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CHAPTER I

Introduction

In this thesis, we explore the question of how the burden of coronary artery disease

can be significantly reduced through advances in computation. The general problem

statement for our work is to develop novel approaches that can be applied to large

physiological datasets to identify new markers of cardiovascular disease and to improve

models to predict adverse clinical outcomes. This research proposes techniques related

to machine learning, signal processing, and algorithm design; and develops these ideas

within the context of cardiovascular physiology and the clinical use-case for important

medical challenges.

1.1 Motivation

Cardiovascular disease is the leading cause of death in the United States, claiming

over 830,000 lives each year (34% of all deaths, or roughly one death every 38 seconds)

[63]. More than 151,000 of these deaths take place in patients under the age of 65, and

a third occur before the age of 75. Moreover, with the aging of the U.S. population

and the demographic changes projected for the year 2020 and beyond, it is expected

that cardiovascular disease will continue to be a major healthcare challenge in the

years to come. The situation is similar in other parts of the world. Estimates show

that the number of cardiovascular deaths (CVDs) will increase both in developed
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countries (6 million vs. 5 million) and developing countries (19 million vs. 9 million)

between the years 2000 and 2020 [85]. These statistics are particularly grim for the

developing world, where more than 40% of all the deaths by the end of this decade

are expected to be due to cardiovascular disease [85].

One of the difficulties of dealing with cardiovascular disease, and coronary heart

disease in particular, is that despite the availability of different treatment options the

disease burden remains unacceptably high because of an inability to match patients

to treatments that are most appropriate for them individually. One of the best

examples of this situation is provided by implantable cardiac defibrillators (ICDs),

which can be life-saving for patients who experience fatal arrhythmias (over 300,000

sudden cardiac deaths in the U.S. each year among patients with diagnosed coronary

disease) [75, 17]. In most of these cases, the effects of the arrhythmia can be reversed

if the victim is treated with an electrical shock within the first few minutes. However,

existing decision-making methods fail to prescribe ICDs to the majority of patients

who die [17]. Conversely, 90% of the patients who do currently receive an ICD do not

receive any benefit from their device [17], resulting in an unnecessary risk to patients

and unnecessary costs to the healthcare system.

1.2 Overview

With advances in recording and storage technologies, and with the increasing use of

electronic health record (EHR) systems in hospitals and clinics, it is now possible to

collect larger volumes of data than was previously thought possible. This increase

has taken place both in terms of the amount of data that is recorded per patient,

and in terms of the number of patients monitored. These data offer an enormous

opportunity to advance cardiac care through new data-derived knowledge. Given the

limitations of existing approaches grounded in a priori assumptions about cardiac

disease, this knowledge is essential to supplementing current decision-making tools
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for patient care.

Our work explores the opportunity of improving cardiovascular decision-making

in this context. Of particular interest in our work to develop and validate data-driven

advances for cardiovascular care is the electrocardiogram (ECG). Despite the ECG

being a signal that has been extensively studied for over a hundred years, it offers

a prototypical example of how computation can allow for routinely collected clinical

data to be used more meaningfully. Specifically, the ECG contains a wealth of infor-

mation related to both the electrical activity of the heart, and the regulation of cardiac

function by the autonomic nervous system. The extensive information provided by

the ECG signal, as well as the simple, non-invasive and relatively inexpensive nature

of ECG acquisition, have made ECG-based metrics attractive for cardiovascular risk

stratification. There is also an opportunity to leverage the ECG for fundamental ad-

vances in medical knowledge and cardiovascular care because most existing research

related to ECG-based risk stratification has focused on studying short (e.g., 30 sec-

ond) snapshots of ECG. With improvements in our ability to collect ECG data over

long periods and in a digital format conducive to computational analysis, our work

explores the discovery of computational biomarkers from long-term ECG and their

incorporation in broad clinical practice.

In addition to focusing on the ECG, we also address the question of how infor-

mation in the new biomarkers discovered through our research can be integrated

alongside existing clinical parameters to holistically stratify patients. In doing so, we

address the question of how the information spanning a broad range of demographic,

comorbidity, history, physical exam, medication, and procedural data can be lever-

aged to more comprehensively evaluate patients. In contrast to our efforts related

to the ECG (where essentially the long nature of the recordings makes it difficult to

effectively leverage information) in the setting of building multi-factorial models we

address the question of how high-dimensional information can be used to improve
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patient care.

In summary, the two major directions that we explore in this thesis are (1) ex-

tracting novel features to measure subtle but persistent ECG changes that have high

prognostic value; and (2) building personalized predictive models that combine infor-

mation in both novel and established risk metrics to assess individual health. Our

research in both these areas is synergistic; and creates the opportunity for substan-

tially improving the diagnosis and management of cardiovascular patients.

1.3 Major Contributions and Results

We briefly list the major contributions of this thesis here. A detailed discussion

of these contributions is deferred to the subsequent chapters. This section aims to

provide a short overview of the major accomplishments of our research and how

the different efforts can be viewed as synergistically integrating together for next-

generation cardiovascular care. Some specific achievements arising from our work

include:

• Improving on existing research in the area of morphologic variability (MV) by

developing an adaptive downsampling-based approach that results in a four-fold

improvement in computational efficiency while maintaining clinical discrimina-

tion.

• Developing a new ECG biomarker through the use of randomized hashing that

studies information in short-term heart rate patterns to evaluate cardiac auto-

nomic regulation. Evaluation on a cohort of over 3000 patients shows that our

proposed marker is associated with a two-fold increased risk of cardiovascular

mortality following acute coronary syndrome (ACS) even after adjusting for

existing clinical markers.

• Exploring a novel 1.5-class learning paradigm for clinical models that is intended
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to address the issues of small datasets and class imbalance affecting clinical

applications. Our use of an approach that leverages the best properties of both

supervised and unsupervised learning significantly improves the discrimination

for adverse mortality and morbidity endpoints relative to different conventional

algorithms across a range of clinical applications.

• Proposing and demonstrating the hypothesis that information in the atrial com-

ponent of the ECG can aid in the stratification of patients for post-operative

atrial fibrillation (PAF). Using a new source separation algorithm we showed

on a cohort of 385 patients undergoing cardiac surgery that our approach can

improve reclassification of patients by over 25% relative to the use of existing

cardiovascular markers.

1.4 Organization

The remainder of this thesis is organized as follows. Chapter 2 reviews essential

clinical background. Chapters 3 and 4 then present our research related to ECG-

based stratification of cardiac patients. In particular, Chapter 3 describes our work

to improve morphology-based markers through adaptive downsampling while Chapter

4 details our work to develop new rate-based markers through randomized hashing.

This is followed by a discussion in Chapter 5 of our efforts to build improved models

for clinical risk stratification using a novel 1.5-class learning paradigm. In Chapter 6,

we supplement our efforts related to ventricular arrhythmias in the setting of acute

coronary syndrome (Chapters 3 to 5) with a different application: stratifying patients

for atrial fibrillation following cardiac surgery. Finally, we conclude in Chapter 7 with

a summary of our work and a discussion of potential future research avenues arising

from this thesis.
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CHAPTER II

Background

In this chapter, we review background that may be helpful for following the contri-

butions of this thesis. We start with a brief introduction to ACS and discuss existing

approaches used to stratify patients post-ACS. This is followed by a more detailed

review of one of these approaches for post-ACS stratification, i.e. ECG, which forms

a major focus of our work. We focus, in particular, on reviewing different ECG-based

metrics for evaluating both the health of the heart as well as the health of the ner-

vous system regulating cardiac activity. These details provide useful context for the

contributions presented subsequently in this thesis.

2.1 Post-Acute Coronary Syndrome Stratification

An ACS is a clinical term associated with a spectrum of disorders (i.e., myocardial in-

farction and unstable angina) where the blood supply to the heart is suddenly blocked.

The most common symptom is unusual chest pain with a tightness around the chest.

Other symptoms include diaphoresis, nausea and vomiting, as well as shortness of

breath. In some cases (particularly patients with diabetes) these symptoms may be

absent altogether corresponding to a silent heart attack.

One of the challenges associated with ACS is that patients who survive the index

event and receive treatment to open up the blood vessels supplying oxygen to the
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heart still remain at elevated risk of mortality and morbidity over follow-up. This

is, in part, because ACS may cause permanent damage to heart tissue affecting the

electrical and mechanical function of the heart, and leading to irregular heart rhythms

(arrhythmias) that can be fatal.

Patients at risk of arrhythmias following ACS can derive substantial benefit from

aggressive monitoring and therapy. As a result, post-ACS risk stratification is ex-

tremely important clinically for determining cardiac care.

Physicians use a variety of biomarkers to estimate patient risk and to match

patients to treatments. These biomarkers are typically limited to information avail-

able through blood-based measurements of biochemical substrates (e.g. troponin I,

C-reactive protein, and brain natriuretic peptide), or through imaging (e.g., left ven-

tricular ejection fraction obtained through echocardiography) [59, 56]. In both these

cases, the focus is on studying information that is present in instantaneous (i.e.,

‘snapshot’) data, and where this information can be directly measured with limited

or no computational aid. Despite these efforts, however, finding biomarkers that can

accurately assess patient risk remains a challenge. For instance, while depressed left

ventricular ejection fraction is commonly used to identify high risk patients follow-

ing heart attacks, the absolute number of deaths is far greater among patients with

relatively preserved left ventricular function [38].

2.2 Electrocardiogram (ECG)

The ECG is a continuous recording of the electrical activity of the heart muscle or

myocardium [60]. At rest, each cardiac muscle cell maintains a voltage difference

across its cell membrane. During depolarization (i.e., the ‘firing’ of the heart muscle),

this voltage increases. Consequently, when depolarization is propagating through a

cell, there exists a potential difference on the membrane between the part of the cell

that has been depolarized and the part of the cell at resting potential. After the cell
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(a) Single ECG beat (b) Continuous ECG tracing

Figure 2.1: (a) Schematic representation of the normal ECG for a single heart beat,
and (b) example recording of ECG waveform.

is completely depolarized, its membrane is uniformly charged again, but at a more

positive voltage than initially. The reverse situation takes place during repolarization,

which returns the cell to baseline. These changes in potential, summed over many

cells, can be measured by electrodes placed on the surface of the body, leading to the

ECG time-series.

Figure 2.1(a) presents a schematic representation of the normal ECG, while Fig-

ure 2.1(b) shows an example tracing of a continuous ECG time-series over a few

seconds. We can see that the ECG is a quasi-periodic signal (i.e., corresponding to

the quasi-periodic nature of cardiac activity). Three major segments can be identi-

fied in a normal ECG, namely, the P-wave, the QRS-complex, and the T-wave. As

shown in Figure 2.2(c) three major segments can be identified in a normal ECG. The

P-wave is associated with depolarization of cardiac cells in the upper two chambers

of the heart (i.e., the atria). The QRS-complex (comprising the Q, R and S waves) is

associated with depolarization of cardiac cells in the lower two chambers of the heart

(i.e., the ventricles). The T-wave is associated with repolarization of the cardiac cells

in the ventricles. The QRS-complex is larger than the P-wave because the ventricles

are much larger than the atria. The QRS-complex also coincides with the repolar-

ization of the atria, which is therefore usually not seen on the ECG. The T-wave has
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a larger width and smaller amplitude than the QRS-complex because repolarization

takes longer than depolarization [60]. Figure. 2.2 shows the relationship between

ECG signal (P, QRS, T-waves) and atrial/ventricular polarization.

(a) Atrial activity (b) Ventricular activity

(c) ECG

Figure 2.2: ECG

2.3 ECG Metrics

2.3.1 Why ECG Metrics

With advances in recording and storage technologies, far larger volumes of time-

series data are now collected from individual patients than was previously thought

possible. This includes increases in the durations and sampling rates of recordings,

as well as improvements in the ability to monitor patients in a variety of hospital and

ambulatory settings. The large databases of physiological time-series resulting from

this progress provide an opportunity to measure fundamentally new kinds of clinical
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information related to subtle phenomena occurring over long time scales. Given

this opportunity, our research aims to address post-ACS risk stratification problem

through novel biomarkers that are computationally derived from physiological time-

series.

Of particular interest, in the setting of heart disease, is information available in

long-term ECG data. The ECG provides a continuous assessment of the electrical

activity of the heart, and is routinely collected from patients during hospitalization to

determine heart rate and detect arrhythmias. The ECG has the advantage of being

easy to acquire; the electrical activity of the heart can be measured on the surface

of the body in an inexpensive and non-invasive manner over long periods. In an in-

patient setting, the ECG is typically captured by bedside monitors. In an out-patient

setting, a Holter monitor (a portable ECG device worn by patients) can record data

continuously over multiple days. Since the ECG is routinely collected from patients

in a wide variety of clinical settings during patient hospitalization, computational

biomarkers deriving from long-term ECG time-series can be incorporated broadly

into clinical practice without the need for any new hardware or without creating any

additional burden on patients or caregivers.

The ECG contains a wealth of information related to the structure of the heart

(e.g., size of chambers, thickness of chamber walls, presence of scar tissue due to

old infarcts), the function of the heart (e.g., rate of conduction, sequence in which

different parts of the heart initiate impulses and contract, and stability of conduction),

the influence of the autonomic nervous system on the heart (e.g., variation in heart

rate), and the health of the coronary vasculature supplying blood to the heart (e.g.,

presence of ischemia) [48]. As a result, recent years have seen a growing interest in

leveraging ECG signals to stratify patients.
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2.3.2 Risk Variables Extracted from Long-term ECG-based Time-series

There is a substantial body of research focusing on ECG-based risk stratification of

cardiac patients [68, 27, 101, 103, 100]. A number of different ECG metrics proposed

for post-ACS risk stratification have shown promise. These include: (1) Heart rate

variability (HRV) [79], which will be described in the next paragraph; (2) Heart rate

turbulence (HRT) [11], which measures the return to equilibrium of the heart rate af-

ter a premature ventricular contraction (PVC); (3) Deceleration capacity (DC) [13],

which measures cardiac responsiveness to vagal stimulation; (4) Severe autonomic

failure (SAF) [12], which combines HRT and DC to more completely characterize

risk; (5) Signal averaged ECG (SAECG) [90], which averages multiple ECG signals

to remove interference and reveal small variations in the QRS-complex; (6) QT dis-

persion [37], which measures the variation between QT intervals across different leads

of ECG signals; and (7) T-wave alternans (TWA) [18], which studies the morphol-

ogy of the ECG signal for repolarization abnormalities. Despite the promise of these

metrics, however, few of these metrics have been incorporated into clinical practice

due to issues related to precision and recall, inconsistent findings across populations,

and uncertain analytic performance.

Heart Rate Variability: HRV is the most widely used existing ECG marker. It

studies variability in the length of normal (sinus) heart beats to assess cardiac auto-

nomic function, i.e., the controlling influence of the nervous system on the heart. The

intuition underlying HRV is that diminished variability in heart rate during normal

(sinus) rhythm suggests impaired cardiac autonomic regulation. For example, the

lack of variation in heart rate over extended periods suggests that the nervous system

is not regulating cardiac activity to track differences in physiological and physical

activity. Patients with decreased HRV are therefore believed to be at an increased

risk of adverse outcomes, especially fatal arrhythmias, since the protective regulatory

effects of the autonomic nervous system are similarly curtailed while dealing with
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Table 2.1: Time- and frequency-domain measures of HRV (NN intervals = lengths of
normal beats) proposed by the Task Force of the European Society of Car-
diology and the North American Society of Pacing and Electrophysiology.
Each of these metrics represents a fairly simple approach to capture ag-
gregate variability and loses information about specific structure in heart
rate changes corresponding to patient risk.

Variable Definition
SDNN Standard deviation of NN intervals over 24-hour ECG
SDANN Standard deviation of the average NN intervals for all 5-minute segments

of 24-hour ECG
ASDNN Average of the standard deviation of NN intervals for all 5-minute seg-

ments of 24-hour ECG
RMSSD Square root of the mean squared differences of successive NN intervals
PNN50 Ratio derived by dividing the number of interval differences of successive

NN intervals > 50ms by the total number of NN intervals
HRVI Total number of all NN intervals divided by the height of the histogram

of all NN intervals measured on a discrete scale with bins of 7.8125ms
LFHF Average ratio of the power in the frequency spectrum of 5-minute win-

dows of the time series between 0.04-0.15 Hz and 0.15-0.4 Hz

abnormalities. Table 2.1 summarizes some of the different approaches proposed to

measure HRV from long-term measurements of heart rate in ECG data.

2.4 Morphologic Variability (MV)

Unlike HRV, which focuses only the relative spacing of the R-waves (i.e., the spac-

ing between beats), MV is a novel marker that was recently proposed as a means of

leveraging information present in the entire ECG tracing [104]. The hypothesis un-

derlying MV is that much of what is commonly perceived as noise in ECG data may

contain subtle but useful information about the health of the heart. Specifically, it is

believed that increased variability in the morphology of the ECG time-series is likely

associated with a lack of consistency and repeatability in the electrical function of

the heart. In other words, persistent fluctuations in the shape of the ECG waveform

may be associated with electrical instability in the heart muscle predisposing patients

to fatal arrhythmias. There is support for this theory in the literature. Studies have
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shown that in the presence of ischemia, the conducting system has multiple irregular

islands of depressed myocardium with relatively long refractory times [32] that leads

to discontinuous electrophysiological characteristics [65]. The overall effect of such

minor conduction inhomogeneities is not well understood, but it is speculated that

they correlate with myocardial electrical instability and have potentially predictive

value for ventricular arrhythmias [14] or other adverse events.

The challenge in detecting this variability, however, is in being able to distinguish

between shape deformations associated with pathological phenomena reflecting the

health of the underlying heart muscle, and changes associated with artifacts that

represent true noise. Making this distinction is difficult in short ECG recordings,

but with the availability of long-term ECG time-series, pathological variations can be

distinguished from true noise as structure that is persistent over long periods of time.

In the remainder of this section, we describe our approach to measure MV from ECG

time-series.

Figure 2.3: Comparison of time-warped shape deformations in ECG beats using
DTW. In contrast to comparing activity that is time-aligned but not
physiologically aligned (left), we use DTW in our study to relate similar
parts of the ECG waveforms across beats in the presence of time skew.

