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ABSTRACT

The structure of W -graphs arising in Kazhdan-Lusztig theory

by

Michael S. Chmutov

Chair: John R. Stembridge

This thesis is primarily about the combinatorial aspects of Kazhdan-Lusztig theory.
Central to this area is the notion of a W -graph, a certain weighted directed graph which
encodes a representation of the Iwahori-Hecke algebra of a Coxeter group. The most
important examples were given in the original work of Kazhdan and Lusztig in 1979;
from these graphs the Kazhdan-Lusztig polynomials are obtained via a weighted path
count. In the first part, we consider “parallel transport” relations among edge weights.
Some of these relations, namely those coming from simply-laced Weyl groups, appeared
in the same paper of Kazhdan and Lusztig. We introduce additional ones corresponding
to doubly-laced Weyl groups, and, as an application, prove Green’s 0 − 1 conjecture
in type B. In the second part we clarify the structure of W -graphs corresponding
to minuscule and quasi-minuscule quotients of finite Weyl groups. The W -graphs for
minuscule quotients can be deduced, on a case-by-case basis, from previous work on the
associated Kazhdan-Lusztig polynomials; we give a type-independent proof of a weaker
result that these graphs can be characterized by simple combinatorial rules. For quasi-
minuscule quotients, we compute the graphs for all finite Weyl groups except for Lie
type D (where we give a conjectural answer). We also compute the parabolic Kazhdan-
Lusztig polynomials for the type A quasi-minuscule quotient. The last part concerns
the conjecture that in Lie type A, the only strongly connected W -graphs which satisfy
a weak set of conditions known as “admissibility” are the Kazhdan-Lusztig examples.
We prove a partial result that the symmetrically weighted edges of such a graph are the
same as the symmetrically weighted edges of some Kazhdan-Lusztig examples.
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CHAPTER 1

Introduction

This thesis deals with combinatorial constructions called W -graphs. They are weighted di-
rected graphs, with additional structure that encodes certain representations of the Iwahori-
Hecke algebra HW of a Coxeter group W .

The definition originated in Kazhdan-Lusztig theory. In [KL79], Kazhdan and Lusztig
introduced the canonical basis {Cw | w ∈ W} of HW . The transition matrix between this
basis and the standard basis is conveniently expressible in terms of the so-called Kazhdan-
Lusztig polynomials. One of the primary reasons for introducing these polynomials is the
Kazhdan-Lusztig Conjecture which states that their evaluation at 1 gives the multiplicities
of Verma modules in the simple modules of the principal block of category O. The conjecture
has been proven, shortly after being stated, by Beilinson and Bernstein [BB81], and Brylinski
and Kashiwara [BK81] independently. The Kazhdan-Lusztig polynomials are also intricately
connected with the geometry of Schubert varieties; they are Poincaré polynomials of the local
intersection cohomology of a Schubert variety at a point in a given Schubert cell. A survey
of this area can be found in Chapter 8 of [Hum08].

Kazhdan and Lusztig wrote down formulas for the action of the generators of HW on
the canonical basis (in terms of some coefficients of the Kazhdan-Lusztig polynomials; see
µ-coefficients in Section 1.2.1). The information needed to write down the action can be
conveniently captured by a graph which we refer to as the Kazhdan-Lusztig W -graph. The
vertices of this graph are in bijection with the elements of W . Since only a few coefficients of
the Kazhdan-Lusztig polynomials are used in the action, it seems that the W -graph contains
much less information than the polynomials. However it turns out that in case W is finite,
it is fairly computationally easy to obtain all the polynomials from the W -graph (see the
end of Section 1.2.3). The same computation from the definition is prohibitively hard, so it
is interesting to find alternative ways of constructing the Kazhdan-Lusztig W -graph. This
leads one to consider the class of graphs which encode representations of HW , i.e. W -graphs.

It turns out that the strongly connected components of a W -graph also encode repre-
sentations, and hence are themselves W -graphs. Strongly connected W -graphs are called
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cells. The partition of W into cells of the Kazhdan-Lusztig W -graph has been a subject of
numerous papers. It has been known since [KL79] that in Lie type A, the cells are given by
the Robinson-Schensted correspondence. In a series of papers [Gar90, Gar92, Gar93, Gar]
Garfinkle introduced a domino insertion algorithm and described its relationship with the
cells in Lie types B and D. The conjectures in [BGIL10] suggest that the similarity between
types A and B is better seen if one considers the Hecke algebra with unequal parame-
ters. The cell breakdown in affine Weyl groups has been extensively studied by Lusztig
([Lus85, Lus87a, Lus87b]) and Shi ([Shi86, Shi90, Shi91]).

Another development we would like to mention is that of parabolic induction. In [Cou99]
Couillens showed that the representation induced from a one-dimensional one always has a
W -graph structure. This idea was further developed by Howlett and Yin ([HY03, HY04]);
they showed that a representation induced from one given by a W -graph also has a W -graph
structure.

We would like to study W -graphs from a combinatorial viewpoint, however the class of
all W -graphs is too large to be approached in this way. Stembridge [Ste08a] isolated several
properties of the Kazhdan-Lusztig W -graph (which he called “admissibility”) and combina-
torially characterized admissible W -graphs. In the same paper he asked three fundamental
questions. The first was whether for finite W there are finitely many admissible W -cells.
This question was answered affirmatively in his later paper [Ste12]. The second was whether
two cells of the Kazhdan-Lusztig graph which define isomorphic representations must in fact
be isomorphic as W -graphs. We know of no progress with regard to this question. The
last question was whether all admissible W -cells in type A are cells of the Kazhdan-Lusztig
W -graph. We present some results concerning this question in Chapter 4. Stembridge’s
notes [Ste08b] describe the methods he developed to construct all admissible W -cells “from
scratch” and used to do empirical computations. In particular, the notion of molecular
graphs introduced there will be heavily used in the thesis.

Below we give a chapter-by-chapter summary.
In the introduction we describe both the elements of Kazhdan-Lusztig theory, as well as

the combinatorial approach of Stembridge. The only part of this which may be new is the
relationship between the Kazhdan-Lusztig theory of parabolic quotients and the classical
Kazhdan-Lusztig theory via W -graphs. It has been known since Deodhar’s introduction
([Deo87]) of the parabolic variant that the Kazhdan-Lusztig polynomials in the parabolic
case are related in a nontrivial fashion to the classical ones. We observe, relying on the
computations of Couillens ([Cou99]) that the associated W -graphs are, in fact, related in a
very easy way (see discussion around Propositions 1.2.14 and 1.2.17).

In Chapter 2, we discuss two versions of “parallel transport” of edge weights in W -graphs.

2



It is a set of relations among edge weights (normally of the form “one edge weight is equal to
another”). These relations turn out to be quite powerful and often allow us to find most edge
weights relatively easily. The version which we refer to as Kazhdan-Lusztig transport has
been introduced via the ∗-operator in [KL79]. Its counterpart in the combinatorial picture
of Stembridge is most likely the so-called Local Polygon Rule. In simply laced types we
find generating relations for the Local Polygon Rule (to which we refer as arc transport)
which show a similarity between the two (Theorems 2.1.2 and 2.1.3). It is easy to see that
in simply laced types Kazhdan-Lusztig transport is at least as strong as arc transport. We
then extend this theory to Coxeter groups that have a double bond. In Definition 2.2.7, we
give additional relations which may be considered a version of Kazhdan-Lusztig transport
for double bonds and proceed to show that these relations indeed hold in the Kazhdan-
Lusztig W -graph. We also show that, with this new definition, Kazhdan-Lusztig transport
implies the Local Polygon Rule. This proof is somewhat cumbersome since we are unable
to isolate a simple generating set of the relations implied by the Local Polygon Rule. As an
application of the double bond version of Kazhdan-Lusztig transport, we prove, in Lie type
B, the conjecture of Green [Gre09] that the weights of the edges in the Kazhdan-Lusztig
graph which start at fully commutative elements must be 0 or 1.

In Chapter 3 we clarify the structure of W -graphs for certain important parabolic quo-
tients, namely the minuscule and quasi-minuscule ones. For the minuscule case we show that
the W -graph is “not too complicated,” in the sense that it can be reconstructed fully via
either Local Polygon Rule or Kazhdan-Lusztig transport. The Kazhdan-Lusztig polynomials
have been computed before (see [Boe88, LS81, Bre09, Bre02]), so it is not surprising that we
can get our hands on this graph. However what is interesting about our proof is that it is
entirely independent of the Lie type. In the quasi-minuscule case we are able to compute the
W -graphs for all the finite Weyl groups, except for the type Dn. In this case we conjecture
the answer, but are unable to prove it as of yet. In type A we can go further and give an
explicit formula for (one of the two variants of) the parabolic Kazhdan-Lusztig polynomials.

In Chapter 4 we specialize entirely to type A. We attempt to resolve the conjecture
that all the admissible cells come from the Kazhdan-Lusztig graph. While we are unable to
resolve it completely, we prove that certain subgraphs (so called “molecules”) out of which
all admissible cells are built do, in fact, arise in the Kazhdan-Lusztig graph. To extend the
result to cells we formulated a conjecture that molecules inside a molecular graph (a slightly
larger class of graphs than W -graphs) cannot form a cycle. This turns out to be false; we
exploit a limitation of the Kazhdan-Lusztig transport to find such examples in type A35. A
computerized search by Stembridge found a smaller example in A13.

Most of the results in this thesis concern finite crystallographic root systems. To set the

3



Figure 1.1: Dynkin diagrams of finite crystallographic root systems.
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notation, we give a list of Dynkin diagrams for these in Figure 1.1. We will refer to this root
numbering as “standard.” With one exception (section 2.3), we will use this numbering of
roots. The edges of the Coxeter graph will be referred to as bonds to distinguish them from
edges of other graphs. We will say that si is bonded to sj (denoted si ∼ sj) if there is a
bond between the corresponding vertices of the Coxeter graph.

1.1 W -graphs and W -molecules

We start by recalling Stembridge’s combinatorial approach to Kazhdan-Lusztig theory.

1.1.1 Admissible S-labeled graphs and sBCS graphs

In this section we describe the kind of graphs enhanced with additional structure which we
will deal with throughout the thesis.

Let (W,S) be a Coxeter system.
An admissible S-labeled graph is a tuple G = (V,m, τ), where V is a finite set (vertices),

m : V × V → Z>0, and τ : V → 2S are maps such that

1. as a directed graph (with edges given by pairs of vertices with non-zero m value), G is
bipartite,

2. if τ(u) ⊆ τ(v) then m(u, v) = 0,

3. if τ(u) and τ(v) are incomparable, then m(u, v) = m(v, u).

The function τ will be referred to as the τ -invariant. We will most of the time omit the
word “admissible” since we consider no other S-labeled graphs.
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From the definition we can see that either one of m(u, v) and m(v, u) is zero, or they are
equal. By a simple edge we mean a pair of vertices (v1, v2) such that neither m(v1, v2) nor
m(v2, v1) are 0. In diagrams we draw these as undirected edges (see the left side of Figure
1.6). By an arc v1 → v2 we mean a pair of vertices (v1, v2) such that m(v1, v2) 6= 0, but
m(v2, v1) = 0. Thus if u→ v is an arc, then τ(u) ⊃ τ(v). If (u, v) is a simple edge then τ(u)
and τ(v) are incomparable, and m(u, v) = m(v, u).

Arcs will not come into play much until section 1.1.3.
A simple edge (u, v) activates a bond (i, j) if precisely one of τ(u) and τ(v) contains i,

and precisely the other one contains j.
Let (i, j) be a bond, and let G be an S-labeled graph. An (i, j)-string is a path v1, . . . , vl

in G without self-intersections such that

• for each 1 6 k 6 l − 1, the edge (vk, vk+1) activates the bond (i, j),

• no other edges adjacent to v1, . . . , vl activate the bond (i, j).

An S-labeled graph is called uniform if all the τ -invariants have the same size.

Definition 1.1.1. An S-labeled graph is called an sBCS graph if it satisfies

(SR) If (u, v) is a simple edge then m(u, v) = m(v, u) = 1. Thus we will omit the weights of
simple edges in our diagrams.

(CR) If u → v is an edge, i.e. m(u, v) 6= 0, then every i ∈ τ(u) \ τ(v) is bonded to every
j ∈ τ(v) \ τ(u).

(sBR) Suppose (i, j) is a bond of order mij in the Coxeter graph of (W,S), i.e. the order of
sisj in W is mij. For each vertex u, precisely one of the following holds:

• i, j ∈ τ(u),

• i, j /∈ τ(u),

• u is part of an (i, j)-string of length mij − 1.

The rules are called, respectively, simplicity rule, compatibility rule, and strong bonding
rule.

Remark 1.1.2. The original version of the bonding rule (BR) in [Ste08a] allowed more general
graphs than just strings; more precisely the restriction of the graph to vertices which contain
precisely one of i and j is a union of ADE Dynkin diagrams whose Coxeter numbers divide
m. In particular, a path of length m−1 is such a diagram. The notion “strong bonding rule”
is used here since the graphs that come from Kazhdan-Lusztig theory only involve paths.
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Remark 1.1.3. For the case of a simple bond (i, j), sBR just says that any vertex u with
i ∈ τ(u) and j /∈ τ(u) is connected to a unique vertex v with i /∈ τ(v) and j ∈ τ(v), and vice
versa. In this case (BR) is equivalent to (sBR).

1.1.2 Classification of sBCS graphs of some Coxeter groups of
small rank

In this section we classify the sBCS-graphs for the Coxeter groups of types A3 and B3. We
also introduce a “flatness” condition and classify all sBCS-graphs which satisfy it for the
Coxeter systems of types A4, B4, and F4.

Notice that there are no conditions on the weights of the arcs (besides ones imposed by
admissibility). So, for the purposes of this section, we may assume that all the arcs have
weight 0.

There are two symmetries which we will exploit. First, a symmetry of the Coxeter graph
induces a symmetry of an sBCS graph (just act on the τ -invariants). We will refer to this as a
“diagram symmetry.” Both the Coxeter graphs for An and for F4 have such a symmetry. The
second is that if you complement the τ -invariants of an sBCS graph (and, in general, reverse
all the arcs), you get again an sBCS graph. We will refer to this as the “complementation
symmetry.” It holds for any Coxeter system.

1.1.2.1 Rank 3

Example 1.1.4. Let us classify the connected A3 sBCS graphs. Because of admissibility, a
vertex whose τ -invariant is ∅ cannot be connected to any other vertex by a simple edge.
Similarly for a vertex whose τ -invariant is {1, 2, 3}.

Suppose we have a vertex v1, whose τ -invariant is {1}. By sBR, it is connected by a
simple edge to a vertex v2 whose τ -invariant contains 2, but not 1. By CR, 3 /∈ τ(v2), and
hence τ(v2) = {2}. By sBR, v2 is connected by a simple edge to a vertex v3 whose τ -invariant
contains 3, but not 2. We already know v3 6= v1. By sBR, τ(v3) = {3}. There are no other
simple edges possible, and this is a complete sBCS graph. By symmetry, the same analysis
works for v1 having τ -invariants of {3}, {1, 2}, {2, 3}.

Suppose we have a vertex v1, whose τ -invariant is {2}. By sBR, it is connected by a
simple edge to a vertex v2 whose τ -invariant contains 1, but not 2. The case of τ(v2) = {1}
was described above, so the only choice is τ(v2) = {1, 3}. This yields a complete sBCS graph.
By symmetry, the same argument works for v1 having τ -invariant of {1, 3}.

This completes the classification. The results are shown in Figure 1.2.
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Figure 1.2: Connected sBCS graphs of type A3.

Example 1.1.5. Let us classify the connected B3 sBCS graphs. Because of admissibility, a
vertex whose τ -invariant is ∅ cannot be connected to any other vertex by a simple edge.
Similarly for a vertex whose τ -invariant is {1, 2, 3}.

