.39 (2ta = 0.36tc) is 50% lower than the acceleration duration of K = 0.065 (2ta = 

0.52tc); both acceleration durations are less than one convective time.  

Moreover, contrary to the current data of K = 0.065 in Re = 8.9k, the data of K = 

0.065 shown in Figure 5.12 - Figure 5.14 in Re = 13k exhibits no effect of non-

circulatory apparent mass. Both kinematics have the same maximum acceleration but 

different acceleration duration. The former kinematics of K = 0.065 in Re = 13k has 

acceleration duration larger than one convective time (2ta = 1.1tc), which is twice the 

duration of the kinematics of K = 0.065 in Re = 8.9k (2ta = 0.52tc). It is obvious that 

0 5 10 15 20 25 30 35 40 45
-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

  , deg

C
L

 

 

-4

-3

-2

-1

0

1

2

3

4

 


, 
1
0

2
 d

e
g
/s

2
0 5 10 15 20 25 30 35 40 45

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

22

  , deg

C
D

 

 

-4

-3

-2

-1

0

1

2

3

4

 


, 
1
0

2
 d

e
g
/s

2

rectangle(K=0.065)

trapezoid(K=0.065)

triangle(K=0.065)

lifting-line(K=0.065)

rectangle(steady)

lifting-line(steady)

 

Figure 5.22 Force coefficients of K = 0.065 as a function of angle of attack for different 

wing planforms at leading edge pivot: (left) lift coefficient and (right) drag coefficient.  
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Figure 5.23 Force coefficients of K = 0.065 as a function of angle of attack for different 

wing planforms at mid-chord pivot: (left) lift coefficient and (right) drag coefficient.   
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existence of non-circulatory apparent mass effect depends on pivot locations and 

acceleration duration in terms of convective time, which is associated with rapidly 

increase of force.  

5.2.3.2 Force Coefficients as a Function of Angle of Attack 

Figure 5.22 - Figure 5.24 show force coefficient for pivot location at leading edge, 

mid-chord, and trailing edge, respectively. The black, blue, and red curves represent 

rectangular, trapezoidal, and triangular wings, respectively. The solid curves represent K 

= 0.065; the dotted curves represent K = 0 (denoted by “steady”), which were obtained 

using a rectangular wing with mid-chord pivot axis in the steady flow and same free-

stream flow Re = 8.9k. The theoretical estimation by lifting-line theory for rectangular 

wings is given as green curve. For steady-state data over various wing planforms, see 

Section 5.1. 

Figure 5.22 shows force coefficient as a function of angle of attack for pivot 

location at leading edge. Non–circulatory apparent mass effect is pronounced for lower 

taper-ratio wing at the beginning and the end of pitch-up phase. During constant pitch-

rate phase, higher taper-ratio wing (  0.5) gives the same lift and drag coefficients. The 

lift coefficients follow the estimation by lifting-line theory with a gentle slope; however, 

the drag coefficients are well beyond the theoretical estimation at higher angle of attack. 

The wing with a lower taper ratio gives lower lift and drag coefficients at a given angle of 

attack. Moreover, the dynamic flow (K = 0.065) produces more lift than the steady flow.  
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Figure 5.23 shows force coefficient as a function of angle of attack for pivot 

location at mid-chord. Non–circulatory apparent mass effect is absent for all wing 

planforms. During constant pitch-rate phase, effect of wing planform is indistinct at lower 

angle of attack. The lift coefficients follow the theoretical estimation up to 10 degrees; 

the drag coefficients are higher than theoretical estimation. Effect of wing planform 

becomes significant after 15 degrees.  

Figure 5.24 shows force coefficient as a function of angle of attack for pivot 

location at trailing edge. Similar to leading edge pivot, non–circulatory apparent mass 

effect is pronounced for lower taper-ratio wing at the beginning and the end of pitch-up 

phase. Higher taper-ratio wings produce the same force coefficients during the pitching 

motion; lower taper-ratio wing produces lower force coefficients at a given angle of 

attack. During constant pitch-rate phase, the lift coefficient is below the theoretical 

estimation; however, the drag coefficient is higher than theory.  

Figure 5.25 shows pitching moment coefficients of K = 0.065 about the pivot axis 

for different wing planforms, the black, blue, and red curves represent rectangular, 
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Figure 5.24 Force coefficients of K = 0.065 as a function of angle of attack for different 

wing planforms at trailing edge pivot: (left) lift coefficient and (right) drag coefficient.  
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Figure 5.25 Pitching moment coefficient of K = 0.065 as a function of angle of attack for 

different wing planforms at (left) leading edge pivot, (middle) mid-chord pivot, and (right) 

trailing edge pivot.  
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trapezoidal, and triangular wings, respectively. The steady flow data using rectangular 

wing pitching at mid–chord is plotted as circle symbols, and evaluated for leading edge 

pivot and trailing edge pivot.  

As pivot location is at leading edge, the negative pitching moment coefficient is 

observed over entire pitching angle. The non-circulatory apparent mass effect is 

pronounced for lower taper-ratio wing and appears at the beginning and the end of pitch-

up phase. The magnitude of the pitching moment coefficient is larger than steady-state 

data, but is significantly smaller compared with higher reduced pitch rate K = 0.39. As 

pivot location is at mid-chord, positive pitching moment coefficient is present over the 

pitch angle, which is consistent with steady-state data. Effect of wing planform is very 

small at an angle of attack lower than 20 degrees. As pivot location is at trailing edge, 

non-circulatory apparent mass effect is pronounced at lower taper-ratio wing, giving 

negative pitching moment coefficient at lower angle of attack. Lower taper-ratio wings ( 

 0.5) give the same positive pitching moment coefficient with increasing angle of attack.  
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Figure 5.26 Normal force as a function of time normalized with pitch time for 

rectangular wing. Blue, black, and red curves represent the pivot axis at leading edge, 

mid-chord, and trailing edge, respectively. The solid curves are for K = 0.39, and the 

dotted curves are K = ∞ (still water). 
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5.2.4 Wing Planform Effect and Pivot-Axis Location at K = 0.39 

The data presented here were obtained using aspect-ratio-four wings in three wing 

planforms for high reduced pitch rate K = 0.39, which was implemented using m = 155 

/s (St = 7k) and uniform free-stream velocity U = 7.5 cm/s (Re = 8.9k). The wing 

property is given in Section 2.2. The steady data are also considered, which were 

obtained using a rectangular wing pitching at mid-chord in the same free-stream flow Re 

= 8.9k. For steady-state data over various wing planforms, see Section 5.1.  

5.2.4.1 Normal Force as a Function of Time Normalized with Pitch Time 

Figure 5.26 - Figure 5.28 show normal force for K = 0.39 as a function of time 

normalized with pitch time for rectangular, trapezoidal, and triangular wings, respectively. 

The blue, black, and red curves represent pivot location at leading edge, mid-chord, and 

trailing edge, respectively. The solid and dotted curves represent K = 0.39 (St = 7k and Re 

= 8.9k) and K = ∞ (still water), respectively. The motion acceleration is given as a black 

dashed curve.  
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Figure 5.27 Normal force as a function of time normalized with pitch time for 

trapezoidal wing. Blue, black, and red curves represent the pivot axis at leading edge, 

mid-chord, and trailing edge, respectively. The solid curves are for K = 0.39, and the 

dotted curves are K = ∞ (still water).  
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All wing planform shapes produce similar trends in force course at a given pivot 

axis. As pivot location is at leading edge, it is certain that the normal force spike is 

positive at the beginning of pitching and negative at the end of pitching, which is 

consistent with the direction of the motion acceleration. However, as pivot location is at 

trailing edge, the direction of pitching motion is in the opposite direction of the normal 

force, as a result, the negative normal force spike is observed at beginning of pitching and 

positive at the end of pitching.  

As pivot location is at mid–chord, normal force spikes are not observed, which 

indicates non–circulatory apparent mass effects are not present due to symmetrical 

motion acceleration on both wing-chord ends. Additionally, as taper ratio decreases, the 

force course is much smoother, even in the still water measurement, which indicates 

stronger three-dimensional pitch rate effects. Additionally, measurements in still water 

give symmetrical force course for pivot location at leading edge and trailing edge, and 

zero-force course for mid–chord pivot as expected, which give a good indication of the 

accuracy of the measurements.  

0   0.2 0.4 0.6 0.8 1   1.2 1.4 1.6 1.8 2   
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

F
N
, 

N

t/t
p

 

 
0    0.2  0.4  0.6  0.8  1    1.2  1.4  1.6  1.8  

-3

-2

-1

0

1

2

3

t/t
c

a
c
c
e
le

ra
ti
o
n
, 

1
0

3
 d

e
g
/s

2

 

Figure 5.28 Normal force as a function of time normalized with pitch time for triangular 

wing. Blue, black, and red curves represent the pivot axis at leading edge, mid-chord, 

and trailing edge, respectively. The solid curves are for K = 0.39, and the dotted curves 

are K = ∞ (still water).  
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5.2.4.2 Force Coefficients as a Function of Angle of Attack  

Figure 5.29 through Figure 5.31 show force coefficient of wings pitching at 

leading edge, mid-chord, and trailing edge, respectively. The black, blue, and red curves 

represent rectangular, trapezoidal, and triangular wings, respectively. The solid curves are 

for cases K = 0.39 and dotted curves are for cases K = 0 (denoted by “steady”). The 

theoretical estimation by lifting-line theory based on rectangular wing is given as green 

curve. 

Figure 5.29 shows force coefficient as a function of angle of attack for pivot 

location at leading edge. For lift coefficient at K = 0.39, non–circulatory apparent mass 

effect is observed at the beginning and the end of pitch–up phase. During the constant 

pitch-rate phase, lower taper ratio wings produce lift and drag coefficients well beyond 

the prediction by lifting-line theory and steady-state data, which are due to three–

dimensional pitch rate effects. The lift coefficient of triangular wings increases unlinearly 

with angle of attack, unlike other higher taper-ratio wings. For the drag coefficient, the 

pitch-rate effect is over-predicted by lifting–line theory at lower angle of attack and 
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Figure 5.29 Force coefficients of K = 0.39 as a function of angle of attack for different 

wing planforms at leading edge pivot: (left) lift coefficient and (right) drag coefficient.  
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under-estimated at higher angle of attack. The drag coefficient of dynamic flow (K > 0) is 

higher than the flow in steady-state. 

Figure 5.30 shows force coefficient as a function of angle of attack for pivot 

location at mid-chord. Non–circulatory apparent mass effect is absent. Higher taper ratio 

wing (  0.5) gives the same lift and drag coefficients, the wing with lower taper ratio 

gives higher lift and drag coefficients at higher angle of attack, which do not follow the 

theoretical result. For all wing planforms, dynamic forces are higher than forces in 

steady-state on a rectangular wing.  

Figure 5.31 shows force coefficient as a function of angle of attack for pivot 

location at trailing edge. Non–circulatory apparent mass effects are found at the 

beginning and the end of pitch–up phase. Lift coefficient for taper ratio higher than 0.5 

during a constant pitch rate region follows the theoretical estimation closely, whereas 

drag coefficients are not well predicted. Lift and drag coefficients are below the steady 

flow measurement using rectangular wing at lower angle of attack, and above steady 

measurement at higher angle of attack. 
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Figure 5.30 Force coefficients of K = 0.39 as a function of angle of attack for different 

wing planforms at mid-chord pivot: (left) lift coefficient and (right) drag coefficient.  
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Figure 5.32 shows pitching moment coefficients about the pivot axis for different 

wing planforms, the black, blue, and red curves represent rectangular, trapezoidal, and 

triangular wings, respectively. The steady flow data using rectangular wing pitching at 

mid–chord are given as circle symbols and evaluated for leading edge pivot and trailing 

edge pivot.  

As pivot location is at leading edge, negative pitching moments are found in the 

range of pitch angle, which are consistent with steady flow measurements about 

corresponding pivot axis. Lower taper ratio gives higher pitch moment coefficient. As 

pivot location is at mid-chord, higher taper-ratio wings (  0.5) give same pitching 

moment coefficients, lower the taper ratio gives higher pitch moment coefficients, and all 

of them have magnitude less than one. Moreover, negative pitch moment coefficient is 

observed at lower angle of attack, which is contrary to the steady flow data. As pivot 

location is at trailing edge, negative pitching moment coefficients are also observed at 

lower angle of attack with much larger amplitude than ones pitching at mid–chord. 
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Figure 5.31 Force coefficients of K = 0.39 as a function of angle of attack for different 

wing planforms at trailing edge pivot: (left) lift coefficient and (right) drag coefficient.  
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To sum up, there are several features observed for wing planforms subject to K = 

0.39 and K = 0.065. (i) At lower reduced pitch rate, higher taper-ratio wings (  0.5) 

give the same force coefficients for pivot location other than mid-chord pivot; lower 

taper-ratio wing gives lower force coefficients at a given angle of attack. The effect of 

wing planform is very similar to the wings at a steady state as discussed in Section 5.1. (ii) 

Lift and drag coefficients are pronounced using lower taper-ratio wings at higher reduced 

pitch rate K = 0.39. (iii) Lower taper-ratio wings produce pronounced non-circulatory 

apparent mass effect at higher reduced pitch rate and pivot location other than mid-chord.  

5.2.5 Effect of Kinematics and Reynolds Number  

In previous discussion, we have shown effects of pivot axis location and wing 

planforms within a Reynolds number range 0  Re  1.3104; reduced pitch rates were 

achieved either by varying pitch rate while holding Reynolds number or by varying 

Reynolds number while holding pitch rate. Most literature has shown the reduced pitch 

rate is a good normalized parameter to incorporate both pitch rate and flow velocity for 

Reynolds number 2104 < Re < 3105 (Daley and Jumper, 1984; Jumper et al., 1987; 
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Figure 5.32 Pitching moment coefficient of K = 0.39 as a function of angle of attack for 

different wing planforms at (left) leading edge pivot, (middle) mid-chord pivot, and (right) 

trailing edge pivot.  
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Walker and Chou, 1987; Walker et al., 1985b). It is unclear how both pitch rate and 

Reynolds number are incorporated within present Reynolds number range and its impact 

on both non-circulatory effect and pitch rate effetc in terms of pivot-axis location.  
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Figure 5.33 Cases in study of effect of kinematics and Reynolds number.  
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Figure 5.34 Force coefficients of K = 0.065 as a function of angle of attack at leading 

edge pivot (left) lift coefficient (right) drag coefficient.  
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In this section, a rectangular wing was pitched at leading edge, mid-chord, and 

trailing edge pivot axes with two constant reduced pitch rate K = 0.065 and 0.39, as 

highlighted in Figure 5.33. For K = 0.065, the comparison was made between test cases 

using St = 1.7k in Re = 13k and St = 1.1k in Re = 8.9k. For K = 0.39, the comparison was 

made between test case using St = 7.0k in Re = 8.9k and St = 3.4k in Re = 4.3k. All 

kinematics has different smoothing maneuvering at beginning and the end of pitching 

motion. The shaded area in figures presents the standard deviation in the measurement. 

Conditions used to generate these two constant pitch rates are given in Table 2.2. 

5.2.5.1 Constant Reduced Pitch Rate K = 0.065  

Figure 5.34 - Figure 5.36 show lift and drag coefficients of K = 0.065 as a 

function of angle of attack for pivot axis location at leading edge, mid-chord, and trailing 

edge, sequentially. The blue and black curves represent unsteady flow data in Re = 8.9k 

and 13k, respectively. The steady flow data based on rectangular wing is given as circle 

symbols; the estimation by lifting-line theory is given as green curve. The shaded area 

presents data standard deviation.  
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Figure 5.35 Force coefficients of K = 0.065 as a function of angle of attack at mid-chord 

pivot (left) lift coefficient (right) drag coefficient.  
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Figure 5.36 Force coefficients of K = 0.065 as a function of angle of attack at trailing 

edge pivot (left) lift coefficient (right) drag coefficient.  
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Figure 5.37 Force coefficients of K = 0.39 as a function of angle of attack at leading 

edge pivot (left) lift coefficient (right) drag coefficient.  
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All pivot axis location show similarity of lift and drag coefficients with respect to 

angle of attack at given constant reduced pitch rate. Close examination of two data 

reveals several distinct features. First, non-circulatory apparent mass effect is much 

pronounced for both leading edge and trailing edge pivots in Re = 8.9k, caused by motion 

acceleration. Even both kinematics has the same maximum acceleration, acceleration 

duration for Re = 8.9k is half of one for Re = 13k and shorter than one convective time. 

Second, despite the variation of pivot axis location, the occurrence of non-circulatory 

effect at the beginning of the motion has little impact on rotation rate effect before 

saturation of forces during constant pitch-rate phase. The force curves are similiar up to 

20 degree angles of attack for leading edge pivot axis, 30 degree angles of attack for 

other two pivot axes.  

5.2.5.2 Constant Reduced Pitch Rate K = 0.39  

Figure 5.37 - Figure 5.39 show lift and drag coefficients of K = 0.39 as a function 

of angle of attack for pivot axis location at leading edge, mid-chord, and trailing edge, 

sequentially. The curve legends are similar to K = 0.065. The blue and black curves 
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Figure 5.38 Force coefficients of K = 0.39 as a function of angle of attack at mid-chord 

pivot (left) lift coefficient (right) drag coefficient.  
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represent unsteady flow data in Re = 8.9k and 4.3k, respectively. The steady flow data 

based on rectangular wing is also given as circle symbols; the estimation by lifting-line 

theory is given as green curve. The shaded area presents data standard deviation.  

Unlike lower reduced pitch rate K = 0.065, the variation of force curves is much 

pronounced for leading edge and trailing edge pivot axes; for mid-chord pivot axis the 

force curves are still in a good agreement below 12 degree angles of attack. The variation 

at lower angle of attack is caused by non-circulatory effect, which is associated with 

motion acceleration; the resultant vortical structure is the starting vortex. Recall the 

conditions used to generate wing kinematics from Table 2.2, the kinematics with Re = 

8.9k has both maximum acceleration and acceleration duration (less than one convective 

time) twice larger than one with Re = 4.3k. As a result, the strength of starting vortex in 

Re = 8.9k would enhance the rotation rate effect during constant pitch-rate phase. As 

pivot axis location is at leading edge pivot the lift coefficient not only follows the 

theoretical estimation but also shift upward; for trailing edge pivot the slope of lift curve 

is in agreement with theoretical estimation. This enhanced vortical structure has less 

impact on drag coefficient.  
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Figure 5.39 Force coefficients of K = 0.39 as a function of angle of attack at trailing 

pivot (left) lift coefficient (right) drag coefficient.  
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5.2.6 Similarity Analysis 

In the preceding section, we have discovered that the effect of rotation rate is 

independent of effect of non-circulatory apparent mass. The former is associated with the 

first derivative of the wing motion and the latter is relevant with the second derivative of 

the wing motion. In the next chapter, we will show the effect of non-circulatory apparent 

mass only promotes the formation of typical starting vortex and its dependence on pivot 

axis location. The independence between non-circulatory and rotation rate effects 

suggests the superposition principle to be practicable for the present study, especially at 

lower angle of attack. Therefore, the non-circulatory force data obtained in the still water 

condition would be subtracted from force data in the running water condition, leaving 

only circulatory force data. The insight of rotational rate effect is characterized with 

effetcs of reduced pivot rate, wing geometry, and pivot axis location, as shown in the 

following.  