For every pair of consecutively occurring beats in an ECG time-series, we quantify

how the shapes of the beats differ using a variant of dynamic time warping (DTW,
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as in Figure 2.3). Given time-series Q = q1, . . . , qn and C = c1, . . . , cm, DTW first

constructs an n-by-m distance matrix where each entry (i, j) represents the distance

d(qi, cj). The l2 norm is typically used to measure d(qi, cj). DTW then finds the

minimum cost path W = w1, . . . , wk, . . . , wK through this distance matrix where

wk = (ik, jk) relates the ik-th sample of Q to the jk-th sample of C. The minimum

cost path has the cost:

K∑
k=1

d(qik , cjk)

and is subject to several constraints, including boundary conditions, continuity, and

monotonicity[16]. This optimal path can be found efficiently using dynamic program-

ming with the following recurrence:

γ(i, j) = d(qi, cj) + min


γ(i− 1, j − 1)

γ(i− 1, j)

γ(i, j − 1)

where γ(i, j) is the cumulative distance of the path from the start to cells (i, j). From

simple observation, DTW (Q,C) = γ(n,m) and the time and space complexity of this

method is O(nm).

We restrict the local range of the alignment path in the vicinity of a point to

prevent biologically implausible alignments of large parts of one beat with small parts

of another. For example, for an entry (i, j) in the distance matrix, we only allow valid

paths passing through (i − 1, j − 1), (i − 1, j − 2), (i − 2, j − 1), (i − 1, j − 3) and

(i − 3, j − 1). This is an adaptation of the Type III and Type IV local continuity

constraints proposed by Myers et al. [76] and ensures that there are no long horizontal

or vertical edges along the optimal path through the distance matrix, corresponding

to a large number of different samples in one beat being aligned with a single sample

in the other. This leads to the following recurrence relation (also shown graphically
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in Figure 2.4):

γ(i, j) = d(qi, cj) + min



γ(i− 1, j − 1)

d(qi−1, cj) + γ(i− 2, j − 1)

d(qi−1, cj) + d(qi−2, cj) + γ(i− 3, j − 1)

d(qi, cj−1) + γ(i− 1, j − 2)

d(qi, cj−1) + d(qi, cj−2 + γ(i− 1, j − 3)

(a) Original DTW (b) Constrained DTW

Figure 2.4: Illustration of possible path alignments.

The process described here transforms the original ECG time-series into a se-

quence of time-warped morphology differences between consecutive beats. To charac-

terize pathological structure within this sequence, we study its spectral characteristics.

Since the activity of the heart is quasi-periodic (i.e., since the heart does not beat at

an exact rate), the time gap between the samples of the sequence constructed through

DTW is not uniform. We address this issue by estimating the power spectral density

of the morphology differences time-series using the Lomb-Scargle periodogram [64].

For a time series where the value m[n] is sampled at time t[n], the Lomb-Scargle

periodogram estimates the energy at frequency ω as:
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P (ω) =
1

2σ2

(∑
n[(m[n]− µ) cosω(t[n]− τ)]2∑

n cos2 ω(t[n]− τ)

+

∑
n[(m[n]− µ) sinω(t[n]− τ)]2∑

n sin2 ω(t[n]− τ)

)

where µ and σ are the mean and variance of the m[n], and τ is defined as :

tan(2ωτ) =

∑
n sin(2ωt[n])∑
n cos(2ωt[n])

We define our computationally generated biomarker, MV, as energy between 0.30

and 0.55 Hz (as estimated from the Lomb-Scargle periodogram) in the time-series of

aggregate morphology changes constructed using DTW. The range of 0.30 to 0.55 Hz

is based on theoretical and empirical observations suggesting that the discriminative

ability of MV for predicting death following heart attacks is maximized over this range

[104]. A flow chart of the whole process for generating MV is shown in Figure 2.5.
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Figure 2.5: Flow chart of the process for generating Morphological Variability (MV).
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CHAPTER III

Improving Existing ECG Biomarkers

3.1 Introduction

In this chapter, we focus on the goal of improving the scalability of existing compu-

tational biomarkers from ECG time-series to identify patients at an increased risk of

death following ACS. Specifically, MV [104] as described in Section 2.4, has shown to

have value in extracting subtle but useful information about the health of the heart

from ECG signals. Unfortunately, the existing approach to measure MV is computa-

tionally intensive. We aim to address this shortcoming by reducing the computational

complexity of MV to scale its use to low-power embedded devices (e.g., ICDs) while

maintaining clinically useful discrimination.

The process of measuring MV consists of a modified DTW-based algorithm to

quantify time-warped shape deformations in ECG time-series over long periods of

time, and a Lomb-Scargle periodogram approach to analyze the resulting non-uniformly

sampled time-series representation of aggregate noise in the ECG for pathological

structure. To achieve the goal of scaling this basic approach to large databases of

long-term ECG time-series, we investigate a novel approach that reduces the quadratic

complexity of DTW through an adaptive downsampling of time-series inputs. The

use of adaptive downsampling significantly reduces the ECG data presented to DTW

while preserving rapidly changing waves (e.g., the QRS-complex) smoothed out by ex-
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isting downsampling approaches. However, due to adaptively downsampling rapidly

changing parts of the ECG time-series less than more slowly changing parts of the

signals, this approach also requires changes to the dynamic programming problem un-

derlying DTW. In this chapter, we present solutions for both the goal of adaptively

downsampling ECG time-series, and for modifying the DTW dynamic programming

formulation to leverage adaptively downsampled inputs.

We evaluate our ideas on data from 765 patients in the DISPERSE2-TIMI33 trial

as described in Appendix A.1. Baseline results show that high MV is associated with

a 4- to 5-fold increased risk of death within 90 days of a heart attack. Moreover,

the use of our proposed adaptive downsampling with a modified DTW formulation

achieves an almost 4-fold reduction in runtime relative to DTW, without a significant

change in biomarker discrimination. In contrast, existing downsampling approaches

obtain a similar reduction in runtime but with noticeably worse performance for risk

prediction.

In what follows, section 3.2 reviews previous related work and proposes the concept

of adaptive downsampling. Then, section 3.3 details how adaptive downsampling is

implemented and how it can be incorporated within the measurement of MV to scale it

up to large amounts of long-term time-series data. Section 3.4 presents the evaluation

methodology for our study. Section 3.5 discusses the results of our experiments.

Section 3.6 offers a summary and conclusions.

3.2 Overview and Previous Work

In order to explore how MV can be scaled for use with very large volumes of ECG data,

we first note that the runtime of measuring MV is dominated by the time taken to

quantify time-warped morphology differences between consecutive beats. For a total

of p beats in an ECG time-series of length less than n, the computational complexity

of this step is O(pn2). While reducing the number of consecutive pairs of beats to
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be examined (i.e., reducing p) offers one approach to reduce the overall runtime of

MV, this approach is made challenging by multiple factors (e.g., poorer estimation

of spectral energy, less data available to distinguish between persistent pathological

variations and true noise, increased latency for real-time decision-making etc.). As a

result, our efforts largely center on addressing the quadratic runtime of DTW (i.e.,

reducing the n2 term above).

The basic DTW algorithm quantifies the similarity between two time series with

warping by setting up an alignment or correspondence between matching parts of the

signals. This process is quadratic in both runtime and space, and does not scale to

long time series or large volumes of data. There is a significant body of work focusing

on addressing this limitation. Most of the previous work in this area has approached

the goal of increasing the efficiency of DTW either by introducing constraints [87], or

through dimensionality reduction methods such as the discrete fourier transform [1],

singular value decomposition [55], and downsampling by a constant factor [49, 50].

In these existing dimensionality reduction methods, the most popular approach

is piecewise aggregate approximation (PAA) [51], which downsamples the original

time series by constant factor. An alternate approach is FastDTW [88]. This is a

multi-level approach that first finds an optimal warping path in a lower-resolution

setting. FastDTW then iteratively expands and improves the solution. Since pre-

vious work [26] reports that PAA is the best existing solution to the problem of

reducing computational complexity of downsampling, we will focus our evaluation on

comparing our approach to PAA.

We note that while the use of downsampling in previous literature improves the

runtime and space efficiency of DTW, the decision to carry out this downsampling

by a constant factor over time causes both rapidly and slowly changing parts of a

signal to be treated similarly. Uniform downsampling using both PAA or FastDTW

may be associated with the loss of important information (e.g., sharp R peaks), and
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specifically hurts our application since MV aims to discover potentially low amplitude

disease signatures in the presence of high amplitude baseline activity.

We address this issue by using variable (i.e. adaptive) downsampling. We believe

that the process of comparing time-warped signals can be improved by exploiting

slowly changing parts of a signal by downsampling them at a higher rate than rapidly

changing regions. In contrast to PAA and FastDTW, we therefore propose the idea of

adaptive downsampling where the rate of reduction of time series varies according to

the rate of changes taking place locally. This allows for the reduction of the number

of samples in time series, while retaining sharp changes that would otherwise be

smeared if downsampling were applied uniformly to the entire signal. In other words,

reduction in the size of the data can be accomplished while preserving information

that would otherwise be lost when downsampling by a constant factor.

3.3 Methods

We describe here how to adaptively downsample ECG time-series. This is done by

using a trace segmentation-based approach that reduces time-series more in regions

where the signals are slowly changing and less in parts of the signal associated with

rapid changes. Following this, we describe how to modify the DTW dynamic pro-

gramming formulation to leverage adaptively downsampled inputs.

3.3.1 Adaptive Downsampling (ADAP)

We achieve adaptive downsampling using trace segmentation [57]. While we describe

this approach in more detail subsequently, the basic idea underlying trace segmenta-

tion is to divide the signal into regions with equal cumulative derivative activity. This

places a higher number of boundaries for downsampling in regions that are rapidly

changing (i.e., have higher cumulative derivative activity).

More formally, given a signal Q = q1, . . . , qn and a number of frames θ to downsam-
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ple this signal to, we first calculate the cumulative difference DQ[k] for k = 2, . . . , n

between each neighboring pair of samples:

DQ[k] =
k∑
i=2

| qi − qi−1 | (3.1)

with DQ[1] = 0. The sum of the total differences in Q is given by DQ[n]. The

cumulative difference in each adaptive downsampling bin is then set to dQ =
DQ[n]

θ
.

Using this, downsampling proceeds by finding the sample numbers ti for i = 0, . . . , θ

such that for all values of i we have:

ti = min{k | DQ[k] ≥ dQ · i} (3.2)

The corresponding amplitudes of Q at samples ti are given by xi = qti . We can

then use interpolation to approximate the fractional sample numbers t̂i where we

would expect DQ[t̂i] = dQ · i. For i = 0, . . . , θ using the notation:

βi =
DQ[ti]− dQ · i

DQ[ti]−DQ[ti − 1]
(3.3)

we have:

t̂i = ti − βi

x̂i = qti − βi(qti − qti−1) (3.4)

The resulting adaptively downsampled representation of the original signal Q is

given by two series corresponding to time and amplitude:
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Figure 3.1: An illustration of the trace segmentation process.

TQ = t̂0, t̂1, . . . , t̂i, . . . , t̂θ

XQ = x̂0, x̂1, . . . , x̂i, . . . , x̂θ (3.5)

This process can be carried out in time that is linear in the size of the input.

Figure 3.1 presents the trace segmentation approach for downsampling graphically.

For ECG time-series, trace segmentation can preserve important information re-

lated to sharply changing parts of the signal (e.g., the QRS-complex). This is illus-
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trated in Figure 3.2. In contrast to PAA, a similar number of adaptively downsampled

segments provide a better characterization of notching within the R wave and also the

sharpness of the S wave. While PAA achieves good results in a variety of real-world

application domains, we believe the distinctions retained by adaptively downsampling

are relevant to the specific goal here of measuring MV to predict death following heart

attacks.

(a) Original (b) PAA (c) ADAP

Figure 3.2: Adaptive downsampling of ECG signals.

3.3.2 DTW with Adaptive Downsampling

DTW searches for the optimal alignment between two sequences in an efficient man-

ner using dynamic programing. For uniformly downsampled signals, the dynamic

programming process is essentially unchanged, although it is applied to reduced rep-

resentations of the original signals. For adaptively downsampled signals, however,

the cost of alignment cannot be calculated in a similarly simple manner from the

Euclidean distance between the samples of the downsampled representations. Since

the original signal is now divided into segments of variable lengths, this length infor-

mation needs to be factored into consideration when deriving the distances for the

DTW dynamic programming recurrence.

We represent two adaptively downsampled signals Q and C as comprised of seg-

ments sq(1),. . .,sq(θ) and sc(1),. . .,sc(θ) respectively, with θ corresponding to the num-

ber of downsampled segments. The amplitude of each segment sq(i) is represented by

xq(i) and the duration by lq(i) (similar notation is used for the amplitude and duration
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Figure 3.3: Illustration of derivation for adaptive recurrence equation. Left subfigure
shows the diagonal case, the middle shows the horizontal case, while the
right subfigure shows the vertical case.

of each segment sc(i)). Using this notation, we describe the process through which the

dynamic programming of DTW can be modified to handle adaptively downsampled

segments.

Figure 3.3 shows, from left to right, three separate possibilities when aligning

adaptively downsampled segments. In each case, the alignments of the adaptively

downsampled segments are illustrated at the top, and the alignments of the original

signals are illustrated below. The leftmost subfigure shows the situation where the

adaptively downsampled segments are diagonally aligned, i.e. segment sq(i) is aligned

with segment sc(j), while sq(i+ 1) is aligned with segment sc(j + 1). Intuitively, we

expect the warping path between the samples comprising the segments sq(i) and

sc(j) in the original signals to be close to the diagonal. Without solving for the

optimal path of alignment between these original samples, we approximate the cost

of alignment between the segments sq(i) and sc(j) as the product of d(sq(i), sc(j))

(i.e., the Euclidean distance of xq(i) and xc(j)) and max(lq(i), lc(j)) (i.e., an estimate

for the length of a diagonal path). We adopt a similar approach for the subfigure

shown in the middle of Figure 3.3. In this case, the adaptively downsampled segment

sq(i) is aligned with both sc(j) and sc(j + 1). Again, without solving for the optimal

path of alignment between the original samples for these segments, we expect the

25



path of alignment for the samples comprising sq(i) and sc(i) to be roughly horizontal.

We therefore approximate the length of this path to be the product of d(sq(i), sc(j))

and lq(i). The situation shown in the rightmost subfigure (i.e., a roughly vertical path

of alignment for the samples comprising sq(i) and sc(j)) is treated analogously.

We note that our approach of modifying the dynamic programming of DTW for

use with adaptive downsampling approximates the path length in each case, and

this approximation may not be optimal. However, this approach provides a simple

way to augment the dynamic programming of DTW. In particular, in this setting,

the recurrence relation for the cumulative path distance γ(i, j) till the adaptively

downsampled segments i and j can be represented as:

γ(i, j) = min


γ(i, j,d)

γ(i, j,h)

γ(i, j,v)

where the cumulative path distance γ(i, j) depends on the direction in which the path

proceeds next (i.e., diagonal d, horizontal h, or vertical v) and:

γ(i, j,d) = d(sq(i), sc(j)) max(lq(i), lc(j)) + min


γ(i− 1, j − 1,d)

γ(i− 1, j,h)

γ(i, j − 1,v)

γ(i, j,h) = d(sq(i), sc(j))lq(i) + min


γ(i− 1, j − 1,d)

γ(i− 1, j,h)

γ(i, j − 1,v)
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γ(i, j,v) = d(sq(i), sc(j))lc(j) + min


γ(i− 1, j − 1,d)

γ(i− 1, j,h)

γ(i, j − 1,v)

Path Constraints: Recall that in Section 2.4 we described a modification to the

basic DTW recurrence relation to find more biologically plausible alignments (i.e., the

situation shown in Figure 2.4). In this case, we made use of the recurrence relation:

γ(i, j) = d(qi, cj) + min



γ(i− 1, j − 1)

d(qi−1, cj) + γ(i− 2, j − 1)

d(qi−1, cj) + d(qi−2, cj) + γ(i− 3, j − 1)

d(qi, cj−1) + γ(i− 1, j − 2)

d(qi, cj−1) + d(qi, cj−2 + γ(i− 1, j − 3)

We adopt an analogous approach to constrain DTW with adaptive downsampling

for more meaningful alignments. Since the original signal is divided into unequally

sized segments, we note that the above recurrence would not be directly applicable.

Instead of restricting valid paths to pass through no more than 3 consecutive hori-

zontal or vertical steps, we therefore restrict the path to traverse through at most k

steps such that no such implausible alignment would occur. In other words, a segment

sq(i) is only allowed to align with segments of sc such that the total length of those

k segments is no greater than three times the length of sq(i), which can be expressed

as 3 · lq(i) ≤
∑k

n=1 lc(j − n).
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3.4 Evaluation

We evaluated our research on ECG data from patients in the DISPERSE2-TIMI33

trial. In our study, we used data from the first 24 hours of ECG recording during

hospitalization to predict the risk of death following heart attacks. There were a total

of 765 patients in the DISPERSE2-TIMI33 trial with available ECG signals sampled

at 128Hz used in this analyses, with 14 deaths during 90-day follow-up.

We compared the basic MV algorithm to MV measured with downsampling using

PAA and to MV measured with adaptive downsampling. This comparison was per-

formed in multiple ways. First, we measured the areas under the receiver operating

characteristic curves (AUROCs, see detailed discussion in Appendix B.2) for all three

approaches. As part of this evaluation, we compared the AUROC values for the down-

sampled MV approaches to the basic MV algorithm without downsampling using the

method proposed by DeLong et al. [29] to assess whether the changes are statistically

significant. Second, we also assessed the MV models with downsampling relative to

the basic MV algorithm without downsampling by measuring the integrated discrim-

ination improvement (IDI, refer to Appendix B.3 for a detailed description) proposed

by Pencina et al. [83]. This was done by translating the MV values obtained through

each approach into regression-based probabilistic risk estimates, and then measuring

the difference between the mean predicted probabilities of events and non-events.

In addition to evaluating the predictive accuracy of MV measured through each

approach, we also evaluated the runtime of the algorithms as the average time taken

across ten runs to compute MV for all patients. These experiments were performed

on a machine with quad-core Intel Xeon X3450 processors (2.67 GHz, 8MB Cache)

and 8 GB RAM. The distance metrics were uniformly implemented in C++ on the

Red Hat Enterprise Linux Server release 5.6 (Tikanga).