Suppose we have a vertex v1, whose τ -invariant is {1}. By sBR, it is part of a (1, 2)-
string. There are two cases, depending on whether or not v1 is in the middle of its string.
Suppose first that it is in the middle, i.e. the string is a path v0, v1, v2 and 1 /∈ τ(v0)∪ τ(v2),
2 ∈ τ(v0) ∩ τ(v2). By CR, 3 /∈ τ(v0) ∪ τ(v2), so τ(v0) = τ(v1) = {2}. By sBR, there exists
v3 connected to v2 with 3 ∈ τ(v3) and 2 /∈ τ(v3), and there exists v−1 connected to v0 with
the same restriction. Now v3 6= v−1 since otherwise we would violate sBR with respect to
the bond (2, 3). Also, v3 6= v1 (since τ(v1) = {1}), and hence by sBR, 1 /∈ τ(v3). Similarly,
1 /∈ τ(v−1). Hence τ(v3) = τ(v−1) = {3}. This completes the graph.

Now suppose v1 is not in the middle, i.e. the string is a path v1, v2, v3, τ(v2) contains 2
but not 1, and τ(v3) contains 1 but not 2. By CR, 3 /∈ τ(v2), hence τ(v2) = {2}. By sBR,
we know that v2 must be adjacent to a vertex with 3 in its τ -invariant. If that vertex is v3,
then we have a complete sBCS graph. Otherwise, there must exist v4 with 3 ∈ τ(v4) and
2 /∈ τ(v4). By sBR, 1 /∈ τ(v4), and hence τ(v4) = {3}. This is again a complete sBCS graph.

Thus we have classified all possible B3 sBCS graphs which have a vertex with τ -invariant
{1}; there are three of them. By symmetry, we have also classified B3 sBCS graphs which
have a vertex with τ -invariant {2, 3}.

Suppose we have a vertex v1, whose τ -invariant is {2}, but the graph has no vertex
with τ -invariant {1} or {2, 3}. Clearly, v1 cannot be in the middle of its (1, 2)-string, since
otherwise both ends of the string would have τ -invariants {1, 3} which would violate sBR
with respect to the bond (2, 3). Hence the string is a path v1, v2, v3. Now 1 ∈ τ(v2) and
2 /∈ τ(v2), so, by assumption, τ(v2) = {1, 3}. Then the edge (v1, v2) activates the bond
(2, 3). By sBR, the edge (v2, v3) must not activate this bond, so τ(v3) = {2, 3}. This is a
contradiction; there is no graph with τ -invariant of {2} but no τ -invariant of {1} or {2, 3}.
By symmetry, we know that there is no sBCS graph with a τ -invariant of {1, 3} but no
τ -invariant of {1} or {2, 3}.

Suppose we have a vertex v1, whose τ -invariant is {3}, but the graph has no vertex with
τ -invariant {1} or {2}. By sBR, there exists v2 with 2 ∈ τ(v2) and 3 /∈ τ(v2). Now 1 /∈ τ(v2)
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Figure 1.3: Connected sBCS graphs of type B3.

aa c ⇒
c
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Figure 1.4: Definition of “flat 4-cycles”.

by CR. So τ(v2) = {2}, which is a contradiction.
This completes the classification. The results are shown in Figure 1.3.

1.1.2.2 The compatibility graph and flatness

Before dealing with the rank 4 root systems, we need to introduce two notions. The first
is that of an sBCS graph with flat 4-cycles. This is a technical condition which simplifies
the classification and will later be implied by other rules of W -graphs and W -molecules
(specifically the Polygon Rule and the Local Polygon Rule). The second is that of the
compatibility graph; it is a graph that will allow us to systematically impose CR, thus
reducing the complexity of the arguments.

Definition 1.1.6. Let a and c be non-adjacent bonds. An sBCS graph has flat 4-cycles
if whenever there are three edges in the configuration on the left side of Figure 1.4, where
edges are labeled by the bonds they activate, and none of the above edges activate a bond
that is adjacent to both a and c, then there is a fourth edge activating the bond c.

Now let us describe the construction of the compatibility graph, following [Ste08a]. The
graph Comp(W,S) is a directed graph whose vertices are all the subsets of S and for J,K ⊆ S,
J → K is an edge precisely when J 6⊆ K and any s ∈ J \K is bonded to any t ∈ J \K.

Some of the edges of the graph are trivial, namely those of the form J → K for J ) K.
If we do not draw these edges, the compatibility graph for the case when the Coxeter graph
is a path with four vertices (such as A4, B4, and F4) is shown in Figure 1.5

Now CR may be rephrased as saying that there is a graph homomorphism from the
S-labeled graph into Comp(W,S) which maps a vertex to its τ -invariant.
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Figure 1.5: Coxeter graph of a root system and the corresponding compatibility graph.

Remark 1.1.7. For any of the Coxeter systems whose graph is a path on four vertices, the
condition of having flat 4-cycles implies that whenever a graph contains a path with τ -
invariants 14− 24− 23 or 14− 13− 23, then it must contain the entire (flat) 4-cycle.

1.1.2.3 Rank 4

Throughout this section we will be frequently using the compatibility graph in Figure 1.5.

Proposition 1.1.8. The connected sBCS graphs of type A4 with flat 4-cycles are shown in
Figure 1.6.

Proof. Suppose G is a connected sBCS graph of type A4 with flat 4-cycles. As always, there
are two possibilities for G to have only one vertex. Thus from now on we assume that is not
the case.

Suppose G has a vertex v1 with τ -invariant {1}. It is only possible to activate a, so by
sBR, v1 is connected to v2 with τ(v2) = {2}. Now the bond b must be activated along some
edge from v2, and that edge cannot activate the bond a. Hence v2 is connected to v3 with
τ(v3) = {3}. By the same argument, v3 is connected to v4 with τ(v4) = {4}. The result
is a complete sBCS graph. Using the complementation and diagram symmetries, we have
classified the sBCS graphs which contain a vertex with τ -invariant {4}, {2, 3, 4},or {1, 2, 3}.

Suppose G has a vertex v1 with τ -invariant {2}, but no vertex with τ -invariant {1}.
Looking at the compatibility graph we see that v1 is connected to a vertex v2 with τ(v2) =
{1, 3}. There must be an edge out of v2 which activates c, however it cannot activate a or b
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Figure 1.6: Connected sBCS graphs of type A4 with flat 4-cycles.

since those are already activated along (v1, v2). Thus v2 is connected to v3 with τ(v3) = {1, 4},
which in turn is connected to a vertex v4 with τ(v4) = {2, 4}. Now there must be an edge
from v4 to v5 which activates c. If τ(v5) = {2, 3} then the flatness assumption would imply
that v5 and v2 are connected, which is impossible. Hence τ(v5) = {3}. The result is a
complete sBCS graph. Thus, by exploiting the symmetries, we have classified all sBCS
graphs with flat 4-cycles that contain vertices with τ -invariants of size other than 2.

By similar arguments one can see that if G contains only vertices whose τ -invariants are
of size 2, then G must be isomorphic to the induced subgraph of Comp(W,S) on two-element
subsets.

Proposition 1.1.9. The connected sBCS graphs of type B4 with flat 4-cycles are shown in
Figure 1.8.

Proof. Suppose G is a connected sBCS graphs of type B4 with flat 4-cycles. There are, as
always, two one-vertex sBCS graphs.

In this case edges activating a must come in adjacent pairs.
Suppose G has a vertex v1 with τ -invariant {1}. First suppose v1 is in the middle of its

(1, 2)-string v0, v1, v2. All instances of activation of a around these vertices have been used
up, and there is a unique way of completing this graph to an sBCS graph (it yields the path
with singleton τ -invariants in Figure 1.8).

Now suppose v1 is at the end of its (1, 2)-string v1, v2, v3. We know that τ(v2) = {2},
however there are two choices for τ(v3). If τ(v3) = {1}, then the graph completes uniquely to
an sBCS graph with singleton τ -invariants which looks like the Coxeter graph of the D5 root
system. Assume τ(v3) = {1, 3}. Since b and c are simple bonds, we get a unique possible
continuation of the path to v4 with τ(v4) = {1, 4}.

Now v4 must be part of a (1, 2)-string. Suppose first that it is in the middle of the string
v5, v4, v6. Then τ(v5) = τ(v6) = {2, 4}. There must be an edge out of v5, to say v7, which
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Figure 1.7: Partial sBCS graphs of type B4.

activates c. Then τ(v7) = {3}, since if τ(v7) were {2, 3} then we would have issues with
flatness of 4-cycles. Similarly, v6 must be connected to a vertex with τ -invariant {3}. This
yields a complete sBCS graph.

Now assume v4 is at the end of its (1, 2)-string v4, v5, v6. Then τ(v5) = {2, 4}. By the
same argument as before, v5 is connected to v7 with τ(v7) = {3}. Hence τ(v6) = {1, 4} (as
b is already activated on the edge (v5, v7)). This completes uniquely to the sBCS graph in
the lower left-hand corner of Figure 1.8.

This finished the classification of graphs which contain a vertex with τ -invariant {1}. By
symmetry (only complementation is applicable to type B), we have also classified ones which
have a vertex with τ -invariant {2, 3, 4}.

Suppose G has a vertex v1 with τ -invariant {2}, but none with τ -invariants {1} or
{2, 3, 4}. Now v1 cannot be at the center of its (1, 2)-string since both other vertices would
have to have τ -invariant {1, 3} (contradicting sBR). Using flatness we can uniquely recon-
struct the partial graph on the left of Figure 1.7. The vertices v4 and v5 may require more
edges coming out of them.

If v5 is the center of its (1, 2)-string, then it must be connected to v6 with 1 ∈ τ(v6).
Then τ(v6) = {1, 3, 4} since otherwise we will contradict the flatness assumption. The result
is a complete sBCS graph. If, on the other hand, v4 is the center of the (1, 2)-string, then it
must be connected to a vertex v6 with τ(v6) = {2, 4}. Now v5 must be incident to an edge
activating b, and v6 must be incident to an edge activating b and an edge activating c. It is
clear that v5 must be connected to a vertex with τ -invariant {3, 4}. To avoid contradicting
flatness, v6 must be connected to a vertex with τ -invariant {3}. This finishes the classification
of sBCS graphs with a vertex with τ -invariant {2} (or, by symmetry, {1, 3, 4}), but no vertex
with τ -invariants {1} or {2, 3, 4}.

By a similar argument one can see that it is impossible to have an sBCS graph with
τ -invariant {3} but no τ -invariant {2}. One clearly cannot have an sBCS graph with τ -
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invariant {4} but no τ -invariant {3}.
The only possibilities we have not yet considered are the graphs all of whose vertices have

two elements in their τ -invariants. It is fairly clear that all of them must contain the graph
on the right of Figure 1.7. The only freedom we have is whether v1 or v2 is the center of the
(1, 2) string (the analogous follows for v3 and v4 via flatness; see Remark 1.1.7). This gives
us the two sBCS graphs in the bottom right part of Figure 1.8.

Proposition 1.1.10. The connected non-uniform sBCS graphs of type F4 with flat 4-cycles
are shown in Figure 1.12.

Proof. Suppose G is a connected nonuniform sBCS graph of type F4 with flat 4-cycles. Up
to symmetry we may conclude that G has a vertex v1 with τ -invariant {2} and a vertex v2

with τ -invariant {1, 3}. There are three choices to extend this graph via sBR on the bond
b; these are shown in Figure 1.9.

The last of these is a complete sBCS graph. For the first two there is a unique extension
by applying sBR with respect to a and c; it is shown in Figure 1.10.

The only vertex which will have more edges out of it is v3. To activate the bond c, v3

must be connected to v4 with τ(v4) = {3} (otherwise we will contradict flatness). We then
face a choice of whether v3 or v4 is the middle of the (2, 3)-string. The remainder completes
uniquely so we get the four possibilities shown in Figure 1.11.

This finishes the proof.

Remark 1.1.11. The two graphs at the bottom of Figure 1.12 are of little interest for us since
the stronger rules which will replace flatness (Polygon Rule and Local Polygon Rule) will
not be satisfied by these graphs regardless of the arrangement of arcs.

Proposition 1.1.12. The connected uniform sBCS graphs of type F4 with flat 4-cycles are
shown in Figure 1.13.

Proof. As always, there are two one-vertex sBCS graphs; these are all the ones with empty
or full τ -invariants. It is fairly easy to see (using the same methods as in the previous proofs)
that the only graphs whose τ -invariants are singletons are the ones shown in Figure 1.13.
By symmetry, the same is true for the graphs whose τ -invariants contain three elements.

Suppose G is a connected sBCS graph of type F4 with flat 4-cycles, and all τ -invariants
have two elements. A vertex with a τ -invariant {1, 3}, {1, 4}, {2, 3}, or {2, 4} must automat-
ically be part of a 4-cycle. A vertex with τ -invariant {1, 3} must either be connected to two
vertices with τ -invariants {1, 2} (both which are not connected to anything else), or it must
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Figure 1.8: Connected sBCS graphs of type B4 with flat 4-cycles.
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Figure 1.13: Uniform sBCS graphs of type F4 with flat 4-cycles.

be connected to one vertex with τ -invariant {1, 2} which in turn is connected to another
vertex with τ -invariant {1, 3}. Similarly for a vertex with τ -invariant {3, 4}.

This is a complete classification; the possibilities are

• a path of 4-cycles linked by 1313 12 and 2424 34 , with a fork on
each end,

• a cycle of 4-cycles linked by the same connectors.

1.1.3 W -graphs

Definition 1.1.13. An admissible S-labeled graph is called an admissible W -graph if the
formal span (over the ground ring Z[q±1/2]) of its vertices carries a representation of the
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Iwahori-Hecke algebra, with the action of the generators given by

Ts(u) =


qu, s /∈ τ(u),

−u+ q1/2 ∑
v:s/∈τ(v)

m(u, v)v, s ∈ τ(u),

(see section 1.2.1 for the defining relations of the Iwahori-Hecke algebra).

Remark 1.1.14. Notice that transposing the matrix for the action of each Ts will preserve
the relations of the Hecke algebra. Hence in the above definition we could have used the
transposed formula:

Ts(u) =


qu+ q1/2 ∑

v:s∈τ(v)
m(v, u)v, s /∈ τ(u),

−u, s ∈ τ(u).

This is the version which appeared in the papers of Kazhdan and Lusztig. The version in
the definition was used by Stembridge since it is more natural from a combinatorial point of
view.

We now describe the combinatorial characterization of admissible W -graphs following
[Ste08a].

Suppose G is an S-labeled graph. For distinct i, j ∈ S, a directed path (possibly involving
simple edges) u→ v1 → v2 → · · · → vr−1 → v in G is alternating of type (i, j) if

• i, j ∈ τ(u) and i, j /∈ τ(v),

• i ∈ τ(vk), j /∈ τ(vk) for odd k,

• i /∈ τ(vk), j ∈ τ(vk) for even k.

Let
N r
ij(G;u, v) :=

∑
v1,...,vr−1

m(u, v1)m(v1, v2) . . .m(vr−1, v),

where the sum is over the set of alternating paths of type (i, j) from u to v and length r.

Theorem 1.1.15. [Ste08a, Theorem 4.9] Suppose (W,S) is braid-finite (i.e. for any s, t ∈ S,
the order of st in W is finite). An admissible S-labeled graph is a W -graph if and only if it
satisfies SR, CR, BR (see Remark 1.1.2) and

(PR) Suppose i, j ∈ S with sisj of order p. For any u, v ∈ V and any 2 6 r 6 p, we have

N r
ij(G;u, v) = N r

ji(G;u, v).
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This rule is called the Polygon Rule.

Definition 1.1.16. A strongly admissible W -graph is an sBCS graph which satisfies PR.

Remark 1.1.17. The Polygon Rule does put restriction on the possible arcs. In fact, in the
two sBCS graphs at the bottom of Figure 1.12, no valid arrangement of arcs can satisfy the
Polygon Rule. It is also easy to see that the Polygon Rule implies the flatness of 4-cycles
assumption as defined in 1.1.6.

Now we introduce the “smallest” objects in the category of W -graphs.

Definition 1.1.18. A W -cell is a strongly connected W -graph. A cell of a W -graph is a
subgraph induced by a strongly connected component of the W -graph.

All the admissible A4-cells are shown in Figure 1.14.