5.2.6.1 Effect of reduced pitch rate on pivot axis location  

Figure 5.40 shows circulatory lift-coefficient of a rectangular wing as a function 

of angle of attack to emphasize the effects of reduced pitch rate and pivot axis location; 

the solid, dashed, and dotted lines represent the pivot axis location at leading edge, mid-

chord, and trailing edge. Recall from Equation (3.42), the reduced pitch rate effect is 

unimportant as pivot axis location is at three-quarter chord, where the change of angle of 

attack would contribute only to the strength of circulation. Consider lift coefficient for a 

given pivot axis is shifted to the three-quarter chord using Equation (5.2), the impact of 

circulatory effect in the flow field with respect to pivot axis is obtained and shown in 

Figure 5.40. It is noted that the effects of pivot axis and non-circulatory apparent mass 

are not significant in the steady flow; the rectangular wing at mid-chord pivot is also 

provided as baseline. 

 (3 / 4 ) (3 / 4 ) /p m c p m px t x t          (5.2) 

where 
px  is pivot axis location normalized with wing chord,  is the ratio of pitch time to 

convective time. The shifted angle is positive as the pivot axis location is ahead of three-

quarter chord and negative as the pivot axis location is after three-quarter chord.  
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Figure 5.40 Similarities of reduced pitch rate in terms of circulatory lift-coefficients as a 

function of angle of attack for (a) leading edge pivot, (b) mid-chord pivot, and (c) trailing 

edge pivot.  
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As shown in Figure 5.40, the lift-curve becomes nonlinear as reduced pitch rate 

increases and pivot axis location is away from the leading edge. The variation of zero-lift 

angle of attack is in accordance with the incorporation of reduced pitch rate and pivot 

axis location, as well as the variation of vortical structure. For leading edge pivot, the 

zero-lift angle of attack increases because of effect of reduced pitch rate. The lift-curves 

before the saturation extend linearly with increasing reduced pitch rate up to angle of 

attack of 60 degrees, showing an upper limit of lift coefficient. For mid-chord pivot, the 

extension of the lift-curve is also observed but becomes nonlinear as reduced pitch rate is 

increased. The variation of zero-lift angle of attack in terms of reduced pitch rate is less 

pronounced. For trailing edge pivot, the zero-lift angle of attack is shifted to the opposite 

side due to effect of pivot axis location. The extension of lift-curve is no longer observed 

as reduced pitch rate is increased; however, the lift-curve shifts upward. From the flow 

visualization data, the starting vortex at leading edge is the vortical structure formed at 

lower angle of attack for the cases at trailing edge pivot axis, which may contribute to 

this nonlinearity of lift-curve.  

 

Figure 5.41 Similarities of pivot axis location in terms of circulatory lift-coefficients as a 

function of angle of attack.  
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Figure 5.41 shows the complete series of force data of pivot axis location with 

respect to reduced pitch rate. For a given reduced pitch rate, the lift-curve at different 

pivot axis location can be connected. This connection of the lift-curve seems to increase 

linearly with angle of attack and shifts upward as reduced pitch rate is increased with 

decreasing slope.   

5.2.6.2 Effect of wing planform on pivot axis location  

Figure 5.42 and Figure 5.43 show circulatory lift- and drag- coefficients as a 

function of angle of attack, respectively; the effect of wing planform is shown for a given 

reduced pitch rate and pivot axis location. The solid, dashed, and dotted lines represent 

rectangular, trapezoidal, and triangular wings, respectively. The black, blue, and red lines 

represent the reduced pitch rate K = 0, 0.065, and 0.39, respectively. Effect of wing 

planform is more pronounced for pivot axis location other than the leading edge and 

higher reduced pitch rate. The influence of wing planform is less pronounced as taper 

ratio higher than 0.5.  

 

Figure 5.42 Similarities of wing planform in terms of circulatory lift-coefficient as a 

function of angle of attack for (a) leading edge pivot, (b) mid-chord pivot, and (c) trailing 

edge pivot.  
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Figure 5.43 Similarities of wing planform in terms of circulatory drag-coefficient as a 

function of angle of attack for (a) leading edge pivot, (b) mid-chord pivot, and (c) trailing 

edge pivot. 
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CHAPTER 6  

PIV FLOW FIELD MEASUREMENTS  

The PIV data at several span locations of a pitching rectangular wing are 

presented; the pivot locations were at leading edge, mid-chord, and trailing edge. The test 

cases are highlighted in Figure 6.1. The parameters used to find particle displacements 

are given in Table 6.1; they were found from PIV data in calibration. With camera sensor 

frame of 4008 by 2672 pixels, the field of view for Camera 1 and Camera 2 was 242 by 

161 mm and 243 by 162 mm, respectively. The PIV system and calibration procedure are 

given in Section2.6.  

6.1 MEASUREMENT UNCERTAINTY 

The major measurement uncertainty was contributed from alignment of two 
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Figure 6.1 Test cases using 2D PIV in St - Re space.  
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cameras. The maximum spatial difference from camera field of view was found to be 

0.06 pixels; this is parallax error. The uncertainty of displacement in Z-component due to 

parallax error was 0.03 mm. This uncertainty in terms of speed would be changed in 

regard to exposure time. The exposure time was determined in order to maintain 

validation data points over field of view; it was selected to have three-pixel-particle 

displacement between two interrogation windows according to wing chord-edge speed in 

still water and free-stream velocity. The exposure times in use are variable and given in 

Figure 6.2. As a result, the uncertainty of flow velocity in Z-component due to parallax 

error was 4.22 cm/s for U = 25.6 cm/s and 0.27 cm/s for m = 37.5/s at mid-chord 

pivot. In addition, the laser-sheet thickness of 1.8 mm was determined by a laser-sheet 

illumination on a ruler, where all particle displacements were measured. The maximum 

particle displacement had to be less than laser-sheet thickness. Hence, the possible 

maximum speed is Wmax = 253.44 cm/s for test case in U = 25.6 cm/s, and Wmax = 16.4 

cm/s for test cases at mid-chord pivot using m = 37.5/s in still water.  
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Figure 6.2 Measurement uncertainty for each velocity component.  

Table 6.1 Parameters for present PIV data using lens-shifted configuration.  

Parameter  
Magnification, px/mm Object distance, mm Lens displacement, mm 

M wM p wp X wX 

Camera 1 16.510 0.115 837.258 0.109 60.117 0.183 

Camera 2 16.456 0.098 879.793 0.146 -44.601 0.137 
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Moreover, measurement uncertainties of flow quantities were measured in 

uniform flow without wing model at several water depths. For all flow conditions, sixty 

PIV images were taken with an interval of one second and averaged using the strategy 

discussed in Section0. The exposure time was adjusted according to free-stream velocity; 

however, the exposure time for still water measurement was specified as the ones used 

for U = 8.4 cm/s. The data in still water would reveal the limitation of cross-correlation 

of two interrogation windows; the velocity in Z- and Y- components would show the 

fluctuation of particles due to motor and propeller. The results are shown in Figure 6.2 

and Figure 6.3, and are employed to arrange contour colorbar.  

Figure 6.2 shows measurement uncertainty of particle velocity U, V, and W at 

several specified free-stream velocities. Extreme averaged data in the image field of view 

are presented; the parallax error is given as baseline uncertainty for W velocity. The 
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Figure 6.3 Measurement uncertainty for vorticity.  

Table 6.2 Exposure time for present PIV data.  

U 

m 

0 cm/s 8.6 cm/s 25.6 cm/s 

LE/TE MC LE/MC/TE LE/MC/TE 

37.5/s 0.005468457 0.010936918 0.002114165 0.000710227 

76.4/s 0.002684126 0.005368252 0.002114165 0.000710227 

All units are in seconds; LE, leading edge pivot; MC, mid-chord pivot; TE, trailing 

edge pivot;  
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variations of U and V components are significant less than W component and their 

uncertainties are less than 1 cm/s. The variations of W component increase with 

increasing free-stream velocity; they are reasonable as compared with data in still water. 

The uncertainities of W component follow the parallax error but have higher values; the 

maximum value is less than 5 cm/s for U = 8.4 cm/s. Figure 6.3 shows vorticity 

measurement uncertainty versus free-stream velocity; the extreme averaged data from 

field of view were present. The uncertainty and variation increase as free-stream velocity 

is increased; the maximum vorticity uncertainty is less than 2.5 per second.  

6.2 VORTICITY AND OUT-OF-PLANE VELOCITY FIELD 

Figure 6.4 - Figure 6.7 show vorticity flow field of a rectangular wing pitching at 

leading edge for reduced pitch rates K = , 0.39, 0.13, and 0.065, sequentially; the 

corresponding out-of-plane velocity fields are given in Figure 6.8 - Figure 6.11. The 

vorticity fields at three span locations are considered in attempt to character the 

perspective of vortical flow during the pitch-up phase, which are 50% span, 75% span, 

and 100% span. The out-of-plane velocity field would indicate the evolution of three-

dimensional flow; the dramatic out-of-plane velocities shown at right upper corner in the 

figures are parallax errors, which were deteriorated by axial flow. The PIV data are also 

correlated to the force data shown in Figure 5.12 and Figure 5.15.  

For K =  at 50% span, the force data showed the first normal force spike occurs 

within motion acceleration where angle of attack is less than 7; this normal force spike is 

associated with a starting vortex shown in the PIV data at 7.5 in Figure 6.4, which 

rotates counterclockwise. The core of this starting vortex is accompanied with a pair of 

out-of-plane velocity; the positive value indicates the flow moves out of paper and the 

negative value indicates the flow moves into the paper. The magnitude of the starting 

vortex increases slightly in next few phases and then starts to dissipate as increasing 

angle of attack to 45. Meanwhile, more negative vorticity accumulate at leading edge 

due to pitch rate; during this process, the force data did not show significant force 

generated. The strength of the starting vortex decreases as the span location moves to the 

wing tip but does not vanish. At the wingtip, negative vorticity formed on the leeward 

surface at higher angle of attack while the starting vortex is stretching due to negative 
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out-of-plane velocity. As angle of attack is increased, the positive out-of-plane velocity 

on the leeward surface is observed and the negative out-of-plane velocity is at the 

outside, which indicates a circulation flow around the wing tip. The starting vortex turns 

into positive vorticity as detached from the trailing edge; more negative vorticity is 

formed on the leeward surface during the formation of the tip vortex. These vortical 

structures dissipate quickly after the wing is at maximum angle of attack.  

For K = 0.39 at 50% span, there is a starting vortex formed at trailing edge; the 

deflection of the streamlines toward the starting vortex indicates its presence at an angle 

of attack 7.5 in Figure 6.5. Similar deflected streaklines were introduced to identify the 

occurrence of starting vortex for flow visualization data. The force data showed that the 

normal force was increased rapidly within this phase angle. As the angle of attack is 

increased to 22.5, the starting vortex is washed downward and convects downstream; the 

negative vorticity at leading edge becomes much thicker with positive out-of-plane 

velocity around the vortex core. The force data showed an increase of normal force with a 

slope similar to those with lower reduced pitch rates in the same free-stream flow, this 

angle of attack is well beyond the steady stall angle of attack (i.e., about 12). As the 

angle of attack is increased to 37.5, the negative vorticity at leading edge forms a well-

known leading-edge vortex, which is identified according to the presence of streamline 

circulation core. This leading-edge vortex circulates on the leeward surface and forms 

positive vorticity in a cavity underneath the neck of the leading-edge vortex; this positive 

vorticity forms a well-known secondary vortex. As the angle of attack is increased to 

about 45, the starting vortex is about one chord downstream from the trailing edge; the 

leading-edge vortex grows in size at frontal portion of the chord on the leeward surface. 

The positive vorticity on the leeward surface is also fed by negative out-of-plane velocity. 

At this phase, the force data decreased in accordance with the wing deceleration. The 

span variation of the flow evolution is small, except the flow evolution at the wing tip. At 

higher angle of attack, the starting vortex formed at earlier stage does not move 

downstream but interacts with out-of-plane velocity field at trailing edge. The starting 

vortex becomes a portion of positive vorticity above the negative vorticity on the leeward 

surface. The out-of-plane velocity field shows an increase of wingtip circulation with 
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increasing angle of attack; this wingtip circulation stays close to the wing, introducing 

significant drag on the wing.  

For K = 0.13 at 50% span, the starting vortex appears in the near wake at an angle 

of attack 7.5, as shown in Figure 6.6, instead of occurring at the trailing edge like other 

cases with higher reduced pitch rate. The force data showed a significant increase of 

normal force while comparing with the case with K = 0.39. As the angle of attack is 

increased to 22.5, the negative vorticity (with positive out-of-plane velocity about the 

core) at leading edge grows much thicker than the case with higher reduced pitch rate; 

more trailing edge vortices are observed in the wake. As the angle of attack is increased 

to 30, a leading-edge vortex is in the vicinity, which is much earlier than the case with K 

= 0.39. This leading-edge vortex covers most of the wing chord and also introduces a 

secondary vortex (with negative out-of-plane velocity) on the leeward surface close to the 

leading edge. The force data showed the normal force increases with increasing angle of 

attack in a slope similar to the case with K = 0.39. The spanwise variation is more 

significant than the cases with higher reduced pitch rate, which is evidenced from both 

vorticity and out-of-plane velocity field. At the wingtip, the starting vortex formed at 

earlier stage is stretched into positive vorticity in the near wake by the wingtip 

circulation. This wingtip circulation convects downstream with increasing angle of 

attack.  

For K = 0.065 at 50% span, the starting vortex is indiscernible at the lower angle 

of attack 7.5; there are few trailing-edge vortices in the near wake. From the force data, 

there is not normal force spike within this angle of attack, which indicates the importance 

of the starting vortex to the normal force spike. The negative vorticity thickness becomes 

much thicker as the angle of attack is increased to 15 with more trailing edge vortices in 

the wake. This is the common feature before leading-edge vortex is present. The leading-

edge vortex is discernible at an angle of attack 22.5, which is much earlier than the other 

cases with higher reduced pitch rate. This leading-edge vortex covers entire wing chord 

and grows in size as increasing angle of attack; the secondary vortex is introduced during 

the growth of the leading-edge vortex as well. Moreover, the spanwise variation is more 

pronounced than the other higher reduced pitch rates in both vorticity and out-of-plane 
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velocity field. At the wingtip, the onset of wingtip circulation begins from the negative 

out-of-plane velocity about trailing edge and positive out-of-plane velocity on the 

leeward surface, similar to the other cases with higher reduced pitch rates; however, the 

wingtip circulation convects downstream much quicker for a given angle of attack due to 

larger time ratio tp/tc.  

6.3 EFFERCT OF REDUCED PITCH RATE 

We have shown the development of vorticity and out-of-plane velocity during 

pitch-up phase for each reduced pitch rate; it is still ambiguous how the reduced pitch 

rate impacts the flow. In this section, the effect of reduced pitch rate is discussed in two 

aspects. The first aspect is to compare PIV data at a phase t2, as shown in Figure 6.12, 

which is the second sharp corner of the motion. The second aspect is to compare PIV data 

in a sequence of convective times with an interval of one convective time; the onset of 

the series PIV data starting from t1, as shown in Figure 6.13. All PIV data considered 

here are from the wing pitched at leading edge.  

As shown in Figure 6.12, increasing the reduced pitch rate increases the size of 

leading-edge vortex and transports the starting vortex further downstream, which is 

consistent with a reduced pitch rate for a given maximum angle of attack. Recall from 

Figure 6.1, the reduced pitch rate K = , 0.39, 0.13, and 0.065 indicates the ratio of pitch 

time to convective time from 0, 1, 3, to 6, respectively. Also, the wingtip circulation is 

elongated downstream in accordance with the time ratio, as expected.   

As shown in Figure 6.13, both starting vortex at trailing edge and leading-edge 

vortex are critical vortical structures for rapid increase of lift and drag forces, and are 

features of higher reduced pitch rate K = 0.39. For lower reduced pitch rate, the formation 

of leading-edge vortex is delayed partially due to wing angle of attack, which increases 

lift force being predicted by the potential flow theory. The decrease of forces is 

associated with the dissipation of the leading-edge vortex and the formation of an in-

transition trailing-edge vortex. This in-transition vortex at trailing edge has same 

counterclockwise rotation as the trailing-edge vortex during pitching motion, but its 

presence impairs the force generation. This process initiates the oscillatory behavior 
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observed from the force data and may generates arch vortex as reported by Visbal (2011), 

and Yilmaz and Rockwell (2012).  

6.4 EFFECT OF PIVOT AXIS LOCATION 

From the flow visualization data for K = 0.39, we have found there is a starting 

vortex at leading edge on the windward surface as pivot axis location is at trailing edge 

pivot and as for leading edge pivot there is a starting vortex at trailing edge. It is unclear 

the formation of the starting vortex at mid-chord pivot and effect of pivot axis location on 

reduced pitch rates. In this section, the inspection of pivot axis effect on reduced pitch 

rates is given; only vorticity field by the wing at t2 is considered.  

As shown in Figure 6.14, for K = , a starting vortex is formed at trailing edge as 

the pivot axis location is at leading edge; as the pivot axis location is at trailing edge a 

starting vortex is formed at leading-edge. This is consistent with flow visualization data. 

As the pivot axis location is at mid-chord, there are two starting vortices; one is at leading 

edge and the other is at trailing edge; both are weak in strength compared to those where 

the pivot axis location is the end of wing chord. The presence of the starting vortex 

toward the leading edge on the windward surface delays the formation of leading edge 

vortex on the leeward surface, as shown for cases with finite reduced pitch rate. The 

trailing-edge vortices in the wake follow the starting vortex. An increase of numbers of 

trailing-edge vortex is in consistent with an increase of the negative vorticity at the 

frontal portion of the leeward surface in forming a leading-edge vortex, which would 

satisfy Kelvin’s circulation theorem. At any given pivot axis location, the leading-edge 

vortex grows in size with increasing reduced pitch rate.  