Finally, we also assessed how the relative ranking of patients between the differ-

ent MV approaches changed with adaptive and non-adaptive downsampling. This
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Table 3.1: Univariate association of MV and other clinical variables with death fol-
lowing heart attacks.

Parameter Hazard Ratio P-value
Age>65 3.72 0.024
Women 2.76 0.054
Smoker 0.53 0.225

Hypertension 6.66 0.067
Diabetes 2.77 0.049

Hyperlipidemia 0.66 0.422
Previous Heart Attack 1.94 0.210

Previous Angina 2.86 0.103
ST depression>0.5mm 2.69 0.091

MV 5.16 0.002

metric was used to study how downsampling moves patients relative to each other

while measuring MV. To measure this information, we computed the average absolute

difference in the ranking of each patient by MV across different approaches.

3.5 Results

3.5.1 Clinical Utility

The basic MV algorithm achieved an AUROC of 0.75 for discriminating between

high and low risk patients following heart attacks. When the MV predictions were

dichotomized at a simple threshold (MV>50 vs. MV≤50), patients with high MV

were found to be at a significantly increased risk of death following heart attacks

(Figure 3.4). For comparison, we show the relative increase in risk between patients

with high and low MV, as well as the relative increases in risk for a variety of existing

clinical variables in Table 3.1. We use the hazard ratio as a measure of relative increase

in risk. In the DISPERSE2-TIMI33 dataset, MV identified a group of patients at a

higher relative risk than any of these other metrics. These results are consistent with

the earlier findings about MV reported in the clinical literature [104].
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Figure 3.4: Kaplan-Meier mortality curve for patients in high MV (MV>50; shown
in red) and low MV (MV≤50; shown in blue) groups. Patients with high
MV were at a consistently elevated risk of death over the 90 day period
following a heart attack.

3.5.2 Computational Efficiency

Table 3.2 compares the AUROC for the basic MV algorithm with the AUROCs ob-

tained for MV measured with downsampling using PAA and MV measured with

adaptive downsampling. For both the downsampling approaches, we experimented

with downsampling the original heart beat signals to down to 30, 50 and 70 samples.

In order to further evaluate if the differences in the AUROC estimates for different

models has significance, we applied Delong’s method [29], which is an asymptotically

exact method to evaluate the uncertainty of an AUROC and of comparisons between

two AUROCs.

In general, downsampling the original signal led to a reduction in the discrimina-

tive ability of MV (although this difference was not significant at the 5% level given

the sample size). In all of our experiments, however, MV with adaptive downsam-

pling achieved a higher AUROC than downsampling with PAA for a similar factor
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Table 3.2: Comparison of AUROCs between DTW, PAA-DTW, and ADAP-DTW
Methods AUROC P-value
DTW 0.748 Referent
PAA30 0.658 0.331
PAA50 0.669 0.345
PAA70 0.693 0.384
ADAP30 0.718 0.345
ADAP50 0.737 0.729
ADAP70 0.736 0.721

Table 3.3: IDI comparing DTW with PAA-DTW and ADAP-DTW
Methods IDI P-value
PAA30 -0.009 0.164
PAA50 -0.009 0.178
PAA70 -0.007 0.209
ADAP30 0.017 0.160
ADAP50 0.014 0.204
ADAP70 0.020 0.160

of reduction. These results suggest that our use of adaptive downsampling retained

more information that was relevant to the task of distinguishing between high and

low risk patients than the use of PAA for this application.

We also studied changes in the clinical utility of MV with downsampling (as

assessed by the IDI) for each downsampled approaches relative to the basic MV al-

gorithm. These results are presented in Table 3.3. In this case, the data from our

experiments show that (consistent with the AUROC case) the use of downsampling

with PAA led to a small decrease in performance. Conversely, the use of adaptive

downsampling actually resulted in an increase in discriminative performance rela-

tive to the basic DTW algorithm as measured by the IDI. The differences for both

downsampling with PAA and with adaptive downsampling relative to the basic DTW

algorithm were not significant at the 5% level given the sample size.

The relative changes in ranks of patients between the basic DTW algorithm and

the DTW approaches with downsampling are shown in Table 3.4. Consistent with

the AUROC and IDI results, DTW with adaptive downsampling resulted in a smaller
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Table 3.4: Average change in patient ranks relative to the basic DTW algorithm
(shown as percentages of the DISPERSE2-TIMI33 population).

Methods Change
PAA30 20.3%
PAA50 21.2%
PAA70 20.9%
ADAP30 18.3%
ADAP50 18.8%
ADAP70 18.4%

Table 3.5: Computation time of the different MV algorithms.
Methods Time (sec)
DTW 146,940
PAA30 5,663
PAA50 7,311
PAA70 9,207
ADAP30 7,831
ADAP50 13,292
ADAP70 20,782

relative change in rank within the DISPERSE2-TIMI33 population relative to the

basic DTW algorithm.

These empirical improvements are supported by a theoretical analysis of the run-

time of DTW with adaptive downsampling. In the case of the original DTW without

window constraints, our approach improves performance to O((n
k
)2) from O(n2). In

the case where DTW is constrained to use a window of size w, average performance

is improved to O(nw/k), while worst case performance is O(nw). We find that per-

formance improves in practice as seen for the timing results for the different methods

in Table 3.5. While downsampling reduced the runtime of the basic DTW algorithm

substantially in each case, this reduction was greater for PAA than with the use of

adaptive downsampling. This result can be attributed to the additional work that

needs to be done to solve the modified dynamic programming problem for adaptively

downsampled DTW. Comparing the PAA and adaptively downsampled approaches

based on time rather than downsampling factor, however, still showed a higher level of
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performance with adaptive downsampling than with the use of PAA (e.g., for PAA70

AUROC: 0.693, IDI: -0.007, average rank change: 20.9% and time: 9,207 vs. for

ADAP30 AUROC: 0.718, IDI: 0.017, average rank change: 18.3% and time: 7,831)

3.6 Conclusion

In this chapter, we explored mining the noise-like variations in long-term ECG time-

series to identify patients at an increased risk of death following heart attacks. To

achieve this, we described a modified DTW- and Lomb-Scargle periodogram-based

approach that first transforms ECG time-series into sequences of beat-to-beat time-

aligned morphology differences, and then relates properties of these sequences to

patient risk. While the ideas underlying this work derive from earlier experiments

reported in the clinical literature [104], we focused here on the question of how this

basic approach can be scaled to very large ECG time-series databases. As part of this

work, we investigated a novel approach to address the quadratic runtime of DTW.

In particular, we proposed the idea of adaptive downsampling, i.e., downsampling

slowly changing parts of a signal much more than rapidly changing parts of the

same signal, to reduce the size of the inputs presented to DTW while retaining a

good representation of the original time-series being compared. We also described

changes to the dynamic programming underlying DTW to exploit such adaptively

downsampled signals, where the downsampled segments may be of varying lengths.

We evaluated our ideas on real-world data from patients within the DISPERSE2-

TIMI33 trial. Our experiments suggest that measuring MV with adaptive downsam-

pling substantially reduces runtime while providing similar performance to the basic

MV algorithm that is not optimized for large volumes of data. In addition, the use

of adaptive downsampling leads to more accurate performance than downsampling

through the commonly used approach of PAA. Finally, we note that while the discus-

sion here focuses primarily on long-term ECG, we have also applied the concept of
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adaptive downsampling on broader set of data. The results of this investigation show

consistent improvements in runtime when using adaptive downsampling; suggesting

the general applicability of this approach to time series [26].

We conclude this section by observing that further exploration is needed to deter-

mine whether modifications of our approach can yield significantly better results.

As one example, it may be possible to apply weights to adaptive downsampled

segments based on their length so that longer downsampled segments are assigned

lower importance. Similarly, it may also be possible to jointly optimize the adaptive

downsampling-based DTW approach by combining information in the time-domain

with information in the frequency-domain to obtain better performance. These ideas

need to be explored in more detail subsequently to fully characterize the opportunities

to improve the measurement of MV.
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CHAPTER IV

Developing New ECG Biomarkers

4.1 Introduction

Building upon the work in Chapter III where we improve on existing biomarkers,

in this chapter, we aim to develop novel computational biomarkers to risk stratify

patients for death following coronary attacks. Specifically, we focus on using elec-

trocardiographic (ECG) data from a large patient population to discover heart rate

patterns that are statistically overrepresented or underrepresented in patients who

died in the months immediately following a heart attack or unstable angina relative

to patients who survive this period. We propose a randomized hashing- and greedy

centroid selection-based algorithm to efficiently discover such heart rate patterns in

large high-resolution ECG datasets captured continuously over long periods from

thousands of patients. The discovery of those patterns can further help us in the

bigger goal of improving clinical cost-benefit analyses to determine therapies most

appropriate for individual cases.

We evaluate our work on data from over 3,000 patients from two separate cohorts

of patients admitted to the hospital following coronary attacks, and show that our

computationally generated biomarkers can correctly identify patients at high risk

of death, even after adjusting for information in existing risk stratification metrics.

We note that while our investigation is focused on the specific clinical application
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of cardiovascular risk stratification, the techniques we propose can be applied more

broadly to other problems related to approximate sequential pattern discovery in large

datasets.

The remainder of this chapter is organized as follows. Section 4.2 first describes

how previous work focusing on heart rate time series is inadequate. Sections 4.3 and

4.4 then describe how heart rate time series can be abstracted into symbolic sequences

and how problems relevant to clinical stratification can be framed and solved using

this abstraction. Section 4.5 details the evaluation methodology for this work, and

the results of this investigation are presented in Section 4.6. We conclude with a

summary and discussion of these results in Section 4.7.

4.2 Overview and Previous Work

There is an extensive body of research focused on the analysis of heart rate time-series

over long periods [79], especially, time- and frequency-domain measures of HRV. How-

ever, most of the existing works to HRV only looks at aggregated variability instead

of trying to extract short-term structure in heart rate. Here, we advance these efforts

by identifying specific patterns (i.e. short-term structures) of heart rate changes that

may be used for risk stratification. These patterns may correspond to activity that is

either overrepresented in the patients who experience adverse outcomes (i.e., patterns

associated with the causal disease mechanisms) or overrepresented in patients who

remained event free (i.e., patterns associated with protective mechanisms). These

patterns can then be used to develop risk stratification models that score patients

along a risk continuum.

Our search for these specific patterns supplements traditional HRV analyses [67]

in two ways: (1) our research diverges from the typical approach of quantifying ag-

gregate variability through simple time- and frequency-domain metrics (Table 2.1)

by extracting more specific patterns associated with elevated cardiovascular risk (i.e.,
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our research identifies structure within aggregate variability measured by existing

metrics), and (2) our research provides a more complete assessment of information

in heart rate by capturing patterns associated with both low and high variability.

While most HRV research focuses narrowly on the low variability case, our proposed

algorithms can also identify patterns associated with high risk increased variability.

There is recent evidence suggesting that such a broader focus can provide a more

complete assessment of cardiovascular health [103, 106].

Despite the potential clinical utility of ECG-based heart rate markers, discovering

these patterns is difficult due to three factors. First, the sheer volume of available

data poses a serious challenge. For example, the ECG signals from just a single pa-

tient admitted to a hospital following a coronary attack would fill up thousands of

pages. Our research attempts to find patterns in ECG data collected continuously

from thousands of such patients over days to weeks following a coronary attack. This

creates space and runtime challenges at both the algorithmic and platform level. Sec-

ond, due to the presence of noise, our research explores patterns that are approximate,

i.e., where the same heart rate sequence can occur in many parts of the same signal

or across different patients in an imperfectly conversed form. Third, there is consid-

erable variation between patients, and physiological information must be registered

across individuals during the pattern discovery process.

Our research addresses these challenges by re-expressing heart rate time-series in

a symbolic form where the symbols have consistent meaning across patients. We

then approach the goal of discovering approximate heart rate patterns within these

symbolic sequences by proposing a new motif discovery algorithm that makes use

of on-line greedy centroid selection and randomized hashing to identify statistically

interesting sequential activity in positively and negatively labeled examples. We

combine information from these patterns in survival models that can be used for risk

stratification.
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4.3 Creating Symbolic Heart Rate Sequences

Given the ECG signals Xi[n] for patients i = 1, . . . , N , we start by first extracting the

heart rate from these time series. To segment the ECG signals into beats, we use two

open-source QRS detection [41, 115]. QRS-complexes are marked at locations where

both algorithms agree. The time interval between the QRS-complexes measures the

length of each heart beat, and can consequently be used to measure the instantaneous

heart rate in beats per minute.

Denoting the instantaneous heart rate time series as Zi[n] for i = 1, . . . , N , we

then symbolize the heart rate for each patient using symbolic aggregate approxima-

tion (SAX) [62]. Basically, every one heart beat gets symbolized into one symbol.

This is done by first partitioning the heart rate measurements within each patient’s

time series into equiprobable bins, and then assigning each heart rate measurement

with a symbol corresponding to the index number of its bin (where the index number

‘1’ corresponds to the equiprobable bin with the lowest mean heart rate measure-

ments, ‘2’ corresponds to the equiprobable bin with the next lowest mean heart rate

measurements and so on). The number of bins determines the size of the symbol

alphabet. In our work, we choose an alphabet size of 4 for SAX, corresponding to

an abstraction of the heart rate into low, moderately low, moderately high, and high

categories. Under this symbolization, the distance between symbol ’1’ vs. ’2’ and

distance between symbol ’1’ vs. ’3’ is different.

We note that while clinical definitions (e.g., bradycardia corresponding to heart

rate below 60 beats per minute, tachycardia corresponding to heart rate above 100

beats per minute, and normal heart rate between 60-100 beats per minute) can also be

used to achieve a discretization of the heart rate time series for each patient, our use of

SAX has the advantage of providing a layer of normalization across patients. Despite

baseline differences in heart rate between patients, the symbols derived through SAX

have consistent meaning across the population. We represent the resulting symbolic
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heart rate sequences as Si[n] for i = 1, . . . , N .

4.4 Pattern Discovery in Symbolic Sequences

We now discuss related literature on pattern discovery and then formulate our prob-

lem of discovering over-represented patterns in symbolic sequences and describe an

algorithm to efficiently discover such patterns.

4.4.1 Existing Methods

Previous work in computational biology tries to find conserved patterns that are

unlikely to occur by chance but are encountered repeatedly. This is done using ap-

proaches including two component mixture (TCM) [10], Gibbs sampling [108], and

Consensus [99]. In these efforts, there is no focus on discrimination. In the data

mining community there are also other approaches (e.g., shapelets [112]) that are

focused on finding primitive representative patterns. The focus in these cases again

is on finding patterns that occur more frequently than would be expected purely

by change, that is, over-common patterns within a single population (as opposed to

patterns that occur differently between two separate populations).

In short, existing approaches do not use both positive and negative examples to

find motifs that occur with differential distribution across patients with and without

outcomes, which is understandable given that existing approaches in computational

biology attempt to find motifs that are likely to have functional significance within

the genome; an analysis which is not comparative in nature. In ou work, we explore

a different problem formulation from these efforts.

4.4.2 Problem Formulation

We frame the problem of discovering heart rate patterns that have value in cardio-

vascular risk stratification as:
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PROBLEM FORMULATION 1. Given two sets of sequences S+ = {S+
i |i = 1, . . . , N+}

and S− = {S−i |i = 1, . . . , N−} drawn from families F+ and F−, such that F+∩F− =

�, find all subsequences of length L that occur in an approximate form with high

relative likelihood in either F+ or F−.

where the approximate form of a subsequence A = a1, . . . , aL corresponds to the

subsequence A and all other subsequences B = b1, . . . , bL such that:

max
i=1,...,L−W+1

[lp(bi, . . . , bi+W−1; ai, . . . , ai+W−1)] ≤ d

and where the lp distance is defined as:

lp(bi, . . . , bi+W−1; ai, . . . , ai+W−1) = (
i+W−1∑
j=i

|aj − bj|p)1/p

This notion of an approximate pattern is more natural than the use of the lp norm

to directly assess the distance between patterns (i.e., an approximate pattern consists

of A and all subsequences B such that lp(A,B) ≤ d). This is because our notion of an

approximate pattern prevents matches from being substantially different at any local

point along the subsequences. Moreover, it defines distance as a function of pattern

length, and allows for the pattern discovery process to use a single parameter while

searching for shorter or longer patterns. We observe, however, that the techniques

presented in this paper can be applied just as easily to the case where the lp norm is

used instead of the definition of approximate matches above.

We defer the question of how to find approximate patterns for the moment and

start by describing how a similar problem to find exact patterns can be solved. In

this setting, a simple hash table-based approach can be used to make a linear pass

through all sequences in S+ and S− both to identify the unique subsequences Ui

for i = 1, . . . ,M present in the entire dataset and to measure the frequency with

which each of these unique subsequences occurs in positive and negative examples.
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The resulting frequencies for the Ui in each of the sequences in S+ and S− can then

denoted by the vectors:

f+
i = {f+

i,k|k ∈ S
+}

f−i = {f−i,k|k ∈ S
−}

Using these frequencies, i.e., the normalized occurrences of Ui in each sequence in

S+ and S−, the subsequences that are overrepresented in either positive or negative

examples can be found through different approaches. For example, rank sum testing

or the AUROC can both be used to identify the Ui that successfully distinguish

between positive and negative examples. The AUROC, in particular, is widely used in

many different applications and is considered the standard in medicine for evaluating

risk stratification methods. The AUROC can be interpreted as the probability that

for a pair of randomly chosen comparable examples from S+ and S−, Ui occurs more

frequently in the positive example than the negative one. Comparable examples

correspond to pairs where the frequency of Ui differs between the examples. AUROC

values that are high (i.e., close to 1) or low (i.e., close to 0) both reflect subsequences

that have high discriminative value.

One limitation of this approach, however, is that it does not capture information

related to the timing of labels. In settings such as clinical risk stratification, where

patients are only monitored for a specific period, and may occasionally leave a study

before it is complete (i.e., the phenomenon of censoring), there is additional infor-

mation in the labels that this process fails to consider. For example, a patient who

leaves a three-month study at the end of the first month would have the label of being

event free despite potentially experiencing death before the end of the study period.