Remark 1.1.19. There is no contradiction in the above terminology in that a cell of a W -graph
is a W -cell. Indeed, it encodes a subquotient of the representation given by the W -graph as
follows. All the vertices that can be reached out of the cell span a subrepresentation. All the
vertices outside the cell span a subrepresentation of that. It is easy to see from the formulas
for the action that the cell encodes the quotient representation.

1.1.4 Matrices for generators and paths

We now interpret combinatorially, in terms of paths in the W -graph, the matrix entries
of the action of products of generators of the Iwahori-Hecke algebra in the W -graph basis.
Some of these matrix entries will later be seen to be the Kazhdan-Lusztig polynomials.

Definition 1.1.20. Let s = (s1, . . . , sl) be a word in S. A path u → v of type s is a path
u = u0 → u1 → u2 · · · → ul−1 → ul = v, possibly with repeated entries, such that if ui−1 6= ui

then si ∈ τ(ui−1) and si /∈ τ(ui). The weight of a step ui−1 → ui in such a path is

wti :=


−1, ui−1 = ui, si ∈ τ(ui) (i.e. the path could have left ui−1),

q, ui−1 = ui, si /∈ τ(ui) (i.e. the path could not have left ui−1),

q1/2m(ui−1, ui), otherwise.

The weight of a path is the product of the weights of all the steps.

Proposition 1.1.21. Let s = (s1, . . . , sl) be a word in S. Let Ms be the matrix for the
action of Ts1 . . . Tsl

on the W -graph basis in the KL convention (see Remark 1.1.14). Then
the matrix entry [Ms]u,v is the weighted sum of paths of type (s1, . . . , sl) from u to v.
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Proof. For matrices A1 = [a1
ij], . . . , Ak = [akij] we have

[A1 . . . Ak]ij =
∑

i1,...,ik−1

a1
i,i1a

2
i1,i2 . . . a

k
ik−1,j

.

Apply this to our scenario.

1.1.5 W -molecules

We now consider smaller pieces of W -graphs which are sometimes easier to work with. Given
a W -graph, an induced subgraph connected by simple edges must certainly be part of one
cell (since it is strongly connected). This subgraph does not, in general, have to encode a
representation. However it satisfies a restricted version of the Polygon Rule. We will now
study the graphs which satisfy this restricted rule.

Definition 1.1.22. An admissible S-labeled graph is called an admissible molecular graph
if it satisfies SR, CR, BR, and

(LPR2) For any i, j ∈ S for any u, v ∈ V with i, j ∈ τ(u), i, j /∈ τ(v) and τ(v) \ τ(u) 6= ∅, we
have

N2
ij(G;u, v) = N2

ji(G;u, v).

(LPR3) Let k, i, j, l ∈ S be a copy of A4 in the Coxeter graph: k − i− j − l. For any u, v ∈ V
with i, j ∈ τ(u), i, j /∈ τ(v), k, l /∈ τ(u), k, l ∈ τ(v), we have

N3
ij(G;u, v) = N3

ji(G;u, v).

The rules are collectively called the Local Polygon Rule. Similarly a strongly admissible
molecular graph is an sBCS graph which satisfies LPR2 and LPR3.

Definition 1.1.23. An S-labeled graph is called a molecule if it is a molecular graph, and
there is a path of simple edges between any pair of vertices.

Example 1.1.24. The admissible A4-molecules (remember that for simply-laced types “ad-
missible” and “strongly admissible” are the same) are shown in Figure 1.14. To classify these
one starts with a classification of sBCS graphs in Figure 1.6 (flatness of 4-cycles is implied by
LPR2) and draws in all possible arcs remembering that if u→ v is an arc then τ(u) ) τ(v)
and the resulting graph is bipartite. The only possibilities for arcs arise in the two paths
of length 5. Now imposing LPR2 from the vertex with τ -invariant {1, 4} to the vertex with
τ -invariant {3} tells us that the weight of the arc from {1, 3} to {3} must be 1. Similarly
for the other arcs. Thus to classify admissible A4 molecules we only needed LPR2.
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Figure 1.14: Admissible A4-molecules (the arcs have weight 1).

When talking about an instance of LPR2 we will refer to an element of τ(v) \ τ(u) as
a witness. Thus the instance of LRP2 used in the example is of type (1, 4) with witness
3. Similarly when talking about an instance of LPR3 we will refer to elements k and l as
witnesses.

The simple part of a molecule is the graph formed by erasing all the arcs. We usually
view it as an undirected graph. A morphism of molecules ϕ : M → N is a map between the
vertex sets which

1. is a graph morphism of the simple parts,

2. preserves τ -invariants.

Notice that a morphism does not need to respect arcs.

Remark 1.1.25. We would like to comment on the structure of alternating paths involved in
the Local Polygon Rule. Apriori only the first and the last edges of an alternating path could
be arcs. In fact, the additional assumptions on the τ -invariants of the starting and ending
vertices force at least one of these edges to be simple. So any alternating path involved in
the Local Polygon Rule contains at most one arc. This proves that an induced subgraph of
a W -graph which is connected by simple edges is indeed a W -molecule.

1.1.6 Binding spaces

We now explore the question of how two molecular graphs can be glued by arcs to form
another molecular graph. We follow [Ste08b]. Because the union should be bipartite, it is
not clear which of the two sets of edges are allowed. To deal with this issue we extend the
category to molecular graphs with parity; an object is a molecular graph with a bipartition
into even vertices and odd vertices. Suppose G1 and G2 are two molecular graphs with parity.
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Figure 1.15: An example of binding spaces.

Suppose there are N possible arcs from G1 to G2 which respect parity (namely the arcs must
go from even vertices of G1 to odd vertices of G2 and vice versa). For each 1 6 i 6 N

choose a variable xi for the weight of the i-th arc. Since any path used in the Local Polygon
Rule uses at most one arc, the weights of the arcs between G1 and G2 in no way affect the
fact that the graphs are molecular graphs. Moreover, imposing Local Polygon Rule between
vertices of G1 and G2 gives linear conditions on x1, . . . , xN .

Definition 1.1.26. Suppose G1 and G2 are two molecular graphs with parity, and x1, . . . , xN

are the weights of all the possible arcs which respect parity. Then the binding space is a
linear subspace of RN (with coordinate functions x1, . . . , xN) cut out by the equations from
the Local Polygon Rule.

Example 1.1.27. The binding spaces from 123 to 321 are, respectively 2-
dimensional and 1-dimensional; this is illustrated in Figure 1.15. There are no instances of
Local Polygon Rule here since there are no witnesses.

The binding spaces from 321 to 123 are both 0 since there are no
possible arcs.

Note that (0, . . . , 0) is always in the binding space. The binding space is 0-dimensional
precisely when there is no way to join the two graphs into one besides disjoint union.

Sometimes of particular interest are binding spaces from a molecule to itself. There are
two of these: the even binding space when the parities of the molecules are the same, and
the odd binding space when the parities of the molecules are different. We may also consider
the self binding space of a molecular graph; namely the most general solution to the Local
Polygon Rule in a given molecular graph. The self binding space of a molecular graph is an
affine translate of the even binding space.

When trying to build cells out of molecules, it may be useful to construct a binding graph.
The vertices of the graph are molecules with parity. The edges are present whenever the
pairwise binding space is nonzero. This may be used to show that certain molecules cannot
be connected to others inside a cell.
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1.1.7 Restriction

Let J ⊆ S and let WJ be the corresponding parabolic subgroup (i.e. the subgroup generated
by J).

Let M = (V,m, τ) be an S-labeled graph. The WJ-restriction of M is N = (V,m′, τ ′),
with

1. for all v ∈ V , τ ′(v) = τ(v) ∩ J ,

2. for all u, v ∈ V ,

m′(u, v) =

0, if τ ′(u) ⊆ τ ′(v),

m(u, v), otherwise.

If M is a W -molecular graph, then its WJ -restriction is a WJ -molecular graph. If M is
a W -graph, then its WJ -restriction is a WJ -graph.

Suppose M is a W -molecular graph. A WJ-submolecule of M is a WJ -molecule (i.e.
component connected by simple edges) of the WJ -restriction of M . There is a natural
inclusion map of a WJ -submolecule into the original molecular graph. Sometimes, abusing
notation, we refer to the image of this map as a WJ -submolecule. The sense in which we use
the word should be clear from the context.

Remark 1.1.28. It is sometimes convenient to think of the Local Polygon Rule in terms of
restriction. Suppose we are looking at an instance of LPR2 of type (i, j) with witness k.
Then this instance of LPR2 holds if and only if it holds for the W{i,j,k} restriction. Similarly,
an instance of LPR3 of type (i, j) with witnesses k, l holds if and only if it holds for the
W{i,j,k,l} restriction.

1.2 Kazhdan-Lusztig Theory

The primary reason for introducing the definition of a W -graph was to study the examples
of the construction which arise in Kazhdan-Lusztig theory.

This section summarizes the basics of this theory. The standard references are [KL79,
Hum92].

1.2.1 Basic definitions

Let (W,S) be a Coxeter system of rank n. Then S = {s1, . . . , sn}. The length function
is denoted by l(·). The Bruhat order is denoted by 6. For w ∈ W denote by τ(w) (resp.
τR(w)) the left (resp. right) descent set of w.
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For si, sj ∈ S, let mi,j be the order of sisj in W . The Iwahori-Hecke algebra is a
q-analogue of the group algebra of W ; it is an algebra over the ground ring Z[q1/2, q−1/2]
generated by T1, . . . , Tn. The relations are

T 2
i = (q − 1)Ti + q,

as well as
(TiTj)mi,j/2 = (TjTi)mi,j/2 if mi,j is even,

(TiTj)(mi,j−1)/2Ti = (TjTi)(mi,j−1)/2Tj if mi,j is odd.

We let H denote this algebra.
Of interest to us are two well-known bases for H: {Tw}w∈W , and {Cw}w∈W . The first is

given by
Tw = Ti1 . . . Tir ,

where w = si1 . . . sir is a reduced expression of w. It is called the standard basis and is
the analogue of the standard basis in the group algebra. The second basis is called the
Kazhdan-Lusztig basis; it takes slightly more effort to define.

Notice that each Ti is invertible (T−1
i = q−1(Ti−(q−1))). Hence each Tw is also invertible.

An involution · on H may be given by

q1/2 = q−1/2,

Tw = (Tw−1)−1,

and extending to linear combinations.

Proposition 1.2.1. For each w ∈ W there exists a unique element Cw ∈ H such that

Cw = Cw,

Cw = (−1)l(w)ql(w)/2 ∑
x6w

(−1)l(x)q−l(x)Px,wTx,

for some collection of polynomials Px,w ∈ Z[q] satisfying

Px,x = 1, for all x ∈ W, deg(Px,w) 6 l(w)− l(x)− 1
2 , for all x,w ∈ W.

Proof. See [KL79, Theorem 1.1].

Let d(x,w) = l(w)−l(x)−1
2 .
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Notice that since the transition matrix between Cw and Tw is triangular (with powers
of q on the diagonal), {Cw}w∈W must be a basis of H. The polynomials Px,w are called the
Kazhdan-Lusztig polynomials.

The cases when the Kazhdan-Lusztig polynomials reach the above degree bound are of
particular importance. For x 6 w define µ(x,w) as the coefficient of qd(x,w) in Px,w. For
x > w define µ(x,w) = µ(w, x). When x and w are not related in the Bruhat order, by
convention let Px,w = 0.

We now recall some formulas about Kazhdan-Lusztig polynomials that will be of use
later.

Proposition 1.2.2. If the length difference between x and w is 1 then Px,w = 1 whenever
x < w (in the Bruhat order).

Proof. See [KL79, Lemma 2.6 (iii)].

The Kazhdan-Lusztig polynomials may be computed recursively using the following for-
mula:

Proposition 1.2.3. Suppose x,w ∈ W and s ∈ τ(w). Let

c =

1 s ∈ τ(x),

0 s /∈ τ(x).

Then
Px,w = q1−cPsx,sw + qcPx,sw −

∑
z<sw,s∈τ(z)

µ(z, sw)q
l(w)−l(z)

2 Px,z.

Proof. See [KL79, (2.2.c)].

Proposition 1.2.4. Suppose x,w ∈ W , x < w, and s ∈ τ(w) \ τ(x). Then Px,w = Psx,w.

Proof. See [KL79, (2.3.g)].

Proposition 1.2.5. Suppose x,w ∈ W , x < w, and s ∈ τ(w) \ τ(x). Then µx,w 6= 0 if an
only if w = sx.

Proof. See [KL79, (2.3.e)].

1.2.2 Connection with W -graphs

One of the reasons that the µ values are important is that they encode all the information
necessary to write down the left (or right) action of the generators of H on the Kazhdan-
Lusztig basis:
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Proposition 1.2.6. Let w ∈ W , s ∈ S. If s ∈ τ(w) then

TsCw = −Cw,

while if s /∈ τ(w) then

TsCw = qCw + q1/2Csw + q1/2 ∑
z<w,s∈τ(z)

µ(z, w)Cz.

Notice that the above formulas look like the the formulas defining a W -graph (see Remark
1.1.14). More precisely,

Proposition 1.2.7. Construct an S-labeled graph G = (V, τ,m) by:

1. V = W,

2. for v ∈ V , τ(v) is the left descent set of v,

3. for v, w ∈ V ,

m(v, w) =

µ(v, w) , if τ(v) 6⊆ τ(w)

0 , otherwise.

Then G is an admissible W -graph.

Proof. Most axioms of admissibility are clearly satisfied. The reason the resulting graph is
bipartite is that µ(v, w) can only be nonzero when v and w have different signs (since the
Kazhdan-Lusztig polynomials are polynomials in q and not q1/2. It is a very nontrivial fact
that the µ-values are nonnegative integers. It has been shown in the case of finite (and affine)
Weyl groups by geometrical methods ([KL80]). It has recently been shown for all Coxeter
groups by Elias and Williamson ([WE12]).

The formulas do give the regular representation in the Kazhdan-Lusztig convention.

Remark 1.2.8. It can be shown using basic properties of Coxeter groups that G is in fact
strongly admissible. Moreover all strings lie vertically with respect to the Bruhat order.

From the results of Kazhdan and Lusztig we can describe certain properties of this W -
graph.

Proposition 1.2.9. Suppose (v, w) is an arc. Then either

1. v < w,

2. v = sw and τ(v) \ τ(w) = {s}.
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Suppose (v, w) is a simple edge and v < w, then τ(w) \ τ(v) = {s} for some s, and v = sw.

Proof. Both of these follow from Proposition 1.2.5.

Thus any arc that is oriented downward in the Bruhat order follows a weak order covering.
We have seen in Proposition 1.2.2 that the weight of such an arc is always 1. Moreover, any
weak order covering has a downward edge following it (sometimes the upward edge is also
present, in which case we have a simple edge). Hence the Hasse diagram for the weak order
consists of all the simple edges and all the downward arcs.

By the same reasoning, a Bruhat covering v < w which is not a weak covering must
either be an arc v → w or we must have τ(v) = τ(w). All the remaining arcs are directed
upward and have a length difference between top and bottom of at least three. Sometimes
we refer to these as surprising arcs.

1.2.3 The inverse change-of-basis matrix

This section deals with a result of Kazhdan and Lusztig which allows one to express Tw in
the Cw basis, provided that the group W is finite. Assume W is such, and let w0 be the
longest element.

Proposition 1.2.10. If x,w ∈ W and x 6 w, then

∑
x6z6w

(−1)l(x)+l(z)Px,zPw0w,w0z = δx,w.

Proof. See [KL79, Theorem 3.1].

Corollary 1.2.11. For w ∈ W ,

Tw =
∑
x6w

ql(w)−l(x)/2Pw0w,w0xCx.

Proof.
∑
x6w

ql(w)−l(x)/2Pw0w,w0xCx =
∑
x6w

ql(w)−l(x)/2Pw0w,w0x(−1)l(x)ql(x)/2 ∑
y6x

(−1)l(y)q−l(y)Py,xTy

=
∑
y6w

ql(w)−l(y)

 ∑
y6x6w

(−1)l(x)+l(y)Py,xPw0w,w0x

Ty
=

∑
y6w

ql(w)−l(y)δy,wTy

= Tw.
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If e is the identity of W then Ce is the identity of H. Thus

TwCe =
∑
x6w

ql(w)q−l(x)/2Pw0w,w0x,Cx.