Consider the delayed formation of leading-edge vortex is due to the presence of 

the starting vortex and the dissipation of the starting vortex is associated with the pivot 

axis location with respect to free-stream velocity. It would be intriguing to discover the 

similarity of the PIV data by shifting a phase between leading edge and pivot axis 

location. As shown in Figure 6.15, the PIV data at the first row are at phase t2 for leading 

edge pivot. The second row and third row are PIV data at phase delay of 0.5 tc for mid-

chord pivot and 1 tc for trailing edge pivot, respectively. The vortical structures are 
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similar after shifting phases with respect to pivot-axis location; the force data also show 

the same similarity.  
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Figure 6.4 PIV instantaneous vorticity field and streamline for K = ∞ at leading edge 

pivot.  
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Figure 6.5 PIV instantaneous vorticity field and streamline for K = 0.39 at leading edge 

pivot.  
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Figure 6.6 PIV instantaneous vorticity field and streamline for K = 0.13 at leading edge 

pivot.  
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Figure 6.7 PIV instantaneous vorticity field and streamline for K = 0.065 at leading 

edge pivot.  
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Figure 6.8 PIV instantaneous out-of-plane velocity field and streamline for K = ∞ at 

leading edge pivot.  
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Figure 6.9 PIV instantaneous out-of-plane velocity field and streamline for K = 0.39 at 

leading edge pivot.  
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Figure 6.10 PIV instantaneous out-of-plane velocity field and streamline for K = 0.13 at 

leading edge pivot.  
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Figure 6.11 PIV instantaneous out-of-plane velocity field and streamline for K = 0.065 

at leading edge pivot.  
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Figure 6.12 Effect of reduced pitch rate for a given phase from PIV instantaneous data.  
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Figure 6.13 PIV instantaneous vorticity field and streamline at leading edge pivot. tc is 

convective time c/U∞.  
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Figure 6.14 Effect of pivot axis location for a given phase from PIV instantaneous data.  
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Figure 6.15 Similarity of vortical flow and lift coefficient for pivot-axis location effect. 

LE is for leading-edge pivot axis; MC is for mid-chord pivot axis; TE is for trailing-edge 

pivot axis. The baseline images are at a phase t2 for LE; the images for MC are at a 

delayed phase t2+0.5tc; the images for TE are at a delayed phase t2+1tc. tc is convective 

time c/U∞. 
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CHAPTER 7 

CONCLUSIONS AND RECOMMENDATIONS 

Flow visualization, unsteady aerodynamic force, and PIV flow measurements are 

reported for pitching flat-plate wings with constant pitch rates to a maximum angle of 

attack of 45 degrees. The wings had an aspect ratio equal to 4; three wing geometries 

were considered: rectangular, trapezoidal, and triangular wings. Changing either wing 

pitch rate or free stream flow results in a change of reduced pitch rate within an interval 

of 0.022  K  0.39 in a parameter space of Stokes number (St) and Reynolds number 

(Re). Also the case of Re = 0 (i.e., K = ∞) and K = 0 in Re = 8.9k are documented to gain 

additional insight on the nature of non-circulatory effect and unsteady effect.  

7.1 CONCLUSIONS 

In this study, the maneuvering kinematics was presented and the results suggest 

the leading-edge pivot axis gives great benefit to aircrafts, such as fixed-wing system or 

flapping-wing system. However, the wing geometry does not show significant impact on 

force generation. The conclusions of the study are summarized as follows.   

From flow visualization data,  

1. The flow is substantially two-dimensional at early stage of rotation and high reduced 

pitch rate.  

2. The starting vortex is more pronounced at high reduced pitch rate, associated with 

rapid increase of force generation. High taper-ratio wing produces starting vortex on 

the plane of sideview, low taper-ratio wing produces starting vortex on the plane of 

topview.  
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3. For leading-edge pivot, a typical starting vortex forms in the wake near the trailing 

edge at pitch angle 11° with counterclockwise rotation. The formation of leading-

edge vortex is independent of taper ratio. 

4. For trailing-edge pivot axis, a reverse starting vortex forms in the wake near the 

trailing edge at pitch angle 21° with clockwise rotation. A starting vortex forms at 

leading edge on the windward surface as documented by PIV measurements in Yu 

and Bernal (2013).  

5. The evolution of the starting vortex at the trailing edge differs depending on taper 

ratio.  

6. The flow visualization data suggest trailing-edge vortex is linked to the tip vortex for 

the rectangular wing. For other wing planforms the development of streamwise 

swirling is more pronounced.  

7. Flow visualization data also suggests three-dimensional flow is enhanced by 

triangular wing.  

From steady force measurements (K = 0),  

1. For taper ratio higher than 0.5, the lift coefficient follows the lifting-line theory up to 

9. Lower taper ratio yields lower lift coefficient at a given angle of attack.  

2. For trailing-edge pivot, taper ratio higher than 0.5 gives stall angle higher than 15.  

3. Drag coefficients are independent of leading-edge-sweep angle and taper ratio, and 

increase linearly with angle of attack, which are inconsistent with theoretical 

prediction.  

4. Pitching-moment coefficient about pivot axis is negative for leading-edge pivot, and 

positive for mid-chord and trailing-edge pivot. Effects of taper ratio are small at low 

angle of attack.  

From unsteady force measurements (K  0),  

1. Effects of reduced pitch rate and pivot axis location for rectangular wing 
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1) In all cases the force coefficients increase during the pitch-up portion of the 

motion and decrease until they reach the steady-state condition. 

2) Force oscillations are observed during the transient in the hold phase, consistent 

with incipient vortex shedding; but oscillatory behaviors disappear after 

approximately 30 convective times before the steady state condition is reached. 

3) Non-circulatory apparent mass effects are found for reduced pitch rate greater 

than 0.066 and for leading-edge and trailing-edge pivot axes. These effects are 

confined within the non-zero acceleration region at the start and the end of the 

wing rotation, where the formation of starting vortex is associated.   

4) Non-circulatory apparent mass effects are small at lower reduced pitch rate K = 

0.065 and for mid-chord pivot axis. 

5) Rotation rate effects are observed in the constant rotation-rate region for reduced 

pitch rate K > 0.022.  

6) For leading-edge pivot, both non-circulatory effect and rotation-rate effect 

incorporate to produce very large force coefficients, well above estimates based 

on the lifting line theory. 

7) For trailing-edge pivot, non-circulatory effect and rotation-rate effect oppose each 

other resulting in lower force coefficients below the lifting-line theoretical 

estimates. 

8) For reduced pitch rate below K = 0.022 the flow is quasi-steady and the lifting 

line theoretical results provide good estimates of the lift coefficients for angles of 

attack below the steady stall angle, approximately 20 degrees.  

9) For reduced pitch rate below K = 0.022, the drag coefficient based on the lifting 

line theory for induced drag are a factor of 2 below measured results. This is 

attributed to the failure of accounting for the low leading edge suction force on 

the thin rectangular flat plate.  

2. Effects of wing geometry and pivot axis location at K = 0.065 
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1) Triangular wing produce slightly larger non-circulatory inertial effect at the 

beginning of the rotation.  

2) Rectangular and trapezoid wings give very similar force curves at low angle of 

attack during constant rotation-rate region, which is higher than triangular wing. 

This wing geometry effect is similar to the steady flow results.  

3. Effects of wing geometry and pivot axis location at K = 0.39 

1) Potential flow theory including rotation rate effect is in reasonable agreement 

with measurement results. 

2) Triangular wing produce larger forces compared to other wing geometries. 

3) This wing geometry effect for K = 0.39 is different from that for steady flow and 

K = 0.065.  

From the PIV images,  

1. PIV data show formation of LEV and TEV vortices at the end of the rotation, but the 

rate of development depends on pivot axis location and reduced pitch rate.  

2. PIV measurements also show important differences in flow topology for different 

pivot axis due to the formation of starting vortex. For leading edge pivot axis the 

starting vortex is formed at the trailing edge. For mid-chord pivot axis starting 

vortices are formed at the leading edge and the trailing edge. For trailing edge pivot 

axis the starting vortex forms at the leading edge. 

3. Formation of a starting vortex at the leading edge delays the development of the LEV.  

4. Significant spanwise variation of the LEV size is found for low reduced pitch rate. 

7.2 FUTURE WORK 

Many researchers have shown a significant leading-edge vortex over semi-

elliptical wing or Zimmerman wing; this leading-edge vortex covered the entire wing 

leading-edge axis toward the wingtip while higher degree-of-freedom wing motion was 

in use. Most of them considered the leading-edge vortex is important for high lift 

generation. The PIV data presented in this study showed the leading-edge vortex is 
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diminishing toward the wingtip where wingtip vortex or wingtip circulation forms; the 

rapid increase of lift is associated with both reduced pitch rate and starting vortex. In 

addition, contrary to the shedding of leading-edge vortex and trailing-edge vortex in the 

literature, the present data showed the leading-edge vortex is not shed but dissipates 

during the rotation. At earlier time of holding at 45-degree angle of attack, there is 

trailing-edge vortex developing. The discrepancies suggest the future work as follows:  

1. To implement higher degree-of-freedom wing kinematics to obtain the insight of 

vortical structure formation and its correlation with aerodynamics.  

2. To obtain better understanding of vortex dynamics by implementing vortex 

detection algorithms Г1 and Г2 (Graftieaux et al., 2001).  

3. To improve uncertainty of the lens-shifted stereoscopic PIV system by increasing 

laser sheet thickness and time between camera exposures 
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APPENDIX A  

MATLAB PROGRAM FOR MOTION COMMAND  

Input Parameter.m 
%   The file is to generate motion command to control VMX Rotary Table 
% 
%   Code: Huai-Te Yu 
%   Date: 04/10/2011 
%   Version: 1 
%   Version history: 
%       v1: using smoothing equation in a form of convective time 

  
clear 
clc 
%% part1: input parameters 
a = 11; % free parameter 
U = 34.346; % prescribed freesream velocity for motion generation, 

[cm/s] 
k = 0.2; % reduced frequency 
s = 1; % start parameter, number of convective time in design 
h = 1; % hold parameter, number of convective time in design 
e = 1; % relaxation parameter, number of convective time in design 
deg = 45; % maximum angle of attack, [degree] 
stepdeg = 20; % rotary stepper resolution, [steps/degree] 
chord = 2; % wing chord length, [inch] 
rho = 998; % water density [kg/m^3] 
nu = 0.001; % water dynamic viscosity, [kg/m.s] 

  
L = 20; % # of kinematics repeated  
Fs = 10000; % sample rate in design 

  
% evaluate parmeters 
Re = U*0.01*chord*2.54*0.01*rho/nu; % Reynolds number in design 
tp = (deg*pi/180)*chord*2.54/(2*U*k); % pitch time in design 
tc = chord*2.54/U; % convective time in design 
A = a/(2*k); 
B = a*(deg*pi/180)/(2*k); 

 
% assign part of filename using input parameters 
[yyyy mm dd] = datevec(date); 
dateK = sprintf('%04d%02d%02d',yyyy,mm,dd); 
temp1 = 

sprintf('C%02dk%02dh%02ddeg%02dsd%02d',chord,round(k*10),h,deg,stepdeg); 
temp2 = sprintf('Re%02dk',round(Re/1000)); 
tempname = strcat(temp1,'K',dateK,temp2); 
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%% Part2: discrete smoothing function 
[MotionInFunction,tiInFunction] = 

getSmoothingFunctionV1(k,deg,a,s,h,e,stepdeg,Fs,tp,tc,tempname); 

  
% Note: 
% 1) MotionInFunction contains time, position, speed, acceleration in 

[degree] 
% 2) plots are shown in [deg] 
% 3) text filename ended with "MotionInSmoothingFunction" 

  
%% Part3: get smoothing regions 
[MotionInSmoothing,gamma,DivisorInAngleAttack,DivisorInTiming,beta] = 

getSmoothingRegionV4(MotionInFunction,Fs,k,a,h,stepdeg,tc,tiInFunction,

tempname,B); 

  
% Note: 
% 1) MotionInSmoothing contains time, alpha, d_alpha, dd_alpha in [step] 
% 2) plots are shown in [deg] 
% 3) text filename ended with "MotionInSmoothingPoints" 

  
%% Part4: generate VMX motion commands and verification  
[MotionInCommand,MotionInDesignFunction,MotionInDesignSmoothing,tsInCom

mand,tsInDesign,tiInDesignFunction] = 

getVelmexV3(MotionInFunction,MotionInSmoothing,stepdeg,k,a,h,L,deg,tiIn

Function,tc,tempname,Fs); 
% Note: 
% 1) outputs are in steps 
% 2) the holding time in commands and smoothing function is calibrated 

with 
%    pause resolution in VMX controller, the comparison can be made by 
%    inspecting outputs  
% 3) plots are shown in [deg] 
% 4) The Velmex command has filename ended with VMXCommand 

  
%% Part5: save important parameters 
% save important parameters for kinematic reconstruction 
filename = strcat(tempname,'MotionInformation.mat'); 
save(filename,'U','k','chord','Fs','a','A','B','gamma','beta','DivisorI

nAngleAttack','DivisorInTiming','stepdeg','deg',... 
    'tiInFunction','tiInDesignFunction','tsInCommand','tsInDesign',... 
    

'MotionInFunction','MotionInSmoothing','MotionInDesignFunction','Motion

InDesignSmoothing','MotionInCommand'); 
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getSmoothingFunctionV1.m 
function [MotionInFunction,tiInFunction] = 

getSmoothingFunctionV1(k,deg,a,s,h,e,stepdeg,Fs,tp,tc,tempname) 
%   This is smoothing function defined by Eldredge, used to miminize 

the vibration  
%   induced by rotating airfoil. The data is also written with a name 
%   k_h_a_1.txt. 
%   Schematics of pitchup-hold-pitchdown motion and notions of time 
%   definition 
%   |   |    |.......|    |      | 
%   |   |   .|       | .  |      | 
%   |   |  . |       |  . |      | 
%   |   | .  |       |   .|      | 
%   |---|----|-------|----|------|--- 
%   |dTs| dTp|  dTh  | dTp|  dTe | 
%       t1   t2      t3   t4     t5 
% 
%   Input:  
%       k       = reduced frequency 
%       chord   = chord length 
%       deg     = maximum angle of attack 
%       a       = free paramenter 
%       s       = start parameter 
%       h       = hold parameter 
%       e       = relaxation parameter 
%       stepdeg = rotary stepper resolution, [steps/deg] 
%       Re      = Reynolds number in design 
%       tp      = pitch time in design  
%       tc      = convective time in design 
%   Output: 
%       tiInFunction.t1      = time that wings start to pitch-up in an 

unsmoothing trace 
%       tiInFunction.t2      = time that wings start to hold in an 

unsmoothing trace 
%       tiInFunction.t3      = time that wings start to pitch-down in 

an unsmoothing trace 
%       tiInFunction.t4      = time that wings stop at the origin in an 

unsmoothing trace 
%       tiInFunction.t5      = time that the motion is complete 
%       MotionInFunction     = contains time, alpha, d_alpah, dd_alpha 
%           (The data is also written with a name k_h_a_1.txt.) 
%       alpha_maxd = maximum alpah obtained, used to make sure maximum 
%                    alpha is achieved 
%   Code: Huai-Te Yu 
%   Date: 04/10/2011 
%   Version: 1 
%   Version history: 
%       v1: using smoothing equation in a form of convective time 

  
dTp = tp; % pitch ramp duration 
dTs = s*tc; % start duration 
dTh = h*tc; % hold duration 
dTe = e*tc; % relaxation duration 

  
tiInFunction.t1 = dTs; % time from reference 0 to the unsmoothed ramp 

starts 
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tiInFunction.t2 = tiInFunction.t1+dTp; % tiInFunction.t1 + duration of 

the pitch upstoke to position of hold 
tiInFunction.t3 = tiInFunction.t2+dTh; % tiInFunction.t2 + unsmoothed 

hold time 
tiInFunction.t4 = tiInFunction.t3+dTp; % tiInFunction.t3 + unsmoothed 

pitchdownstroke duration  
tiInFunction.t5 = tiInFunction.t4+dTe; % tiInFunction.t4 + duration of 

ending  
MotionInFunction.t = 0:1/Fs:tiInFunction.t5; % duration of a cycle 
MotionInFunction.t(end+1) = tiInFunction.t5; 

  
[MotionInFunction.position, MotionInFunction.speed, 

MotionInFunction.acceleration] = 

SmoothingFunctionV1(k,a,MotionInFunction.t,tc,tiInFunction.t1,tiInFunct

ion.t2,tiInFunction.t3,tiInFunction.t4); 

  
display('**************************************************************

***'); 
display(['maximum incidence in smoothing function: ' 

num2str(max(MotionInFunction.position),7) ' deg']); 
if max(MotionInFunction.position) < deg 
    display('!!! NEED TO BE ROUNDED OFF AND CONVERT TO STEPS!!!'); 
elseif max(MotionInFunction.position) > deg 
    display('WRONG!!! CHECK smoothing function inputs!!!'); 
    return 
end 