Situations such as these, where survival characteristics are also important in addition

to labels, can be addressed by a slightly revised problem statement:
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PROBLEM FORMULATION 2. Given two sets of sequences S+ = {S+
i |i = 1, . . . , N+}

and S− = {S−i |i = 1, . . . , N−} drawn from families F+ and F−, such that F+∩F− =

� and with event times T+ = {T+
i |i = 1, . . . , N+} for sequences in S+ and censor-

ing times T− = {T−i |i = 1, . . . , N−} for sequences in S−, find all subsequences of

length L that occur in an approximate form with high relative concordance in either

F+ or F−.

where the notion of an approximate patterns is similar to the first problem formula-

tion.

In this case, the process of finding exact patterns is identical to the earlier problem

formulation except for the concordance index (C-index) being used to identify the Ui

that successfully distinguish between positive and negative examples. The C-index is

similar to the AUROC, and can be interpreted as the probability that for a given pair

of randomly chosen comparable examples, Ui occurs more frequently in the example

that experiences an event before the other example. Comparable examples in this

case must both be positive samples, or one positive sample paired up with a negative

sample such that the positive event occurs before the censoring time for the negative

sample.

4.4.3 Discovering Approximate Patterns

Our discussion so far has focused on the discovery of exact patterns for risk strati-

fication. Both problem formulations are similar in the initial step of measuring the

frequency with which the subsequences Ui occur exactly in S+ and S−, and differ only

in their use of the AUROC or C-index. To find approximate patterns, we extend this

approach. We first efficiently measure the frequency with which the subsequences Ui

occur in an approximate form in S+ and S−, and then assess the predictive ability

of these approximate patterns using the AUROC or C-index. The goal of the ideas

presented in the remainder of this section is to provide a way to efficiently carry out
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the first step of measuring the frequency of approximate patterns in S+ and S−, i.e.,

to compute:

f̂+
i =

∑
j∈Di

f+
j

f̂−i =
∑
j∈Di

f−j

where f̂+
i and f̂−i are the vectors obtained by summing up the vectors f+

i and f−i

within the approximate neighborhood Di of Ui.

One approach to efficiently measure the frequency of approximate patterns in S+

and S− is to use a simple hash table-based algorithm to first determine f+
i and f−i

for all Ui, and to then compare each Ui with all other unique patterns to detect

its approximate neighborhood Di and compute f̂+
i and f̂−i . The resulting f̂+

i and

f̂−i can be used to assess the importance of the approximate pattern centered at Ui

through either the AUROC or the C-index. This approach is associated with two

limitations. First, matching each of the M unique Ui against all the other M − 1

unique subsequences requires O(M2) time, which is prohibitively expensive for large

M . For extremely large datasets, the value of M may be close to ΛL where Λ is the size

of the alphabet used for symbolization. Second, the neighborhoods of approximate

patterns may overlap substantially, leading to the best results returned by this process

essentially corresponding to the same underlying behavior.

To address these limitations we propose an algorithm to measure the frequency

of approximate patterns based on randomized hashing and greedy centroid selection.

Each of these ideas is described in more detail subsequently.

Locality Sensitive Hashing with lp Distance: We note that the goal of matching

each Ui with other subsequences that lie within its approximate neighborhood can

be reduced to the goal of first identifying a small number of candidate subsequences
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that may be potential matches, and then pruning away these candidates for actual

matches. Being able to efficiently identify the first set of potential matches in this

setting can greatly decrease the overall runtime of pattern discovery.

To achieve this, we build upon the observation that given the definition of an

approximate match in Section 4.4.2 (i.e., subsequences are approximate matches if

they have an lp distance of at most d over any window of length W ), the total lp

distance any potential match can have from a given Ui is bounded by γ = dL
W

. We

therefore focus on reducing the runtime of the pattern discovery process by efficiently

finding all subsequences within a distance γ of each Ui, and pruning away from this

set any subsequences that are not true approximate matches. This goal of finding

all subsequences within a lp radius of γ is related to the R-near neighbor reporting

problem, that is, for a query point qi find all points qj within a radius R of qi [4]. In

our case, the problem of finding the approximate neighborhood of each Ui corresponds

to solving the R-near neighbor reporting problem for each Ui with R = γ. We achieve

this in a computationally efficient manner through locality sensitive hashing (LSH)

[4, 28].

We briefly review LSH here for the purpose of completeness. The key idea of

LSH is to hash data points using several hash functions with the property that for

each function, the probability of collision is much higher for objects that are close to

each other than for those that are far apart. This allows for the efficient discovery

of nearest neighbors by hashing a query point and searching only through elements

stored in buckets containing that point. In addition, since LSH is a hashing-based

scheme, it can be naturally extended to dynamic datasets where insertion and deletion

operations need to be supported.

More formally, let H be a family of hash functions mapping RL to some universe

ζ. For any two points qi ∈ RL and qj ∈ RL, we can choose a function h from H

uniformly at random and analyze the probability that h(qi) = h(qj). The family H
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is called locality sensitive [28] if it satisfies the following conditions given a distance

measure Θ:

DEFINITION 1. A function family H = {h : RL → ζ} is called (R, cR, p1, p2)-

sensitive if for any two points qi, qj ∈ RL

• if Θ(qi, qj) ≤ R then PrH[h(qi) = h(qj)] ≥ p1

• if Θ(qi, qj) > cR then PrH[h(qi) = h(qj)] ≤ p2

For an LSH function family to be useful it has to satisfy the inequalities c > 1

and p1 > p2. In this case, the LSH family can be used to efficiently solve the R-near

neighbor reporting problem [4]:

DEFINITION 2. Given a set of Q points in an L-dimensional space RL and param-

eters R > 0, δ > 0, construct a data structure that given any query point qi, reports

each R-near neighbor of qi in Q with probability 1− δ

Typically, one cannot use H directly, since the gap between p1 and p2 may be

small. An amplification process is used to achieve a desired probability of collision.

This amplification process involves concatenating several functions chosen from H.

The basic LSH indexing method can be described as follows [4]. For an integer k,

we first define the function family G = {g : RL → ζk} such that g ∈ G is given by

g(qi) = (h1(qi), . . . , hk(qi)) where hj ∈ H for 1 ≤ j ≤ k (i.e., g is the concatenation of

k LSH functions). For an integer ω, we then choose g1, . . . , gω from G independently

and uniformly at random. Each of these functions gi for 1 ≤ i ≤ ω is used to construct

one hash table where all the elements in Q are hashed using gi. This data structure,

comprising ω hash tables in total, is used to find matches to queries. Given a query

qi, the first step is to generate a candidate set of neighbors by the union of all buckets

that the query qi is hashed to. False positives are then removed from this candidate

set.
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Intuitively, concatenating multiple LSH functions to produce each gi makes the

probability of distant objects colliding small. However, it also reduces the collision

probability of nearby objects. This results in the need to create and query multiple

hash tables constructed with different gi.

Different LSH families can be used for different choices of Θ. In our work, we

make use of the LSH families based on p-stable distributions for lp norms [28]:

DEFINITION 3. A distribution Γ is called p-stable if there exists p ≥ 0 such that

for any n real numbers v1, . . . , vn and i.i.d. variables Y1, . . . , Yn drawn from Γ, the

random variable
∑

i viYi has the same distribution as the variable (
∑

i |vi|p)1/pY

where Y is a random variable with distribution Γ.

p-stable distributions can be used to generate hash functions that obey the locality

sensitive property. Given a random vector a of dimension L whose each entry is chosen

independently from a p-stable distribution, the dot product of two vectors v1 and v2

with a projects these vectors onto the real line. It follows from p-stability that for the

vectors, the distance between their projects (a.v1 − a.v2) is distributed as Θ(v1, v2)Y

where Y is a random variable drawn from a p-stable distribution. If the real line

is divided into equi-width segments, and vectors are assigned hash values based on

which segments they project onto when taking the dot product with a, then it is clear

that this hash function will be locality preserving.

More formally, we can define hash functions based on this idea as [28]:

ha,b(v) = ba.v + b

C
c

where a is an L dimensional vector with entries chosen independently from a p-stable

distribution as described above, and b is a real number chosen uniformly from the

range [0, C]. Each hash function ha,b : RL → Z+ maps a vector v onto the set of
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positive integers. For the p = 2 case (i.e., the l2 norm corresponding to the Euclidean

distance metric), these hash functions can be created using the Gaussian distribution,

which is known to be 2-stable (for the l1 norm the Cauchy distribution can be used).

For any function go, the probability that go(qi) = go(qj) where qj is an R-neighbor

of qi, is at least pk1. The probability that go(qi) = go(qj) for some o = 1, . . . , ω is

then at least 1 − (1 − pk1)ω. If we set ω = dlog1−pk1 δe so that (1 − pk1)ω ≤ δ, then

any R-neighbor of qi is returned by the algorithm with probability at least 1− δ [4].

While the worst case performance of this approach is linear, the algorithm is typically

sublinear on many datasets.

To choose k, we note that while larger values of k lead to hash functions that are

more selective, they also necessitate more hash tables ω to reduce false negatives. To

address this tradeoff, between hash functions that lead to smaller hash table buckets

but more hash tables, and hash functions that lead to larger hash table buckets but

fewer hash tables, we make use of a practical approach that is often recommended

[4] to optimize the parameter k. This involves a preliminary training phase using a

small number of data points and a set of sample queries. The value of k that provides

the best performance is used to develop the LSH data structure.

Greedy Centroid Selection: LSH makes the search for the approximate neighbors

of each Ui more efficient but does not address the issue of overlap between patterns.

We note that this overlap affects both the quality of the results (i.e., the situation

where the top results correspond to slight variations of a single pattern) as well as

the runtime of the pattern discovery process (i.e., redundant work being performed

to assess very similar patterns repeatedly).

We address this issue by searching for centroids that cover all the subsequences Ui

in the dataset and provide a more compact representation of the space of potential

patterns. The R-near neighbor reporting problem can then be focused on finding the

approximate neighbors of these centroids.
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One approach to identify these centroids is to use clustering. However, finding

these centroids by clustering all the Ui is prohibitively expensive for large values of

M . In fact, we note that the computational challenges of clustering all the Ui are

analogous to the computational challenges of solving the R-near neighbor reporting

problem for all the Ui in the first place.

We therefore adopt a greedy approach to select centroids. We maintain a working

set of centroids (initialized to {U1}) using an LSH data structure and perform the

following test on each new Ui encountered during a linear scan of the sequences in S+

and S− (as described in Section 4.4.2). If the new Ui has any match in the working

set of centroids, then the new Ui is ignored. Otherwise, it is added to the working set

of centroids. Since the test at each step involves finding any match in the working

set rather than all matches (i.e., the R-near neighbor problem as opposed to the

R-nearest neighbor reporting problem), the LSH data structure is extremely efficient

for this task [4]. Moreover, the ability of LSH to add points dynamically to the

maintained working set also makes it well-suited to the greedy selection of centroids.

It is important to point out that the greedy centroid selection process serves

only to identify centroids that should be analyzed more thoroughly using the LSH-

based R-near neighbor reporting process described earlier. This is because while the

selection process does find matches between centroids and other unique subsequences

in the data, these matches represent an incomplete set that must be augmented

subsequently.

Optimizations: In addition to the algorithm-level improvements introduced by LSH

and greedy centroid selection, we also make use of various platform-level optimiza-

tions. For example, in order to fit the data structures used for the pattern discovery

process in memory, we choose to retain only non-zero elements within the vectors f+
i

and f−i (and similarly in f̂+
i and f̂−i ). This is due to the occurrence of subsequences

generally being sparse within both S+ and S− for large values of L. In addition, we
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further improve memory usage by retaining pointers to the first incidence of each Ui

in the data, rather than maintaining separate copies of each subsequence.

4.4.4 Integrating Patterns into Risk Models

The algorithm described in Section 4.4 can be used to discover heart rate patterns

containing useful information for risk stratification, ordered by either AUROC (For-

mulation 1) or C-index (Formulation 2). We combine the information in these patterns

to create composite models that can be applied for risk assessment. Specifically, we

select the top Γ uncorrelated patterns in a greedy manner, ordered by AUROC or

C-index, and combine them in either a logistic regression or Cox proportional hazards

regression model to predict risk. The models can be further enriched by combining

patterns of multiple lengths. While a number of other methods can be used for the

goal of combining patterns, including algorithms recently proposed in the machine

learning and data mining literature, our choice of logistic regression and Cox propor-

tional hazards regression models is motivated by the prevalent use of these methods

in clinical applications.

4.5 Evaluation

We evaluated our research on ECG data from patients in the DISPERSE2 [21] and

MERLIN-TIMI36 [73] trials (refer to Appendix A.1 for details). We used data from

the DISPERSE2 trial to discover high risk patterns, and tested these patterns on

data from the MERLIN-TIMI36 trial. We used the incidence of CVD over a follow-

up period of 90 days as the endpoint in both groups.

The DISPERSE2 trial had available data from 765 patients with 14 deaths during

follow-up. We excluded data from 4 of these patients who died due to the incidence of

myocardial infarction (MI) prior to the mortality event. The MERLIN-TIMI36 trial

had available data from 2,302 placebo patients with 57 deaths. Data from 16 of these
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patients who died was excluded due to the incidence of MI before mortality. For both

the DISPERSE2 and MERLIN-TIMI36 patients we used the first 24 hours of ECG

recorded after hospitalization for training and testing due to the availability of these

signals for all patients, and due to the definition of HRV metrics on 24 hour data

(which we subsequently compare our work to). On average, each 24 hour recording

in DISPERSE2 contained 103,180 instantaneous heart rate measurements, while in

MERLIN-TIMI36 the average length of the heart rate sequences was 102,710.

Since both the DISPERSE2 and MERLIN-TIMI36 trials contained the timing of

events and the censoring times for all patients within the 90 day follow-up period, we

employed the pattern discovery formulation using the C-index to assess patterns. We

further searched for patterns of lengths 6, 8, 10, 12 and 14 (consistent with earlier

studies [105]) with W = 5 and d = 2 under the l1 norm, and combined the top 5

patterns for each length into a Cox proportional hazards regression model (described

in detail in Appendix B.1) developed on the DISPERSE2 data. This model was then

applied to data from the MERLIN-TIMI36 trial for testing. All parameters, including

W and d were chosen on the training data with testing on the MERLIN-TIMI36 data

being carried out blinded to endpoints.

We used Kaplan-Meier survival analysis to compare the mortality rates for pa-

tients partitioned into high and low risk groups by our heart rate-based model. This

was done by estimating the hazard ratio and 95% confidence interval (CI) for the pre-

dictions made by our model for the endpoint of death over a 90 day follow-up. The

categorization of patients into high or low risk groups for this analysis was performed

by dichotomizing the predictions at the highest quartile consistent with earlier stud-

ies to evaluate methods for risk stratification in the setting of ACS [93]. We studied

the heart rate-based model on univariate analysis, and also in multivariate models

that additionally included the HRV metrics proposed for risk stratification by the

Task Force of the European Society of Cardiology and the North American Society of
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Pacing and Electrophysiology (Table 2.1). All HRV metrics were dichotomized at the

highest quartile consistent with the dichotomization of the predictions of the heart

rate-based model.

4.6 Results

4.6.1 Univariate Results

Results of univariate analysis for the predictions made by the model based on heart

rate patterns discovered in the DISPERSE2 data , hart rate pattern discovery (HRPD)-

Model, and the HRV metrics are presented in Table 4.1. HRPD-Model showed a

statistically significant (i.e., p < 0.05) association with the endpoint of death in the

MERLIN-TIMI36 study. The result in Table 4.1 can be interpreted as roughly a

three- to four-fold increased risk of death per unit time in patients found to be at

high risk by the pattern discovery-based model. Of the other metrics, HRV-SDANN,

HRV-ASDNN and HRV-LF/HF were also significantly associated with death during

follow-up. The highest hazard ratio of all these metrics was observed for HRV-LF/HF,

followed by HRPD-Model. In general, our results parallel earlier findings in the clin-

ical literature showing that information in HRV can identify patients at an elevated

risk of death following ACS.

The Kaplan-Meier mortality curve for HRPD-Model is presented in Figure 4.1.

Patients classified as being at high risk by HRPD-Model were at a consistently ele-

vated risk of death during the entire 90 day period following ACS.

4.6.2 Multivariate Results

Table 4.2 presents the correlation between the predictions of HRPD-Model and the

HRV metrics. HRPD-Model had low to moderate correlation with the different HRV

metrics, suggesting that the results of this approach can be usefully combined with
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Table 4.1: Univariate association of predictions with 90 day death in the MERLIN-
TIMI36 dataset (HRPD-Model = heart rate pattern discovery model de-
rived from DISPERSE2 data).

Method Hazard Ratio P Value 95% CI
HRV-SDNN 1.56 0.275 0.70-3.43

HRV-SDANN 2.33 0.021 1.14-4.78
HRV-ASDNN 2.22 0.034 1.06-4.65
HRV-RMSSD 0.95 0.918 0.36-2.46
HRV-PNN50 0.99 0.978 0.38-2.55
HRV-HRVI 1.82 0.122 0.85-3.91

HRV-LF/HF 3.54 <0.001 1.80-6.97
HRPD-Model 3.46 <0.001 1.76-6.78

Table 4.2: Pearson correlation between HRDP-Model predictions and HRV in the
MERLIN-TIMI36 dataset (HRPD-Model = heart rate pattern discovery
model derived from DISPERSE2 data).

SDNN SDANN ASDNN RMSSD PNN50 HRVI LF/HF
0.14 0.15 0.13 0.00 -0.02 0.13 0.34

Table 4.3: Multivariate association of predictions with 90 day death in the MERLIN-
TIMI36 dataset (HRPD-Model = heart rate pattern discovery model de-
rived from DISPERSE2 data).

Method Hazard Ratio P Value 95% CI
HRV-SDNN 0.33 0.142 0.08-1.45

HRV-SDANN 2.64 0.078 0.90-7.75
HRV-ASDNN 2.46 0.091 0.87-6.99
HRV-RMSSD 0.71 0.632 0.18-2.86
HRV-PNN50 1.18 0.808 0.31-4.47
HRV-HRVI 1.05 0.936 0.33-3.34

HRV-LF/HF 2.16 0.057 0.98-4.76
HRPD-Model 2.28 0.031 1.08-4.82

Table 4.4: Comparison of pattern discovery runtime (in seconds) for brute force (BF),
max-min clustering-based (MM) and our greedy centroid selection/LSH-
based (GL) algorithms.