For w ∈ W , let
[
MKL

w

]
u,v∈W

be the matrix for the action of Tw with respect to the Cw basis.
Then

Px,w = ql(w0x)−l(w0w)/2
[
MKL

w0x

]
w0w,e

.

We have seen in Proposition 1.1.21 that the matrix (the matrix for the action Tw on the
W -graph basis is, in this case, exactly the same as MKL

w ) entry can be calculated from the W -
graph. Hence in the case of a finite Coxeter group, the W -graph carries enough information
to reconstruct the Kazhdan-Lusztig polynomials.

1.2.4 Parabolic variant

Deodhar ([Deo87]) generalized the above theory to parabolic quotients. Recall that above
we constructed a basis for the regular representation of the Iwahori-Hecke algebra so that
the action is described by a W -graph. For each parabolic subgroup WJ , Deodhar did this
for two different representations, indexed by a parameter u which can take on the values
−1 and q. Both of these have vertices in bijection with the set of unique shortest coset
representatives W J . The representations are induced from the sign representation of WJ

(one-dimensional representation where each Ti acts by −1) and the “trivial representation”
of WJ (one-dimensional representation where each Ti acts by q).

Detailed calculations, including the generalizations of the results in the previous section,
were carried out by Couillens ([Cou99]). She worked in a slightly more general setting, namely
with representations induced from any one-dimensional representations of WJ . This work
was further generalized by Howlett and Yin [HY03, HY04] to inducing any representation
given by a W -graph. While, as we will see further in the section, the W -graphs coming from
Deodhar’s construction are admissible, the more general induced graphs are not. We can see
this already in Couillens’ work: in Table IV of the appendix we see that the length difference
between ts and stuts is 3 and the corresponding polynomial is −q. Hence the µ values in
this generalization are no longer nonnegative.

1.2.4.1 Notation

We begin by reviewing the notation. For J ⊆ S, WJ is the subgroup generated by J . Then
W J is the set of shortest coset representatives of W/WJ (see [Hum92, Chapter 5]). Let w0,J
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denote the longest element of WJ . Let W J,max denote the set of longest coset representatives
of W/WJ :

W J,max = {ww0,J |w ∈ W J}.

For w ∈ W J ∪W J,max, by τ(w) we continue to denote the left descent set inside W , i.e.
τ(w) = {s ∈ S|sw < w}. When dealing with parabolic quotients we will also need notation
for the ascent set of an element of w ∈ W J :

Asc(w) = {s ∈ S : sw ∈ W J and sw > w}.

Recall that W J is an order ideal with respect to the left weak order, so if w ∈ W J and
s ∈ τ(w) then automatically sw ∈ W J . This is why the definition of the descent set
remains unchanged. Similarly,W J,max is an order filter with respect to the weak order, so
that w ∈ W J,max, s /∈ τ(w)⇒ sw ∈ W J,max.

For the two representations of H mentioned in the introduction to this section (u = −1,
and u = q), Deodhar constructed canonical bases

{
C [−1]
w

}
w∈WJ

, and
{
C [q]
w

}
w∈WJ

. Following
Couillens, we will use the letter χ to denote either [−1], [q]; in this case we will use the
notation jχ to denote the opposite one.

The two representations also have standard bases: {T χw}w∈WJ . These bases satisfy T χw =
TwC

χ
e , where e is the identity in W . The change of bases matrix is given in terms of analogues

of Kazhdan-Lusztig polynomials
{
P χ
x,w

}
x,w∈WJ

. These are polynomials in q which satisfy the
same degree bound as the usual Kazhdan-Lusztig polynomials: deg(P χ

x,w) 6 d(x,w). The µ
coefficients {µχ(x,w)}x,w∈WJ are defined in the same way as in the regular Kazhdan-Lusztig
case.

The Kazhdan-Lusztig polynomials satisfy a similar recurrence to the regular ones:

Proposition 1.2.12. Suppose x,w ∈ W J and s ∈ τ(w). Then

P [−1]
x,w = P̃ −

∑
x6z6sw,s/∈Asc(z)

µ(z, sw)q
l(w)−l(z)

2 P [−1]
x,z ,

where

P̃ =


P [−1]
sx,sw + qP [−1]

x,sw, if s ∈ τ(x),

qP [−1]
sx,sw + P [−1]

x,sw, if s ∈ Asc(x),

(1 + q)P [−1]
x,sw, otherwise.

Proof. See [Deo87, Proposition 3.9].

27



Proposition 1.2.13. Suppose x,w ∈ W J and s ∈ τ(w). Then

P [q]
x,w = P̃ −

∑
x6z6sw,s/∈τz

µ(z, sw)q
l(w)−l(z)

2 P [−1]
x,z ,

where

P̃ =


P [−1]
sx,sw + qP [−1]

x,sw, if s ∈ τ(x),

qP [−1]
sx,sw + P [−1]

x,sw, if s ∈ Asc(x),

0, otherwise.

Proof. See [Deo87, Proposition 3.10].

The polynomials P χ
x,w are zero unless x 6 w. If x 6 w then the constant coefficient of

P [−1]
x,w is 1. This fails in the case χ = [q].

1.2.4.2 Action formulas

First we give the formulas for the action of H on the two bases:

Proposition 1.2.14. [Cou99, Théorème 4.3] Let s ∈ S, w ∈ W J . Then

TsC
[q]
w =



qC [q]
w + q1/2C [q]

sw + q1/2 ∑
sz<z<w

µ[q](z, w)C [q]
z , s ∈ Asc(w),

qC [q]
w + q1/2 ∑

sz<z<w
µ(z, w)C [q]

z , s /∈ Asc(w) ∪ τ(w),

−C [q]
w , s ∈ τ(w),

TsC
[−1]
w =


qC [−1]

w + q1/2C [−1]
sw + q1/2 ∑

z<w
s/∈Asc(z)

µ[−1](z, w)C [−1]
z , s ∈ Asc(w),

−C [−1]
w , s /∈ Asc(w).

This involves the parabolic µ coefficients, whose meaning we can clarify:

Proposition 1.2.15. [Cou99, Corollaire 4.2] If x,w ∈ W J then

µ[q](x,w) = µ(x,w), µ[−1](x,w) = µ(xw0,J , ww0,J).

The first action formula tells us that the W -graph for the u = q representation is precisely
the induced subgraph of the full Kazhdan-Lusztig W -graph on W J . The second formula has
a similar interpretation, except we have to index the basis elements by W J,max instead of
W J . Namely for w ∈ W J,max, let

C̃ [−1]
w = C [−1]

ww0,J
.
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It can be seen that for w ∈ W J,max, we have s ∈ τ(w) if and only if s /∈ Asc(ww0,J). This
follows from the following basic fact about Coxeter groups:

Fact 1.2.16. If w ∈ W J and s ∈ S then either sw ∈ W J or sw = wt for some t ∈ J .

Proof. Suppose sw /∈ W J . Then swt < sw for some t ∈ J . Suppose s1 . . . sr = w is a reduced
expression for w. By the Exchange Property, either swt = w or swt = ss1 . . . ŝi . . . srt. The
second case would contradict the assumption that the expression for w was reduced. Hence
only the first case is possible, as desired.

Rewriting the action in these terms gives

Proposition 1.2.17. Let s ∈ S, w ∈ W J,max. Then

TsC̃
[−1]
w =


qC̃ [−1]

w + q1/2C̃ [−1]
sw + q1/2 ∑

z∈WJ,max

sz<z<w

µ(z, w)C̃ [−1]
z , s /∈ τ(w),

−C̃ [−1]
w , s ∈ τ(w).

This tells us that the W -graph for the u = −1 representation is precisely the induced
subgraph of the full Kazhdan-Lusztig W -graph on W J,max.

1.2.4.3 Inversion

Deodhar showed (see [Deo87, Proposition 3.2]) that for w ∈ W J ,

Cχ
w =

∑
x∈WJ

x6w

(−1)l(x)+l(w)ql(w)/2−l(x)P χ
x,wT χx .

The analogue of the inversion formula was given by Couillens:

Proposition 1.2.18. [Cou99, Proposition 6.1] For x,w ∈ W J with x 6 w,

∑
z∈WJ

x6z6w

εzεwP
χ
x,zP

jχ
w0ww0,J ,w0zw0,J

= δx,w.

This may be turned into an explicit formula for expressing T χw in terms of the canonical
basis

Corollary 1.2.19. Let w ∈ W J . Then

T χw =
∑
x6w

ql(w)−l(x)/2P
jχ
w0ww0,J ,w0xw0,JC

χ
x .
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Proof.

∑
x6w

ql(w)−l(x)/2P
jχ
w0ww0,J ,w0xw0,JC

χ
x =

=
∑
x∈WJ

x6w

ql(w)−l(x)/2P
jχ
w0ww0,J ,w0xw0,J

∑
y∈WJ

y6x

(−1)l(x)+l(y)ql(x)/2−l(y)P χ
y,xT χy =

=
∑
x∈WJ

x6w

∑
y∈WJ

y6x

(−1)l(x)+l(y)ql(w)−l(y)P χ
y,xP

jχ
w0ww0,J ,w0xw0,JT

χ
y =

=
∑
y∈WJ

y6w

(−1)l(w)+l(y)ql(w)−l(y) ∑
x∈WJ

y6x6w

(−1)l(x)+l(w)P χ
y,xP

jχ
w0ww0,J ,w0xw0,JT

χ
y =

=
∑
y∈WJ

y6w

(−1)l(w)+l(y)ql(w)−l(y)δy,wT
χ
y =

= T χw

Thus, if e is the identity in W and w ∈ W J then

TwC
χ
e =

∑
x6w

ql(w)q−l(x)/2P
jχ
w0ww0,J ,w0xw0,JC

χ
x .

For w ∈ W J , let
[
Mχ,KL

w

]
u,v∈W

be the matrix for the action of Tw with respect to the Cχ
w

basis. Then
P χ
x,w = ql(w0xw0,J )−l(w0ww0,J )/2

[
M

jχ,KL
w0xw0,J

]
w0ww0,J ,e

.

We have seen in Proposition 1.1.21 that the matrix entry can be calculated from theW -graph.
It is somewhat surprising, however, that to get a parabolic Kazhdan-Lusztig polynomial of
one parabolic representation one should need to do a weighted count of paths in a W -graph
associated to a different parabolic representation. We will address this issue in the next
section by showing that the two graphs are related.

1.2.4.4 Relationship between W -graphs on W J and W J,max

Consider the map on W J given by w 7→ w0w.

Proposition 1.2.20. The above map gives a graph isomorphism between the W -graph on
W J and the one on W J,max which behaves nicely with respect to τ -invariants, namely:

• the map is a bijection between W J and W J,max,

• for x,w ∈ W J , µ(x,w) = µ(w0w,w0x),
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• for w ∈ W J , s ∈ S, we have s ∈ τ(w)⇔ w0sw0 /∈ τ(w0w).

Proof. First,

w ∈ W J ⇔ ∀s ∈ J, ws > w ⇔ ∀s ∈ J, w0ws < w0w ⇔ w0w ∈ W J,max.

Now w 7→ w0w is an involution, so this implies it is a bijection. The second part is the
statement of Corollary 3.2 of [KL79]. Suppose w ∈ W J , s ∈ S. Then

s ∈ τ(w)⇔ sw < w ⇔ w0sw > w0w ⇔ (w0sw0)w0w > w0w ⇔ w0sw0 /∈ τ(w0w).

The matrix entries for the u = q and the u = −1 cases are the same, namely:

Proposition 1.2.21. Let w ∈ W , w = s1 . . . sr a reduced expression. Let Mχ
w be the matrix

for the action of Tw on the parabolic W -graph basis of type χ, in the KL convention. If
χ = [−1] this differs from Mχ,KL

w by reindexing of rows and columns with W J,max as opposed
to W J . Then

[Mχ
w]u,v = [M

jχ
w0w−1w0

]w0v,w0u.

Proof. By Proposition 1.1.21, [Mχ
w]u,v is the weighted count of paths of type s = (s1, . . . , sr)

from u to v, where s1s2 . . . sr = w is a reduced expression. Then

w0w
−1w0 = (w0srw0) . . . (w0s1w0)

is a reduced expression of w0w
−1w0.

Suppose we have a path

u0 = u→ u1,→ · · · → ur = v

of the type s. We claim that the path

w0v → w0ur−1 → · · · → w0u0

has type (w0srw0, . . . , w0s1w0). We just need to check that if w0ur−i 6= w0ur−i−1 then
w0sr−iw0 ∈ τ(w0ur−i) and w0sr−iw0 /∈ τ(w0ur−i−1). But if w0ur−i 6= w0ur−i−1 then ur−i 6=
ur−i−1. So sr−i ∈ τ(ur−i−1) and sr−i /∈ τ(ur−i). An application of Proposition 1.2.20 finishes
the verification.

The previous discussion gives us a bijection between the sets of paths in question. It is
easy to see that the bijection is weight preserving.
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Corollary 1.2.22. For x,w ∈ W J ,

P [q]
x,w = ql(w0xw0,J )−l(w0ww0,J )/2

[
M

[q]
wJ

0 x
−1

]
wJ

0 ,w
,

P [−1]
x,w = ql(w0xw0,J )−l(w0ww0,J )/2

[
M

[−1]
wJ

0 x
−1

]
w0,ww0,J

,

where wJ0 is the longest element of W J .
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CHAPTER 2

Parallel Transport

The term parallel transport will encompass two concepts. The first of these is arc transport:
a collection of relations between edge weights (see below) that must hold in an admissible
molecular graph. They are referred to as arc transport because each of them claims that the
weight of an edge is equal to the weight of some other edge. The second is Kazhdan-Lusztig
transport (originally proven in [KL79, Theorem 4.2]): a similar collection of relations which
is known to hold in the Kazhdan-Lusztig graph.

We start by defining arc transport and showing that, in simply laced types, it is equivalent
to the Local Polygon Rule. It is then easy to see that in simply-laced types an sBCS graph
satisfying Kazhdan-Lusztig transport must satisfy the Local Polygon Rule. The converse
is, in general, false; the quasi-minuscule sBCS graph for D4 can be made into a molecular
graph in infinitely many ways, but only one of these satisfies Kazhdan-Lusztig transport.
We conjecture that the two are equivalent in type A.

We next move to study finite Coxeter systems with double bonds. The original defini-
tion of Kazhdan-Lusztig transport was based only on simple bonds. We find new relations
which correspond to the double bond (see Definition 2.2.7) and show that these hold in the
Kazhdan-Lusztig graph. Although these relations do not look quite like transporting an
edge weight, we still call them the double-bond version of Kazhdan-Lusztig transport. We
proceed to show that the new set of relations implies the Local Polygon Rule. Unlike the
simply-laced case we do not have a good version of arc transport, so the proof is somewhat
cumbersome.

Finally we give an application of the new version of Kazhdan-Lusztig transport. In
[Gre09], Green conjectured that, in the Kazhdan-Lusztig graph of a Coxeter system, the
weights of all arcs which begin at fully commutative elements are either 0 or 1, and proved
it for type (affine) A. Later Gern in [Ger13] proved this conjecture for type D. We use the
new relations, Stembridge’s characterization of fully commutative elements in the type B
Coxeter groups, and some structural results of Shi to prove the conjecture for type B.
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Figure 2.1: Arc transport.

2.1 Arc transport

Let (W,S) be a simply laced, finite Coxeter system.

Definition 2.1.1. Let G be an sBCS graph.

1. Suppose (x, y) and (x′, y′) are simple edges of G that activate the same bond, say (i, j).
Without loss of generality, i ∈ τ(x) ∩ τ(x′) and j ∈ τ(y) ∩ τ(y′). Suppose moreover
that there exists k ∈ S such that k ∈ τ(x) ∩ τ(y) and k /∈ τ(x′) ∪ τ(y′). If for all pairs
of such edges we have m(x, x′) = m(y, y′), then G is said to satisfy AT1.

In picture notation (after restriction to the parabolic subgroup generated by J =
{i, j, k}), the blue edges in Figure 2.1(a) must have the same weight:

2. Restrict G to any copy of A3. If whenever one of the two simple edge configurations in
Figure 2.1(b) occurs, the weights of the blue edges are equal, then G is said to satisfy
AT2.