  
%% plot 
figure; 
ax1fig1 = subplot(3,1,1); % angular position time history 
y1max = ceil(max(MotionInFunction.position)/10)*10+5; 
y1min = -(ceil(abs(min(MotionInFunction.position))/10)*10+5); 
dy1 = round((y1max - y1min)/6/10)*10; 
h1(1) = 

line(MotionInFunction.t,MotionInFunction.position,'color','k','LineWidt

h',1); axis tight 
sub_pos1 = get(ax1fig1,'position'); 
set(ax1fig1,'position',sub_pos1.*[1 0.9 1 1.1]) % stretch its width and 

height 
set(ax1fig1,'xcolor','k','ycolor','k'); 
set(ax1fig1,'Xlim',[0 

tiInFunction.t5],'XTick',0:1:tiInFunction.t5,'XTickLabel',[],... 
    'Ylim',[y1min y1max],'YTick',y1min:dy1:y1max); 
% xlabel('$t [sec]$','Interpreter','Latex','FontSize',12); 
ylabel('$\alpha [deg]$ ','Interpreter','Latex','FontSize',12); 
% plot position versus convective time 
ax2fig1 = axes('Position',get(ax1fig1,'Position'),... 
           'XAxisLocation','top',... 
           'YAxisLocation','right',... 
           'Color','none',... 
           'XColor','k','YColor','k'); 
h1(2) = 

line(MotionInFunction.t,MotionInFunction.position,'color',[0,0,0],... 
    'LineStyle','-','parent',ax2fig1); axis tight 
sub_pos1 = get(ax2fig1,'position'); 
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set(ax2fig1,'position',sub_pos1.*[1 1 1 1]) % stretch its width and 

height 
xlabel('t_c'); 
set(ax2fig1,'Xlim',[0 

tiInFunction.t5],'XTick',tiInFunction.t1:tc:tiInFunction.t5,'XTickLabel

',0:1:tiInFunction.t5/tc,...   
    'Ylim',[y1min y1max],'YTick',y1min:dy1:y1max,... 
    'Ycolor','k'); 
linkaxes([ax1fig1 ax2fig1],'xy'); 

  
ax1fig2 = subplot(3,1,2); % angular velocity time history 
y2max = ceil(max(MotionInFunction.speed)/10)*10+5; 
y2min = -(ceil(abs(min(MotionInFunction.speed))/10)*10+5); 
dy2 = round((y2max - y2min)/6); 
h2(1) = 

line(MotionInFunction.t,MotionInFunction.speed,'color','k','LineWidth',

1); axis tight 
sub_pos2 = get(ax1fig2,'position'); 
set(ax1fig2,'position',sub_pos2.*[1 0.9 1 1.1]) % stretch its width and 

height 
set(ax1fig2,'xcolor','k','ycolor','k'); 
% set(ax1fig2,'xtick',[]); % turn off xlabel (t [sec]) 
set(ax1fig2,'Xlim',[0 

tiInFunction.t5],'XTick',0:1:tiInFunction.t5,'XTickLabel',[],... 
    'Ylim',[y2min y2max],'YTick',y2min:dy2:y2max); 
% xlabel('$t [sec]$','Interpreter','Latex','FontSize',12); 
ylabel('$\dot \alpha [\frac{deg}{s}] 

$','Interpreter','Latex','FontSize',12); 
ax2fig2 = axes('Position',get(ax1fig2,'Position'),... 
           'XAxisLocation','top',... 
           'YAxisLocation','right',... 
           'Color','none',... 
           'XColor','k','YColor','k'); 
h2(2) = 

line(MotionInFunction.t,MotionInFunction.speed,'color',[0,0,0],... 
    'LineStyle','-','parent',ax2fig2); axis tight 
sub_pos2 = get(ax2fig2,'position'); 
set(ax2fig2,'position',sub_pos2.*[1 1 1 1]) % stretch its width and 

height 
set(ax2fig2,'Xlim',[0 

tiInFunction.t5],'XTick',tiInFunction.t1:tc:tiInFunction.t5,'XTickLabel

',[],... 
    'Ylim',[y2min y2max],'YTick',y2min:dy2:y2max,... 
    'Ycolor','k'); 
linkaxes([ax1fig2 ax2fig2],'xy'); 

  
ax1fig3 = subplot(3,1,3); % angular acceleration time history 
y3max = ceil(max(MotionInFunction.acceleration)/10)*10+5; 
y3min = -(ceil(abs(min(MotionInFunction.acceleration))/10)*10+5); 
dy3 = round((y3max - y3min)/6); 
h3(1) = 

line(MotionInFunction.t,MotionInFunction.acceleration,'color','k','Line

Width',1); axis tight 
sub_pos3 = get(ax1fig3,'position'); 
set(ax1fig3,'position',sub_pos3.*[1 0.9 1 1.1]) % stretch its width and 

height 
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set(ax1fig3,'xcolor','k','ycolor','k'); 
set(ax1fig3,'Xlim',[0 

tiInFunction.t5],'XTick',0:1:tiInFunction.t5,'XTickLabel',0:1:tiInFunct

ion.t5,... 
    'Ylim',[y3min y3max],'YTick',y3min:dy3:y3max); 
xlabel('$t [sec]$','Interpreter','Latex','FontSize',12); 
ylabel('$\ddot \alpha 

[\frac{deg}{s^2}]$','Interpreter','Latex','FontSize',12); 
% plot position versus convective time 
ax2fig3 = axes('Position',get(ax1fig3,'Position'),... 
           'XAxisLocation','top',... 
           'YAxisLocation','right',... 
           'Color','none',... 
           'XColor','k','YColor','k'); 
h3(2) = 

line(MotionInFunction.t,MotionInFunction.acceleration,'color',[0,0,0],.

.. 
    'LineStyle','-','parent',ax2fig3); axis tight 
sub_pos3 = get(ax2fig3,'position'); 
set(ax2fig3,'position',sub_pos3.*[1 1 1 1]) % stretch its width and 

height 
set(ax2fig3,'Xlim',[0 

tiInFunction.t5],'XTick',tiInFunction.t1:tc:tiInFunction.t5,'XTickLabel

',[],...   
    'Ylim',[y3min y3max],'YTick',y3min:dy3:y3max,... 
    'Ycolor','k'); 
linkaxes([ax1fig3 ax2fig3],'xy'); 

  
%% write to file 
filename = strcat(tempname,'MotionInFunction.txt'); 
fid = fopen(filename,'wt'); 
fprintf(fid,'This data is generated from smoothing function for 

interpolation in next step\n'); 
fprintf(fid,'Stepping motor %g [step/deg], k=%g, h=%g, 

a=%g\n',stepdeg,k,h,a); 
fprintf(fid,' t[s]   alpha[deg] d_alpha[deg/s] dd_alpha[deg/s^2]\n'); 
fprintf(fid,'%-8.5f %10.5f %10.5f 

%12.5f\n',[MotionInFunction.t;MotionInFunction.position;MotionInFunctio

n.speed;MotionInFunction.acceleration]); 
fclose(fid); 
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getSmoothingRegionV4.m 
function 

[MotionInSmoothing,gamma,DivisorInAngleAttack,DivisorInTiming,beta] = 

getSmoothingRegionV4(MotionInFunction,Fs,k,a,h,stepdeg,tc,tiInFunction,

tempname,B) 
% 
%   This file gives the points of interest for VMX controller 
%    
%   Input: 
%       DivisorInAngleAttack       = # of points during smoothing 

regions  
%       MotionInFunction    = MotionInFunction, containing time, 

position, speed, acceleration 
%       k       = reduced frequency 
%       a       = free paramenter 
%       stepdeg = rotary stepper resolution, [steps/deg] 
%       tc      = convective time in design 
%       

tiInFunction.t1,tiInFunction.t2,tiInFunction.t3,tiInFunction.t4,tiInFun

ction.t5 = timepoints at corners 
%       Fs = sample rate 
%   Output: 
%       data1   = containing points of interest, [step] 
% 
%   Code: Huai-Te Yu 
%   Data: 2013/03/12 
%   Version: 1 
%   Version history: 
%       v1: using filter concept 
%       v2: defining gamma  
%       v3: include more timing points at beginning and end of rotation 

  
%% define acceleration regions 
prompt = {'Enter the ratio of acceleration change to maximum 

acceleration',... 
    '# of divident in angle of attack in the acceleration regions',... 
    '# of divident in timing at the beginnning/end of pitching'}; 
dlgtitle = 'DEFINE ACCELERATION REGIONS'; 
numlines = 1; 
if exist('gamma','var') && exist('DivisorInAngleAttack','var') 
    defaultanswer = {num2str(gamma),num2str(DivisorInAngleAttack)}; 
else 
    defaultanswer = {'0.01','11','6'}; 
end 
answer = inputdlg(prompt,dlgtitle,numlines,defaultanswer,'on'); 
if isempty(answer) 
    return, 
end 
gamma = sscanf(char(answer(1)),'%f'); 
DivisorInAngleAttack = sscanf(char(answer(2)),'%f'); 
DivisorInTiming = sscanf(char(answer(3)),'%f'); 

  
beta = acosh(sqrt(1/gamma))/B; 

  
%% find accelertion regions and corresponding position, speed, and 
% acceleration  
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Dt = tc*acosh(sqrt(1/gamma))/a; % the corresponding time change during 

smoothing regions 

  
%% evaluate smoothing regions 
ts11 = tiInFunction.t1-Dt; 
ts12 = tiInFunction.t1+Dt; 
ts21 = tiInFunction.t2-Dt; 
ts22 = tiInFunction.t2+Dt; 
ts31 = tiInFunction.t3-Dt; 
ts32 = tiInFunction.t3+Dt; 
ts41 = tiInFunction.t4-Dt; 
ts42 = tiInFunction.t4+Dt; 
[tspositionInDegree,tsspeedInDegree,tsaccelerationInDegree] = 

SmoothingFunctionV1(k,a,[ts11,ts12,ts21,ts22,ts31,ts32,ts41,ts42],tc,ti

InFunction.t1,tiInFunction.t2,tiInFunction.t3,tiInFunction.t4); 
% make sure maximum angle is 45 degrees and the angle changes are the 

same 
% for each smoothing regions  
tspositionInDegreeRound = roundn(tspositionInDegree,-2); % in radian 
display('***--------------------------------------------***'); 
fprintf('Incidences during smoothing regions, [deg]:\n') 
display(num2str(tspositionInDegreeRound)); 
fprintf('The corresponding timepoints, [s]:\n') 
display(num2str([ts11 ts12 ts21 ts22 ts31 ts32 ts41 ts42])); 

  
%% convert degrees to steps 
tspositionInStep = tspositionInDegreeRound*stepdeg; % in step 
tspositionInStepRound = round(tspositionInStep); % in step 
% convert steps back to degrees 
tspositionInDegreeRoundNew = tspositionInStepRound/stepdeg; 
% find new timing for rounded angle of attack 
ts11New = ts11; 

  
[Positiont1t2NewTemp,indext1t2] = 

sort(MotionInFunction.position(1:floor((tiInFunction.t2+tiInFunction.t3

)*Fs/2))); 
Timet1t2Temp = MotionInFunction.t(indext1t2); 
uniq1 = [true, diff(Positiont1t2NewTemp) ~= 0]; 
ts12New = 

interp1(Positiont1t2NewTemp(uniq1),Timet1t2Temp(uniq1),tspositionInDegr

eeRoundNew(2)); 
ts21New = 

interp1(Positiont1t2NewTemp(uniq1),Timet1t2Temp(uniq1),tspositionInDegr

eeRoundNew(3)); 

  
ts22New = ts22; 
ts31New = ts31; 

  
[Positiont3t4NewTemp,indext3t4] = 

sort(MotionInFunction.position(floor((tiInFunction.t2+tiInFunction.t3)*

Fs/2)+1:end)); 
Timet3t4Temp = 

MotionInFunction.t(floor((tiInFunction.t2+tiInFunction.t3)*Fs/2)+1:end);  
Timet3t4Temp1 = Timet3t4Temp(indext3t4); 
uniq2 = [true, diff(Positiont3t4NewTemp) ~= 0]; 
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ts32New = 

interp1(Positiont3t4NewTemp(uniq2),Timet3t4Temp1(uniq2),tspositionInDeg

reeRoundNew(6)); 
ts41New = 

interp1(Positiont3t4NewTemp(uniq2),Timet3t4Temp1(uniq2),tspositionInDeg

reeRoundNew(7)); 
ts42New = ts42; 
fprintf('New incidences during smoothing regions, [deg]:\n') 
display(num2str(tspositionInDegreeRoundNew)); 
fprintf('The corresponding new timepoints, [s]:\n') 
display(num2str([ts11New ts12New ts21New ts22New ts31New ts32New 

ts41New ts42New])); 

  
%% define incremental incidence during acceleration phase  
% region 1: ts1-ts2 (acceleration) 
ts1ts2positionInDegree = 

linspace(tspositionInDegreeRoundNew(1),tspositionInDegreeRoundNew(2),Di

visorInAngleAttack); 
ts1ts2positionInStep = ts1ts2positionInDegree*stepdeg; 
ts1ts2positionInStepRound = round(ts1ts2positionInStep); 
% difts1ts2positionInstepRound = diff(ts1ts2positionInstepRound); 
ts1ts2time = 

interp1(Positiont1t2NewTemp(uniq1),Timet1t2Temp(uniq1),ts1ts2positionIn

Degree); 
ts1ts2time(1) = ts11New; % Due to NAN evaluated using interp1 

  
% region 2: ts3-ts4 (decceleration) 
ts3ts4positionInDegree = 

linspace(tspositionInDegreeRoundNew(3),tspositionInDegreeRoundNew(4),Di

visorInAngleAttack); 
ts3ts4positionInStep = ts3ts4positionInDegree*stepdeg; 
ts3ts4positionInStepRound = round(ts3ts4positionInStep); 
% difts3ts4positionInstepRound = diff(ts3ts4positionInstepRound); 
ts3ts4time = 

interp1(Positiont1t2NewTemp(uniq1),Timet1t2Temp(uniq1),ts3ts4positionIn

Degree); 
ts3ts4time(end) = ts22New; % Due to NAN evaluated using interp1 

  
% region 3: ts5-ts6 (decceleration) 
ts5ts6positionInDegree = 

linspace(tspositionInDegreeRoundNew(5),tspositionInDegreeRoundNew(6),Di

visorInAngleAttack); 
ts5ts6positionInStep = ts5ts6positionInDegree*stepdeg; 
ts5ts6positionInStepRound = round(ts5ts6positionInStep); 
% difts5ts6positionInstepRound = diff(ts5ts6positionInstepRound); 
ts5ts6time = 

interp1(Positiont3t4NewTemp(uniq2),Timet3t4Temp1(uniq2),ts5ts6positionI

nDegree); 
ts5ts6time(1) = ts31New; % Due to NAN evaluated using interp1 

  
% region 4: ts7-ts8 (acceleration) 
ts7ts8positionInDegree = 

linspace(tspositionInDegreeRoundNew(7),tspositionInDegreeRoundNew(8),Di

visorInAngleAttack); 
ts7ts8positionInStep = ts7ts8positionInDegree*stepdeg; 
ts7ts8positionInStepRound = round(ts7ts8positionInStep); 



 

 203 

% difts7ts8positionInstepRound = diff(ts7ts8positionInstepRound); 
ts7ts8time = 

interp1(Positiont3t4NewTemp(uniq2),Timet3t4Temp1(uniq2),ts7ts8positionI

nDegree); 
ts7ts8time(end) = ts42New; 

  
%% refine segments at the beginning and the end of rotation 
% pitch-up phase 
ts1ts2Addtime = linspace(ts1ts2time(1),ts1ts2time(2),DivisorInTiming); 
[ts1ts2AddpositionInDegree,ts1ts2AddspeedInDegree,ts1ts2Addacceleration

InDegree] = 

SmoothingFunctionV1(k,a,ts1ts2Addtime,tc,tiInFunction.t1,tiInFunction.t

2,tiInFunction.t3,tiInFunction.t4); 
ts1ts2AddpositionInStep = ts1ts2AddpositionInDegree*stepdeg; 
ts1ts2AddpositionInStepRound = round(ts1ts2AddpositionInStep); 

  
ts3ts4Addtime = linspace(ts3ts4time(end-

1),ts3ts4time(end),DivisorInTiming); 
[ts3ts4AddpositionInDegree,ts3ts4AddspeedInDegree,ts3ts4Addacceleration

InDegree] = 

SmoothingFunctionV1(k,a,ts3ts4Addtime,tc,tiInFunction.t1,tiInFunction.t

2,tiInFunction.t3,tiInFunction.t4); 
ts3ts4AddpositionInStep = ts3ts4AddpositionInDegree*stepdeg; 
ts3ts4AddpositionInStepRound = round(ts3ts4AddpositionInStep); 

  
% pitch-return phase  
ts5ts6Addtime = linspace(ts5ts6time(1),ts5ts6time(2),DivisorInTiming); 
[ts5ts6AddpositionInDegree,ts5ts6AddspeedInDegree,ts5ts6Addacceleration

InDegree] = 

SmoothingFunctionV1(k,a,ts5ts6Addtime,tc,tiInFunction.t1,tiInFunction.t

2,tiInFunction.t3,tiInFunction.t4); 
ts5ts6AddpositionInStep = ts5ts6AddpositionInDegree*stepdeg; 
ts5ts6AddpositionInStepRound = round(ts5ts6AddpositionInStep); 

  
ts7ts8Addtime = linspace(ts7ts8time(end-

1),ts7ts8time(end),DivisorInTiming); 
[ts7ts8AddpositionInDegree,ts7ts8AddspeedInDegree,ts7ts8Addacceleration

InDegree] = 

SmoothingFunctionV1(k,a,ts7ts8Addtime,tc,tiInFunction.t1,tiInFunction.t

2,tiInFunction.t3,tiInFunction.t4); 
ts7ts8AddpositionInStep = ts7ts8AddpositionInDegree*stepdeg; 
ts7ts8AddpositionInStepRound = round(ts7ts8AddpositionInStep); 

  
%% rename points of interest 
MotionInSmoothing.t = [0 ts1ts2Addtime ts1ts2time(3:end) 

ts3ts4time(1:end-2) ts3ts4Addtime ts5ts6Addtime ts5ts6time(3:end) 

ts7ts8time(1:end-2) ts7ts8Addtime tiInFunction.t5]; 
MotionInSmoothing.position = [0 ts1ts2AddpositionInStepRound 

ts1ts2positionInStepRound(3:end) ts3ts4positionInStepRound(1:end-2) 

ts3ts4AddpositionInStepRound ts5ts6AddpositionInStepRound 

ts5ts6positionInStepRound(3:end) ts7ts8positionInStepRound(1:end-2) 

ts7ts8AddpositionInStepRound 0]; 
[position, speed, acceleration] = 

SmoothingFunctionV1(k,a,MotionInSmoothing.t,tc,tiInFunction.t1,tiInFunc

tion.t2,tiInFunction.t3,tiInFunction.t4); % in degrees 
MotionInSmoothing.speed = round(speed*stepdeg); 
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MotionInSmoothing.acceleration = round(acceleration*stepdeg); 

  
display('***--------------------------------------------***'); 
fprintf('Incidences directly from smoothing function, [steps]:\n'); 
display(num2str(MotionInSmoothing.position)); 
fprintf('Incidences from smoothing function using interpolated 

timepoints, [steps]:\n'); 
display(num2str(round(position*stepdeg))); 

  
%% write to file 
filename = strcat(tempname,'MotionInSmoothingPoints.txt'); 
fid = fopen(filename,'wt'); 
fprintf(fid,'This data gives points of interest for VMX \n'); 
fprintf(fid,'Stepping motor %g [step/deg], k=%g, h=%g, 

a=%g\n',stepdeg,k,h,a); 
fprintf(fid,' t[s]   alpha[steps] d_alpha[steps] 

dd_alpha[steps/s^2]\n'); 
fprintf(fid,'%-8.5f %10.0f %10.0f 

%12.0f\n',[MotionInSmoothing.t;MotionInSmoothing.position;MotionInSmoot

hing.speed;MotionInSmoothing.acceleration]); 
fclose(fid); 