Pattern Length BF MM GL
L = 6 83 76 33
L = 8 1,460 111 67
L = 10 168,796 1,754 1,061
L = 12 >3 days 29,058 9,300
L = 14 >3 days 78,631 >3 days
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Figure 4.1: Mortality rate in patients categorized as high and low risk by HRPD-
Model (HRPD-Model = heart rate pattern discovery model derived from
DISPERSE2 data).

Figure 4.2: Significant heart rate patterns within HRPD-Model (HRPD-Model =
heart rate pattern discovery model derived from DISPERSE2 data).
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the results of existing metrics.

On multivariate analysis (Table 4.3), HRPD-Model was an independent predictor

of death during follow-up, even after adjusting for information in other heart rate-

based metrics. None of these other metrics showed an association with the endpoint in

the multivariate model at the 5% level (i.e., p < 0.05) although the weak association

of HRV-SDANN, HRV-ASDNN and HRV-LF/HF at the 10% level suggests that these

metrics may have shown a stronger association on a larger dataset.

The complementary nature of the information provided by HRPD-Model to the

HRV metrics was further seen on comparison of the C-index of multivariate models

with only the HRV metrics included (0.700) to the C-index of multivariate models

with both the HRV metrics and HRPD-Model predictions included (0.746). Consis-

tent with the results in Table 4.3, the addition of HRPD-Model to the HRV metrics

improved discrimination between high and low risk patients.

4.6.3 Significant Heart Rate Patterns

The heart rate patterns independently associated with death within HRPD-Model

(i.e., the patterns with p < 0.05 in the Cox proportional hazards regression model

used for HRPD-Model) are shown in Figure 4.2. While an interpretation of these

patterns is beyond the scope of this chapter, these data suggest that the results in

Section 4.6.1 and 4.6.2 are due to information in patterns of varying lengths discovered

by our randomized hashing- and greedy centroid selection-based algorithm.

4.6.4 Computational Efficiency

Empirical comparison of our pattern discovery algorithm with both a brute force

algorithm (i.e., that takes time quadratic in the number of unique subsequences Ui

in the training data) and a max-min clustering algorithm (that uses a greedy search

for centroids similar to our approach but does not use LSH) is presented in Table 4.4.
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The use of both greedy centroid selection and LSH greatly improved the runtime of

the pattern discovery process.

We note that in our work we carefully chose the hash functions and the parameters

of LSH such that the probability of finding all approximate patterns is bounded to

be higher than 95%. As a result, even though our algorithm sacrificed accuracy

to improve computational efficiency relative to (say) a brute force approach, the

theoretical guarantees provided by LSH and our results show that the final predictive

power of the models remained high.

4.7 Conclusion

In this chapter, we explored the development of novel computational biomarkers

to risk stratify patients for death following coronary attacks. Our biomarkers are

based on patterns of heart rate changes discovered from large volumes of historical

ECG data both from patients who died in the months immediately following ACS

and those that remained event free. Discovering such predictive heart rate patterns

is made challenging by the computational demands of pattern discovery, variations

across patients, and the need to identify activity that may occur in an approximate

form due to noise and the stochastic nature of many physiological phenomena.

We address this goal through a randomized hashing- and greedy centroid selection-

based algorithm, coupled with the use of SAX to re-express heart rate time series as

symbolic sequences. We refine ideas from our previous research to achieve this [102,

105]. The results of our evaluation on over 3,000 patients show that our algorithm can

find heart rate patterns that can be combined in risk stratification models to identify

patients at an elevated risk of death. Moreover, the information in the patterns

discovered by our algorithm can complement information in other heart rate-based

metrics, in particular, time-domain and frequency-domain HRV metrics. This has the

potential to advance clinical decision-making for a disease that continues to impose
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an immense burden globally.

We conclude with a discussion of some limitations of our study and opportunities

for future improvements. We believe that more research is needed to supplement the

statistical significance of the patterns found by our algorithm with an actual phys-

iological interpretation of these patterns. Our algorithm also showed an increasing

runtime as the length of patterns increased, despite the use of both randomized hash-

ing and greedy centroid selection. While this is expected due to the increasing number

of unique subsequences for large pattern lengths, this limitation prevented us from

searching for very long patterns (L >> 14). The use of parallelization can address

this issue, but more investigation is needed to determine if information in extremely

long patterns can aid risk stratification. Moreover, related to pattern length, we also

note that our current approach does not exploit the redundancy in work across in-

creasing pattern lengths. Potentially, the information for smaller pattern lengths can

be used in a hierarchical manner to focus the pattern discovery search. Finally, we

would like to explore a more disciplined way of learning the definition for approximate

patterns which would help discover better represented motifs.
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CHAPTER V

Improving Models to Stratify Patients

5.1 Introduction

In Chapters III and IV, we focused mainly on improving existing ECG biomarkers or

developing new ECG biomarkers. In this chapter, we take this work a step further

by studying how to integrate the new biomarkers arising from our work along with

existing clinical variables to stratify patients. We note that modeling is often made

challenging by the low prevalence of adverse clinical outcomes. Adequately charac-

terizing patient outcomes in the presence of infrequent endpoints requires data from

a large number of patients to acquire sufficient positive examples for training. This

is expensive, slow, and places unnecessary burden on patients and caregivers.

In this chapter, we address this challenge by jointly leveraging the benefits of

both supervised and unsupervised models and propose 1.5 class learning to better

stratify patients for adverse outcomes. Specifically, we develop and compare the

following frameworks for 1.5 class learning: (1) an algorithm that combines both

supervised and unsupervised methods by adding penalties together to form a new

joint optimization problem; (2) a transfer learning algorithm that treats supervised

and unsupervised methods as tasks that can be transferred; (3) a multi-task algorithm

that learns a common hyperplane and task-specific hyperplanes at the same time for

both supervised and unsupervised learning tasks; and (4) a 2-class algorithm with
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the cost parameter chosen to force all negative examples to be included as support

vectors.

When evaluated in a real-world setting on a representative population of patients

undergoing percutaneous coronary intervention and also on patients undergoing inpa-

tient surgical procedures to predict rare but potentially serious critical care outcomes

within 30 days of the procedure, our integrated use of supervised and unsupervised

learning significantly improved the discrimination of adverse mortality and morbid-

ity endpoints. This improvement was consistent relative to different conventional

algorithms (including cost-sensitive weighting and sampling-based techniques).

The remainder of this chapter is organized as follows. Section 5.2 first describes

the challenges of building clinical models in the presence of small datasets and poorly

characterized clinical outcomes. Section 5.3 then presents the traditional 2-class and

1-class support vector machine (SVM) formulations. Section 5.4 describes our differ-

ent approaches to 1.5-class learning using an SVM framework. Section 5.5 details our

evaluation methodology and the results of this evaluation are presented in Section 5.6.

Finally, we present a geometric interpretation of 1.5-class SVM learning framework

in Section 5.7.

5.2 Overview and Previous Work

The challenges of developing models for surgical complications usually stem from

existing datasets available for model derivation being small (e.g., thousands to tens of

thousands of patients) and suffering from class imbalance. Capturing enough positive

examples to robustly train risk stratification algorithms requires collecting data from

a large number of patients. This process is slow, expensive, and burdensome to both

caregivers and patients. The challenge of collecting this data is further compounded

by the multi-factorial nature of many important events, which means that modeling

individual pathophysiological processes underlying outcomes requires an even larger
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number of training examples and increased need for resources.

Traditionally, models to stratify surgical patients have been developed within a

supervised learning framework. However, supervised learning approaches focus on

characterizing the differences between patients who do or do not experience clini-

cal events, and suffer from the lack of sufficient positive (i.e., event) examples for

model training when clinical events occur with diminished prevalence. For example,

the rate of a wide range of serious complications, ranging from coma to bleeding re-

quiring transfusion was well below 1% in the American College of Surgeons National

Surgical Quality Improvement Program (NSQIP) data sampled at over 200 hospital

sites [52]. Collecting additional data to address this issue of class imbalance during

model training is often infeasible because of delays and expenses to both patients

and caregivers. The costs and complexity of collecting extensive data annotated by

experts have impeded the spread of well validated and effective healthcare quality

interventions [89].

In comparison to these studies, a much smaller body of work has explored the

use of unsupervised approaches for clinical risk stratification. In contrast to exist-

ing methods, which attempt to develop models for individual diseases using a priori

knowledge or labeled training data, this work attempts to identify high-risk patients

as anomalies in a population (i.e., as patients lying in sparse regions of the feature

space). A few notable studies have explored the use of unsupervised anomaly de-

tection in different clinical contexts. Hauskrecht et al [42] described a probabilistic

anomaly detection method to detect unusual patient-management patterns and iden-

tify decisions that are highly unusual with respect to patients with the same or similar

conditions. Tarassenko et al. [107] applied novelty detection to the problem of detect-

ing masses in mammograms. Campbell et al. [15] showed that this approach could

identify blood samples in a population corresponding to patients with rare genetic

diseases. Roberts et al. [86] demonstrated the successful use of novelty detection for
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epileptic seizure detection. Laurikkala et al. [58] similarly investigated the value of

novelty detection on vestibular data. Most relevant to our current work, Syed et al

[4,5] developed and explored the notion of identifying patients at increased risk of

different adverse outcomes using a uniform approach where patients were compared

to the rest of the population. In this setting, patients were declared to be at high risk

if they were highly dissimilar from other individuals in the population.

In this study, we build upon these earlier results using unsupervised risk stratifi-

cation. A limitation of this earlier work is that a fully unsupervised approach does

not exploit any of the information available in labeled examples. While the absence

of a large number of positive examples makes it difficult for supervised models to

generalize, we nevertheless believe that there may be useful information in the pa-

tient labels beyond the support of these patients in the feature space that can be

exploited. Most notably, a key limitation of unsupervised risk stratification is that

paradoxically it considers both the healthiest and unhealthiest individuals in a popu-

lation as being at highest risk (since these examples are most likely to manifest as tails

of the patient population). By using label information for patients, we believe that

it may be possible to encode the directionality of the anomalies in the unsupervised

risk stratification process so that the categorization of risk can be focused mainly on

anomalies in the unhealthy direction. We exploit this observation and explore the

idea of jointly leveraging the benefits of both supervised and unsupervised risk strat-

ification by proposing 1.5-class learning framework which will be described in detail

in later sections.

5.3 Background

Before going into the details of 1.5-class learning, we first present background on

2-class and 1-class SVM learning.
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5.3.1 2-Class SVM Classification

Binary or 2-class SVM [109] focuses on learning a hyperplane in a high-dimensional

feature space that can be used for classification. Given a training set {(xi, yi)|xi ∈

Rm, yi ∈ {+1,−1}}ni=1 the soft margin SVM formulation aims to solve the following

constrained optimization problem:

min
w,ξ

1

2
||w||2 + C

n∑
i=1

ξi

s.t. yi(w
Tφ(xi)− b) ≥ 1− ξi ∀i = 1, . . . , n

ξi ≥ 0

where φ is a kernel function that maps data into some feature space, and the constant

C reflects the cost of misclassification and the ξi correspond to the slack variables of

the soft margin SVM. The dual form of the problem is given by:

min
α

1

2

n∑
i=1

n∑
j=1

αiαjyiyjK(i, j)−
n∑
i=1

αi

s.t. 0 ≤ αi ≤ C ∀i = 1, . . . , n

n∑
i=1

αiyi = 0

where K(i, j) = φ(xi)
Tφ(xj) is the kernel matrix [91]. The final classification rule for

predicting the label of a new example x is then given by ŷ = sgn(w∗ · φ(x)− b), and

w∗ =
∑n

i=1 αiyiφ(xi) can be obtained by solving the dual formulation.

5.3.2 1-Class SVM Classification

The 1-class SVM [92] aims to estimate the support S of a high-dimensional distribu-

tion such that the probability that a point drawn from the input space lies outside S is

low. Roughly speaking, in contrast to the 2-class SVM algorithm, which separates two
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classes in the feature space by a hyperplane, the 1-class SVM attempts to separate the

entire dataset from the origin. Given training data of the form {(xi)|xi ∈ Rd}ni=1 (i.e.,

with the class labels either not available or ignored for training in an unsupervised

setting), the 1-class SVM solves the following quadratic problem (which penalizes fea-

ture vectors not separated from the origin, while simultaneously trying to maximize

the distance of this hyperplane from the origin):

min
w,ψ,ρ

1

2
||w||2 − ρ+ C

n∑
i=1

ψi

s.t. wTφ(xi)− ρ ≥ (−ψi) ∀i = 1, . . . , n

ψi ≥ 0

where the constant C expresses the tradeoff between incorporating outliers that are

not separated from the origin and minimizing the support region. The dual form of

the 1-class SVM problem is:

min
α

n∑
i=1

n∑
j=1

αiαjK(i, j)

s.t. 0 ≤ αi ≤ C ∀i = 1, . . . , n

n∑
i=1

αi = 1

The classification rule for predicting whether a new example x lies within the

region of high probability is then given by ŷ = sgn(w∗ ·φ(x)−ρ) with ŷ ≤ 0 denoting

the detection of an outlier, and w∗ =
∑n

i=1 αiφ(xi) can be obtained by solving the

dual formulation.
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5.3.3 2-Class SVM Classification under Class-Imbalance

Extensive literature has focused on the use of machine learning to diagnose and

prognosticate patients under clinical settings where class is highly imbalanced. Much

of this research seeks to develop algorithms for risk assessment through supervised

learning applied to historical data [54]. While not specific to clinical applications,

different solutions have been proposed to address the issue of class imbalance in

a general setting [43], with sampling methods [25] and cost-sensitive methods for

imbalanced learning [33] being particularly popular.

5.4 Methods

Here, we describe our proposed methods under the 1.5-class learning framework.

5.4.1 1.5-Class SVM Classification

The first approach is described as the basic 1.5-class classification, where an SVM

algorithm is designed to improve performance relative to both supervised (i.e., binary

or 2-class SVM) and unsupervised (i.e., 1-class SVM) methods for predicting adverse

events. This work differs from the typical problem formulation of semi-supervised

learning, in that we do not make use of additional unlabeled data to augment super-

vised learning [78].

Given the training set {(xi, yi)|xi ∈ Rd, yi ∈ {+1,−1}}ni=1, we integrate penalties

for the both formulations, and minimize the objective function below while satisfying

the constraints associated with both 2-class and 1-class SVM training.
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min
w,ψ,ξ,b,ρ

1

2
||w||2 − ρ+ C1

n∑
i=1

ψi + C2

n∑
i=1

ξi

s.t. wTφ(xi)− ρ ≥ (−ψi) ∀i = 1, . . . , n

yi(w
Tφ(xi)− b) ≥ 1− ξi ∀i = 1, . . . , n

ψi ≥ 0

ξi ≥ 0

where C1 and C2 denote the costs assigned to penalties for the 1-class and 2-class

SVM problems. Since the formulation above represents a summation of quadratic

problems the overall training problem remains quadratic. The dual formulation of

the 1.5-class SVM problem is then given below:

max
α,γ

n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

(αiyi + γi)(αjyj + γj)K (xi,xj)

s.t. 0 ≤ γi ≤ C1 ∀i = 1, . . . , n

0 ≤ αi ≤ C2 ∀i = 1, . . . , n

n∑
i=1

(αiyi + γi) = 1

The approach above presents different choices for a decision boundary. For exam-

ple, setting the decision boundary to wTφ(x)−ρ can be interpreted as a modification

of the 1-class SVM result, while a decision boundary corresponding to wTφ(x)−b can

similarly be considered as an extension of the 2-class SVM case. While these choices

may be potentially interesting, for the scope of this study, we make use of a common

decision boundary that uses the assignment b = ρ for the optimization problem.
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5.4.2 1.5 Class SVM Classification with Transfer Learning

The second approach is done by adopting an approach that can be considered as a

specialized case of transfer learning. Transfer learning [81] is typically used to address

situations where the data for model training and model application are drawn from

different distributions. In such cases, transfer learning provides a way to refine a

model between training and application. In our work, we adopt a different use of

transfer learning: instead of using transfer learning to refine a model across datasets,

we use the same underlying principles to refine a model developed using supervised

learning for use in unsupervised learning (and vice versa). In this way, our approach

uses transfer learning to refine a model across tasks or problem formulations rather

than datasets while modeling surgical complications.

Popular methods for transfer learning include instance-based, feature-based, and

parameter-based algorithms. In instance-based transfer learning, the goal is to ad-

dress the issue of training and test distribution differences by reweighting data in

the source domain for use in target domain. Feature-based transfer learning finds

a good feature representation that is common to both source and target domains.

Since both instance-based and feature-based transfer learning are essentially focused

on the situation of refining a model between datasets, they are not relevant to our

work. Instead, the approach of parameter-based transfer learning, which focuses on

transferring parameters between similar but distinct tasks is most relevant to the

clinical problem considered here.

We propose a transfer learning extension to 2-class and 1-class SVM classification.

Given the training set {(xi, yi)|xi ∈ Rd, yi ∈ {+1,−1}}ni=1, we first utilize 2-class SVM

classification for finding a maximum margin boundary w∗2. Our transfer learning

formulation then transfers this 2-class boundary to the 1-class SVM task by solving

the following optimization problem:
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min
w,ψ,ρ

1

2
||w −w∗2||2 − ρ+ C

n∑
i=1

ψi

s.t. wTφ(xi)− ρ ≥ (−ψi) ∀i = 1, . . . , n

ψi ≥ 0

This model regularizes the 1-class SVM solution w towards the model parameter

w∗2 obtained from the 2-class SVM classification task instead of regularizing w by

itself. In this setting, the regularization term C expresses the tradeoff between slacks

and the distance between the transferred model and original model. The model

learned will generally be closer to the 2-class SVM task model parameter w∗2 when C

has small values.