3. Restrict G to any copy of A4. If whenever one of the two simple edge configurations in
Figure 2.1(c) occurs, the weights of the blue edges are equal, then G is said to satisfy
AT3.

As the following propositions demonstrate, the conditions AT1, AT2, and AT3 are equiv-
alent to the Local Polygon Rule.

Theorem 2.1.2. Suppose G is a molecular graph. Then G satisfies AT1, AT2, and AT3.
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Figure 2.2: A labeling of some vertices of an instance of AT3.

Proof. First we prove that AT1 is satisfied. There are two evident instances of LPR2, namely

N2
ki(G, x, y′) = N2

ik(G, x, y′),

and
N2
kj(G, y, x′) = N2

jk(G, y, x′).

Consider the first of these. Let us analyze when could there be other possible alternating
paths besides the ones pictured. First look at alternating paths of type (k, i). They must
pass through a vertex z 6= y with k ∈ τ(z) and i /∈ τ(z). Since z 6= y and (x, z) is an edge,
BR tells us that j /∈ τ(z). Now (z, y′) must be an edge, so by CR we have that (j, k) is a
bond. Hence N2

ki(G, x, y′) = m(y, y′) unless (j, k) is a bond.
Now look at alternating paths of type (i, k). They must pass through a vertex z 6= x′ with

i ∈ τ(z) and k /∈ τ(z). Since z 6= x′ and (z, y′) is and edge, BR tells us that j ∈ τ(z). Now
(x, z) must be an edge, so by CR we have that (j, k) is a bond. Hence N2

ik(G, x, y′) = m(x, x′)
unless (j, k) is a bond.

Thus the first instance of LPR2 gives the desired result unless (j, k) is a bond. By the
same argument with i and j switched, the second instance of LPR2 gives the desired result
unless (i, k) is a bond. But the Coxeter graph cannot contain triangles, so at least one of
(i, k) and (j, k) cannot be a bond. Hence AT1 holds.

In case of AT2, apply the only evident instance of LPR2. By Remark 1.1.25 we are seeing
all the possible paths involved, so the desired equality follows.

For AT3, we will just treat the left picture; the right one is done in the same way.
Label the vertices as shown in Figure 2.2
Applying LPR3 with regard to paths from x to y gives m(z1, y) = m(z2, y); as above

we can see all the possible paths. Since we know that G satisfies AT2, we have m(z1, y) =
m(z1, w1) (we now restrict G to the parabolic subgroup generated by J = {2, 3, 4}), and
m(z2, y) = m(z2, w2). This finishes the proof.
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Figure 2.3: Admissible sBCS graphs of type A3.

Theorem 2.1.3. Suppose G is an sBCS graph which satisfies AT1, AT2, and AT3. Then
G is a molecular graph.

Proof. We wish to show that G satisfies the Local Polygon Rule. First we take care of the
length 2 paths. Suppose i, j, k ∈ S, u,w ∈ G, i, j ∈ τ(u) \ τ(w), k ∈ τ(w) \ τ(u).

If k is not bonded to either i or j, then no alternating paths are possible so the local poly-
gon relation is trivially satisfied. Without loss of generality, assume k ∼ j. We will construct
a weight-preserving bijection between ij-alternating paths and ji-alternating paths.

First assume that k and i are not bonded. Suppose u→ v → w is an ij-alternating path.
Then k ∈ τ(v) and the edge (u, v) is simple and activates the bond k− j. Let v′ ∈ G be the
unique vertex connected to w such that j ∈ τ(v′) and k /∈ τ(v′). Then i /∈ τ(v′) since k and
i are not bonded. Since G satisfies AT1 , we know that µ(v, w) = µ(u, v′) and u→ v′ → w

is a ji-alternating path. Applying a symmetric argument to u→ v′ → w yields u→ v → w

(this depends on v being the unique vertex connected to u by a j−k activating bond, which
in turn depends on simplicity). This gives the desired bijection, finishing this case.

Now suppose k is bonded to both i and j. Then i, k, j form a copy of A3 in the Dynkin
diagram; clearly the instance of the Local Polygon Rule holds if and only if it holds in this
restriction to A3 (we relabel i to 1, k to 2, and j to 3). The only admissible sBCS graphs of
type A3 are the molecules; they are reproduced in Figure 2.3.

The vertex u could only be in the two molecules with a vertex with descent set {1, 3}.
Similarly w could only be in the two molecules with a vertex with descent set {2}. This
leaves four cases to analyze. One of these is trivial since there are no possible arcs between
two copies of the two-vertex molecule. Since AT1 and AT2 are satisfied, the matching color
edges in the diagrams in Figure 2.4 have the same weight. Since all vertices of any alternating
path lie in the two molecules, one clearly sees that the Local Polygon Rule is indeed satisfied.

Thus we have shown that the length 2 local polygon relations are satisfied.
Consider an instance of the Local Polygon Rule of length 3; namely, after restricting

to the corresponding copy of A4, vertices u,w have τ(u) = {2, 3} and τ(v) = {1, 4}. The
only connected sBCS graphs of type A4 which satisfy length 2 Local Polygon Rule are the
molecules (see Example 1.1.24); they are reproduced in Figure 2.5.

The vertex u could only be in the bottom-left (non-uniform) molecule or the 2-uniform
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Figure 2.5: Admissible sBCS graphs of type A4 which satisfy LPR2.

molecule, as these are the only molecules with a vertex with descent set {2, 3}. Similarly w
could only be in the other non-uniform molecule or in another copy of the 2-uniform molecule.
This leaves four cases to analyze. However since there are no descent containments from the
2-uniform molecule to itself, that case is trivial. Since AT1, AT2, and AT3 hold, the matching
color edges in the diagrams in Figure 2.6 have the same weight. Since all vertices of any
alternating path lie in the two molecules, one clearly sees that the Local Polygon Rule is
indeed satisfied.

2

24

3

14

13

12

134

24

13

23

124

14

3

24

13

2

34

24

2314

13

12

14 23

24

34

124

23

13

24

134

13

.

Figure 2.6: Relations imposed by AT1, AT2, and AT3. Edges of the same color have equal
weights.
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2.2 Kazhdan-Lusztig transport

2.2.1 Simply laced case

Definition 2.2.1. An sBCS graph G = (V, τ,m) satisfies Kazhdan-Lusztig transport if there
exists a function µ : G×G→ Z>0 such that

1. for v, w ∈ G, µ(v, w) = µ(w, v),

2. if v, w ∈ G and τ(v) 6⊆ τ(w) then m(v, w) = µ(v, w),

3. if v1 − w1 and v2 − w2 are two simple edges in G which activate the same bond, then
µ(v1, v2) = µ(w1, w2).

Remark 2.2.2. The original paper of Kazhdan and Lusztig proves that the Kazhdan-Lusztig
W -graph satisfies Kazhdan-Lusztig transport with their µ ([KL79, Theorem 4.2]).

Remark 2.2.3. The reason the Kazhdan-Lusztig transport does not fit well with the admis-
sible W -graph paradigm is that we can have µ(x,w) 6= 0 even when τ(x) = τ(w). Thus
even edges which are irrelevant for the representation can in fact participate. As mentioned
in the introduction, this can sometimes lead to Kazhdan-Lusztig transport implying more
relations than Local Polygon Rule.

Corollary 2.2.4. An sBCS graph G that satisfies Kazhdan-Lusztig transport is a molecular
graph.

Proof. By Theorem 2.1.3 it is sufficient to prove that the three versions of arc transport
hold. This is obvious.

Remark 2.2.5. We know that the converse is false. In fact, even the full Polygon Rule does not
imply Kazhdan-Lusztig transport; the quasi-minuscule sBCS graph for E8 can be extended
to three distinct admissible graph structures ([Ste]), but only one satisfies Kazhdan-Lusztig
transport.

Conjecture 2.2.6. In type A, an sBCS graph G satisfies Kazhdan-Lusztig transport if and
only if it is a molecular graph.

2.2.2 Double bond

In this section we formulate the notion of Kazhdan-Lusztig transport for finite Coxeter
groups with a double bond, and prove the analogues of the above results.
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Figure 2.7: Kazhdan-Lusztig transport relations associated to a double bond.

Let (W,S) is a finite Coxeter system with a double bond (e.g. type B, type F ). Suppose
s, t ∈ S form the double bond. Supposed G is an sBCS graph for this system. Then the
parabolic restriction to the subgroup generated by s, t consists of the following connected
components:

1. isolated vertices with both s and t in their τ -invariant,

2. isolated vertices with neither s nor t in their τ -invariant,

3. sts - strings,

4. tst - strings.

Definition 2.2.7. An sBCS graph satisfies Kazhdan-Lusztig transport if there exists a
function µ : G×G→ Z>0 such that

1. for v, w ∈ G, µ(v, w) = µ(w, v),

2. if v, w ∈ G and τ(v) 6⊆ τ(w) then m(v, w) = µ(v, w),

3. if (v1, w1) and (v2, w2) are two simple edges in G which activate the same simple bond,
then µ(v1, v2) = µ(w1, w2).

4. tst-strings and sts-strings are linked as shown in Figure 2.7, with edges labeled by the
µ-values.

2.2.3 The case of the Kazhdan-Lusztig W -graph

We now prove the analogue of Remark 2.2.2, namely that the Kazhdan-Lusztig W -graph
satisfies the Kazhdan-Lusztig transport with µ defined in terms of Kazhdan-Lusztig polyno-
mials.
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We start by some calculations using the Kazhdan-Lusztig recurrence. Define ν(x,w)
to be the coefficient of qd(x,w) in Px,w. Thus ν(x,w) = µ(x,w) if x < w and ν(x,w) = 0
otherwise.

Lemma 2.2.8. Suppose x,w ∈ W are both topmost (in Bruhat order) elements of sts-
strings. Then

1. if x < w then ν(x,w) = ν(sx, sw)− ν(x, tsw),

2. if sx < sw then ν(sx, sw) = ν(tsx, tsw) + ν(x, tsw),

3. if tsx < w then ν(tsx, w) = ν(sx, sw)− ν(tsx, tsw).

Proof. While doing the calculations it may be helpful to keep in mind the picture of the two
strings (see Figure 2.8).

(1) Suppose that x < w. Then we may apply the Kazhdan-Lusztig recurrence (Proposi-
tion 1.2.3) with respect to s:

Px,w = Psx,sw + qPx,sw −
∑

z:s∈τ(z)
x6z<sw

ν(z, sw)q−l(z)/2ql(w)/2Px,z.

Now since t ∈ τ(sw) \ τ(x) we have Px,sw = Ptx,sw. Considering the coefficients of qd(x,w)

yields:
ν(x,w) = ν(sx, sw) + ν(tx, sw)−

∑
z:s∈τ(z)
x6z<sw

ν(x, z)ν(z, sw).

At least one of the W -graph edges (x, z) and (z, sw) must be simple since τ(x) 6⊃ τ(sw). If
t ∈ τ(z) then it is the first one and z = tx. If not, then it is the second one and z = tsw.
Both tx and tsw have s in their τ -invariants, so the equation becomes

ν(x,w) = ν(sx, sw) + ν(tx, sw)− 1 · ν(tx, sw)− ν(x, tsw) · 1 = ν(sx, sw)− ν(x, tsw).
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(2) Suppose that sx < sw. Applying the Kazhdan-Lusztig recurrence with respect to t
yields:

Psx,sw = Ptsx,tsw + qPsx,tsw −
∑

z:t∈τ(z)
sx6z<tsw

ν(z, tsw)q−l(z)/2ql(sw)/2Psx,z.

Now since s ∈ τ(tsw) \ τ(sx) we have Psx,tsw = Px,tsw. Consider the coefficients of qd(sx,sw):

ν(sx, sw) = ν(tsx, tsw) + ν(x, tsw)−
∑

z:t∈τ(z)
sx6z<tsw

ν(sx, z)ν(z, tsw).

At least one of the W -graph edges (sx, z) and (z, tsw) must be simple since τ(sx) 6⊃ τ(tsw).
If s ∈ τ(z) then it is the first one and z = x. If not, then it is the second one and z = stsw.
Neither tx nor tsw have t in their τ -invariants, so the equation becomes

ν(sx, sw) = ν(tsx, tsw) + ν(x, tsw).

(3) Suppose that tsx < w. Applying the Kazhdan-Lusztig recurrence with respect to s
yields:

Ptsx,w = Pstsx,sw + qPtsx,sw −
∑

z:s∈τ(z)
tsx6z<sw

ν(z, sw)q−l(z)/2ql(w)/2Ptsx,z.

Now since t ∈ τ(sw) \ τ(stsx) and t ∈ τ(sw) \ τ(tsx) we have Pstsx,sw = Ptstsx,sw and
Ptsx,sw = Psx,sw. The first of these implies that the coefficient of qd(tsx,w) in Pstsx,sw is 0.
Hence taking the coefficients of qd(tsx,w) in the above equation gives:

ν(tsx, w) = ν(sx, sw)−
∑

z:s∈τ(z)
tsx6z<sw

ν(tsx, z)ν(z, sw).

At least one of the W -graph edges (tsx, z) and (z, sw) must be simple since τ(tsx) 6⊃ τ(sw).
If t ∈ τ(z) then it is the first one and z = sx. If not, then it is the second one and z = tsw.
Now s /∈ τ(sx) while s ∈ τ(tsw), so the equation becomes

ν(tsx, w) = ν(sx, sw)− ν(tsx, tsw).

We will also need some calculations for when the two strings are different:

Lemma 2.2.9. Suppose x ∈ W is a top element of an sts-string, while w ∈ W is a top
element of a tst-string. Then
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1. if x < tw then ν(x, tw) = ν(sx, stw),

2. if sx < w then ν(sx, w) = ν(tsx, tw) + ν(x, tw)− ν(sx, stw),

3. if tsx < tw then ν(tsx, tw) = ν(sx, stw).

Proof. While doing the calculations it may be helpful to keep in mind the picture of the two
strings (see Figure 2.9).

(1) Suppose x < tw. Applying the Kazhdan-Lusztig recurrence with respect to s yields:

Px,tw = Psx,stw + qPx,stw −
∑

z:s∈τ(z)
x6z<stw

ν(z, stw)q−l(z)/2ql(tw)/2Px,z.

Now since t ∈ τ(stw) \ τ(x) we have Px,stw = Ptx,stw. Consider the coefficients of qd(x,tw):

ν(x, tw) = ν(sx, stw) + ν(tx, stw)−
∑

z:s∈τ(z)
x6z<stw

ν(x, z)ν(z, stw).

At least one of the W -graph edges (x, z) and (z, stw) must be simple since τ(x) 6⊃ τ(stw).
If t ∈ τ(z) then it is the first one and z = tx. If not, then it is the second one and z = tstw.
Now s ∈ τ(tx) while s /∈ τ(tstw), so the equation becomes

ν(x, tw) = ν(sx, stw) + ν(tx, stw)− ν(tx, stw) = ν(sx, stw).

(2) Suppose that sx < w. Then we may apply the Kazhdan-Lusztig recurrence (Propo-
sition 1.2.3) with respect to t:

Psx,w = Ptsx,tw + qPsx,tw −
∑

z:t∈τ(z)
sx6z<tw

ν(z, tw)q−l(z)/2ql(w)/2Psx,z.

Now since s ∈ τ(tw) \ τ(sx) we have Psx,tw = Px,tw. Considering the coefficients of qd(sx,w)
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yields:
ν(sx, w) = ν(tsx, tw) + ν(x, tw)−

∑
z:t∈τ(z)
sx6z<tw

ν(sx, z)ν(z, tw).

At least one of the W -graph edges (sx, z) and (z, tw) must be simple since τ(sx) 6⊃ τ(tw).
If s ∈ τ(z) then it is the first one and z = x. If not, then it is the second one and z = stw.
Now t /∈ τ(x) while t ∈ τ(stw), so the equation becomes

ν(sx, w) = ν(tsx, tw) + ν(x, tw)− ν(sx, stw).