  
%% plot  
figure; 

plot(MotionInSmoothing.t,MotionInSmoothing.position/stepdeg,'o',MotionI

nFunction.t,MotionInFunction.position), axis tight 
legend('VMX','smoothing function'); 
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getVelmexV3.m 
function 

[MotionInCommand,MotionInDesignFunction,MotionInDesignSmoothing,tsInCom

mand,tsInDesign,tiInDesignFunction] = 

getVelmexV3(MotionInFunction,MotionInSmoothing,stepdeg,k,a,h,L,deg,tiIn

Function,tc,tempname,Fs) 
%   This function produces VMX commands using MotionInSmoothing 
% 
%   Input: 
%       MotionInSmoothing = t, position, speed, acceleration in [step] 
%       stepdeg = pitch motion [step/deg] 
%       k = reduced frequency 
%       a = free parameter 
%       h = holding parameter 
%       L = # of loop of testing 
%   Note: 
%       1)The data is also written to disk with the name of k_h_a_3.txt. 
%       2)The command is written to disk with the name of 

k_h_a_Velmex.txt, before 
%         the use, make sure put "U4" before holding starts to get 

signal for 
%         verification purpose. 
% 
%   Code: Huai-Te Yu 
%   Date: 04/10/2011 
%   Version: 1 
%   Version history: 
%       v1: generate pulse pattern I 
%       v2: generate pulse pattern II 
%       v3: generate pulse pattern III 

  
%% process1: delete extra data to get VMX code 
N = length(MotionInSmoothing.t); 
% increments in time and angle 
VMX0 = zeros(N-1,3); 
for i = 1:1:N-1 
    VMX0(i,1) = MotionInSmoothing.t(i+1)-MotionInSmoothing.t(i); % dt  
    VMX0(i,2) = MotionInSmoothing.position(i+1)-

MotionInSmoothing.position(i); % steps in dt 
end 
VMX0(:,3) = round(VMX0(:,2)./VMX0(:,1)); % speed 
d0 = length(MotionInSmoothing.position)-length(VMX0(:,1)); 
display('***--------------------------------------------***'); 
display(['process 1: ' num2str(d0) ' points of interest deleted']); 

  
%% process2: accumulate timescale same speed 
VMX1(1,:) = VMX0(1,:); 
for i = 2:N-1 
    if VMX0(i,3)-VMX0(i-1,3)==0; 
        VMX1(i,1)=VMX1(i-1,1)+VMX0(i,1); 
        VMX1(i,2)=VMX1(i-1,2)+VMX0(i,2); 
    else 
        VMX1(i,1)=VMX0(i,1); 
        VMX1(i,2)=VMX0(i,2); 
    end 
end 
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VMX1(:,3)=VMX0(:,3); 
d1 = length(VMX0(:,1))-length(VMX1(:,1)); 
display(['process 2: ' num2str(d1) ' points of interest deleted']); 

  
%% process3: delete extra-rows with same speed 
[r, col] = size(VMX1); 
r1 = 1; 
VMX2(1,:) = VMX1(1,:); 
for i = 2:r 
    if VMX1(i,3)-VMX1(i-1,3) == 0; 
        VMX2(r1,:) = VMX1(i,:); 
    else 
        VMX2(r1+1,:) = VMX1(i,:); 
        r1 = r1+1; 
    end 
end 
d2 = length(VMX1(:,1))-length(VMX2(:,1)); 
display(['process 3: ' num2str(d2) ' points of interest deleted']); 

  
%% round off timing due to resolution of "P" command 
% "Px" gives tenth second, "P-x" gives tenth milisecond 
VMX3 = VMX2; 
HoldResolution = 0.0001; 
indicator = find(VMX3(:,2)==0); 
VMX3(indicator,1) = 

round(VMX3(indicator,1)/HoldResolution)*HoldResolution; 
dtInCommandtemp = VMX2(indicator,1)-VMX3(indicator,1); 
% for i = 1:length(VMX3) 
%     if VMX3(i,3)==0 
%         VMX3(i,1) = round(VMX3(i,1)/HoldResolution)*HoldResolution; % 

resolution of pause command is tenth milisecond 
%     end 
% end 

  
%% write VMX Commands 
% define pulses every n-steps 
prompt = {'Enter # of steps every pulse'}; 
dlgtitle = 'DEFINE PULSE EVERY STEPS'; 
numlines = 1; 
if exist('Npulse','var') 
    defaultanswer = {num2str(Npulse)}; 
else 
    defaultanswer = {'0'}; 
end 
answer = inputdlg(prompt,dlgtitle,numlines,defaultanswer,'on'); 
if isempty(answer) 
    return, 
end 
Npulse = sscanf(char(answer(1)),'%f'); 

  
if Npulse~=0 && round(stepdeg*deg/Npulse)~=stepdeg*deg/Npulse 
    fprintf(['Change number of pulses during the ramp-up/return 

phase\n','It needs to be interger\n']) 
    return 
end 
filename1 = strcat(tempname,'VMXCommand.txt'); 
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fid = fopen(filename1,'wt'); 
fprintf(fid,'E, ;Enable On-Line mode with echo "on"\n'); 
fprintf(fid,'PM-1,  ;Select and clear program\n'); 
fprintf(fid,'A1M127,    ;Set base acceleration/speed\n');  
P = 1; % number of program capable for VMX controller 
for i = 1:length(VMX3) 
    while i == 25*P 
        P = P+1; % # of program 
        fprintf(fid,'J%1.0f,    ;Jump to program\n',P); 
        fprintf(fid,'PM-%.0f,   ;Select and clear program\n',P); % new 

program 
    end 
    if VMX3(i,3) == 0 
        if i ~= 1 
            fprintf(fid,'U99,   ;End of continuous index with no 

deceleration\n'); 
        end 
        fprintf(fid,'U5,    ;Output1 pulse high\n'); 
        fprintf(fid,'P-%.0f,    ;Pause %.4f 

seconds\n',VMX3(i,1)/HoldResolution,VMX3(i,1));  
        fprintf(fid,'U4,    ;Output1 pulse low\n'); 
        flag1 = i; 
    else 
        if i == flag1+1 
            fprintf(fid,'U77,   ;Start continuous index with no 

output\n'); 
            if Npulse == 0 
                fprintf(fid,'setP1M0, ;Disable pulse every steps on 

output2\n'); 
                fprintf(fid,'setPA1,  ;Disable pulse width\n'); 
            else 
                fprintf(fid,'setP1M%.0f, ;Pulse every %.0f steps on 

output2\n',stepdeg*deg/Npulse,stepdeg*deg/Npulse/10); 
                fprintf(fid,'setPA200,  ;Set pulse width, 2ms\n'); 
            end 
        end 
        if abs(VMX3(i,2)) == max(VMX3(:,2)) 
            fprintf(fid,'U5,    ;Output1 pulse high\n'); 
        end 
        fprintf(fid,'SA1M%4.0f,I1M%4.0f,\n',abs(VMX3(i,3)),VMX3(i,2)); 
        if abs(VMX3(i,2)) == max(VMX3(:,2)) 
            fprintf(fid,'U4,    ;Output1 pulse low\n'); 
        end 
    end 
end 
fprintf(fid,'\n'); 
fprintf(fid,'PM-0,  ;Select and clear program\n'); 
fprintf(fid,'JM1,   ;Jump to program and come back for more\n'); 
fprintf(fid,'L%3.0f,    ;%2.0f loops\n',L+1, L); % # of loop 
fprintf(fid,'U5,    ;Output1 pulse high\n'); 
fprintf(fid,'P5,    ;Pause 0.5 seconds to indicate the end of 

motion\n'); 
fprintf(fid,'U4,    ;Output1 pulse low\n'); 
fclose(fid);  

  
%% predict VMX motion from motion commands 
%(without considering resolution of "P" command, which is tenth seconds) 
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for i = 1:length(VMX3) 
    if VMX3(i,2)==0 
        dt(i) = abs(VMX3(i,1)); 
    else 
        dt(i) = abs(VMX3(i,2)/VMX3(i,3)); 
    end 
end 

  
% preallocate memory 
MotionInCommand.t = zeros(1,length(VMX3)+1); 
MotionInCommand.position = zeros(1,length(VMX3)+1); 
MotionInCommand.speed = zeros(1,length(VMX3)+1); 

  
% evaluate motion from VMX controller  
for i = 2:length(VMX3)+1 
    MotionInCommand.t(i) = MotionInCommand.t(i-1)+dt(i-1); % time 
    MotionInCommand.position(i) = MotionInCommand.position(i-1)+VMX3(i-

1,2); % position, [steps] 
    MotionInCommand.speed(i-1) = VMX3(i-1,3); % speed, [steps/s] 
end 

  
% display VMX motion prediction 
display('***--------------------------------------------***'); 
fprintf('Motion predicted from commands:\n') 
display(['time:    ' num2str(MotionInCommand.t,7)]); 
display(['position:' num2str(MotionInCommand.position,7)]); 
display(['speed:   ' num2str(MotionInCommand.speed,7)]); 

  
% write to file 
filename2 = strcat(tempname,'MotionInCommand.txt'); 
fid = fopen(filename2,'wt'); 
fprintf(fid,'This is the motion pridiction for stepping motor\n'); 
fprintf(fid,'Stepping motor %g [step/deg], k=%g, h=%g, 

a=%g\n',stepdeg,k,h,a); 
fprintf(fid,' t[s]   position[step] speed[step/s]\n');  
fprintf(fid,'%-8.5f %10.0f %10.0f 

\n',[MotionInCommand.t;MotionInCommand.position;MotionInCommand.speed]);  
fclose(fid);  

  
% get acceleration region from commands 
tempVMX = MotionInCommand.t(2:end) - MotionInCommand.t(1:end-1); 
tempVMXts = sort(tempVMX,'descend'); 
indextsInCommand = 

find(tempVMX==tempVMXts(1)|tempVMX==tempVMXts(2)|tempVMX==tempVMXts(3)|

tempVMX==tempVMXts(4)|tempVMX==tempVMXts(5)); 
tsInCommand.ts1 = MotionInCommand.t(indextsInCommand(1)+1); 
tsInCommand.ts2 = MotionInCommand.t(indextsInCommand(2)); 
tsInCommand.ts3 = MotionInCommand.t(indextsInCommand(2)+1); 
tsInCommand.ts4 = MotionInCommand.t(indextsInCommand(3)); 
tsInCommand.ts5 = MotionInCommand.t(indextsInCommand(3)+1); 
tsInCommand.ts6 = MotionInCommand.t(indextsInCommand(4)); 
tsInCommand.ts7 = MotionInCommand.t(indextsInCommand(4)+1); 
tsInCommand.ts8 = MotionInCommand.t(indextsInCommand(5)); 
display('***--------------------------------------------***'); 
display('smoothing points in commands:'); 
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display(num2str([tsInCommand.ts1,tsInCommand.ts2,tsInCommand.ts3,tsInCo

mmand.ts4,tsInCommand.ts5,tsInCommand.ts6,tsInCommand.ts7,tsInCommand.t

s8],7)); 

  
%% adjust hold-timing from smoothing points 
% (to be consistent with resolution of "P-x" command, which is tenth 

second) 
% preallocate memory 
MotionInDesignSmoothing.t = zeros(1,length(MotionInSmoothing.t)); 
MotionInDesignSmoothing.position = zeros(1,length(MotionInSmoothing.t)); 
MotionInDesignSmoothing.speed = zeros(1,length(MotionInSmoothing.t)); 

  
% assign motion from smoothing points 
MotionInDesignSmoothing.position = MotionInSmoothing.position; 
MotionInDesignSmoothing.speed = MotionInSmoothing.speed; 
MotionInDesignSmoothing.acceleration = MotionInSmoothing.acceleration; 

  
% using VMX controller timing resolution 
dtInDesignSmoothing = diff(MotionInSmoothing.t); 
dxInDesignSmoothing = diff(MotionInSmoothing.position); 
indexInDesignSmoothing = find(dxInDesignSmoothing==0); 
dtInDesignSmoothing(indexInDesignSmoothing) = 

round(dtInDesignSmoothing(indexInDesignSmoothing)/HoldResolution)*HoldR

esolution; % resolution of pause command is tenth second 

  
for i = 2:length(VMX0)+1 
    MotionInDesignSmoothing.t(i) = MotionInDesignSmoothing.t(i-

1)+dtInDesignSmoothing(i-1); 
end 

  
% display motion from smoothing function with calibration in pause 
display('***--------------------------------------------***'); 
fprintf('Motion from smoothing function:(calibrated with pause 

command)\n') 
display(['time:    ' num2str(MotionInDesignSmoothing.t,7)]); 
display(['position:' num2str(MotionInDesignSmoothing.position,7)]); 
display(['speed:   ' num2str(MotionInDesignSmoothing.speed,7)]); 

  
% save to file 
filename3 = strcat(tempname,'MotionInDesignSmoothing.txt'); 
fid = fopen(filename3,'wt'); 
fprintf(fid,'This is the motion pridiction for stepping motor\n'); 
fprintf(fid,'Stepping motor %g [step/deg], k=%g, h=%g, 

a=%g\n',stepdeg,k,h,a); 
fprintf(fid,' t[s]   position[step] speed[step/s]\n');  
fprintf(fid,'%-8.5f %10.0f %10.0f 

\n',[MotionInDesignSmoothing.t;MotionInDesignSmoothing.position;MotionI

nDesignSmoothing.speed]);  
fclose(fid); 

  
% get acceleration region from smoothing points 
%(using timing resolution during the pause from VMX controller) 
tempSmoothing = MotionInDesignSmoothing.t(2:end)-

MotionInDesignSmoothing.t(1:end-1); 
tempSmoothingts = sort(tempSmoothing,'descend'); 
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indextsInDesignSmoothing = 

find(tempSmoothing==tempSmoothingts(1)|tempSmoothing==tempSmoothingts(2

)|tempSmoothing==tempSmoothingts(3)|tempSmoothing==tempSmoothingts(4)|t

empSmoothing==tempSmoothingts(5)); 
tsInDesign.ts1 = 

MotionInDesignSmoothing.t(indextsInDesignSmoothing(1)+1); 
tsInDesign.ts2 = MotionInDesignSmoothing.t(indextsInDesignSmoothing(2)); 
tsInDesign.ts3 = 

MotionInDesignSmoothing.t(indextsInDesignSmoothing(2)+1); 
tsInDesign.ts4 = MotionInDesignSmoothing.t(indextsInDesignSmoothing(3)); 
tsInDesign.ts5 = 

MotionInDesignSmoothing.t(indextsInDesignSmoothing(3)+1); 
tsInDesign.ts6 = MotionInDesignSmoothing.t(indextsInDesignSmoothing(4)); 
tsInDesign.ts7 = 

MotionInDesignSmoothing.t(indextsInDesignSmoothing(4)+1); 
tsInDesign.ts8 = MotionInDesignSmoothing.t(indextsInDesignSmoothing(5)); 

  
display('smoothing points in design:(calibrated with pause command)'); 
display(num2str([tsInDesign.ts1,tsInDesign.ts2,tsInDesign.ts3,... 
    

tsInDesign.ts4,tsInDesign.ts5,tsInDesign.ts6,tsInDesign.ts7,tsInDesign.

ts8],7)); 

  
%% adjust hold-timing for function 
% (to be consistent with resolution of "P-x" command, which is tenth 

second) 
% preallocate memory 
MotionInDesignFunction.t = zeros(1,length(MotionInFunction.t)); 
MotionInDesignFunction.position = zeros(1,length(MotionInFunction.t)); 
MotionInDesignFunction.speed = zeros(1,length(MotionInFunction.t)); 
MotionInDesignFunction.acceleration = 

zeros(1,length(MotionInFunction.t)); 

  
% re-assign motion from function 
MotionInDesignFunction.position = MotionInFunction.position; 
MotionInDesignFunction.speed = MotionInFunction.speed; 
MotionInDesignFunction.acceleration = MotionInFunction.acceleration; 

  
% using VMX controller timing resolution 
indexInDesignFunctionInStart = round(tiInFunction.t1*Fs/4); 
indexInDesignFunctionInHold = 

round((tiInFunction.t2+tiInFunction.t3)*Fs/2); 
indexInDesignFunctionInRelaxation = 

round((tiInFunction.t4+tiInFunction.t5)*Fs/2); 

  
MotionInDesignFunctiontime1 = 

MotionInFunction.t(1:indexInDesignFunctionInStart); 
MotionInDesignFunctiontime2 = 

MotionInFunction.t(indexInDesignFunctionInStart+1:indexInDesignFunction

InHold)-dtInCommandtemp(1); 
MotionInDesignFunctiontime3 = 

MotionInFunction.t(indexInDesignFunctionInHold+1:indexInDesignFunctionI

nRelaxation)-dtInCommandtemp(1)-dtInCommandtemp(2); 
MotionInDesignFunctiontime4 = 

MotionInFunction.t(indexInDesignFunctionInRelaxation+1:end)-

dtInCommandtemp(1)-dtInCommandtemp(2)-dtInCommandtemp(3); 
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MotionInDesignFunction.t = 

[MotionInDesignFunctiontime1,MotionInDesignFunctiontime2,MotionInDesign

Functiontime3,MotionInDesignFunctiontime4]; 

  
tiInDesignFunction.t1 = tiInFunction.t1 - dtInCommandtemp(1); 
tiInDesignFunction.t2 = tiInFunction.t2 - dtInCommandtemp(1); 
tiInDesignFunction.t3 = tiInFunction.t3 - dtInCommandtemp(1)-

dtInCommandtemp(2); 
tiInDesignFunction.t4 = tiInFunction.t4 - dtInCommandtemp(1)-

dtInCommandtemp(2); 
tiInDesignFunction.t5 = tiInFunction.t5 - dtInCommandtemp(1)-

dtInCommandtemp(2)-dtInCommandtemp(3); 

  
%% plot VMX motion vs smoothing function 
%(may not correctly represent the timing by "P" command, which can be 
% adjusted manually) 
figure; 
ax1fig1 = subplot(2,1,1); 
sub1_pos1 = get(ax1fig1,'position'); % get subplot axis position 
set(ax1fig1,'position',sub1_pos1.*[1 1 1 1.3]) % stretch its width and 

height 
sub1h1 = 

line(MotionInDesignFunction.t,MotionInDesignFunction.position,'LineStyl

e','-',... 
    'color','k'); 
sub1h2 = 

line(MotionInCommand.t,MotionInCommand.position/stepdeg,'LineStyle','no

ne',... 
    'Marker','o','color','b'); 
% xlabel('t, s','FontName','Times New Roman','FontAngle','normal'); 
ylabel('angle of attack, deg','FontName','Times New 