Similar to other SVM formulations, solving the dual of this optimization problem

is more convenient and provides the advantage of using the kernel trick. In the interest

of space, we only present the dual formulation and omit the derivation process (which

can be easily done by introducing the Lagrangian). Also, since we already know from

section 5.3.1 that w∗2 =
∑n

i=1 α
∗
i yiφ(xi), thus the dual form of the 2-to-1 SVM transfer

problem can be written as:

min
α

n∑
i=1

n∑
j=1

αiαjK(i, j) +w∗2

n∑
i=1

αiφ(xi)

=

n∑
i=1

n∑
j=1

αiαjK(i, j) +

n∑
i=1

n∑
j=1

αiα
∗
jyjK(i, j)

s.t. 0 ≤ αi ≤ C ∀i = 1, . . . , n

n∑
i=1

αi = 1
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The transfer learning algorithm can also be applied to first find the one-class SVM

boundary w∗1, and then transfer it using 2-class SVM. The primal formulation is given

here:

min
w,ξ

1

2
||w −w∗1||2 + C

n∑
i=1

ξi

s.t. yi(w
Txi − b) ≥ 1− ξi ∀i = 1, . . . , n

ξi ≥ 0

We omit the interpretation here since it follows naturally from the previous dis-

cussion when transferring from two-class SVM to one-class SVM. Since we already

know from section 5.3.2 that w∗1 =
∑n

i=1 α
∗
iφ(xi), the dual form of the 1-to-2 SVM

transfer problem is given by:

min
α

1

2

n∑
i=1

n∑
j=1

αiαjyiyjK(i, j) +w∗1

n∑
i=1

αiyiφ(xi)−
n∑
i=1

αi

=
1

2

n∑
i=1

n∑
j=1

αiαjyiyjK(i, j) +

n∑
i=1

αi
( n∑
j=1

α∗jyiK(i, j)− 1
)

s.t. 0 ≤ αi ≤ C ∀i = 1, . . . , n

n∑
i=1

αiyi = 0

5.4.3 1.5 Class SVM Classification with Multitask Learning

Multi-task learning [34] is used in scenarios where there are relations between tasks to

learn. By exploiting shared structure between these tasks the learning process can be

improved. In our work, we build upon this general principle and explore a modification

to traditional multi-task learning. Specifically, in contrast to the more usual approach
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of improving the ability to learn multiple models through multi-task learning our

focus is on leveraging shared structure between supervised and unsupervised learning

to improve the single task of stratifying patients.

We propose a multi-task learning extension to 2-class and 1-class SVM classifica-

tion by simultaneously learning these two related tasks. We start by assuming that

the common hyperplane across tasks is w0 and the task-specific hyperplanes are v1

and v2 respectively for the 1-class and 2-class tasks. The regularization parameters

C1 and C2 can be varied depending on the notion of how common the two tasks are.

The optimization problem can then be formulated as follows:

min
w0,v1,v2,ξ,η

n∑
i=1

ξi +
n∑
i=1

ηi + C1(‖v1‖2 + ‖v2‖2) + C2‖w0‖2

s.t. yi((w0 + v2)
Txi − b) ≥ 1− ηi ∀i = 1, . . . , n

(w0 + v1)
Txi − ρ ≥ −ξi ∀i = 1, . . . , n

ηi ≥ 0 ∀i = 1, . . . , n

ξi ≥ 0 ∀i = 1, . . . , n

In the dual, we assume a multiplicative factor of 1/2 for the C1 and C2.
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max
α,γ

n∑
i=1

αi −
1

2C2

n∑
i=1

n∑
j=1

(αiyi + γi)K(xi,xj)(αjyj + γj)

− 1

2C1

n∑
i=1

n∑
j=1

γiK(xi,xj)γj

− 1

2C1

n∑
i=1

n∑
j=1

(αiyi)K(xi,xj)(αjyj)

s.t. 0 ≤ αi ≤ 1 ∀i = 1, . . . , n

0 ≤ γi ≥ 1 ∀i = 1, . . . , n

n∑
i=1

(αiyi) = 0

n∑
i=1

γi = 0

Adding −ρ to the primal objective function has the effect of setting the sum of

γ equal to 1 instead of 0 in the dual constraint. Solving the optimization problem

above, we can reconstruct our hyperplanes through the following equations with w0

+ v1 corresponding to the resulting hyperplane found for the 1-class task and w0 +

v2 corresponding to the resulting hyperplane for the 2-class task.

Hyperplane: w0 =
1

C2

n∑
i=1

(αiyi + γi)φ(xi)

v1 =
1

C1

n∑
i=1

(γi)φ(xi)

v2 =
1

C1

n∑
i=1

(αiyi)φ(xi)
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5.4.4 2-Class SVM Classification with C → 0

Our final approach to 1.5-class learning is based on the traditional 2-class problem.

We observe that using extremely low values of the cost parameter C (e.g., 2−30)

for the 2-class problem affects the decision hyperplane in ways that parallel 1.5-class

learning by forcing all negative examples to behave as support vectors. While we defer

a detailed interpretation of this approach to Section 5.7, the basic idea associated with

our fourth and final approach for 1.5-class learning is to leverage the traditional 2-class

problem with values of C that are close to zero.

5.5 Evaluation

Consistent with our goal of predicting cardiac events, we evaluated our algorithm

on cardiac data from the DISPERSE2-TIMI33 trial and the MERLIN-TIMI36 trial

(described in A.1). Those data were used to develop and validate models to predict

CVD and MI. The derivation cohort comprised the DISPERSE2-TIMI33 data and a

random sample of the patients in the MERLIN-TIMI36 data (a quarter of the patients

in the MERLIN-TIMI36 data, that is, 1640 patients, chosen at random). Within the

derivation cohort, the DISPERSE2-TIMI33 data were used for training models to

predict CVD and MI, and the MERLIN-TIMI36 data were used for internal selection

of model parameters of the different approaches. The remaining 4920 patients in the

MERLIN-TIMI36 cohort were used for validation. Predictive models were trained

on DISPERSE2-TIMI33 data to predict CVD and MI within 90 days after nonST-

elevation ACS and tested in MERLIN-TIMI36 for the endpoints of CVD and MI

within 365 days after non-ST-elevation ACS. The difference in training and testing

horizons was based on a shorter available follow-up in the DISPERSE2-TIMI33 data

set relative to the MERLIN-TIMI36 data set.

To show general applicability of our algorithm, we also used data from the BMC2
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multicenter interventional cardiology registry data (described in Appendix A.2) to

develop and validate separate models to predict in-hospital complications of percuta-

neous coronary intervention (PCI). Models were trained on data from 22,023 patients

undergoing percutaneous coronary intervention in 2008, with internal selection of

model parameters on 18,993 patients undergoing percutaneous coronary interven-

tion in 2007, and validation on 20,289 patients undergoing percutaneous coronary

intervention in 2009. The rationale for our decision to separate data across annual

boundaries was that a natural use case of any model developed on a training cohort

of patients would likely involve applying that model to future patients. The features

used during model training corresponded to a mix of patient characteristics, cardiac

status, features related to myocardial infarction, comorbidities, pre-procedure labora-

tory results, contraindications, pre-procedure therapy, cardiac anatomy and function.

The complications of PCI explored in this study included: endoscopic coronary artery

bypass graft (ECABG), death (DTH), vascular access (VASC), repeated procedure

(RP), stroke (STRK), and gastrointestinal bleed (GI).

All of the algorithms described earlier were implemented using the MOSEK soft-

ware package for large-scale convex programming (http://www.mosek.com). Each

model was trained using a linear kernel with cost parameters chosen by cross-validation

from the set 2[−10,10]. The exception was the 2-Class SVM with values of C approxi-

mating zero. For this, we chose a different range of 2[−30,−20]. In addition to comparing

those approaches, cost-sensitive weighting was also considered. 2-class SVM models

were trained in this case with the cost parameters chosen to assign a weight to pos-

itive examples that was inversely proportional to how infrequently they occurred in

the data. For the transfer and multi-task-based SVM approaches it is possible obtain

two models for each approach (i.e, transferring from 1-class to 2-class, transferring

from 2-class to 1-class, 2-class multi-task, 1-class multi-task). We considered each of

these models, as well as the best model chosen for each of the transfer learning and
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multi-task learning approaches chosen by cross-validation.

For a given SVM model, each patient was assigned a risk score defined as the

distance of the patients’ predicted score from the decision boundary. We assessed the

predictive ability of the SVM models by calculating the AUROC for the test patient

scores relative to the different endpoints.

5.6 Results

BMC2 Cardiac
ECABG DTH VASC RP STRK GI CVD MI

Event Rate 0.22% 0.09% 2.2% 0.49% 0.23% 0.99% 4.4% 7.5%
1-class 0.616 0.655 0.504 0.560 0.566 0.545 0.758 0.628
2-class 0.631 0.621 0.691 0.660 0.639 0.820 0.690 0.570

2-class (W) 0.710 0.870 0.701 0.662 0.684 0.835 0.746 0.595
1.5-class 0.783 0.895 0.696 0.702 0.736 0.846 0.739 0.618

Transfer (1-2) 0.633 0.614 0.691 0.659 0.639 0.820 0.759 0.628
Transfer (2-1) 0.628 0.768 0.595 0.534 0.558 0.764 0.758 0.625

Transfer 0.628 0.768 0.691 0.659 0.639 0.820 0.758 0.625
multi-task-1 0.584 0.658 0.656 0.671 0.509 0.673 0.757 0.629
multi-task-2 0.633 0.614 0.692 0.674 0.640 0.825 0.690 0.570
multi-task 0.584 0.658 0.692 0.674 0.640 0.825 0.757 0.629

2-class (Low-C) 0.798 0.907 0.695 0.700 0.757 0.852 0.748 0.597

Table 5.1: AUROC values comparison of 2-class, 1-class and several 1.5-class SVM
approaches for different adverse outcomes within 30 days in patients un-
dergoing inpatient surgical procedures.

Table 5.1 presents the results of our evaluation. For traditional SVM classification,

we observed that the use of the 2-class SVM with cost-sensitive weighting improved

performance relative to the use of 1-class and 2-class SVM classification. This im-

provement was consistent for all eight of the study endpoints across datasets.

For the 1.5-class learning approaches with transfer learning, there was no clear

trend in terms of transferring from 1-class to 2-class (or vice versa). The choice of

which one performed better was not dependent on any obvious statistical property of
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the data (e.g., prevalence of complications). Therefore, the 1.5-class learning approach

with transfer result is an integrated model that is based on using the best of the 1-

to-2 and 2-to-1 models (determined during training). The same goes for 1.5-class

learning approach using multi-task learning. However, the improvement between

those approaches when compared to traditional SVM classification was not significant.

For the other 1.5-class learning approaches, the 1.5-class SVM and the 2-class SVM

with values of C chosen to be close to zero both improved discrimination relative to

all of traditional SVM algorithms for five out of the six study endpoints (ECABG,

DTH, RP, STRK, GI) in the BMC2 cohort. For each of these five endpoints the

improvement was significant. In contrast, for the only remaining endpoints (VASC)

where the 2-class SVM performed better relative to these approaches the difference

in discrimination was marginal. In general, the 1.5-class SVM and the 2-class SVM

with values of C close to zero performed analogously although the 2-class SVM with

values of C close to zero achieved slightly better results. However, the effect is not

as clear as in the Cardiac dataset.

5.7 Interpretation

2-class penalty
1-class penalty

wx+b = 0

wx+b = -1

wx+b = 1

Figure 5.1: Penalization of 1.5-class SVM

We supplement the results presented in Section 5.6 with a brief interpretation. We

start by observing that the use of information from both the 2-class and 1-class prob-
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lems improved clinical assessment for a majority of the endpoints. The improvements

in the ability to stratify patients were most prominent for the 1.5-class SVM and the

use of 2-class learning with values of C close to zero. In contrast, the transfer learn-

ing SVM and multi-task learning SVM did not achieve similar improvements. This

results can be attributed in part to the indirect nature of these approaches to achieve

a coupling of the 1-class and 2-class problems relative to the other methods. For

the transfer learning SVM, the sequential nature of integrating aspects of 1-class and

2-class learning results in isolating the imperfectly characterized training labels from

the benefits of support regularization. Similarly, for the multi-task learning SVM,

the use of parameter coupling adds a layer of indirection between the 1-class and

2-class SVM formulations. We believe that since the issue of class imbalance results

in over-fitting, the maximum pinning down of the decision boundary achieved by the

1.5-class SVM and the 2-class SVM with values of C close to zero is most useful.

The geometric properties for the two best performing methods can be interpreted

as follow.

Figure 5.1 shows how the 1.5-class SVM penalizes violations of both 1-class SVM

and 2-class SVM constraints. Points on the wrong side of the margins based on labels

are penalized as in 2-class SVMs while points below the decision boundary regardless

of label are penalized as in 1-class SVMs.

Figures 5.2(a-e) illustrate how the 2-class SVM with extremely low values of the

regularization term C effectively becomes a 1.5-class method. We generate synthetic

2 dimensional imbalanced data that is not linearly separable. Panel (a) shows the

decision boundary when a moderate value of C = 20 is used. Note that only the

points on or within the margin are the support vectors as is the prototypical view

of 2-class SVMs. Panel (b) shows how dramatically the decision boundary changes

when C = 2−20 is used. By zooming in to the data in Panel (c) we see that all

the data points including all the negative data points become support vectors and
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Figure 5.2: Illustration of comparison between 2-class SVM with low C value versus
1.5-class SVM using synthetic data.

thus help determine the decision boundary. This is a visualization of the crucial

insight that makes clear how for extremely small values of C and highly imbalanced

data, the distribution of the negative data points comes to strongly influence the

decision boundary. This is exactly the effect explicitly created through the combined

supervised and unsupervised constraints used in the 1.5-class SVM. Indeed, in Panels

(d) and (e) we see the result for 1.5-class SVM showing once again that all the data

points becomes support vectors.

Figure 5.3 further illustrates the effects of changing the regularization term C. The

validation AUROC for the endpoint of ECABG is shown as a function of changing

values of C. It is clear that as the value of C is substantially reduced, the AUROC is

substantially improved. Consistent with our approach, the value is somewhat flat over

a regular range of choices for C and the improvements really manifest at extremely

small values of the regularization term, specifically values C < 2−20. Note that the

AUROC drops to 0.5 when the value of C is reduced further due to numerical issues
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Figure 5.3: 2-class SVM validation AUROC

unrelated to the effect.

5.8 Conclusion

In this study, we considered the problem of class imbalance in clinical datasets. In

this setting we explored the idea of 1.5-class models to stratify patients. The focus

of our research is to integrate the properties of both 2-class and 1-class models for

clinical assessment. At a high level, our approach can be interpreted as either training

2-class models that are regularized for the support of the training data, or training

1-class models where the directionality of anomalies is encoded through available

labels. We describe four approaches to implement 1.5-class learning for PCI: (1)

a 1.5-class algorithm that combines both supervised and unsupervised methods by

adding penalties together to form a new joint optimization problem; (2) a transfer

learning algorithm that treats supervised and unsupervised methods as tasks that can

be transferred; (3) a multi-task algorithm that learns a common hyperplane and task-

specific hyperplanes at the same time for both supervised and unsupervised learning

tasks; and (4) a 2-class algorithm with the cost parameter chosen to force all negative

examples to be included as support vectors (i.e., C set close to zero).
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When evaluated in a representative cohort of patients in the BMC2 registry, the

use of 1.5-class learning improved stratification relative to traditional approaches

(including the use of cost-sensitive weighting). In particular, the use of the 1.5-

class SVM and the 2-class algorithm the C set close to zero both achieved significant

improvements relative to traditional SVM algorithms. Geometrically, we observe that

both these approaches share similarity. Moreover, unlike the other 1.5-class learning

algorithms described in this study they are not affected by potential issues related to

the sequential nature of integrating aspects of 1-class and 2-class learning (transfer

learning SVM) or the indirect nature of the coupling between problems (multi-task

learning SVM).

Future extensions of this work include applying extra regularization parameters

in the different 1.5-class algorithms presente (e.g., multi-task learning between the

1-class and 2-class task penalties). We would also like to evaluate our work more

rigorously through a variety of kernels. Similarly, another possible direction is to use

only the positive examples instead of the whole dataset when dealing with any of the

1-class learning related methods.

We conclude by noting that although we present our research in the setting of com-

plications of PCI, the problem of training clinical models in the presence of generally

small datasets and class imbalance is an issue relevant to a broader set of medical

applications. In this setting, the improvements obtained through our work may have

value in other clinical domains and provide the opportunity to more accurately match

patients to treatments and interventions for an extensive set of clinical conditions.
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CHAPTER VI

Extension to Atrial Arrhythmias

6.1 Introduction

Our research described in the previous chapters focused on the goal of predicting

adverse clinical outcomes in the setting of ACS. As a complement to this work, we

consider a different clinical application here, i.e., predicting atrial fibrillation following

cardiac surgery. Our aim in this setting is to develop an approach to separate atrial

and ventricular parts of the ECG, and to then use information in this source separated

ECG to stratify cardiac surgery patients for atrial fibrillation. To achieve this, we

propose a novel eigendecomposition algorithm for ECG time-series that leverages

information about the underlying cardiac cycle to separate ECG signals into atrial

and ventricular components. We then evaluate the clinical utility of MV in atrial

components of the ECG to stratify patients for PAF.

In terms of organization, section 6.2 starts by describing the significance of post-

operative atrial fibrillation. Then, section 6.3 describes the shortcomings of previous

efforts to stratify patients for this endpoint. This is followed by details of our problem

formulation for predicting PAF. We then describe how this approach can be imple-

mented. We evaluate our work through a set of experiments on data collected from

University of Michigan Cardiovascular Center and finally present and discuss the risk

prediction results in section 6.5.
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6.2 Significance

PAF occurs in 10% to 65% of the patients undergoing cardiac surgery [114, 80, 66, 7].

In PAF the upper chambers (atria) of the heart tend to fibrillate or contract fast

and irregularly, preventing successful emptying of blood into the lower (ventricular)

chambers; consequently blood may pool in the heart and clot causing strokes and

other morbidities. This causes blood to pool in the heart and clot, producing strokes

and other morbidities that increase risk of postoperative mortality [69]. The highest

incidence of PAF is typically seen on the second and third postoperative day, with

fewer patients developing the condition either in the early postoperative period, or

four or more days after surgery [69, 47]. PAF is associated with increased postop-

erative mortality and morbidity [69]. It also imposes a significant burden on the

healthcare system by resulting in longer and more expensive hospital stays [66].

Prophylactic use of beta-adrenergic blockers and amiodarone postoperatively has

been shown to reduce the incidence of PAF substantially [72, 39, 40]. However,

while considering these treatments and other options such as rhythm control and

anti-coagulation, the benefits of therapy must be balanced against adverse effects.

For example, blinded therapy in the Prophylactic Amiodarone for the Prevention

of Arrhythmias that Begin Early After Revascularization, Valve Replacement, or

Repair (PAPABEAR) trial was more likely to be withdrawn in patients treated with

amiodarone, largely because of a 3-fold increase in bradycardia requiring pacing and

QTc interval prolongation greater than 650 milliseconds [84].