(3) Suppose that tsx < tw. Applying the Kazhdan-Lusztig recurrence with respect to s
yields:

Ptsx,tw = Pstsx,stw + qPtsx,stw −
∑

z:s∈τ(z)
tsx6z<stw

ν(z, stw)q−l(z)/2ql(tw)/2Ptsx,z.

Now since t ∈ τ(stw) \ τ(stsx) and t ∈ τ(stw) \ τ(tsx) we have Pstsx,stw = Ptstsx,stw and
Ptsx,stw = Psx,stw. Using the first of these equalities yields that degPstsx,stw < d(tsx, tw).
Consider the coefficients of qd(tsx,tw) in the recurrence equation:

ν(tsx, tw) = ν(sx, stw)−
∑

z:s∈τ(z)
tsx6z<stw

ν(tsx, z)ν(z, stw).

At least one of the W -graph edges (tsx, z) and (z, stw) must be simple since τ(tsx) 6⊃ τ(stw).
If t ∈ τ(z) then it is the first one and z = sx. If not, then it is the second one and z = tstw.
Neither sx nor tstw have s in their τ -invariants, so the equation becomes

ν(tsx, tw) = ν(sx, stw).

Now we can take care of the main part of the proof that Kazhdan-Lusztig transport is
satisfied.

Lemma 2.2.10. For any x,w ∈ W , if x,w are both top elements of sts-strings, then

• µ(x,w) = µ(tsx, tsw),

• µ(x, tsw) = µ(tsx, w),

• µ(sx, sw) = µ(x,w) + µ(x, tsw).
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If x ∈ W is a top element of an sts-string, while w ∈ W is a top element of a tst-string,
then

µ(x, tw) = µ(sx, w) = µ(sx, stw) = µ(tsx, tw).

Proof. First suppose that x,w are both top elements of sts-strings. Suppose x and w are
incomparable in the Bruhat order. Then so are the pairs (sx, sw) and (tsx, tsw). Thus
µ(x,w) = µ(sx, sw) = µ(tsx, tsw) = 0. We cannot have tsx > w since otherwise x and w

would be related. If tsx < w then using Lemma 2.2.8 we have µ(tsx, w) = ν(tsx, w) = 0.
If tsx and w are incomparable then also µ(tsx, w) = 0. We cannot have tsw > x since
otherwise x and w would be related. If tsw < x then using Lemma 2.2.8 (with x and w

interchanged) we have µ(x, tsw) = ν(tsw, x) = 0. If tsw and x are incomparable then also
µ(x, tsw) = 0. Thus all the equalities hold since the relevant µ values are all 0.

We can now assume that x and w are related, and, without loss of generality that
x < w. Then sx < sw, tsx < tsw, and tsx < w. So µ(x,w) = ν(x,w), µ(sx, sw) =
ν(sx, sw), µ(tsx, tsw) = ν(tsx, tsw), µ(tsx, w) = ν(tsx, w). If x < tsw, then µ(x, tsw) =
ν(x, tsw) and all the desired statements follow from Lemma 2.2.8.

Suppose x 6< tsw. Then Lemma 2.2.8 tells us that µ(x,w) = µ(sx, sw) = µ(tsx, tsw) and
µ(tsx, w) = 0. If x 6> tsw, then µ(x, tsw) = 0 and all the necessary equalities hold. Hence
suppose x > tsw. Then, since tsx < tsw, (tsw, x) must be a Bruhat covering. But s is a
descent for both, so (stsw, sx) is also a Bruhat covering. However t ∈ τ(sx) \ τ(stsw), so we
must have stsw = tsx. This is obviously false since the τ -invariants are different. Thus we
have a contradiction, finishing the first half of the proof.

Now suppose x is a top element of an sts-string, while w is a top element of a tst-string.
Suppose first that x and tw are incomparable in the Bruhat order. Then so are sx and

stw, and hence µ(x, tw) = µ(sx, stw) = 0. If tsx and tw are incomparable, then so are
sx and w, and hence the statement of the lemma holds since the relevant µ values are all
0. So we can assume tsx and tw are comparable. Now tsx 6> tw since otherwise x and tw

would be related. So tsx < tw (and hence also sx < w). Using the third part of Lemma
2.2.9 we then have µ(tsx, tw) = ν(tsx, tw) = ν(sx, stw) = 0. Now using the second part of
Lemma 2.2.9 we also have µ(sx, w) = ν(sx, w) = 0. Thus we have shown that if x and tw

are incomparable then all the relevant µ values are 0 and the lemma holds. By symmetry,
the same is true if sx and w are incomparable.

We thus assume that x and tw are comparable and that sx and w are comparable. Apriori
there are four cases to be analyzed. However the case x < tw and sx > w is impossible due
to partial order properties, and the cases x < tw, sx < w and x > tw, sx > w differ by
exchanging s and t. We treat the cases x < tw, sx < w and x > tw, sx < w below.

Suppose x < tw, sx < w (and hence sx < stw, and tsx < tw). Then µ(x, tw) = ν(x, tw),
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Figure 2.10: The connected sBCS graphs of type B2 × A1.

µ(sx, w) = ν(sx, w), µ(tsx, tw) = ν(tsx, tw), µ(sx, stw) = ν(sx, stw). Then the statement
of the lemma follows from Lemma 2.2.9.

Suppose x > tw, sx < w (and hence sx > stw and tsx < tw). In this case all
these relations have to be Bruhat coverings (since the length differences must be 1). Then
µ(x, tw) = µ(sx, w) = µ(sx, stw) = µ(tsx, tw) = 1.

Finally, we have

Theorem 2.2.11. The Kazhdan-Lusztig W -graph satisfies Kazhdan-Lusztig transport.

Proof. The function µ is symmetric by definition. Part (2) of the definition follows from the
definition of the Kazhdan-Lusztig W -graph. Part (3) was shown in [KL79, Theorem 4.2],
while part (4) is proved in Lemma 2.2.10.

2.2.4 Graphs satisfying Kazhdan-Lusztig transport are molecular
graphs

Now we prove an analogue of Corollary 2.2.4.

Theorem 2.2.12. An sBCS graph G (for a finite Coxeter group with at most double bonds)
which satisfies Kazhdan-Lusztig transport is a molecular graph.

Proof. Suppose G satisfies Kazhdan-Lusztig transport.
First we check that LPR2 is satisfied. Suppose we have an instance of LPR2, namely

i, j, k ∈ S, u, v ∈ G such that i, j ∈ τ(u) \ τ(v), and k ∈ τ(v) \ τ(u).
If k 6∼ i and k 6∼ j then there are no alternating paths possible and LPR2 is vacuously

satisfied. Thus we may suppose that k ∼ j.
First consider the case when k 6∼ i. If (k, j) is a simple bond, then the case is handled as

in Theorem 2.1.3. Suppose (k, j) is a double bond. To check that LPR2 holds we restrict to
the parabolic subgroup generated by i, j, k, which is isomorphic to B2 ×A1. There are only
four possible B2 × A1 sBCS graphs; they are shown in Figure 2.10.

Hence the situation looks as one of the four cases in Figure 2.11. The green edges are
the possible directed edges which will be involved in the instance of LPR2, with variables
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Figure 2.11: All possible instances of LPR2 for graphs of type B2 × A1.
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giving their weights. The equations which need to be satisfied are, respectively, b = a + c,
a+ d = b+ c, c = a+ b, a = b. It is clear that these follow from part (4) of Definition 2.2.7.

Now assume k ∼ j and k ∼ i. If both bonds are simple, then we can use the same
argument as in the simply-laced case. Thus we may assume that precisely one of the bonds
is double and hence i, j, k generate a copy of B3. Restrict G to this parabolic subgroup and
rename the generators as in the standard B3 (so k becomes 2 while i and j become 1 and 3
in whichever order appropriate). The sBCS graphs for B3 were classified in Example 1.1.5.
For the purposes of LPR2, we are only interested in the vertices adjacent to to u and v. So
the only possible neighborhoods of u are shown in Figure 2.12. The shaded vertex is u, the
red loops indicate 121-strings and the blue loops indicate 212-strings. Similarly, the possible
neighborhoods of v are shown in Figure 2.13.

Apriori we need to check that LPR2 holds for every pair of neighborhoods. However,
there is a symmetry which allows us to reduce the number of cases by a factor of 2. Taking
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Figure 2.13: All the possible neighborhoods of v.
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Figure 2.14: Possible instances of LPR2 among B3 sBCS graphs.

complements of τ -invariants and reversing the arrows preserves the LPR equations which
need to be satisfied, and preserves the Kazhdan-Lusztig transport moves which are necessary
to show that the equations are satisfied. Thus, given the numbering of the neighborhoods
above, LPR2 is satisfied from the i-th neighborhood of u to the j-th neighborhood of v if and
only if it is satisfied from the j-th neighborhood of u to the i-th neighborhood of v. Finally,
there are no arcs possible between the 4-th neighborhood of u and the 4-th neighborhood
of v. The cases that arise are shown in Figure 2.14. The checking is done in Table 2.1. In
each cell we give the equation dictated by LPR2 and the steps of Kazhdan-Lusztig transport
necessary to see that it is satisfied. We label an equality by s if it follows from the single
bond Kazhdan-Lusztig transport (part (3) of Definition 2.2.7), and label it by d if it follows
from the double bond Kazhdan-Lusztig transport (part (4) of Definition 2.2.7).

Thus G satisfies LPR2.
Now we check that LPR3 is satisfied. Consider an instance of LPR3, namely i, j, k, l ∈ S

with k ∼ i, i ∼ j, j ∼ l and u, v ∈ G with i, j ∈ τ(u) \ τ(v) and k, l ∈ τ(v) \ τ(u). There are
four possibilities depending on whether k − i− j − l generate a copy of A4, B4, or F4.

The first case is handled in the same way as the simply-laced case. First assume k, i, j, l
generate a copy of B4 with (k, i) being the double bond. Restrict G to this copy of B4 and
rename k to 1, i to 2, etc. The only B4 sBCS graphs which satisfy LPR2 were shown in
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LPR2 : a+ c = b+ d

a
s= b, c

d= d

LPR2 : a+ c+ d = b+ e

a
s= b, c+ d

d= e

LPR2 : a+ b+ e = c+ d+ f

a
d= c

d= e
d= f, b

s= d

LPR2 : a+ b = c

a
s= BX, c

d= b+ CX

LPR2 : a+ d = b+ c

b
s= CX, a

d= CX
d= c

d= d

LPR2 : a = b

a
d= b

LPR2 : a = b

a
s= BY,BY

d= b

LPR2 : a = b+ c

a
s= CY,CY

d= b+ c

LPR2 : a = 0
BY

d= CZ + a,BY
s= CZ

Table 2.1: Checking that instances of LPR2 are satisfied among B3 sBCS graphs.

Proposition 1.1.9. The vertex u has τ -invariant {2, 3}, and as far as LPR3 is concerned,
we are only interested in a neighborhood of radius 2. The possible neighborhoods of u are
shown in Figure 2.15. The shaded vertex is u, the red loops indicate 121-strings and the
blue loops indicate 212-strings. We omit any information about the internal arcs since it is
irrelevant for the pairwise binding space.

Similarly, the possible neighborhoods of v are shown in Figure 2.16.
Again, we need to check that LPR3 holds for every pair of possible neighborhoods, but

simplifications can be made as for LPR2. There are no edges from the i-th neighborhood
of u to the j-th neighborhood of v if both i and j are greater than 4, and we only need to
consider half of the cases for the same reason. The cases to be checked are shown in Figure
2.17. We check that LPR3 holds in each case in Table 2.2.

Finally assume i, j, k, l generate a copy of F4 with (i, j) being the double bond. Restrict
G to this copy of F4 and rename k to 1, i to 2, etc. The only F4 sBCS graphs which satisfy
LPR2 were shown in Propositions 1.1.10 and 1.1.12. The possible neighborhoods of u are
shown in Figure 2.18. The shaded vertex is u, the red loops indicate 121-strings and the
blue loops indicate 212-strings. We omit any information about the internal arcs since it is
irrelevant for the pairwise binding space.

Similarly, the possible neighborhoods of v are shown in Figure 2.19.
As above, we check all the cases in Figure 2.20. In this case there is an additional

symmetry which comes from the symmetry of the Coxeter graph (everything is preserved
under the automorphism mapping 1 ↔ 4, 2 ↔ 3). This symmetry allows us to omit the
third column of the table.
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Figure 2.17: Possible instances of LPR3 among B4 sBCS graphs.
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LPR3 : a+ b = c+ d

a
s= EW

d= d

b
s= CY

d= c

LPR3 : a = b+ c

a
s= CY

d= b+DX

c
d= EW

s= DX

LPR3 : a+ b = 0
a+AU

d= BV
s= AU

b+ FZ
d= EY

s= FZ

LPR3 : a+ c+ e = b+ d

b
d= CU

s= a

d
d= EW + EX

s= c+ e

LPR3 : a+ b = c+ d

a
d= BW

s= c

a
d= BX

s= d

b
d= EU

s= CV
d= a

LPR3 : a+ b = c+d+ e+ f

a
d= BW +BX

s= c+ e

b
d= DU + EU

s= d+ f

LPR3 : a+ b = c+ d

a
s= CW

d= d+DU

c
d= ET + EX

s= ET + b
s=

DU + b

LPR3 : b = a+ c

b
s= BX

d= a

c+ FY
d= EW

s= FY

LPR3 : b+ c+ d = a+ e

c
s= EW

d= e

d
s= DW

d= e

a
d= BT +BX

s=
CU + b

d= e+ b

LPR3 : a+ b = c+ d

a
s= DX

d= c

b
s= GW

d= d

LPR3 : a = b

a
s= CY

d= DX
s= EV

d= b

LPR3 : a = 0
a+AU

d= BV
s= AU

LPR3 : a = b+ c

a
d= BV

s= CX
d= DY +EY

b
s= EY, c

s= DY

LPR3 : a = b

a
s= GY

d= EX − CY
s=

DV − CY
b

d= DV −BW s= DV −CY

LPR3 : a = b

a
s= CY

d= DX
s= EV

d= b

LPR3 : a = 0
a

d= BV − CW s=
DX − EY d= 0

LPR3 : a = b+ c

a
d= BV

s= CX
d= DY +EY

b
s= EY, c

s= DY

LPR3 : a = b

a
s= GY

d= EX − CY
s=

DV − CY
b

d= DV −BW s= DV −CY

LPR3 : a = b

a
s= CV

d= DT +DX

b
d= ES + EW

s= DT +DX

LPR3 : a = 0
a

d= BS
s= DT

a
d= CU

s= EV

a
d= BW

s= DX

EV
d= DT +DX

LPR3 : a = b+ c

a
d= BS +BW

s= CT + CX

CT
d= CX

d= DV
d= EV

b
s= EV, c

s= DV

LPR3 : a = b

a
s= GV

d= EX
s= DW

d= b

Table 2.2: Checking that instances of LPR3 are satisfied among B4 sBCS graphs.
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Figure 2.18: All the possible neighborhoods of u (type F4).
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2.3 Application: arcs beginning at fully commutative
elements

In this section we are concerned with the Kazhdan-Lusztig W -graph of type Bn, so (W,S)
is the Coxeter system of type Bn with the standard set of generators. We number the
generators in a different fashion than usually in this case (see Figure 2.21). This agrees
better with the explicit realization we will be using. So

S = {s0, . . . , sn−1}.

We complete the proof that the weight of an arc whose tail is a fully commutative element
(defined originally in [Ste96]; see also Section 2.3.1.2) is either 0 or 1. This was shown for
type Ã in [Gre09] (the same proof holds for the finite type A), and was conjectured to hold
for all Coxeter groups. It was shown for type D in [Ger13].

2.3.1 Preliminaries

2.3.1.1 Explicit realization of the Bn Coxeter system

First, we explicitly realize the Coxeter group of type Bn as signed permutations of n elements.
A detailed account of this construction may be found in section 8.1 of [BB05]. For example,
the permutation

−3 −2 −1 1 2 3
↓ ↓ ↓ ↓ ↓ ↓
1 −3 2 −2 3 −1

will be written in one-line notation as 231.
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Figure 2.20: Possible instances of LPR3 among F4 sBCS graphs.
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Figure 2.21: Alternative numbering of roots in the Dynkin diagram of Bn.
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There is a good description of the right descent set τR(w) of a signed permutation w:

Proposition 2.3.1. [BB05, Proposition 8.1.2] Suppose w ∈ W . Then

τR(w) = {si ∈ S : w(i) > w(i+ 1)},

where w(0) := 0.