Roman','FontAngle','normal'); 
sublegend1 = legend('smoothing function','VMX'); 
set(sublegend1,'FontName','Times New Roman','FontAngle','normal'); 
ax2fig1 = axes('Position',get(ax1fig1,'Position'),... 
           'XAxisLocation','top',... 
           'YAxisLocation','right',... 
           'Color','none',... 
           'XColor','k','YColor','k'); 
set(ax1fig1,'Xlim',[0 

tiInFunction.t5],'XTick',0:1:tiInFunction.t5,'XTickLabel',[]); 
set(ax2fig1,'Xlim',[0 

tiInFunction.t5],'XTick',tiInFunction.t1:tc:tiInFunction.t5,'XTickLabel

',0:1:tiInFunction.t5/tc); 
linkaxes([ax1fig1 ax2fig1],'xy'); 

  
ax1fig2 = subplot(2,1,2); 
sub2_pos1 = get(ax1fig2,'position'); % get subplot axis position 
set(ax1fig2,'position',sub2_pos1.*[1 1 1 1.3]) % stretch its width and 

height 
sub2h1 = 

line(MotionInDesignFunction.t,MotionInDesignFunction.speed,'LineStyle',

'-',... 
    'color','k'); hold on 
sub2h2 = stairs(MotionInCommand.t,MotionInCommand.speed/stepdeg,'b'); 
xlabel('t, s','FontName','Times New Roman','FontAngle','normal'); 
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ylabel('angular speed, deg/s','FontName','Times New 

Roman','FontAngle','normal'); 
% ylabel('$\prime \alpha \frac{deg}{s} 

$','Interpreter','Latex','FontSize',12); 
sublegend2 = legend('smoothing function','VMX'); 
set(sublegend2,'FontName','Times New Roman','FontAngle','normal'); 
ax2fig2 = axes('Position',get(ax1fig2,'Position'),... 
           'XAxisLocation','top',... 
           'YAxisLocation','right',... 
           'Color','none',... 
           'XColor','k','YColor','k'); 
set(ax1fig2,'Xlim',[0 

tiInFunction.t5],'XTick',0:1:tiInFunction.t5,'XTickLabel',0:1:tiInFunct

ion.t5); 
set(ax2fig2,'Xlim',[0 

tiInFunction.t5],'XTick',tiInFunction.t1:tc:tiInFunction.t5,'XTickLabel

',[]); 
linkaxes([ax1fig2 ax2fig2],'xy'); 
s = suptitle(['k=',num2str(k),' ,a=',num2str(a),' ,h=',num2str(h)]); 
set(s,'fontsize',12); 
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APPENDIX B  

MOTION COMMAND FOR KINEMATICS OF INTEREST  

B.1  PITCH RATE 155 /S (ROTARY TABLE B4818TS)  

E,;Enable On-Line mode with echo "on" 

PM-1,;Select and clear program 

A1M127,    ;Set base acceleration/speed 

U5,    ;Output1 pulse high 

P-2266,    ;Pause 0.2266 seconds 

U4,    ;Output1 pulse low 

U77,;Start continuous index with no output 

setP1M0, ;Disable pulse every steps on output2 

setPA1,  ;Disable pulse width 

SA1M  65,I1M   1, 

SA1M 131,I1M   2, 

SA1M 393,I1M   6, 

SA1M 982,I1M  15, 

SA1M1827,I1M  25, 

SA1M2439,I1M  25, 

SA1M2657,I1M  24, 

SA1M2946,I1M  25, 

SA1M2923,I1M  24, 

SA1M3098,I1M  25, 

SA1M3003,I1M  24, 

SA1M3144,I1M  25, 

SA1M3027,I1M  24, 

U5,    ;Output1 pulse high 

SA1M3099,I1M 410, 

U4,    ;Output1 pulse low 

SA1M3153,I1M  25, 

SA1M3018,I1M  24, 

SA1M3128,I1M  25, 

SA1M2974,I1M  24, 

SA1M3044,I1M  25, 

SA1M2828,I1M  24, 

SA1M2767,I1M  25, 

SA1M2341,I1M  24, 

SA1M1827,I1M  25, 

J2,    ;Jump to program 

PM-2,;Select and clear program 

SA1M 982,I1M  15, 

SA1M 393,I1M   6, 

SA1M 131,I1M   2, 

SA1M  65,I1M   1,  

U99,   ;End of continuous index with no deceleration 

U5,    ;Output1 pulse high 

P-1629,;Pause 0.1629 seconds 

P400,;Pause 40 seconds 

U4,    ;Output1 pulse low 

U77,;Start continuous index with no output 

setP1M0, ;Disable pulse every steps on output2 

setPA1,  ;Disable pulse width  

SA1M  65,I1M  -1, 

SA1M 131,I1M  -2, 

SA1M 393,I1M  -6, 

SA1M 982,I1M -15, 

SA1M1827,I1M -25, 

SA1M2341,I1M -24, 

SA1M2767,I1M -25, 

SA1M2828,I1M -24, 

SA1M3044,I1M -25, 

SA1M2974,I1M -24, 

SA1M3128,I1M -25, 

SA1M3018,I1M -24, 

SA1M3153,I1M -25, 

U5,    ;Output1 pulse high 

SA1M3099,I1M-410, 

U4,    ;Output1 pulse low 

SA1M3027,I1M -24, 

SA1M3144,I1M -25, 

SA1M3003,I1M -24, 

SA1M3098,I1M -25, 

SA1M2923,I1M -24, 

SA1M2946,I1M -25, 

J3,    ;Jump to program 

PM-3,;Select and clear program 

SA1M2657,I1M -24, 

SA1M2439,I1M -25, 

SA1M1827,I1M -25, 

SA1M 982,I1M -15, 

SA1M 393,I1M  -6, 

SA1M 131,I1M  -2, 

SA1M  65,I1M  -1, 

U99,   ;End of continuous index with no deceleration 

U5,    ;Output1 pulse high 

P-2266, ;Pause 0.2266 seconds 

U4,    ;Output1 pulse low 

P90,;Pause 9 seconds 

 

PM-0,  ;Select and clear program 

JM1,   ;Jump to program and come back for more 

L 21,    ;20 loops 

U5,    ;Output1 pulse high 

P5,    ;Pause 0.5 seconds to indicate the end of motion 

U4,    ;Output1 pulse low 
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B.2  PITCH RATE 76.4 /S (ROTARY TABLE B4836TS) 

E,;Enable On-Line mode with echo "on" 

PM-1,;Select and clear program 

A1M127,    ;Set base acceleration/speed 

U5,    ;Output1 pulse high 

P-2340,    ;Pause 0.2340 seconds 

U4,    ;Output1 pulse low 

U77,;Start continuous index with no output 

setP1M0, ;Disable pulse every steps on output2 

setPA1,  ;Disable pulse width 

SA1M  63,I1M   1, 

SA1M 127,I1M   2, 

SA1M 444,I1M   7, 

SA1M 950,I1M  15, 

SA1M1768,I1M  25, 

SA1M2359,I1M  25, 

SA1M2676,I1M  25, 

SA1M2849,I1M  25, 

SA1M2943,I1M  25, 

SA1M2995,I1M  25, 

SA1M3023,I1M  25, 

SA1M3039,I1M  25, 

SA1M3047,I1M  25, 

U5,    ;Output1 pulse high 

SA1M3057,I1M1300, 

U4,    ;Output1 pulse low 

SA1M3047,I1M  25, 

SA1M3039,I1M  25, 

SA1M3023,I1M  25, 

SA1M2995,I1M  25, 

SA1M2943,I1M  25, 

SA1M2849,I1M  25, 

SA1M2676,I1M  25, 

SA1M2359,I1M  25, 

SA1M1768,I1M  25, 

J2,    ;Jump to program 

PM-2,;Select and clear program 

SA1M 950,I1M  15, 

SA1M 444,I1M   7, 

SA1M 127,I1M   2, 

SA1M  63,I1M   1, 

U99,   ;End of continuous index with no deceleration 

U5,    ;Output1 pulse high 

P-1682,    ;Pause 0.1682 seconds 

P400,;Pause 40 seconds 

U4,    ;Output1 pulse low 

U77,;Start continuous index with no output 

setP1M0, ;Disable pulse every steps on output2 

setPA1,  ;Disable pulse width 

SA1M  63,I1M  -1, 

SA1M 127,I1M  -2, 

SA1M 444,I1M  -7, 

SA1M 950,I1M -15, 

SA1M1768,I1M -25, 

SA1M2359,I1M -25, 

SA1M2676,I1M -25, 

SA1M2849,I1M -25, 

SA1M2943,I1M -25, 

SA1M2995,I1M -25, 

SA1M3023,I1M -25, 

SA1M3039,I1M -25, 

SA1M3047,I1M -25, 

U5,    ;Output1 pulse high 

SA1M3057,I1M-1300, 

U4,    ;Output1 pulse low 

SA1M3047,I1M -25, 

SA1M3039,I1M -25, 

SA1M3023,I1M -25, 

SA1M2995,I1M -25, 

SA1M2943,I1M -25, 

SA1M2849,I1M -25, 

J3,    ;Jump to program 

PM-3,;Select and clear program 

SA1M2676,I1M -25, 

SA1M2359,I1M -25, 

SA1M1768,I1M -25, 

SA1M 950,I1M -15, 

SA1M 444,I1M  -7, 

SA1M 127,I1M  -2, 

SA1M  63,I1M  -1, 

U99,   ;End of continuous index with no deceleration 

U5,    ;Output1 pulse high 

P-2340,    ;Pause 0.2340 seconds 

U4,    ;Output1 pulse low 

P60,;Pause 6 seconds 

 

PM-0,  ;Select and clear program 

JM1,   ;Jump to program and come back for more 

L 21,    ;20 loops 

U5,    ;Output1 pulse high 

P5,    ;Pause 0.5 seconds to indicate the end of motion 

U4,    ;Output1 pulse low 
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B.3 PITCH RATE 37.5 /S (ROTARY TABLE B4836TS)  

E,;Enable On-Line mode with echo "on" 

PM-1,;Select and clear program 

A1M127,    ;Set base acceleration/speed 

U5,    ;Output1 pulse high 

P-4769,    ;Pause 0.4769 seconds 

U4,    ;Output1 pulse low 

U77,;Start continuous index with no output 

setP1M0, ;Disable pulse every steps on output2 

setPA1,  ;Disable pulse width 

SA1M  31,I1M   1, 

SA1M  62,I1M   2, 

SA1M 218,I1M   7, 

SA1M 466,I1M  15, 

SA1M 868,I1M  25, 

SA1M1157,I1M  25, 

SA1M1313,I1M  25, 

SA1M1398,I1M  25, 

SA1M1444,I1M  25, 

SA1M1469,I1M  25, 

SA1M1483,I1M  25, 

SA1M1491,I1M  25, 

SA1M1495,I1M  25, 

U5,    ;Output1 pulse high 

SA1M1500,I1M1300, 

U4,    ;Output1 pulse low 

SA1M1495,I1M  25, 

SA1M1491,I1M  25, 

SA1M1483,I1M  25, 

SA1M1469,I1M  25, 

SA1M1444,I1M  25, 

SA1M1398,I1M  25, 

SA1M1313,I1M  25, 

SA1M1157,I1M  25, 

SA1M 868,I1M  25, 

J2,    ;Jump to program 

PM-2,;Select and clear program 

SA1M 466,I1M  15, 

SA1M 218,I1M   7, 

SA1M  62,I1M   2, 

SA1M  31,I1M   1, 

U99,   ;End of continuous index with no deceleration 

U5,    ;Output1 pulse high 

P-3428,    ;Pause 0.3428 seconds 

P400,   ;Pause 40 seconds 

U4,    ;Output1 pulse low 

U77,;Start continuous index with no output 

setP1M0, ;Disable pulse every steps on output2 

setPA1,  ;Disable pulse width 

SA1M  31,I1M  -1, 

SA1M  62,I1M  -2, 

SA1M 218,I1M  -7, 

SA1M 466,I1M -15, 

SA1M 868,I1M -25, 

SA1M1157,I1M -25, 

SA1M1313,I1M -25, 

SA1M1398,I1M -25, 

SA1M1444,I1M -25, 

SA1M1469,I1M -25, 

SA1M1483,I1M -25, 

SA1M1491,I1M -25, 

SA1M1495,I1M -25, 

U5,    ;Output1 pulse high 

SA1M1500,I1M-1300, 

U4,    ;Output1 pulse low 

SA1M1495,I1M -25, 

SA1M1491,I1M -25, 

SA1M1483,I1M -25, 

SA1M1469,I1M -25, 

SA1M1444,I1M -25, 

SA1M1398,I1M -25, 

J3,    ;Jump to program 

PM-3,;Select and clear program 

SA1M1313,I1M -25, 

SA1M1157,I1M -25, 

SA1M 868,I1M -25, 

SA1M 466,I1M -15, 

SA1M 218,I1M  -7, 

SA1M  62,I1M  -2, 

SA1M  31,I1M  -1, 

U99,   ;End of continuous index with no deceleration 

U5,    ;Output1 pulse high 

P-4769,    ;Pause 0.4769 seconds 

U4,    ;Output1 pulse low 

P60,;Pause 6 seconds 

 

PM-0,  ;Select and clear program 

JM1,   ;Jump to program and come back for more 

L 21,    ;20 loops 

U5,    ;Output1 pulse high 

P5,    ;Pause 0.5 seconds to indicate the end of motion 

U4,    ;Output1 pulse low 
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B.4 PITCH RATE 25.7 /S (ROTARY TABLE B4836TS) 

E,;Enable On-Line mode with echo "on" 

PM-1,;Select and clear program 

A1M127,    ;Set base acceleration/speed 

U5,    ;Output1 pulse high 

P-3483,    ;Pause 0.3483 seconds 

U4,    ;Output1 pulse low 

U77,;Start continuous index with no output 

setP1M0, ;Disable pulse every steps on output2 

setPA1,  ;Disable pulse width 

SA1M  91,I1M   4, 

SA1M 364,I1M   8, 

SA1M 558,I1M  11, 

SA1M 812,I1M  12, 

SA1M 921,I1M  12, 

SA1M 981,I1M  12, 

SA1M 929,I1M  11, 

SA1M1031,I1M  12, 

SA1M1041,I1M  12, 

SA1M 959,I1M  11, 

SA1M1049,I1M  12, 

U5,    ;Output1 pulse high 

SA1M1026,I1M1566, 

U4,    ;Output1 pulse low 

SA1M1049,I1M  12, 

SA1M 959,I1M  11, 

SA1M1041,I1M  12, 

SA1M1031,I1M  12, 

SA1M1013,I1M  12, 

SA1M 899,I1M  11, 

SA1M 921,I1M  12, 

SA1M 812,I1M  12, 

SA1M 558,I1M  11, 

SA1M 364,I1M   8, 

SA1M  91,I1M   4, 

J2,    ;Jump to program 

PM-2,;Select and clear program 

U99,   ;End of continuous index with no deceleration 

U5,    ;Output1 pulse high 

P-2785,    ;Pause 0.2785 seconds 

P400,;Pause 40 seconds 

U4,    ;Output1 pulse low 

U77,;Start continuous index with no output 

setP1M0, ;Disable pulse every steps on output2 

setPA1,  ;Disable pulse width 

SA1M  91,I1M  -4, 

SA1M 364,I1M  -8, 

SA1M 558,I1M -11, 

SA1M 812,I1M -12, 

SA1M 921,I1M -12, 

SA1M 899,I1M -11, 

SA1M1013,I1M -12, 

SA1M1031,I1M -12, 

SA1M1041,I1M -12, 

SA1M 959,I1M -11, 

SA1M1049,I1M -12, 

U5,    ;Output1 pulse high 

SA1M1026,I1M-1566, 

U4,    ;Output1 pulse low 

SA1M1049,I1M -12, 

SA1M 959,I1M -11, 

SA1M1041,I1M -12, 

SA1M1031,I1M -12, 

SA1M 929,I1M -11, 

SA1M 981,I1M -12, 

SA1M 921,I1M -12, 

SA1M 812,I1M -12, 

SA1M 558,I1M -11, 

SA1M 364,I1M  -8, 

SA1M  91,I1M  -4, 

U99,   ;End of continuous index with no deceleration 

U5,    ;Output1 pulse high 

P-3483,    ;Pause 0.3483 seconds 

U4,    ;Output1 pulse low 

P90,;Pause 9 seconds 

 

PM-0,  ;Select and clear program 

JM1,   ;Jump to program and come back for more 

L 21,    ;20 loops 

U5,    ;Output1 pulse high 

P5,    ;Pause 0.5 seconds to indicate the end of motion 

U4,    ;Output1 pulse low 
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B.5 PITCH RATE 12.6 /S 

E,;Enable On-Line mode with echo "on" 

PM-1,;Select and clear program 

A1M127,    ;Set base acceleration/speed 

U5,    ;Output1 pulse high 

P-5091,    ;Pause 0.5091 seconds 

U4,    ;Output1 pulse low 

U77,;Start continuous index with no output 

setP1M0, ;Disable pulse every steps on output2 

setPA1,  ;Disable pulse width 

SA1M  31,I1M   1, 

SA1M  62,I1M   2, 

SA1M 155,I1M   5, 

SA1M 312,I1M   9, 

SA1M 370,I1M   8, 

SA1M 472,I1M   9, 

SA1M 446,I1M   8, 

SA1M 461,I1M   8, 

SA1M 528,I1M   9, 

SA1M 473,I1M   8, 

SA1M 535,I1M   9, 

SA1M 477,I1M   8, 

U5,    ;Output1 pulse high 

SA1M 503,I1M1632, 

U4,    ;Output1 pulse low 

SA1M 477,I1M   8, 

SA1M 535,I1M   9, 

SA1M 473,I1M   8, 

SA1M 528,I1M   9, 

SA1M 461,I1M   8, 

SA1M 446,I1M   8, 

SA1M 472,I1M   9, 

SA1M 370,I1M   8, 

SA1M 312,I1M   9, 

SA1M 155,I1M   5, 

J2,    ;Jump to program 

PM-2,;Select and clear program 

SA1M  62,I1M   2, 

SA1M  31,I1M   1, 

U99,   ;End of continuous index with no deceleration 

U5,    ;Output1 pulse high 

P-4072,    ;Pause 0.4072 seconds 

P400,   ;Pause 40 seconds 

U4,    ;Output1 pulse low 

U77,;Start continuous index with no output 

setP1M0, ;Disable pulse every steps on output2 

setPA1,  ;Disable pulse width 

SA1M  31,I1M  -1, 

SA1M  62,I1M  -2, 

SA1M 155,I1M  -5, 

SA1M 312,I1M  -9, 

SA1M 370,I1M  -8, 

SA1M 472,I1M  -9, 

SA1M 446,I1M  -8, 

SA1M 461,I1M  -8, 

SA1M 528,I1M  -9, 

SA1M 473,I1M  -8, 

SA1M 535,I1M  -9, 

SA1M 477,I1M  -8, 

U5,    ;Output1 pulse high 

SA1M 503,I1M-1632, 

U4,    ;Output1 pulse low 

SA1M 477,I1M  -8, 

SA1M 535,I1M  -9, 

SA1M 473,I1M  -8, 

SA1M 528,I1M  -9, 

SA1M 461,I1M  -8, 

SA1M 446,I1M  -8, 

SA1M 472,I1M  -9, 

SA1M 370,I1M  -8, 

SA1M 312,I1M  -9, 

J3,    ;Jump to program 

PM-3,;Select and clear program 

SA1M 155,I1M  -5, 

SA1M  62,I1M  -2, 

SA1M  31,I1M  -1, 

U99,   ;End of continuous index with no deceleration 

U5,    ;Output1 pulse high 

P-5091,    ;Pause 0.5091 seconds 

U4,    ;Output1 pulse low 

P60,;Pause 6 seconds 

 

PM-0,  ;Select and clear program 

JM1,   ;Jump to program and come back for more 

L 21,    ;20 loops 

U5,    ;Output1 pulse high 

P5,    ;Pause 0.5 seconds to indicate the end of motion 

U4,    ;Output1 pulse low 
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APPENDIX C  

VERIFICATION OF KINEMATICS OF INTEREST  

Two approaches can be used to verify wing kinematics indexed by stepper motor. 