Identifying parameters that are associated with an increased risk for PAF, and

provide information complementary to existing tools, may help promote a better

and more complete understanding of the pathophysiology of the disorder. This can

potentially allow for other therapies to be considered, to treat patient populations

more comprehensively. Moreover, identifying patients at an elevated risk of PAF can

allow for finer prophylactic administration of pharmacological therapy. This involves

79



both preventing possible side effects in patients who are at low risk and may otherwise

receive drugs unnecessarily, and also more aggressive care for high risk patients than

they presently receive.

6.3 Overview and Previous Work

A number of different clinical metrics have been proposed to predict PAF. Older age

has been shown to be consistently associated with a higher incidence of PAF [114, 70,

46], most likely due to increased atrial fibrosis and dilation in older patients. Large

observational studies have also found an association between other clinical charac-

teristics and PAF, although the results of these studies have often been conflicting.

Hypertension has been found to predict atrial fibrillation after cardiac surgery [36],

possibly due to fibrosis and dispersion of atrial refractoriness [2, 6]. Men also ap-

pear to be more likely than women to develop PAF after coronary artery bypass

graft (CABG) [114, 2, 6]. It is believed that this effect may be due to differences

in ion-channel expression and hormonal effects on autonomic tone. Previous atrial

fibrillation and previous congestive heart failure have also shown an association with

PAF [70]. In addition, procedural information such as aortic cross-clamp time and

location of venuous cannulation have been found in some, but not all, studies to have

predictive value for PAF [66]. Postoperative factors such as respiratory compromise

and prolonged ventilation have also been suggested [6].

There is also an extensive literature on ECG-based metrics to risk stratify patients

for PAF. Most of this work has focused on detecting an abnormal prolongation of

P-wave duration on the surface ECG, as a way to identify intra-atrial conduction

defects [20]. Various time-domain features (e.g., P-wave duration [20, 9, 5, 30, 24, 95,

53], isoelectric interval duration [20], signal averaged P-wave duration [98, 35, 113,

8, 22], P-wave dispersion [30], P-wave variance [5, 110], P terminal force and spatial

velocity [71], and PR interval length [82]) have been explored. The P-waves and PR
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intervals in surface ECG have also been studied using frequency-domain methods

to compute spectral characteristics [96, 97, 44]. In addition to analyses based on

the P-wave, HRV has been analyzed to study a potential role of dysfunction of the

autonomic heart rate control in inducing PAF [31, 45]. It is believed that a change

in sympathetic and vagal tone may precede atrial fibrillation. However, it has been

demonstrated that the prediction is feasible just prior to the onset of PAF, which

reduces the window of efficient prophylactic therapy significantly [94].

Despite much promise, most previously proposed methods suffer from issues re-

lated to inadequate precision and recall for clinical use. The small patient populations

(64 to 240 patients) also make it difficult to generalize the findings from these studies

to larger population. Other factors that limited the clinical application of ECG-based

metrics can be attributed to the lack of fully automated algorithms for some metrics,

and the lack of standard definitions (e.g., for P-wave duration). Lack of data regard-

ing specific treatment implications also limits the routinely incorporation into clinical

practice.

Our work focuses on developing and assessing novel ECG metrics that can be

clinically deployed in a fully-automated setting to identify patients at risk of PAF. To

achieve this, our research builds off recent advances in predicting ventricular arrhyth-

mias, which is MV described in section 2.4. In this work, we adopt a similar approach

but note that since the ECG is heavily dominated by ventricular activity, it may be

more appropriate to decouple ECG signals into atrial and ventricular components

that can be separately assessed for morphological variations. Consistent with the

hypothesis proposed earlier, we believe that variability in the atrial ECG may reflect

specific instability associated with PAF rather than other kinds of arrhythmias.

We can now narrow down the focus of our work to studying MV in atrial ac-

tivation as a means of stratifying patients for PAF. Since observing atrial activity

over the entire cardiac cycle is made difficult by the presence of ventricular activity,
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our approach requires first extracting the atrial components of the ECG waveform

from the surface ECG. Traditional filtering-based methods are insufficient for this

task since the ventricular activity is both higher amplitude, and occupies the same

frequency ranges as atrial activity. Instead, we plan to formulate the separation of

atrial and ventricular activity as a blind source separation problem, where the aim

is to extract the atrial component of ECG waveform, that is to say, to separate out

atrial activity from ventricular activity and noise.

6.4 Decomposing ECG into Atrial and Ventricular Compo-

nents

Based on the cardiac cycle, the P-wave of the ECG consists exclusively of atrial

activity. Similarly, the T-wave has almost exclusively ventricular activity. In contrast,

the QRS-complex has both atrial and ventricular activity (see Figures 2.2(a) and (b)

for detail); we will use these facts crucially in developing our approach for extracting

atrial activity.

6.4.1 Problem Formulation

The surface ECG measures electrical activity at different parts of the body and follows

a linear instantaneous model [77], i.e., each recording of an ECG lead is a weighted

linear combination of the atrial and ventricular components. Thus, the source separa-

tion problem that we are trying to solve can be viewed as an instance of the cocktail

party problem.

More formally, the source signals at time t are represented by a random vector

s(t) = [s1(t), s2(t), · · · , sn(t)]T ∈ Rn×1. The observed signals at time t are represented

by a random vector x(t) = [x1(t), x2(t), · · · , xm(t)]T ∈ Rm×1. Each source signal si(t)

is a linear combination of the observed signals x(t) at each time point according
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to the linear instantaneous model. Our goal is to estimate s(t) from x(t) where

s(t) = W ∗ x(t) by estimating the unmixing matrix W ∈ Rn×m. Note that W is a

constant over all t. In our work, we learn a unmixing matrix that when applied to

the recorded ECG signal, x(t), recovers both atrial and ventricular sources, sa(t) and

sv(t) respectively.

6.4.2 Existing Method

Most of the existing work on atrial component extraction has focused on surface ECG

extracted during atrial fibrillation episodes. The literature suggests that during atrial

fibrillation episodes, atrial activity consists of small and continuous wavelets (a saw-

tooth form [23]) with a cycle around 160ms, and therefore has been modeled as a

random variable with a distribution described by its histogram, a subgaussian signal.

Therefore, based on this model, the atrial signal is said to have negative kurtosis (be-

ing subgaussian), while ventricular signal has positive kurtosis (as it is assumed to be

supergaussian). When such assumptions hold, i.e., during atrial fibrillation episodes,

independent component analysis (ICA), which is capable of extracting independent

non-Gaussian sources, has been shown to successfully extract atrial activity.

Our goal, however, is prediction in advance of atrial fibrillation; therefore the as-

sumptions upon which the ICA method is proposed are no longer valid. Nevertheless,

for completeness and comparison below we explore the use of ICA for atrial compo-

nent extraction on ECG that may not contain atrial fibrillation episodes. Specifically,

we applied RobustICA, a variant of ICA based on using the kurtosis as contrast func-

tion. The component with most positive kurtosis is considered to be the ventricular

component, while the one with most negative kurtosis is considered to be the atrial

component.
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6.4.3 Proposed Method

6.4.3.1 Silence-energy-minimization (SEM)

Our work differs from the standard cocktail party problem in that we have additional

a priori knowledge of the time frames where only one of the speakers is speaking.

Specifically, based on cardiac physiology we know that for each source si(t) there

exists time frames t ∈ [ai, bi] when only that source is active. As described in the

previous section and also Figure 2.2, we can see that this is the case for each heart

beat: the P-wave is associated exclusively with atrial depolarizaion while the T-wave

relates only to ventricular repolarization. Thus there are periods within the ECG

when only atrial (P-wave) or ventricular (T-wave) activity is present.

We exploit information about the exclusively atrial or ventricular activity as fol-

lows. Let the source signal s(t) = [sa(t), sv(t)]
T ∈ R2×1, where sa(t) denotes the

A-beat (atrial) and sv(t) denotes V-beat (ventricular) component at a given time

point t. Let S = [s(t1), s(t2), · · · , s(tT )] ∈ R2×T be the whole signal across time over

a certain window of multiple heartbeats. Let X = [x(t1),x(t2), · · · ,x(tT )] ∈ Rm×T be

the entire observed signal across time over the same window of heartbeats, where m

represents the number of ECG leads recorded. Note that, in this following derivation,

we focus on a single heartbeat for clarity, however in our results we will be looking

over windows of multiple beats.

Assuming we can segment out the P- and T-waves in the observed signal, we

know that only the ventricular source is active for the duration of P-wave segment

t ∈ [tPS, tPE], and only the atrial source is active for the duration of T-wave segment

t ∈ [tTS, tTE]. Therefore, we represent the P-wave (atrial) and T-wave (ventricular)
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parts of the observed signal as a(t) and v(t) respectively, both ∈ Rm×1:

a(t) =

 x(t) ∀t ∈ [tPS, tPE]

~0 otherwise

v(t) =

 x(t) ∀t ∈ [tTS, tTE]

~0 otherwise

Given this, we want to find linear combination vectors wa,wv ∈ Rm×1 where for:

• t ∈ [tPS, tPE], sa(t) = wa
T ∗ x(t) = wa

T ∗ a(t)

• t ∈ [tTS, tTE], sv(t) = wv
T ∗ x(t) = wv

T ∗ v(t)

under the following optimization function, where XA = [a(t1), a(t2), · · · , a(tT )] and

XV = [v(t1),v(t2), · · · ,v(tT )] both ∈ Rm×T :

max
wa

||wa
TXA||2 − C||wa

TXV ||2 s.t. ||wa||2 = 1 (6.1)

max
wv

||wv
TXV ||2 − C||wv

TXA||2 s.t. ||wv||2 = 1. (6.2)

where:

• (6.1) seeks a set of weights wa that when applied to a heartbeat’s ECG recovers

maximal energy in the P-wave region while minimizing the energy in the T-wave

region.

• (6.2) seeks a set of weights wv that when applied to a heartbeat’s ECG recovers

maximal energy in the T-wave region while minimizing the energy in the P-wave

region.

Given that the P- and T-waves do not overlap in time, (6.1) and (6.2) can be

decoupled and dealt with separately. Here, we only derive the solution for (6.1) as
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the solution for (6.2) is similar. Adding the Lagrangian term, the problem becomes:

max
wa

||wa
TXA||2 − C||wa

TXV ||2 − λ(||wa||2 − 1)

Taking the derivative of the above with respect to wa and setting it to zero.

XT
AXAwa − C ·XV

TXV wa − λwa = 0

(XT
AXA − C ·XV

TXV ) ·wa = λwa

Therefore, the resultant optimization problem is an eigen-problem, where the solu-

tion for wa is the eigenvector corresponding to the largest eigenvalue of the following

matrix:

XT
AXA − C ·XV

TXV ,

where C is a regularization term that controls the degree to which the unwanted

ventricular part is attenuated. Similarly, the solution for wv is the eigenvector corre-

sponding to the largest eigenvalue of:

XT
VXV − C ·XA

TXA.

Once we’ve learnt wa and wv, we apply it to x(t) for all time t. This will result in

obtaining our estimate of the atrial/ventricular component over the full range of the

ECG recording.

6.4.3.2 Extracting P and T-waves

At the core of our approach is identifying the location of the P and T-waves in the

ECG beats. Many algorithms have been proposed in the literature to segment cardiac
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ECG beats into their corresponding P/Q/R/S/T-waves. However, these algorithms

are generally unreliable at extracting the P/T-waves in real-world signals due to the

relatively small magnitude of the P-wave and subtle changes marking the end of the

T-wave. In addition, the real-world data employed in this chapter are especially noisy,

due to collection in an operating room (OR) setting, rendering these segmentation

algorithms unsuitable for our purposes. As a result of this, we devised a heuristic

based on physiology to establish the location of the P and T-waves. Specifically,

we attempted to relate the occurrence of these waves to the R-peak, which is the

most prominent part of the beat (and therefore the easiest to detect). Our proposed

heuristic is as follows: we make the general assumption that there is no ventricular

activity (hence atrial part) during 60 to 180 ms before an R-peak, while there is no

atrial activity during 80 to 480 ms after an R-peak (hence ventricular part).

Finally, we note that Weisman et al. proposed a method similar to ours to extract

atrial electrical activity [111]. However, their method makes an unrealistic assumption

that the whole ECG signal can be cleanly segmented into segments of only pure atrial

activity only and pure non-atrial activity. Moreover, their method tries to maximize

the ratio of energy between atrial part vs non-atrial part, which requires an iterative

algorithm when trying to solve the optimization function. Our approach, in contrast,

has a closed form solution that is more applicable to real-time systems.

6.5 Experiments and Results

We evaluated our proposed methodology for PAF prediction on two sets of data:

synthetic and real-world. We first studied the ability of the two atrial extraction

approaches proposed above (i.e., ICA and SEM) to reliably recover atrial and ven-

tricular components on synthetically created ECG data. These experiments were then

supplemented by an investigation in a representative real-world clinical cohort of the

utility of atrial and ventricular separation in predicting PAF. Details of experiments
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and results are presented below.

6.5.1 Synthetic Data
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(c) Original vs. recovered ventricular

Figure 6.1: Comparison of atrial and ventricular components extracted using ICA
and SEM on synthetic data (C = 10 for SEM).

We created synthetic ECG beats by combining textbook templates of atrial activity

(defined as the P -wave and TA-wave) with ventricular activity (defined as the remain-

ing waves). Specifically, we simulated multi-channel ECG data by using the linear

instantaneous model proposed in [77] to combine the atrial and ventricular compo-

nents with randomly selected weights and additive white Gaussian noise. ICA and

SEM were applied to this generated multi-channel ECG to obtain candidate atrial

and ventricular components. These components were compared with the ground truth

atrial and ventricular activity to assess the ability of ICA and SEM to reliably recover

the original signals (using correlation as a performance criteria).
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Figure 6.1 presents the results of this experiment. The synthetic multi-channel

ECG data created using the approach above is illustrated in Figure 6.1(a). When

separated into atrial and ventricular components (Figures 6.1(b) and (c)), the use

of SEM for separation provided consistent improvements in the recovery of both

atrial and ventricular activity relative to the use of ICA. In particular, the use of

prior knowledge about the relative absence of atrial and ventricular activity in SEM

yielded a correlation coefficient of greater than 0.97. This was in contrast to the use

of ICA, which failed to achieve any reasonable recovery of the atrial component and

achieved marginal success dealing with ventricular activity (correlation coefficient of

0.81). Visually, the use of ICA also led to substantially more ripple in the extracted

components than the use of SEM.

While we did not rigorously compare the ability of ICA and SEM to separate

ECG into atrial and ventricular components on real patient data (owing largely to

the absence of known ground truth in real data versus synthetic data), we note than

in many cases the use of SEM provided qualitatively better results. For example, as

shown in Figure 6.2, the use of SEM on 4-lead ECG data (Figure 6.2(a)) resulted

in atrial components with substantially increased energy in the P-wave and PR-

interval as opposed to ventricular components with substantially increased energy in

the ST-segment and T-wave. This was in contrast to ICA, where the absence of prior

knowledge informing such a separation led to a comparatively poorer separation of

the signal (Figures 6.2(b) and (c)).

6.5.2 Real-World Data

We supplemented our analysis investigating the abilities of ICA and SEM to separate

ECG into atrial and ventricular components with an evaluation of the clinical utility of

such a separation on a real-world representative cohort of patients undergoing cardiac

surgery. Data from 385 patients undergoing CABG, aortic, or other valvular surgeries
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Feature Set AUROC

Non-ECG 0.66
Non-ECG 0.69
ECG (No Separation)
Non-ECG 0.70
ECG (No Separation)
ECG (ICA)
Non-ECG 0.70
ECG (No Separation)
ECG (SEM)
Non-ECG 0.70
ECG (No Separation)
ECG (ICA)
ECG (SEM)

Table 6.1: AUROC values for logistic regression models trained using stepwise back-
ward elimination applied to different groups of features.

Feature Set IDI (p-value) NRI (p-value)

Non-ECG 0.048 (<0.001) 53.4% (<0.001)
Non-ECG 0.017 (0.026) 25.6% (0.017)
ECG (No Separation)
Non-ECG 0.004 (0.275) 16.1% (0.091)
ECG (No Separation)
ECG (ICA)
Non-ECG Referent Referent
ECG (No Separation)
ECG (SEM)

Table 6.2: IDI and NRI values for logistic regression models trained using stepwise
backward elimination applied to different groups of features.
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at University of Michigan Hospital (details in Appendix A.3). 90 atrial fibrillation

events were annotated. The size of this cohort was considerably larger than previous

studies investigating the use of ECG-based metrics to predict PAF (previously a

maximum of 240 patients) largely because a focus on exploring a fully-automated

approach to predict PAF allowed us to evaluate our approach more rigorously in a

larger cohort.

The goal of our investigation was to study the ability of markers based on MV

deriving from atrial and ventricular components of the ECG waveform in the OR

to predict PAF. We note that since recordings collected once surgery has started

are typically too noisy for meaningful analysis, only the first 30 minutes of data in

the OR preceding the operation were used. Moreover, since a key question while

determining clinical utility is the extent to which any novel markers add information

beyond existing variables, we also compared the use of MV measured from atrial

and ventricular components of the ECG to baseline clinical features available in the

patient EHR (demographics, history and physical exam findings, laboratory reports,

and type of surgery) and also based on the unseparated ECG signal (MV measured

on each of Leads 1-4).

Specifically, we studied how the discrimination (as assessed by AUROC and IDI,

see Appendix B.2) and reclassification (as assessed by the net reclassification im-

provement, NRI, see Appendix B.3) of logistic regression models trained with different

combinations of the features varied. These included logistic regression models trained

using stepwise backward elimination applied to: (1) non-ECG features; (2) non-ECG

features and features based on the complete ECG signal; (3) non-ECG features and

features based on both the complete ECG signal and components derived using SEM;

(4) non-ECG features and features based on both the complete ECG signal and com-

ponents derived using ICA; and (5) non-ECG features and features based on both

the complete ECG signal and components derived using both ICA and SEM. In all
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of these experiments, the stepwise backward elimination process removed one feature

during each iteration based on cross-validated results for each step.