For the above permutation we have w(0) = 0, w(1) = −2, w(2) = 3, and w(3) = −1. So
τR(w) = {0, 2}.

The description of the left descent set is not as nice in this realization, so throughout
this section we deal with the “right” version of the Kazhdan-Lusztig graph as opposed to the
“left” version (for example we will use τR, the right descent set, instead of τ). The results
remain valid in the “left” version via the map w 7→ w−1.

2.3.1.2 Fully commutative elements

The fully commutative elements are a subset of a Coxeter group which enjoys numerous
interesting combinatorial properties; they were introduced in [Ste96]. It is well known that
one can move between reduced expressions of any w ∈ W by using only the braid relations

sts · · · = tst . . . ,

hence not changing the length at any point. An element w ∈ W is fully commutative if the
only braid relations necessary have of the form st = ts (i.e. when s and t are commuting
generators).

Fully commutative elements can be described in terms of their so-called heaps. Given a
word s = (s1, . . . , sl) in the simple reflections, the heap of s is a poset on {1, . . . l} which is
the transitive closure of relations i ≺ j, where i ≺ j if

1. i < j, and

2. si = sj or sisj 6= sjsi.

One thinks of a heap as a “labeled poset,” where i is labeled by si. If w ∈ W is fully
commutative, then all reduced expressions will yield isomorphic heaps. Moreover, in this
case reduced expressions are precisely the linear orderings of the heap.

Proposition 2.3.2. [Ste96, Proposition 2.3] The heap P of a word s = (s1, . . . , sl) is a heap
of a fully commutative element if and only if
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1. there is no convex chain i1, . . . , im in P such that i1 = s3 = · · · = s, s2 = s4 = · · · = t

and the order of st in W is m > 3,

2. there is no covering relation i < j in P with si = sj.

One interesting property of the set of fully commutative elements which follows from this
classification is that it is a union of Kazhdan-Lusztig molecules. Since fully commutative
elements form an order ideal of the weak order ([Ste96, Proposition 1.4]), the only thing
we need to check is that if there is a simple edge between x and w, for x < w and x fully
commutative, then w is fully commutative. This easily follows from the above proposition.

Hence Kazhdan-Lusztig molecules split into fully commutative ones and non-fully com-
mutative ones. Note that this is not always an intrinsic feature of a molecule; for example
in type D there exist pairs of isomorphic molecules, one of which is fully commutative and
the other one is not. As we will see in a moment, this cannot happen in type B.

Another feature of fully commutative elements is a restriction on their descent set. We
call J ⊂ S commutative if for any s, t ∈ J we have st = ts. The right descent set of a
fully commutative element is commutative: any element in the right descent set of a fully
commutative element must be a label of a maximal element in its heap. By the definition of
a heap, no two maximal elements can have bonded labels.

The last feature makes it very convenient to apply Kazhdan-Lusztig transport with re-
spect to a simple bond; more precisely:

Proposition 2.3.3. Suppose x 6 w, τR(x) ⊃ τR(w), and x is fully commutative. Suppose
w′ is connected to w by a simple edge which activates a simple bond. Then there exists x′

connected by a simple edge to x with µ(x,w) = µ(x′, w′).

Proof. Suppose (s, t) is the bond in question and s ∈ τR(w). Then s ∈ τR(x). Since x is
fully commutative, t /∈ τR(x). So there exists an edge from x to some x′ which activates the
bond (s, t). The result follows by Kazhdan-Lusztig transport.

We will need a result of Shi ([Shi03]):

Proposition 2.3.4. Suppose w ∈ W is not fully commutative. Then any minimal element
of the molecule of w in the Kazhdan-Lusztig graph has non-commutative τR(w).

Proof. This is the content of Lemma 3.1 from [Shi03]. Two remarks are in order. First,
the statement of the lemma has a typo, and the assumption is meant to be that J is non-
commutative. Second, the proof is carried out in a more general context of affine C̃n, but all
the proofs can be easily specialized to the corresponding finite type Bn.
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,

Figure 2.22: The descent structure relevant to Proposition 2.3.6.

The next result we need is a pattern-avoidance type characterization of fully commutative
elements due to Stembridge ([Ste97]). Let us clarify what we mean by pattern avoidance
with an example. We say that w avoids the pattern (2,−1,−3) if there exist no integers
i < j < k such that −w(k) < w(i) < −w(j) < 0. Namely there exists three entries in the
one-word notation for w out of which the second is smallest in absolute value and negative,
the third is largest in absolute value and negative, while the first is medium in absolute value
and positive. There is a notational discrepancy with [Ste97], namely we say that w avoids a
pattern when [Ste97] would say w−1 avoids it. However since the set of fully commutative
elements is preserved under taking inverse, this will have no affect on our situation.

Proposition 2.3.5. An element w ∈ W is fully commutative if and only if it avoids the
following patterns:

12, 321, 321, 321, 321, 312, 312, 213, 231, 231, 132.

Proof. This is an explicitly expanded version of Theorem 5.1 of [Ste97].

2.3.1.3 Miscellany

We will need the following purely combinatorial statement:

Proposition 2.3.6. Suppose (xi)ki=1 (for some k) is a sequence such that if xi > xi+1 then

xi+2 > xi > xi+1

provided i+ 2 6 k, and
xi > xi+1 > xi−1

provided i−1 > 1. In picture notation, every descent locally looks like Figure 2.22, except the
boundary is trimmed for the first and last descents. Then (xi) is a union of two increasing
subsequences.
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.

Figure 2.23: A sequence as in Proposition 2.3.6 splits into two increasing sequences.

Proof. Let (i1, . . . , ir) be the sequence of indices of descents (so xij > xij+1). For 1 6 j 6 r,
let yj = xij+1. It is easy to see that both (yj)rj=1 and its complement in (xi)ki=1 are increasing
(see Figure 2.23.

We wold like to slightly refine the notation for (s, t)-strings (introduced in section 1.1.1)
for the double bond (0, 1). In particular we want to differentiate between a 010-string and a
101-string. We would also like to mention that the strings in the Kazhdan-Lusztig graph lie
vertically in the weak order (i.e. form chains in that order). This follows from the fact that
the graph is strongly admissible, and Propositions 1.2.5 and 1.2.2.

Now we will clarify why using Kazhdan-Lusztig transport to equate two edge weights
with “incorrect” τ -invariant containment implies that the edge weights must be 0 or 1. This
is the main idea for the proof of the 0− 1 conjecture.

Proposition 2.3.7. Suppose x < w and τR(x) ) τR(w). Moreover suppose l instances of
Kazhdan-Lusztig transport (possibly using the double bond) yield sequences x = x0, x1, . . . , xl

and w = w0, w1, . . . , wl with µ(x0, w0) = µ(x1, w1) = · · · = µ(xl, wl). Finally suppose
τR(xl) 6⊃ τR(wl). Then µ(x,w) ∈ {0, 1}.

Proof. Notice that xi and xi+1 differ by at most two simple edges (they sometimes differ by
two if we are using the double bond version of Kazhdan-Lusztig transport). If xi and wi

differ in length by 1 for some i, then we are automatically done. Hence we will be looking
for such a pair. Suppose xl and wl are not such a pair. Then, by Proposition 1.2.5 we know
that either µ(xl, wl) = 0 or xl > wl. Choose i such that xi < wi but xi+1 > wi+1. Hence xi
and wi they differ in length by at least 3. But the length difference between xi and xi+1 is
at most two, and similarly for wi and wi+1. Thus the length difference between xi and wi

must be 3, and the length difference between xi+1 and wi+1 is 1. This finishes the proof.
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2.3.2 The 0− 1 conjecture

We would like to prove

Theorem 2.3.8. Suppose x,w ∈ W and x < w. If x is fully commutative then µ(x,w) is
either 0 or 1.

Some pairs (x,w) require technical arguments; we analyze these before getting to the
main proof.

Definition 2.3.9. A pair (x,w) ∈ W ×W is 010-bad if all of the following hold:

• x < w,

• x and w lie in the middle of 010-strings,

• τ(x) ⊃ τ(w),

• x is fully commutative, while w is not,

• for all s ∈ τR(w), the edge between w and sw does not activate any simple bond (this
edge may be directed or even phantom, i.e. have the same τ -invariants at both ends).

Similarly for 101-bad.

Lemma 2.3.10. There are no 010-bad pairs.

Proof. Suppose (x,w) is a 010-bad pair. We will describe what w looks like as a signed
permutation and conclude, using Proposition 2.3.5, that w is fully commutative.

Consider what it means if w is in the middle of a 010-string. We know that 0 /∈ τR(w),
so

w(1) > 0.

We also know that 0 ∈ τR(ws1), so
w(2) < 0.

Moreover 1 /∈ τR(ws0), so
−w(1) < w(2).

Now suppose i ∈ τR(w) and i > 1. We know that τR(w) is commutative, so i− 1, i+ 1 /∈
τR(w) (assuming they make sense). Since (x,w) is bad, we must have i− 1, i+ 1 /∈ τR(wsi).
Hence w(i− 1) < w(i+ 1) and w(i+ 2) > w(i). Combining these with the assumption that
i ∈ τR(w) gives

w(i+ 2) > w(i) > w(i+ 1) > w(i− 1).
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Group 2

Group 1

Group 3

Figure 2.24: A pictorial representation of w for a 010-bad pair (x,w).

Thus the sequence (w(1), . . . , w(n)) satisfies the conditions of Lemma 2.3.6 and hence can
be split into two increasing sequences. A pictorial representation of w is shown in Figure
2.24.

Notice that the first sequence only has positive elements and that the negative elements
form an initial segment of the second sequence. Also, any negative element is in absolute
value smaller than any element of the first sequence. We split the sequence into three groups:
1) the elements of the first sequence, 2) the negative elements, and 3) the positive elements
of the second sequence.

Now we can show that w is fully commutative. As we have mentioned above, w avoids
the pattern 12. The negative elements form an increasing sequence, so w avoids 12. The
only remaining patterns are

321, 321, 321, 321.

Now 321 and 321 are avoided because our sequence is a union of two increasing subsequences.
Suppose we have an instance of the pattern 321. Since Group 1 is in absolute value larger
than Group 2, the 2 and 1 must correspond to Group 3. This is again a contradiction since
Group 3 forms an increasing sequence. Finally, suppose we have an instance of the pattern
321. Then the two negatives must correspond to Group 2 and hence the 2 must correspond
to Group 1. This is again impossible since Group 1 is in absolute value larger than Group
2.

Lemma 2.3.11. If (x,w) is a 101-bad pair, then µ(x,w) ∈ {0, 1}.

Proof. Suppose (x,w) is a 101-bad pair.
Since 0 ∈ τR(w), we have w(1) < 0. Since 0 /∈ τR(ws1), we have w(2) > 0. As in the
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Figure 2.25: A pictorial representation of w for a 101-bad pair (x,w).

previous lemma, if i ∈ τR(w) and i > 1 then

w(i+ 2) > w(i) > w(i+ 1) > w(i− 1),

whenever the inequalities make sense. Hence the sequence (w(1), . . . , w(n)) splits into two
increasing sequences.

We now show that 2 /∈ τR(w) and w(k) > 0 for all k > 1. Suppose 2 ∈ τR(w). Then
2 ∈ τR(x). Now x is in the middle of its 101-string, so 1 ∈ τR(xs0). But a descent set
can only lose one element when following a downward weak-order covering, so 2 ∈ τR(xs0).
Hence {1, 2} ⊆ τR(xs0). But xs0 should be fully commutative since it is part of the molecule
of x. This is a contradiction, so 2 /∈ τR(x). Now it is clear the first of the two sequences
contains only one negative entry while the second sequence is completely positive. A pictorial
representation of w is shown in Figure 2.25.

Now we will use parallel transport to find a pair (x̃, w̃) with the same µ value but with
τR(x̃) 6⊃ τR(w̃). This will finish the proof by Proposition 2.3.7. Notice that τR(w) 6= {0}
(otherwise x would have to be the identity, which would contradict the assumption that
(x,w) is bad). Let k be the smallest nonzero element of τR(w). Consider the sequence
(w1, . . . , wk), where w1 = w and wi = wsk−1sk−2 . . . sk−i+1 for i > 1. From the picture it is
clear that (wi, wi+1) is a simple edge activating the bond (k − i, k − i+ 1).

Construct the sequence (x1, . . . , xk) inductively. Let x1 = x. Using proposition 2.3.3, let
x2 be such that µ(x2, w2) = µ(x1, w1). If τR(x2) 6⊃ τR(w2) then we have found the necessary
x̃ and w̃, and we do not need to continue. Also, if x2 66 w2 then µ(x2, w2) ∈ {0, 1} (either x2

and w2 are incomparable, or one of the pairs (x1, w1), (x2, w2) has elements which differ in
length by 1), and again we do not need to continue. Otherwise we may repeat this step to
find x3. Continue the process until we are either of the above special cases occurs, or until
we find xk such that µ(xk, wk) = µ(x,w), xk < wk, and τR(xk) ⊃ τR(wk).
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Figure 2.26: A pictorial representation of wk for a 101-bad pair (x,w).

A pictorial representation of wk is shown in Figure 2.26. We show next that wk(2) 6

−wk(1) since otherwise wk (and hence w) is fully commutative. We will use the pattern
avoidance characterization from Proposition 2.3.5. We know that the only negative element
of the sequence (wk(1), . . . , wk(n)) is the first one. So none of the patterns with a negative
entry beyond the first one can appear. The only remaining possibilities are 321 and 321. It
is fairly easy to see that the sequence is a union of two increasing subsequences (the sequence
corresponding to w was such a union; now wk(2) will go into the first sequence while the
entries it jumped over will go into the second). So the pattern 321 is avoided. Thus the
pattern 321 must arise. The entries smaller than wk(2) form an increasing subsequence,
hence the 2 in the pattern must correspond to an entry > wk(2). Thus −wk(1) > wk(2), as
desired.

We claim that xk must be part of a 010-string. Indeed, both 0 and 2 must be in τ(xk). If
it was in the middle of a 101-string then at least one of its neighbors would need to have both
1 and 2 in its τ -invariant, which would contradict that it is fully commutative. Now since the
types of strings of xk and wk are different, an application of the Kazhdan-Lusztig transport
gives µ(xk, wk) = µ(xk+1, wks0) for some xk+1 in the molecule of x. By the discussion in the
previous paragraph we know that 1 and 2 are both in τ(ws0). Letting x̃ = xk+1 and w̃ = ws0

finishes the proof (by Proposition 2.3.7).

Remark 2.3.12. The 101-bad pairs do indeed arise; for example:

x = 214365, w = 613245.

Proof of Theorem 2.3.8. Another paper of Green, [Gre07], provides the proof in case both x
and w are fully commutative. So we are interested in the case when w is not fully commu-
tative.

We proceed by induction with respect to the Bruhat order of the molecule of w. We
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can assume τ(x) ) τ(w), since otherwise µ(x,w) ∈ {0, 1} by basic Kazhdan-Lusztig theory.
The base case (namely the case when w is a minimal element of its molecule) follows from
Proposition 2.3.4 as well as the fact that τ(x) is commutative.

Now suppose w is not a minimal element of its molecule. There exists s ∈ τ(w) such
that the edge between w and sw is simple. Thus there exists t ∈ τ(sw) \ τ(w); it must be
bonded to s. We then know that s ∈ τ(x), and, since τ(x) is commutative, t /∈ τ(x).

Suppose first that (s, t) is a simple bond. Let u be the vertex adjacent to x along a
simple edge activating the bond (s, t). Since the graph satisfies Kazhdan-Lusztig transport,
ν(x,w) = µ(x,w) = µ(u, sw). If u 6 sw then we are done by induction. If u > sw then
the length difference between u and sw must be 1, and hence µ(u, sw) = 1. Otherwise
µ(u, sw) = 0.