The first approach involves checking wing position by inspecting scales on Rotary Table 

using the naked eye or reading the feedback from VMX controller through COSMOS 

software, which was implemented during the operation.  

The second approach, which is presented here, is to verify wing angular speed by 

inspecting the timing when the wing travels to specific wing position. Shown in the 

Tables B.1-B.5 are the representative timings at start and stop of the smoothing 

maneuver, and period for a complete pitch up-hold-return motion for all kinematics of 

interest.  

To determine whether Rotary Table or stepper motor correctly implements wing 

kinematics of interest, we look at pulses generated at selected phases/angles from VMX 

controller and compare the corresponding timing with VMX input commands as desired, 

which are shown in the second and third rows in the table. Firstly, looking at the first part 

of the smoothing maneuver (i.e., t1t and t4t), we found that the Rotary Table was 

operated as expected, the differences are within a few milliseconds. For the second part 

of the smoothing maneuver (i.e., t2t and t3t), the VMX pulses give shorter timing 

than the estimation from VMX input commands, and result in much shorter timing in the 

period (denoted by T). For pitch rate from high to low, the difference in period is 32.5 

ms, 34.2 ms, 65.2 ms, 23.0 ms, and 64.7 ms. This is because the inertia of the Rotary 

Table still drives the stepper motor after operating at constant pitch rate, and moves the 

stepper motor to next index, and eventually results in the Rotary Table completes the 

smoothing maneuver earlier than the estimation. Also noted is that this inertia effect is 

significantly impacted by the duration of the smoothing maneuver. For instance, pitch 
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rates .37.5 /s or 12.6 /s have a smoothing duration of 300.8 ms or 269.2 ms, 

respectively, and yields much shorter duration for the second part of smoothing 

maneuver. Other kinematics of interest such as 155/s, 76.4/s, and 25.7/s have shorter 

smoothing duration 142.8 ms, 147.6 ms, and 183.6 ms, respectively; their durations in the 

second smoothing maneuver are in the same order.  

In addition, the comparison of smoothing regions from the theoretical function 

and actual selections for VMX input commands is also provided by inspecting the first 

and second rows in tables. The VMX input commands have shorter duration of 

smoothing regions because of the resolution of Rotary Table. For Rotary Table B4836TS 

one step represents 0.025, any rounded step less than one is regarded as zero, which 

makes smoothing maneuver in practice different from theoretical function. For B4818TS 

one step is for 0.05.  

Table C.1 Timing comparison between smoothing function, VMX commands, and 

measurement during selected phases for pitch rate 155 /s and B = 11.  

time 

Sources 

Pitch-up phase Pitch return phase 
T 

t1-t t1+t t2-t t2+t t4-t t4+t t3-t t3+t 

Function 0.2113 0.3693 0.5016 0.6596 0.7919 0.9499 1.0822 1.2402 1.4515 

VMX Commands   0.2266 0.3694 0.5017 0.6445 0.8074 0.9502 1.0825 1.2253 1.4519 

VMX Pulses  0.2268 0.3694 0.5018 0.6288 0.7912 0.9338 1.0660 1.1932 1.4194 

Table C.2 Timing comparison between smoothing function, VMX commands, and 

measurement during selected phases for pitch rate 76.4 /s and B = 21.60.  

time 

Sources 

Pitch-up phase Pitch return phase 
T 

t1-t t1+t t2-t t2+t T4-t t4+t t3-t t3+t 

Function 0.2182 0.3815 0.8068 0.9701 1.1067 1.2700 1.6952 1.8586 2.0765 

VMX Commands   0.2340 0.3816 0.8068 0.9544 1.1226 1.2702 1.6954 1.8430 2.0770 

VMX Pulses  0.2342 0.3816 0.8064 0.9376 1.1054 1.2528 1.6778 1.8092 2.0428 

Table C.3 Timing comparison between smoothing function, VMX commands, and 

measurement during selected phases for pitch rate 37.5 /s and B = 21.60.  

time 

Sources 

Pitch-up phase Pitch return phase 
T 

t1-t t1+t t2-t t2+t T4-t t4+t t3-t t3+t 

Function 0.4448 0.7777 1.6443 1.9771 2.2556 2.5885 3.4551 3.7880 4.2328 

VMX Commands   0.4769 0.7777 1.6444 1.9452 2.2880 2.5888 3.4555 3.7563 4.2332 

VMX Pulses  0.4772 0.7774 1.6438 1.9130 2.2552 2.5556 3.4222 3.6914 4.1680 
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Table C.4 Timing comparison between smoothing function, VMX commands, and 

measurement during selected phases for pitch rate 25.7 /s and B = 46.15.  

time 

Sources 

Pitch-up phase Pitch return phase 
T 

t1-t t1+t t2-t t2+t T4-t t4+t t3-t t3+t 

Function 0.3043 0.5320 2.0578 2.2855 2.4760 2.7037 4.2295 4.4572 4.7615 

VMX Commands   0.3483 0.5319 2.0582 2.2418 2.5203 2.7039 4.2303 4.4139 4.7622 

VMX Pulses  0.3486 0.5312 2.0574 2.2308 2.5090 2.6916 4.2176 4.3912 4.7392 

Table C.5 Timing comparison between smoothing function, VMX commands, and 

measurement during selected phases for pitch rate 12.6 /s and B = 64.47.  

time 

Sources 

Pitch-up phase Pitch return phase 
T 

t1-t t1+t t2-t t2+t t4-t t4+t t3-t t3+t 

Function 0.4448 0.7782 4.0253 4.3587 4.6372 4.9705 8.2177 8.5510 8.9958 

VMX Commands   0.5091 0.7783 4.0228 4.2919 4.6991 4.9683 8.2128 8.4820 8.9911 

VMX Pulses  0.5094 0.7766 4.0214 4.2602 4.6670 4.9342 8.1788 8.4176 8.9264 
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APPENDIX D  

SPECTRUM ANALYSIS  

Power spectral density analysis is the analysis using Fourier Transform to look at 

information in the frequency domain. In our experiment, the output signals are discrete-

time signals, which are obtained by sampling the continue-time signals in voltages; 

therefore, the method Discrete Fourier Transform (DFT) is preferred. Due to different 

scenarios the DFT are further classified into two types, which are real DFT and complex 

DFT. In order to have highly efficient computing speed, we adapt the Fast Fourier 

Transform (FFT), a type of complex DFT.  

In principle, the transform from time-domain signals 
jx  to frequency-domain 

signals kX  is a forward process; this process is represented by Equation (D.1), also called 

the analysis equation. Equation (D.2) shows the transform from frequency domain to time 

domain, which is an inverse process, and the equation is called the synthesis equation. On 

the other hand, the time-domain signals are decomposed into cosine and sine waves, the 

cosine waves are the real parts of the frequency-domain signals, the sine waves are the 

imaginary parts of the frequency–domain signals. The amplitude or magnitude spectrum 

kX  and phase spectrum k  of the frequency-domain signals can then be evaluated in 

complex coordinates. The spectrum here is defined as the distribution of amounts of 

quantity over a range of frequency of influence. The signals are finite data set, not 

infinite; therefore, the method to estimate power spectral density is required.  
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where N is the length of FFT and recommended to be powers of 2 for efficient 

computation, k is an index of the spectrum and ranging from 1 to N.   

Equation (D.3) illustrates the frequency resolution, which has to be small enough 

to identify two close intrinsic frequencies (i.e., 1f  and 2f  ) in measurements.  

 
2 1/sdf f N f f   ,  (D.3) 

The power spectrum, shown in Equation (D.4), is the square of the amplitude, its 

unit is voltage squared. Since kX  is complex the power spectrum can be also evaluated 

by multiplying its conjugate. 

  
2

1 1 1 1k k k kP X X conj X       (D.4) 

Considering the magnitude spectrum and power spectrum in decibel (dB), they 

can be evaluated using Equation (D.5).  

    10 1 10 120log 10logk kdB X P    (D.5)  

D.1 PERIODOGRAM METHOD  

Periodogram is generally used for sequence data with high Signal-to-Noise Ratio 

(SNR) and long data length. It estimates the power spectral density (PSD) using Equation 

(D.6), and can be interpreted as how much power is present at unit frequency (Smith, 

1997) or the Fourier transform of the sample autocorrelation function. In the current 

study, it has the unit of voltage squared per hertz.  

   2 2 1 1 /

, 1

1

/
N

i k j N

k k xx j

j

PSD X N R e
  





  , 1,2,...,k N  (D.6) 

To compensate the spectral leakage due to discrete frequency, the Periodogram is 

modified as shown in Equation (D.7).  
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The U  is the window normalization constant to ensure the average power is 

independent of window chooses. The window nw  can be either rectangular or 

nonrectangular. For rectangular window, the amplitude of side-lobes is reduced due to the 

spurious frequencies introduced when the window abruptly truncates the signals at the 

edges; for the nonrectangular window, the spurious frequencies are less.  

A MATLAB code used to estimate PSD using Periodogram, which was 

implemented mostly to identify noise sources in the study.  

% PSD using Periodogram  

ChannelNumber = 1; % channel number from force transducer  

DataNew = Data(:,ChannelNumber)-mean(Data(:,ChannelNumber)); % sequence 

input in voltage  

Fs = ActualRate; % sampling rate  

nfft = length(DataNew); % number of total points in frequency domain, 

yielding frequency resolution  

[SGPSD,f] = periodogram(DataNew(:,1),[],'onesided',nfft,Fs); % estimate 

PSD of DataNew  

Figure; plot(f,SGPSD); axis tight;  

D.2 WELCH METHOD  

Welch’s method is used for data sets with lower SNR. The data set is divided into 

several segments, and then identically overlaps these segments to generate the 

overlapping segments. Applying the modified periodogram to each overlapping segment 

estimates the PSD. Averaging estimated PSD yields the final expression of the 

estimation, which results in lower variance of the estimation than Periodogram. Equation 

(D.8) shows the compact form of Welch’s method.  
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A MATLAB code used to estimate PSD using Welch’s method is given below.  

% PSD using Welch’s method  

ChannelNumber = 1; % channel number from force transducer  

DataNew = Data(:,ChannelNumber)-mean(Data(:,ChannelNumber)); % sequence 

input in voltage  

window = ???; % window size  

noverlap = 0.5; % percentage of samples common to two adjacent segments  

nfft = length(DataNew); % number of total points in frequency domain, 

yielding frequency resolution  

Fs = ActualRate; % sampling rate  

[SGPSD,f] = pwelch(DataNew(:,1),window,noverlap,nfft,Fs,'onesided'); % 

estimate PSD of DataNew  

Figure; plot(f,SGPSD); axis tight;  
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APPENDIX E  

DETERMINATION OF FILTER CUTOFF FREQUENCY AND ITS EFFECTS  

Since wing motion acceleration gives considerable frequency regions, comparable 

with motion position and velocity, we are interested in its response in frequency domain 

and inspect the spectrum by power spectrum density (PSD). Estimation of PSD is 

accomplished using periodogram. The objective is to determine proper cutoff frequency 

to process data from direct force measurement using digital filter.  

E.1 CUTOFF FREQUENCY   
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Figure E.1 An example of spectrum and energy content of acceleration kinematics for 

pitch rate 76.4 deg/s.  
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Input signal for periodogrm is motion acceleration in time; the signal structure is 

similar to experimental work. Pre-triggered and indication pulse duration were set to 5 

seconds and 0.5 seconds, respectively. And holding and relaxation durations were at least 

130 and 30 convective times, respectively, to ensure the flow approaching the steady 

state and to return the flow to undisturbed initial condition. In these durations, samples 

were padded with zero-acceleration using sampling rate of 5000Hz. Final input signal 

contains 20 repeated motion acceleration to enhance signal strength in frequency domain.  

An example of spectrum distribution with respect to pitch frequency is shown in 

Figure E.1; it is estimated using kinematics with pitch rate of 76.4 /s. In the figure, we 

find frequency envelopes are enclosed within pitch frequency and their magnitudes decay 

with increasing pitch frequency. Several spikes are observed within each frequency 

envelope due to discrete samples, which indicates rational frequency resolution in use. 

This phenomenon is called leakage and is one of of the periodogram features.  

Moreover, integrating PSD from zero to a specific frequency determines the 

amount of energy/information within the frequency, as shown as a green curve in the 

figure. This observation suggests selection of cutoff frequency for direct force 

measurement is the capability of retaining energy/information of kinematics. Data cursor 

shown in the figure reveals 99-percent energy/information of kinematics is contained 

within frequency of 14.4Hz. A simple MATLAB script shown below is used to 

interpolate frequency at energy content of interest.  

Percentage = 0.99; % specify percentage of energy contents  
x = CPSD/max(CPSD); % normalize PSD  
[temp1,i,j] = unique(x); % make sure x being distinct  
interp1(temp1,f(i),Percentage,'cubic') % interpolate corresponding 

frequency  

E.2 EFFECTS OF FILTERING 

We would like to maintain all information from wing kinematics after filtering 

force data; however, there may be many noises interfering with force sensor, which 

makes the task difficult. The compensation is to retain as much energy and information as 

possible; hence, effects of filtering and cutoff frequency become important. For all cases 

considered in the study, we employed low-pass zero-phase first-order Butterworth filter, 

the detailed discussion in selection of this filter is provided in Section 2.5.2.  
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Figure E.2 shows the effects of filtering to maintain 90% information of 

kinematics from pitch rate of 76.4 /s. The profile of motion acceleration is provided due 

to association with non-circulatory apparent mass effects. It is observed that motion 

acceleration becomes shorter and wider. Similar change is expected on effects relative to 

motion acceleration in the measurement. The attenuation of motion acceleration is 

evaluated using Equation (E.1).  

  2 120log10 /dB A A
 

(E.1) 

where A1 is peak amplitude before filtering and A2 is peak amplitude after filtering.  

Change of acceleration width is evaluated using Equation (E.2) according to times 

on the marginal distribution where 1% of maximum acceleration is exists.  

 1% 1%/i i i iafter before
W t t t t     (E.2) 

For all kinematics of interest, using cutoff frequency to retain 90% energy of 

kinematics gives 53% of attenuation of acceleration and 1.6 times of acceleration width. 

Effects of filtering for kinematics of interest were tabulated in Table E.1-Table E.5.  
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Figure E.2 Behavior of acceleration kinematics before and after low-pass zero-phase 

first-order two-path Butterworth filter.  
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Table E.1 Effects of filtering for pitch rate 155°/s and  = 27.2%. According to 

additional holding and relaxation durations being 40 and 9 seconds, respectively; 

frequency resolution is 0.9857 mHz.  

Variance 

 αm, ⁰/s 
99% 95% 90% 85% 80% 75% 70% 65% 60% 55% 50% 

155 

f ,Hz 
15.242 11.277 8.7602 8.0665 6.1245 5.6283 5.3112 5.0144 4.7170 4.3995 2.9921 

Path Effects 

1 
dB -1.6388 -2.4399 -3.2945 -3.6108 -4.7985 -5.2028 -5.491 -5.785 -6.107 -6.486 -8.812 

W 1.125 1.232 1.373 1.431 1.672 1.762 1.829 1.898 1.976 2.070 2.697 

2 
dB -2.8633 -4.1146 -5.3892 -5.8481 -7.5221 -8.0774 -8.4698 -8.868 -9.302 -9.809 -12.939 

W 1.233 1.407 1.621 1.705 2.046 2.169 2.260 2.354 2.459 2.586 3.419 

3 
dB -3.831 -5.3610 -6.8679 -7.4003 -9.3085 -9.9341 -10.375 -10.824 -11.312 -11.887 -15.511 

W 1.329 1.555 1.820 1.923 2.334 2.482 2.589 2.701 2.826 2.976 3.944 

4 
dB -4.6276 -6.3441 -7.9943 -8.57 -10.617 -11.288 -11.763 -12.248 -12.780 -13.409 -17.441 

W 1.417 1.684 1.991 2.110 2.577 2.744 2.866 2.992 3.133 3.301 4.297 

Table E.2 Effects of filtering for pitch rate 76.4°/s and  = 13.9%. According to 

additional holding and relaxation durations being 40 and 6 seconds, respectively; 

frequency resolution is 1.034 mHz.  