Tables 6.1 and 6.2 present the results of this experiment. The inclusion of MV

measured from ECG without separation substantially improved performance relative

to the use of baseline clinical features by themselves. This performance was further

improved with the addition of MV based on atrial and ventricular components derived

through both ICA and SEM. The improvement was marginally larger when SEM

was used for separation than when ICA was employed. Specifically, we note that

when MV markers based on both ICA- and SEM-separated ECG components were

included together, the backward stepwise elimination process retained MV based on

atrial activity derived using SEM in preference to MV based on all ICA derived

components. The IDI and NRI metrics using SEM were also both positive relative to

the use of ICA (with NRI showing a 16.1% improvement in reclassification that was

significant at the 10% level).

6.6 Conclusion

In this chapter, we focused on the question of developing novel markers that can be

used to stratify patients undergoing cardiac surgery for PAF. Given the substantial

burden that PAF imposes post-operatively, the ability to identify patients most likely

to experience PAF can substantially improve mortality and morbidity (and also re-

duce healthcare costs) by creating the opportunity to deliver prophylaxis in a timely

and personalized manner. The challenge to realizing this, however, is that there are

currently no established metrics for PAF risk stratification. To address this need, we

explored the development of ECG-based markers in our work that can be deployed in

an inexpensive, non-invasive, and fully-automated manner to evaluate patients under-

going cardiac surgery. We focused, in particular, on extending advances in stratifying

patients for ventricular arrhythmias (i.e., by quantifying excessive variability in the
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ECG waveform) to similarly evaluating the health of the electrical activity of the

atria. Central to this is the ability to distinguish lower amplitude atrial activity from

higher amplitude ventricular activity. To decompose the ECG into separate com-

ponents corresponding to both atrial and ventricular activity, we proposed a novel

eigen-decomposition approach based on silence energy minimization, which partitions

ECG time-series into atrial and ventricular components by exploiting knowledge of

the underlying cardiac cycle.

As possible extensions of this work, we believe that the current method can be

modified so that more timepoints from the signal (other than just the P- and T-wave)

can be utilized. Also, we would like to explore the opportunity of combining the merits

of ICA and our SEM method, for example, integrating the a priori knowledge that

SEM utilizes into ICA through Bayesian learning.

We evaluated our work on both synthetic and real-world data. Our results on

synthetic data showed that the use of additional knowledge based on physiology to

distinguish between atrial and ventricular activity during the ECG decoupling process

substantially improved performance relative to physiology-agnostic approaches such

as ICA. When further evaluated on data from a large (for this clinical application)

and well-characterized cohort of patients undergoing cardiac surgery, we further ob-

served that the use of physiology to guide ECG separation into atrial and ventricular

components achieved better results than the use of a purely statistical approach such

as ICA. Moreover, the development of markers based on an analysis of atrial ECG

significantly improved models based on baseline clinical features and an assessment of

variability within the entire (unseparated) ECG. In particular, our results show that

relative to the combination of baseline clinical features and ECG features without

separation, our proposed approach can improve classification by over 25% with sta-

tistically significant improvements in discrimination. These results have the potential

to improve the management of tens of thousands of patients each year.
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(b) Atrial components extracted by ICA and SEM
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SEM

Figure 6.2: Comparison of atrial and ventricular components extracted using ICA and
SEM on actual ECG data (C = 10 for SEM). Shaded bands correspond
to portions of the cardiac cycle corresponding to ventricular (green) and
atrial (yellow) activity.
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CHAPTER VII

Conclusion

In this thesis, we proposed several novel computational methods for analyzing large

amounts of physiological data. From a technical perspective, our contributions in-

cluded the development of techniques for computational discovery of new biomarkers

from long-term physiological recordings, and for the improved training of classification

models for clinical stratification. From a medical perspective, our research spanned

both improving patient care following ACS, and being able to deliver prophylaxis in

patients undergoing cardiothoracic surgery for atrial arrhythmias.

To reduce the computational complexity of MV for improving existing ECG

biomarkers, we presented the concept of adaptive downsampling to reduce the amount

of data while retaining the information in rapidly changing parts of the ECG. We de-

scribed a trace segmentation-based approach to adaptively downsample signals, along

with a modified DTW dynamic programming formulation that could leverage these

adaptively downsampled inputs. We found an almost 4-fold reduction in runtime rel-

ative to DTW, without a significant change in the clinical utility of the MV marker.

We also proposed novel risk markers, advancing existing work on cardiovascular

risk stratification through a novel approach that tracks information in short heart rate

patterns. We formulated the problem of discovering approximate sequential patterns

for risk stratification from large volumes of historical heart rate data. We explored a
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symbolic transformation of heart rate time series to handle inter-patient variability,

and proposed the use of LSH to solve this problem in a computationally efficient

manner. A rigorous evaluation of our research on a real-world dataset with long-term

ECG signals and detailed follow-ups from over 3,000 patients found that heart rate

motifs identify patients at a 2-fold increased risk of death even after adjusting for

other clinical metrics.

To improve the learning of risk stratification models, we further proposed a new

paradigm called 1.5-class learning that takes advantage of the strengths of both 1-

class and 2-class classification models. We explored four separate implementations

of the 1.5-class learning idea, and evaluated the relative merits of these different

1.5-class methods on a common dataset when compared to traditional 1-class and

2-class approaches. 1.5-class learning demonstrated genuine clinical utility on several

different datasets and across multiple endpoints. We also developed a geometric

interpretation for the improvements achieved through 1.5-class learning to help our

understanding of the advantages of the approach. In the future, we would like to

explore new formulations for 1.5-class learning, as well as to apply it with different

non-linear kernels.

To extend the MV risk factor to prediction of atrial arrhythmias, we proposed risk

stratification of patients for PAF using information specific to the atrial component

of the ECG, and described a new eigendecomposition approach to decomposing ECG

signals into atrial and ventricular components. Using this, we measured atrial insta-

bility by studying variations in atrial ECG morphology as a means of determining

risk for PAF. We rigorously evaluated the hypothesis that separating out the atrial

component of the ECG signal can lead to better PAF prediction in a real-world co-

hort of patients undergoing cardiac surgery. We also compared the relative merits of

our approach to atrial component extraction with existing independent component

analysis. This work represents the first attempt to develop an integrated electrophys-
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iological assessment of both external (autonomic) and internal (myocardial) factors

related to PAF. The data collected during this project will also be used toward cre-

ating a public resource that can assist the broader research community in achieving

further progress.

Collectively, our efforts showcase the ability of computation to address varied

aspects of clinical problems and allow for end-to-end improvements in patient care.

As future research within this scope, we hope to extend our work to signals other than

ECG (e.g., pulmonary artery pressure or respiration signals). Since the variation of

blood pressure and respiratory signals are related to the functioning of the heart, we

believe our work can also improve risk stratification when applied to these signals.

Another potential extension of our work is to explore ways to leverage multi-channel

data. This can provide an opportunity to measure other physiological phenomena

(i.e., beyond the kinds of things already included in this thesis) and help us achieve a

deeper understanding of the clinical conditions. Finally, while we validated the utility

of our approaches on large and representative patient cohorts, closer collaboration

with hospitals and doctors to further develop and evaluate these approaches can

improve their clinical applicability. By doing this, we believe our methods will have

a valuable role in the area of data-driven medicine and be enhanced in their ability

to achieve positive societal impact.
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APPENDIX A

Data

A.1 DISPERSE2-TIMI33 and MERLIN-TIMI36

The DISPERSE2-TIMI33 trial [21] enrolled 909 patients if they experienced ischemic

symptoms at rest for a duration exceeding 10 minutes with either biochemical marker

evidence of MI (defined as Troponin-T, -I, or creatinine kinase-MB elevation greater

than the local MI decision limit) or ECG evidence of ischemia (defined as the presence

of new or presumably new ST-segment depression ≥0.05 mV, transient ST-segment

elevation ≥0.1 mV, or T wave inversion ≥0.1 mV in 2 or more contiguous leads). As

part of this study, continuous ECG data were recorded for a median duration of 4

days. Three-lead LifeCard CF Holter monitors were placed within 48 hours of the

initial event, and the data were sampled at 128 Hz. Patients were followed up for a

period of 90 days for CVD.

The MERLIN-TIMI36 trial [73] studied 6560 patients hospitalized with non-ST-

elevation ACS. Patients with moderate- to high-risk clinical features were enrolled

within 48 hours of their last ischemic symptoms and treated in a blinded manner

with intravenous followed by oral ranolazine or matching placebo. Patients in the
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MERLIN-TIMI36 trial received standard medical and interventional therapy accord-

ing to local practice guidelines and were followed for a median duration of 348 days

for CVD and MI. Continuous three-lead 128-Hz ECG recording was initiated at ran-

domization (within 48 hours of the last ischemic discomfort) and continued for up

to 7 days. Similar to Disperse trials, full inclusion and exclusion criteria for the

MERLIN-TIMI36 trials (patient enrolment completed in May 2006), as well as study

procedures, have been previously published [73].

Both the DISPERSE2-TIMI33 trial and the MERLIN-TIMI36 trial had long-

term ECG data from patients used in our study. From these data, we measured

the following ECG features: HRT categorized as low [turbulence onset (TO) <0 and

turbulence slope (TS) >2.5 ms], moderate (either TO ≥0 or TS ≤2.5 ms), or high

(TO ≥0 and TS ≤2.5 ms), DC [categorized as low (>4.5 ms), moderate (2.5 to 4.5

ms), or high (<2.5 ms)], and MV >50. In addition, the DISPERSE2-TIMI33 and

the MERLIN-TIMI36 data sets had the following common clinical parameters: age

>65 years, sex, current smoker, history of hypertension, history of diabetes mellitus,

previous MI, index event (unstable angina versus nonST-elevation MI), ST-segment

depression ≥0.1 mV.

A.2 BMC2

The Blue Cross Blue Shield of Michigan Cardiovascular Consortium (BMC2) multi-

center interventional cardiology registry [74] collects data from all nonfederal hospitals

that perform PCI in the state of Michigan. The BMC2 is a physician-run quality im-

provement collaborative that is supported by, but independent of, the funding agency,

Blue Cross Blue Shield of Michigan. A physician advisory committee is responsible

for setting the quality goals and developing quality improvement efforts without any

input from or sharing of data with the study sponsor. Procedural data on all consec-

utive patients undergoing PCI at participating hospitals are collected by dedicated
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data abstractors using standardized data collection forms. All data elements have

been prospectively defined, and the protocol is approved by the local institutional

review board at each hospital. In addition to a random audit of 2% of all cases, med-

ical records of all patients undergoing multiple procedures or coronary artery bypass

grafting and of patients who died in the hospital are reviewed routinely to ensure

data accuracy.

There were a total of 18,993 patients undergoing percutaneous coronary interven-

tion in 2007, 22,023 patient undergoing percutaneous coronary intervention in 2008,

and 20,289 patients undergoing percutaneous coronary intervention in 2009. The clin-

ical variables available include those related to patient characteristics (gender, body

mass index, age), cardiac status (priority, staged percutaneous coronary intervention,

salvage, ad hoc percutaneous coronary intervention, stable angina, cardiac arrest, un-

stable angina, high-risk noncardiac surgery, atypical angina, patient turned down for

coronary artery bypass graft by surgeon), percutaneous coronary intervention in the

setting of MI (primary percutaneous coronary intervention; symptom to percutaneous

coronary intervention time: 0 to 6, 6 to 12, 12 to 24, and >24 hours of symptoms;

percutaneous coronary intervention of infarct-related vessel; cardiogenic shock; re-

current ventricular tachycardia or ventricular fibrillation; post-infarct angina; lytic

therapy), comorbidities (current smoker, hypertension, insulin-dependent diabetes,

noninsulin-dependent diabetes, congestive heart failure, peripheral vascular disease,

renal failure requiring dialysis, significant valve disease, current or recent gastroin-

testinal bleed, chronic obstructive pulmonary disorder, cerebrovascular disease, atrial

fibrillation, history of cardiac arrest, previous MI, previous percutaneous coronary

intervention), pre-procedure laboratory results (creatinine, hemoglobin), contraindi-

cations (aspirin, angiotensin-converting enzyme inhibitors, beta-blockers, cholesterol-

lowering agents, clopidogrel), pre-procedure therapy (aspirin, intravenous heparin,

lowmolecular weight heparin, bivalirudin, angiotensin-converting enzyme inhibitors,
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beta-blockers, calcium channel blockers, diuretics, coumadin, clopidogrel, thienopyri-

dine, intra-aortic balloon pump, intubation), and cardiac anatomy and function (left

main artery stenosis, ejection fraction, number of diseased vessels, left ventricular

end-diastolic pressure, graft lesion, grafts with ≥70% stenosis, ostial lesion, moderate

to heavy calcification, thrombus, and chronic total occlusion).

A.3 UM-AFIB

The University of Michigan Atrial Fibrillation Study (UM-AFIB) is an ongoing study

to collect data from patients undergoing CABG, aortic, or valvular surgery at the

University of Michigan Hospital. Over the first 10 months of this project (December

2012 to October 2013) data from almost a thousand patients was collected. The

data collection was carried out on the entire patient cohort in the Cardiothoracic

intensive care unit (ICU) and the operating room (OR) comprising adult (age ≥18

years) patients.

Two sets of continuous ECG data were collected from each patient. The first

was recorded during operation in the OR, and the other consists of at least 24 hours

of continuous ECG data recorded in the ICU. Both recordings have 4-lead ECG

available (Lead 1, 2, 3, and a generic V-lead that we refer to as Lead 4) and are

sampled at 240 Hz with 16-bit quantization. ECG data acquisition was carried out

from patients undergoing routine monitoring by using proprietary software developed

at the University of Michigan to extract data from the GE Unity Network system

used at the University of Michigan. Specifically, the OR data was recorded using GE

Solar 9500 while the ICU data was recorded using GE Solar 8000M.

In parallel, the patients were monitored for PAF, and each episode of PAF was con-

firmed by clinician review. This process of validating and logging PAF is already part

of standard care at the University of Michigan. The ECG data and the observations

of PAF were supplemented with detailed metadata for all patients, corresponding to
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the risk metrics that have been described in the literature for PAF. These include:

• preoperative variables: age, gender, previous atrial fibrillation history, hy-

pertension, stenosis of right coronary artery, chronic obstructive pulmonary

disease, use of digoxin, beta-blocking withdrawal effect, previous myocardial

infarction, smoking, diabetes mellitus, left ventricular ejection fraction, and left

atrial dimension,

• intraoperative variables: (where applicable) aortic cross-clamp time, graft

number, graft position, and choice of alternative minimal invasive off-pump

CABG versus conventional on-pump CABG, and

• postoperative variables: mechanical ventilation time, postoperative pneumo-

nia, assistance of intra-aortic balloon pump, and total amount of administered

fluids.

All of the collected data are de-identified and anonymized.
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APPENDIX B

Clinical Utility

B.1 Hazard Ratio

In survival analysis, a hazard is the rate at which events happen, so that the proba-

bility of an event happening in a short time interval is the length of time multiplied

by the hazard. Although the hazard function may vary with time, the assumption

is that the predictor variables does not change with time. This is also called pro-

portional hazard models for survival analysis which assumes that the hazard in one

group is a constant proportion of the hazard in the other group. The proportion of

these corresponds to the hazard ratio.

Specifically, Cox proportional hazards regression [61] is a popular semiparametric

method which we applied to quantify the effect of predictor variables. The Cox

proportional hazards model relates the hazard rate for individuals or items at the

value X, to the hazard rate for individuals or items at the baseline value. The impact

of the predictor variables is a loglinear regression. For a baseline relative to 0, this

model corresponds to
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log(HR) = log(
hX(t)

h0(t)
) =

p∑
i=1

(Xi ∗ βi) (B.1)

where hX(t) is the hazard rate at X and h0(t) is the baseline hazard rate function.

The hazard ratio represents the relative risk of instant failure for individuals or

items having the predictive variable value X compared to the ones having the baseline

values. For example, if the predictive variable is smoking status, where nonsmoking

is the baseline category, the hazard ratio shows the relative instant failure rate of

smokers compared to the baseline category, that is, nonsmokers. The estimated

hazard ratio for the effect of each explanatory variable is exp(β), given all other

variables are held constant, where β is the coefficient estimate for that variable.

B.2 Area Under ROC Curve (AUROC)

The receiver operating characteristic (ROC) curve is a graphical plot which illustrates

the performance of a binary classifier system as its discrimination threshold is varied.

It is created by plotting the fraction of true positives out of the total actual positives

(TPR = true positive rate) vs. the fraction of false positives out of the total actual

negatives (FPR = false positive rate), at various threshold settings. TPR is also

known as sensitivity or recall in machine learning. The FPR is also known as the

fall-out and can be calculated as one minus the more well known specificity. The

ROC curve is then the sensitivity as a function of fall-out.

The AUROC [19] measures discrimination, that is, the ability of the test to cor-

rectly classify those with and without the disease. Consider the situation in which

patients are already correctly classified into two groups. You randomly pick one from

the disease group and one from the no-disease group and do the test on both. The

patient with the more abnormal test result should be the one from the disease group.

The area under the curve is the percentage of randomly drawn pairs for which this is
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true (that is, the test correctly classifies the two patients in the random pair).

Under clinical settings, the AUROC can reflect the ability of the different ap-

proaches to discriminate between patients who died during follow up and those that

remained event free. It is widely used in medicine, and is generally considered the

standard for evaluating risk stratification methods [3].

B.3 Net Reclassification Improvement and Integrated Dis-

crimination Improvement

Pencina et al. [83] proposed two new ways of assessing improvement in model perfor-

mance (i.e., as a replacement to looking at the difference between AUROC values).

The net reclassification improvement (NRI) focuses on reclassification tables con-

structed separately for participants with and without events, and quantifies the cor-

rect movement in categories: upwards for events and downwards for non-events. For

events, we assign 1 for upward reclassification, -1 for downward. The opposite is

done for non-events. We then sum the individual scores and divide by the number of

individuals in each group. Denoting D as the event indicator, we define the NRI as:

NRI = [P (up|D = 1)− P (down|D = 1)]− [P (up|D = 0)− P (down|D = 0)] (B.2)

The integrated discrimination improvement (IDI) does not require categories, and

focuses on the differences between sensitivities (IS) and ’one minus specificities (IP)’

(the two axes of ROC plot) for two models.

IDI = (ISnew − ISold)− (IPnew − IPold) (B.3)
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