Variance 

 αm, ⁰/s 
99% 95% 90% 85% 80% 75% 70% 65% 60% 55% 50% 

76.4 

f ,Hz 
14.435 10.669 8.7145 7.5283 6.2394 5.8861 5.4491 4.4920 4.2221 3.9723 3.0633 

Path Effects 

1 
dB -1.690 -2.511 -3.195 -3.758 -4.564 -4.833 -5.202 -6.193 -6.529 -6.869 -8.408 

W 1.131 1.243 1.355 1.458 1.621 1.679 1.762 1.997 2.081 2.168 2.571 

2 
dB -2.945 -4.223 -5.243 -6.059 -7.195 -7.567 -8.073 -9.397 -9.839 -10.281 -12.235 

W 1.243 1.424 1.594 1.745 1.975 2.055 2.168 2.482 2.590 2.696 3.073 

3 
dB -3.933  -5.491 -6.697 -7.643 -8.935 -9.352 -9.915 -11.372 -11.852 -12.330 -14.420 

W 1.342 1.576 1.787 1.971 2.249 2.345 2.478 2.824 2.927 3.018 3.259 

4 
dB -4.744  -6.488 -7.809 -8.829 -10.206 -10.647 -11.24 -12.761 -13.259 -13.753 -15.910 

W 1.433 1.709 1.954 2.165 2.479 2.585 2.729 3.053 3.131 3.192 3.332 

Table E.3 Effects of filtering for pitch rate 37.5°/s and  = 13.9%. According to 

additional holding and relaxation durations being 40 and 6 seconds, respectively, 

frequency resolution is 0.9899 mHz.  

Variance 

 αm, ⁰/s 
99% 95% 90% 85% 80% 75% 70% 65% 60% 55% 50% 

37.5 

f  
7.0864 5.2551 4.2994 3.7020 3.0458 2.8867 2.6672 2.1893 2.0699 1.9506 1.4925 

Path Effects 

1 
dB -1.689 -2.499 -3.1745 -3.749 -4.587 -4.835 -5.214 -6.229 -6.534 -6.865 -8.452 

W 1.131 1.241 1.351 1.456 1.626 1.680 1.764 2.006 2.082 2.167 2.582 

2 
dB -2.943 -4.205 -5.214 -6.046 -7.228 -7.571 -8.089 -9.445 -9.845 -10.275 -12.290 

W 1.243 1.421 1.589 1.742 1.982 2.056 2.172 2.494 2.591 2.694 3.080 

3 
dB -3.931 -5.470 -6.663 -7.628 -8.971 -9.356 -9.933 -11.424 -11.859 -12.324 -14.479 

W 1.342 1.572 1.781 1.968 2.257 2.345 2.482 2.836 2.929 3.017 3.263 

4 
dB -4.741 -6.464 -7.772 -8.813 -10.245 -10.651 -11.259 -12.815 -13.266 -13.747 -15.970 

W 1.432 1.704 1.947 2.161 2.488 2.586 2.733 3.062 3.132 3.192 3.333 
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Table E.4 Effects of filtering for pitch rate 25.7°/s and  = 6.49%. According to 

additional holding and relaxation durations being 40 and 9 seconds, respectively, 

frequency resolution is 0.9253 mHz.  

Variance 

 αm, ⁰/s 
99% 95% 90% 85% 80% 75% 70% 65% 60% 55% 50% 

25.7 

f  
10.453 7.5518 6.0639 5.3560 4.7605 4.2032 3.7204 3.2367 3.0686 2.6226 2.4556 

Path Effects 

1 
dB -1.668 -2.553 -3.307 -3.791 -4.288 -4.854 -5.446 -6.168 -6.457 -7.344 -7.732 

W 1.128 1.249 1.375 1.464 1.564 1.684 1.818 1.991 2.063 2.296 2.403 

2 
dB -2.910 -4.286 -5.407 -6.106 -6.811 -7.596 -8.403 -9.365 -9.744 -10.891 -11.385 

W 1.238 1.434 1.623 1.754 1.894 2.062 2.245 2.480 2.577 2.888 3.031 

3 
dB -3.889 -5.566 -6.888 -7.697 -8.500 -9.384 -10.281 -11.336 -11.749 -12.986 -13.513 

W 1.336 1.588 1.823 1.982 2.152 2.353 2.572 2.851 2.966 3.334 3.502 

4 
dB -4.693 -6.571 -8.016 -8.887 -9.745 -10.681 -11.623 -12.724 -13.151 -14.428 -14.97 

W 1.426 1.723 1.995 2.178 2.371 2.599 2.846 3.161 3.290 3.705 3.893 

Table E.5 Effects of filtering for pitch rate 12.56°/s and  = 4.64%. According to 

additional holding and relaxation durations being 40 and 6 seconds, respectively, 

frequency resolution is 0.9046 mHz.  

Variance 

 αm, ⁰/s 
99% 95% 90% 85% 80% 75% 70% 65% 60% 55% 50% 

12.5

6 

f  
7.0910 5.1446 4.1461 3.5649 3.1998 2.8909 2.5995 2.3451 2.0725 1.8179 1.5998 

Path Effects 

1 
dB -1.687 -2.566 -3.309 -3.903 -4.366 -4.828 -5.341 -5.865 -6.527 -7.268 -8.026 

W 1.130 1.251 1.375 1.486 1.580 1.678 1.793 1.917 2.081 2.276 2.486 

2 
dB -2.941 -4.306 -5.410 -6.267 -6.920 -7.561 -8.260 -8.963 -9.836 -10.794 -11.755 

W 1.242 1.437 1.624 1.785 1.917 2.054 2.212 2.380 2.601 2.861 3.141 

3 
dB -3.928 -5.590 -6.892 -7.881 -8.623 -9.345 -10.123 -10.897 -11.849 -12.881 -13.907 

W 1.342 1.592 1.824 2.020 2.179 2.344 2.532 2.732 2.994 3.301 3.632 

4 
dB -4.737 -6.597 -8.020 -9.084 -9.876 -10.640 -11.458 -12.267 -13.255 -14.32 -15.374 

W 1.432 1.728 1.996 2.221 2.402 2.589 2.802 3.027 3.322 3.668 4.039 
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APPENDIX F  

UNCERTAINTY ANALYSIS FOR DIRECT FORCE MEASUREMENT  

F.1 UNCERTAINTY FOR LIFT/DRAG  

The parameters commonly used for aerodynamics are lift force and drag force; 

both are evaluated by three independent variables from our direct force measurement: 

axial force (FA), normal force (FN), and angle of attack (), and given in Equations (F.1) 

and (F.2), respectively.  

 sin cosA NL F F     (F.1) 

 cos sinA ND F F    (F.2) 

Defining the uncertainty for each independent variable as their corresponding 

standard deviation in the measurement and denoted by 
AFw , 

NFw , and w , the uncertainty 

for lift and drag can be formulated using Equations (F.3) and (F.4), respectively.  
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 (F.4) 

where the derivatives of lift and drag with respect to each independent variable are called 

sensitivity coefficients, they are derived and given as follows.  
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 cos
A

D
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Substituting sensitivity coefficients into Equations (F.3) and (F.4), we could find 

the uncertainties for lift and drag forces, as shown in Equations (F.5) and (F.6), 

respectively. They have the same unit as their representatives.  

       
1/ 2

22 2

sin cos cos sin
A NL F F A Nw w w w F F            (F.5) 

       
1/ 2

22 2

cos sin sin cos
A ND F F A Nw w w w F F           (F.6) 

In present study, we say the angle of attack  is well positioned by Rotary Table; 

the last terms in Equations (F.5) and (F.6) are dropped off and the equations are reduced 

to Equations (F.7) and (F.8).  

     
1/ 2

22

sin cos
A NL F Fw w w     (F.7) 

     
1/ 2

22

cos sin
A ND F Fw w w    (F.8) 

F.2 UNCERTAINTY FOR LIFT/DRAG COEFFICIENT  

Lift and drag coefficients are popularly employed to compare data between 

experimental and computational approaches in different test flow condition. Non-

dimensionalizing lift and drag forces with dynamic pressure (ρU∞
2/2) and wing area 

(S=bc), the lift and drag coefficients are obtained and given in Equations (F.9) and (F.10), 

respectively.  

  22 / , , ,L LC L U S C L c b U     (F.9) 

  22 / , , ,D DC D U S C D c b U     (F.10) 

Using the same procedure demonstrated in the preceding section, the uncertainties 

for lift and drag coefficients are obtained and expended in Equations (F.11) and (F.12), 

respectively.  
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 (F.12) 

where the uncertainty for wing geometry is wb=wc=0.5mm from the ruler resolution, and 

the uncertainty for free-stream velocity (wU∞) is measured using 2D PIV configuration.  
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APPENDIX G  

WING DESIGN AND INERTIA  

In design phase, wing planform geometry was generated using SolidWorks. Three 

wing planforms with the same geometry aspect ratio 2 were considered, including those 

with rectangular, trapezoidal, and triangular wings. All wings have mean chord length of 

2”, full span length of 5.25”, and rounded edges. During the test, 4” span was immersed 

in the water, and water surface regards as symmetrical plane, resulting in effective aspect 

ratio of 4. Pivot axis locations were arranged by hole-patterns at three locations, 

including leading edge, mid-chord, and trailing edge, and being coincident with sensor 

axis.  

The moment of inertia contributed to the sensor, including wing itself and a 

sensor adapter, is found using Equation (G.1), which can be evaluated directly by 

SolidWorks in the directory Tools\Mass Properties. It is noted that the estimation gives 

ideal values assuming the test condition in vacuum. If surrounding fluid is water, the 

estimation may not be in a good agreement. In addition, the wing was made of acrylic 

and the sensor adaptor was made of aluminum, their corresponding material properties 

are given in Table G.1 for estimation moment of inertia.  

 
xx xy xz

yx yy yz

zx zy zz

I I I

I I I I

I I I

 
 

  
 
 

 (G.1) 

Table G.1 Material property of wing and sensor adaptor.  

Properties 

Material 

Density, 

kg/m^3 

Poisson 

ratio 

Young’s Modulus, 

GPa 

Shear Modulus, 

GPa 

Aluminum 2700 0.35 70 26 

Acrylic 1200 0.35 3 0.89 
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where 

  2 2

xxI y z dm    

  2 2

yyI x z dm    

  2 2

zzI x y dm    

  xy yxI I xy dm     

  xz zxI I xz dm     

  yz zyI I yz dm     

To ensure safety of force sensor in use, we estimate torques contributing to force 

sensor using Equation (G.2).  
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 (G.2) 

where [I] is momentum of inertia from Equation (G.1), and m is the maximum 

acceleration from wing kinematics in radian from our cases considered, which is 51.26 

rad/s2 for kinematics with pitch rate 155/s.  

 

 

 

 



 

 235 

 

Estimated momentum of inertia, kgm2  

1.704 4 0 4.647 5

0 1.925 4 8.774 8

4.647 5 8.774 8 2.593 5

e e

I e e

e e e

   
 

  
 
     

 

Estimated maximum torque, Nmm 

 

0 2.382

0 0.0045

51.26 1.329

I

   
   

    
   
   

 

Center of mass, mm  

12.8x   , 0.1474y  , 46.03z   

0.0

0.5

1.0
10-4

F
x

F
y

F
z

0  20 40 60 80 100
0.0

0.5

1.0
100

T
x

0  20 40 60 80 100

T
y

0  20 40 60 80 100

T
z

 

Figure G.1 Rectangular wing at leading/trailing edge pivot and spectrum distribution 

from the sensor Nano43 (SN: FT12311) subject to kinematics with pitch rate 155/s.  
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Figure G.2 Rectangular wing at mid-chord edge pivot and spectrum distribution from 

the sensor Nano43 (SN: FT12311) subject to kinematics with pitch rate 155/s.  
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Figure G.3 Trapezoidal wing at leading/trailing edge pivot and spectrum distribution 

from the sensor Nano43 (SN: FT12311) subject to kinematics with pitch rate 155/s.  
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Figure G.4 Trapezoidal wing at mid-chord pivot and spectrum distribution from the 

sensor Nano43 (SN: FT12311) subject to kinematics with pitch rate 155/s.  
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Figure G.5 Triangular wing at leading/trailing edge pivot and spectrum distribution 

from the sensor Nano43 (SN: FT12311) subject to kinematics with pitch rate 155/s.  
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 Figure G.6 Triangular wing at mid-chord pivot and spectrum distribution from the 

sensor Nano43 (SN: FT12311) subject to kinematics with pitch rate 155/s.  
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APPENDIX H  

LENS-SHIFTED STEREOSCOPIC PIV CALIBRATION  

Stereo PIV provides the capability to resolve the instantaneous out-of-plane 

velocity in addition to the in-plane component. In a common configuration, the image, 

lens, and object planes are not parallel, resulting in different magnification over the field 

of view of the image which causes perspective distortion of the image. This configuration 

is called Scheimpflug condition or angular displacement system. In this report, we 

examine a different setup, a lens translation (shift) system, providing the same 

magnification over the field of view of the image. The image, lens, and object planes are 

parallel, two cameras are placed parallel to each other and a distance apart, the lens of the 

cameras are shifted transversely to image the same region on the object plane. 

To measure the out of plane velocity, several tests have to be conducted to ensure 

that the following requirements are satisfied: 

1.Could we capture the field of view of the interest? 

2.The magnification factor has to be in the range 10 to 15 px/mm 

3.For magnification in the range of interest, how far away from the object must 

the cameras be located? Does the flow facility have enough space for the lens-

shift stereo PIV setup?  

4.Are images recorded by the two cameras of the same flow region different from 

each other? 

H.1 APPARATUS 

Two cameras are employed; both are pco.4000 CCD camera with a resolution up 

to 4008 x 2672 pixels; the pixel spacing is 9 m. Both cameras are equipped with 
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standard Nikon F-mount adaptors. A perspective control lens, PC-E Micro NIKKOR, is 

used in each camera. They have a focal length of 85mm and could provide shift and tilt 

movements of 11.5mm and 8.5⁰, respectively. In the tests, the two cameras are 

placed side by side in front of a blackboard, a ruler (60 cm long) or calibration grid is 

attached on the blackboard. As shown in Figure H.1, the camera on right is denoted by 

PIV1, the camera on the left is denoted by PIV2. 

 

Figure H.1 Configuration of translation stereo PIV pre-test 

H.2 MAGNIFICATION AND FIELD OF VIEW OF THE CAMERAS 

In the experiment, a wing with 2” chord will be used. We would like to have a 

field of view in the stream-wise direction 6 times the wing chord, which is approximately 

300mm. To satisfy this requirement, both cameras are placed in front of the blackboard at 

a distance of 0.75m. The images and field of view of both cameras are shown in 

Figure H.2 and Figure H.3 for PIV1 and PIV2, respectively. In this part of test, the lens is 

not shifted and the axis of each camera is also the center of image.  

The images are analyzed using MATLAB. Several measurement tips are placed 

on the ruler which is calibrated in SI units to determine the magnification factor. Reading 
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the x location in pixels of neighboring measurement tips, which are 1cm apart in the 

object plane, the magnification factor is calculated. Three locations are of interest, at the 

left, center, and right sides of the field of view. Following this procedure, the 

magnification of camera PIV1, shown inFigure H.2, is 13.3pixel/mm, 13.3pixel/mm, and 

13.2pixel/mm, respectively. For camera PIV2 (shown inFigure H.3), the magnification is 

13.2pixel/mm, 13.2pixel/mm, and 13.4pixel/mm. The magnification factors in both 

cameras are likely homogenous within the entire field of view, which indicates that the 

camera sensor, lens and objected planes are normal to each other within measurement 

uncertainty and the magnification is within specifications.  

 

Figure H.2 Field of view from PIV1.  
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Figure H.3 Field of view from PIV2.  

H.3  FIELD OF VIEW OF CAMERAS AFTER LENS SHIFT 

Next, we measure the magnification of the cameras when the lens on camera 

PIV1 is shifted 11.5mm towards camera PIV2, and the lens on camera PIV2 is shifted 

11.5mm towards camera PIV1.  

Figure H.4 and Figure H.5 show the images after the shifting for PIV1 and PIV2, 

respectively. For PIV1, the field of view moves to the left side of the ruler, it is shifted 

from a range of 30 cm-60 cm to 19 cm-49 cm, which is about 11cm total displacement. 

For PIV2, the field of view changes from a range of 6cm-36 cm to 17 cm-47 cm, which is 

about 11cm total displacement to the right. The magnification is determined by the 

measurement tips pairs 1cm apart at the left, center, and right sides of the field of view. 

Magnification for camera PIV1 is 13.3 pixel/mm, 13.3 pixel/mm, and 13.3 pixel/mm, 

respectively. For camera PIV2, the magnification is read as 13.3 pixel/mm, 13.3 

pixel/mm, and 13.3 pixel/mm, respectively. The magnifications in the field of view are 

the same within measurement uncertainty compared to the results before the lenses were 

shifted, and uniform throughout the field of view.  
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Figure H.4 Field of view from PIV1 after lens shifted 11.5mm.  

 

Figure H.5 Field of view of PIV2 after lens shifted 11.5mm.  
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H.4 ALIGNMENT OF CAMERAS PIV1 AND PIV2  

In the previous test, it was observed that the field of view of the two cameras is 

not the same. To ensure that the two cameras image the same field of view, a calibration 

plate was used. It consists of a rectangular grid with grid size uniformly spaced 1 cm 

apart as shown in Figure H.6 and Figure H.7. The center of the calibration plate is located 

at the center of the grey area, which has to be positioned at the center of the field of view 

of both cameras.  

Figure H.6 and Figure H.7show typical results after centering the field of view of 

cameras PIV1 and PIV2, respectively. The error is about 2-4 pixels, which is 

approximately 0.15-0.3 mm. It should be noted the slightly lower image intensity on the 

left of the camera PIV1 image and on the right of camera PIV2 image. These are believed 

to be effect of the steep light incidence angle on those parts of the images.  

 

Figure H.6 Field of view of PIV1 with translation of 11.5mm and calibration board.   
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Figure H.7 Field of view of PIV2 with translation of 11.5mm and calibration board.  

H.5 DETERMINATION OF THE OBJECT PLANE (P) AND PLANE (Q) 

DISTANCES 

In addition, the distance between the object plane and the lens (denoted by p) and 

the distance between the image plane and the lens (denoted by q) are important to 

characterize the experimental setup. The last part of this report describes the 

measurement of these distances.  

The distances of interest could be found by the definition of magnification factor 

and the thin lens equation, as given in Eq. (H.1) and Eq. (H.2) respectively.  

 / 0m q p    (H.1) 

 1/ 1/ 1/f q p   (H.2) 

There are four variables and two equations. However, in the current setup, the 

focal length (f) and the magnification factor (m) are known, and are equal to 85mm and 

13.3 pixel/mm (or m = -0.1197), respectively. The distance from the object plane (p) and 

the distance from the image plane (q) could be obtained using Eq. (H.3) and Eq. (H.4).  

  1 1/p f m   (H.3) 
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  1q f m   (H.4) 

Therefore, the distance from the object plane (p) is 795.1mm and the distance 

from the image plane (q) is 95.2mm.  
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