Now suppose that (s, t) is the double bond. If w is at the top of its (s, t)-string, then an
analogous argument to the one above (except using part (4) of Definition 2.2.7) completes the
proof. By construction, w is not at the bottom of its (s, t)-string. Either (x,w) is a bad (in
the sense of Definition 2.3.9) pair, or the types of (s, t)-strings of x and w are different. The
first case was treated in Lemmas 2.3.10 and 2.3.11, and the second one follows by induction
and Kazhdan-Lusztig transport as before.
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CHAPTER 3

W -graphs of minuscule and quasi-minuscule
representations

In this chapter we study, in detail, two important examples of parabolic Kazhdan-Lusztig
theories: the minuscule quotients and the quasi-minuscule quotients. We may wish to com-
pute the W -graph, and, where possible, the Kazhdan-Lusztig polynomials.

The computations for the minuscule case have been done before. For the case u = −1 the
Kazhdan-Lusztig polynomials were computed by Lascoux and Schützenberger ([LS81]) for
the symmetric group and by Boe ([Boe88]) for the other Lie types. For the case u = q they
were computed by Brenti ([Bre02, Bre09]). Our main result here (Theorem 3.1.16) is that
the W -graph is “not too complicated,” in the sense that one only needs the Local Polygon
Rule to determine the edge weights (in particular, the 0 − 1 conjecture holds in this case).
The main merit of our approach as compared to the previous work is that it is independent
of the Lie type.

For the quasi-minuscule quotient, we carry out some of the above calculations. We
compute the W -graph for all the (finite, irreducible) Weyl groups except for type D (where
we conjecture what the answer is but are unable to prove it). We also compute the Kazhdan-
Lusztig polynomials in the case u = −1 for Lie type A.

3.1 Minuscule quotients

3.1.1 Preliminaries

Let g be a simple Lie algebra, Φ its root system, ∆ = {α1, . . . , αn} be a base. Define si to be
the simple reflection is αi. Then S = {s1, . . . , sn} is the set of simple reflections. Let W be
the Weyl group, i.e. the group generated by S. For γ ∈ Φ let γ∨ = γ

〈γ,γ〉 be the corresponding
coroot.

63



A dominant integral weight λ 6= 0 is minuscule if the weights of the corresponding
irreducible representation of g form a single W -orbit. This is equivalent to

Definition 3.1.1. A dominant integral weight λ 6= 0 is minuscule if 〈λ, β∨〉 ∈ {0,±1} for
any root β.

Suppose λ is a minuscule weight. The stabilizer of λ is a parabolic subgroup WJ generated
by J ⊆ S. The quotient W/WJ is referred to as a minuscule quotient. Let W J denote the
set of shortest coset representatives. Let wJ0 be the longest element of W J . Then W J

is a subinterval [1, wJ0 ] in the left-weak order of W . Every element in W J is “dominant
minuscule” in the sense of [Ste01a]. By [Ste01a, Proposition 2.1], any element of W J is fully
commutative. On the subinterval, the Bruhat order and the left weak order coincide ([Ste96,
Theorems 2.1 and 6.1]).

Proposition 3.1.2. Suppose λ is a minuscule weight (corresponding to an irreducible root
system). Then λ is a fundamental weight ωs for some s ∈ S (namely, 〈λ, α∨t 〉 = δst).

Proof. Since λ is dominant, we know that 〈λ, α∨t 〉 > 0 for all t ∈ S. Suppose, toward a
contradiction, that 〈λ, α∨s 〉 = 〈λ, α∨t 〉 = 1. Let s = s0, s1, . . . , sk−1, sk = t be a simple path in
the Dynkin diagram from s to t (it exists since the root system is irreducible). Then

〈λ, sk . . . s1α
∨
s 〉 =

〈
λ, sk . . . s2(α∨s0 −

〈
α∨s0 , αs1

〉
α∨s1)

〉
= . . .

=
〈
λ, α∨s0 − as0,s1α

∨
s1 + as0,s1as1,s2α

∨
s2 − · · ·+ (−1)kas0,s1 . . . ask−1,sk

α∨sk
)
〉
,

where as,t = 〈α∨s , αt〉. Now asi,si+1 6 −1 since si and si+1 are bonded, so

〈
λ, α∨s0 − as0,s1α

∨
s1 + as0,s1as1,s2α

∨
s2 − · · ·+ (−1)kas0,s1 . . . ask−1,sk

α∨sk
)
〉

>
〈
λ, α∨s0

〉
+
〈
λ, α∨s1

〉
+ · · ·+

〈
λ, α∨sk

〉
> 2.

This is a contradiction.

We will use the following result about the structure of reduced expressions of elements
of W J .

Proposition 3.1.3. Suppose w = si1 . . . sir ∈ W J is a reduced expression. Then between
any two occurrences of an element si (with no other occurrences of si between them)

• there are exactly two terms that do not commute with si such that the corresponding
simple roots are short relative to αi, or,
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• the is one term sj that does not commute with si such that 〈αj, α∨i 〉 = −2.

Proof. This follows from [Ste01a, Proposition 2.3].

3.1.2 Heap of wJ
0

Let P be the heap of wJ0 (recall the discussion in section 2.3.1). The order filters of P
correspond precisely to the elements of W J as follows. Given an order filter we take a linear
extension and multiply the corresponding labels. Given w ∈ W J we take its heap to get the
order filter fl(w). The linear extensions of fl(w) are precisely the reduced expressions of w.
The weak (equivalently Bruhat) ordering on W J corresponds to the containment ordering
on the order filters of P .

In this section we describe, in considerable detail, the structure of P .
The heap is a ranked poset by [Ste01a, Corollary3.4]. Let r be the rank of P .
We will write Qk1,k2,...kn for the restriction of ranked poset Q to levels k1, k2, . . . kn.

Proposition 3.1.4. P has a greatest element and a least element.

Proof. Let λ = ωs be the minuscule weight. Suppose wJ0 has reduced expressions si1 . . . sir .
Now sir /∈ J , so sirλ 6= λ. So

〈
λ, α∨sir

〉
6= 0. But λ is dominant and minuscule, so

〈
λ, α∨sir

〉
= 1

and sir = s. Hence any maximal element of P is labeled s. Since all elements labeled s are
related in P , we conclude that the maximal element is unique, and thus is the greatest
element.

Now prove that P has a least element. Suppose t ∈ τ(wJ0 ). Then

−1 =
〈
wJ0λ, α

∨
t

〉
= 〈w0λ, α

∨
t 〉 = 〈λ,w0α

∨
t 〉 = 〈λ,−α∨t′〉 = −δst′ ,

where t′ = w0tw0. Hence τ(wJ0 ) = {w0sw0} has just one element. Hence any minimal
element of P has to be labeled by w0sw0. Hence the minimal element is unique and thus is
the least element.

Remark 3.1.5. This proposition, together with the fact that P is ranked, implies that P is
actually a graded poset.

We will need the following statement about the classification of intervals between adjacent
elements of the same label:

Proposition 3.1.6. In the heap of a dominant minuscule element, every interval between
two elements labeled i (with no elements labeled i between them) is isomorphic as a labeled
poset to the heap of sk . . . s3s1s2s3 . . . sk in Dk, or to the heap of sk . . . s2s1s2 . . . sk in Ck.
Examples of these are shown in Figure 3.1.
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Figure 3.1: Intervals of type D5 and C4.

Proof. This follows from [Ste01a, Proposition 3.3].

Notice that the above proposition is similar to Proposition 3.1.3, however whereas the
word version does make a statement about relative length of roots, the new version asserts
isomorphism of labeled posets.

Proposition 3.1.7. If y, z < x are covers in P then there exists w ∈ P covered by y and z,
and the labels of x and w coincide. Similarly, if y, z > x are covers in P then there exists
w ∈ P covering y and z, and the labels of x and w coincide.

Proof. Suppose y, z < x are covers in P . Let s be the label of x and t, t′ be the labels of y
and z, respectively. Let y → x1 → x2 → · · · → xk → z be a path in P formed by descending
from y to the least element and coming up to z. The labels trace a path in the Dynkin
diagram from t to t′. Since the Dynkin diagram has no cycles and s is adjacent to both t

and t′, some xi is labeled s. Now xi < x so we may define w to be the maximal element
labeled by s which is smaller than x. Now y, z ∈ [w, x], so by Proposition 3.1.6, w is covered
by y and z.

The second case follows by a similar argument.

Proposition 3.1.8. Any x ∈ P covers at most two elements and is covered by at most two
elements.

Proof. Suppose x, labeled by s, covers three elements: y1, y2, y3. By Proposition 3.1.7 there
exist z1, z2 labeled by s such that z1 is covered by y1, y2 and z2 is covered by y2, y3. Then z1

and z2 are in the same grading level, but are labeled by the same letter and hence comparable.
So z1 = z2 =: z. This contradicts Proposition 3.1.6.
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Definition 3.1.9. A fence is a graded poset Q of rank 2 such that the Hasse diagram is
connected and no vertex has degree bigger than 2. We distinguish three types, based on the
relative sizes of the two levels:

• V -fence: ,

• Λ-fence: ,

• N-fence: .

An enumeration of a rank-level L consistent with the fence is an ordering L = (x1, . . . , xn)
such that the distance in the Hasse diagram between adjacent entries is 2.

The Hasse diagram of a fence can be embedded into the plane. Given an embedding, we
can distinguish between an N -fence

and an N -fence

.

Proposition 3.1.10. The restriction of P to two consecutive rank levels is a fence. More-
over the Hasse diagram of P can be embedded into the plane so that the restriction to two
consecutive levels is a V -fence, a Λ-fence, an N-fence or an N-fence.

Proof. Suppose we are looking at the levels r − i and r − i− 1. Proceed by induction on i.
Suppose i = 0. The only element of rank r is the maximal element. It covers at most

two elements. So the restriction of P to the levels r and r − 1 is a fence. On its own, it can
clearly be embedded into the plane.

Suppose Pr−i+1,r−i is a fence. Enumerate the elements of Pr−i by x1, . . . , xn so that they
are consistent with Pr−i+1,r−i. By Proposition 3.1.7, for j = 1, . . . , n − 1, there exists an
element yj ∈ Pr−i−1 which is covered by xj and xj+1.

Since every element of Pr−i−1 is covered by an element of Pr−i, there are at most two
other elements of Pr−i−1: y0 covered by x1 and yn covered by xn. If they exist, they are
easily seen to be distinct. So Pr−i,r−i−1 is again a fence. Moreover, it is clear that one can
extend the embedding of Pr,r−1,...,r−i to an embedding of Pr,r−1,...,r−i−1.
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From now on we pick an embedding of the Hasse diagram of P into the plane.

Remark 3.1.11. All labels in the fence must be distinct. Indeed two labels in the same rank
level cannot coincide by definition and two labels in adjacent ranks cannot coincide by parity
considerations.

We call a vertex of the Dynkin diagram distinguished if it is either the long end of a
double bond or if it is the middle of a fork. There must be at most one distinguished vertex
in the Dynkin diagram of Φ.

Lemma 3.1.12. Let k ∈ Z>0. Suppose either the first or last vertex of Pk is four-valent. If
the label of that vertex is s then either s is the long end of a double bond, or s is the middle
of a fork in the Coxeter graph.

Proof. All four of the labels of the adjacent vertices must be bonded to s. If they are all
distinct, then s must be a quadruple vertex of the Dynkin diagram. This is of no interest to
us since Φ was assumed to be finite. If there are three distinct ones, then s is the middle of
a fork. If there are two distinct ones, then for some t, tst will be a subword of the reduced
word or wJ0 . By Proposition 3.1.3, this means that s is the long end of a double bond.

Lemma 3.1.13. Suppose an interval [i, f ] in P , with both i and f labeled by s ∈ S is a
chain. Then it contains an element in its interior which is labeled by the distinguished vertex
(more specifically the long end of a double bond).

Proof. Without loss of generality we may assume there are no other elements labeled s in
the interval (else just take the subinterval from the highest of them to f). Thus the interval
must be of type C according to Proposition 3.1.6. Consider the middle three elements;
suppose their labels are t1, t2, t1. Since the elements from an interval, their labels must form
a subword t1t2t1 of of a reduced expression of W J

0 . By Proposition 3.1.3, t2 must correspond
to a long end of a double bond.

Proposition 3.1.14. The heap P is rank unimodal.

Proof. Suppose P is not unimodal. Then, restricting to some consecutive ranks of P we have,
from top to bottom, a V -fence followed by some N - and N -fences followed by a Λ-fence (see
Figure 3.2). Denote the rank levels by ri, ri + 1, . . . , rf .

First we consider three special cases. The first two take care of the case when there are
no N - and N -fences (i.e. rf = ri + 2), while the last one is the case when the V - and Λ-
fences are as small as possible.

Case 1. Suppose rf = ri + 2 and both rank levels ri and rf have only two vertices (see
Figure 3.3 (a)).
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Figure 3.2: A section of a non-unimodal heap.

By Lemma 3.1.12, a must be distinguished. However, since all four expressions bad,
bae, cad, cae possible subwords of a reduced expression of wJ0 , we have one of the following
scenarios:

• if b, c, d, e are all distinct then a is a quadruple vertex of the Dynkin diagram,

• if there is one match among b, c, d, e (without loss of generality, b = d) then a is the
middle of a fork and the long end of a double bond,

• if there are two matches among b, c, d, e (without loss of generality, b = d and c = e)
then a is the long end of two double bonds.

All of these configurations contradict the finiteness of the Coxeter system. Note that there
cannot be more matches among b, c, d, e since elements with the same label must be compa-
rable. This finishes the case.

Case 2. Suppose rf = ri + 2 and both rank levels ri and rf have more than two vertices
(see Figure 3.3 (b)).

By Lemma 3.1.12, a and b must both be distinguished vertices of the Dynkin diagram.
Since the corresponding elements of the heap are incomparable, a and b must be distinct.
This contradicts the finiteness of the Coxeter system.

Case 3. Suppose rf > ri + 2 and both rank levels ri and rf have only two vertices (see
Figure 3.3 (c)).

While there are no 4-valent vertices here, a and b must still be distinguished vertices
of the Dynkin diagram. Indeed, if c, d, e are distinct then a is the middle of a fork, while
otherwise (without loss of generality c = e) it is the long end of a double bond. Similarly b
is also distinguished. Due to finiteness, a = b. But the interval (in the heap) between the
corresponding vertices is a line. By Lemma 3.1.13, it contains a distinguished vertex in its
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Figure 3.3: The special cases of nonunimodal heaps.

interior. Hence an interval between two vertices labeled by a distinguished simple reflection
cannot be a line.

Now we consider the general larger case (i.e. rank levels ri and rf have more than two
vertices and some N - or N -fences are present). Without loss of generality, Prf−1,rf−2 is an
N -fence. We claim that the next level down must also be an N -fence. Indeed, otherwise we
are in the situation in Figure 3.4 (a). In this case the vertices x and y must both be labeled
by the distinguished simple reflection a. However we can see a path of odd length between
these vertices. Since a path in the heap induces a path in the Dynkin diagram, any path
between two vertices with the same labels must have even length.

Thus we know that Prf−1,rf−2 and Prf−2,rf−3 are N -fences. Suppose Prf−3,rf−4 is not an
N fence. Then the picture looks like Figure 3.4 (b). All the labels shown are distinct except
for the possibility that b = f (this follows from the fact that vertices with the same label
must be comparable, Proposition 3.1.6, and Lemma 3.1.13). If b = f then the diagram in
Figure 3.5 (a) is a subdiagram of the Dynkin diagram. Otherwise the diagram in Figure 3.5
(b) is a subdiagram of the Dynkin diagram. Neither of these is allowed by finiteness. Hence
Prf−1,rf−2 and Prf−2,rf−3 are N -fences while Prf−3,rf−4 is an N fence. It must also be the
case that Prf−4,rf−5 is an N fence since otherwise we would have two vertices labeled a in
the fence Prf−3,rf−4.

The picture now looks like Figure 3.4 (c). The labels in the topmost fence are distinct,
so the path from x to z corresponds to a path from a to b. The straight line path from y to
z gives a path from a to b of length 2. There are no cycles in the Dynkin diagram, so these
paths must be the same. Hence the rank level rf must only have three vertices (see Figure
3.4 (d)).
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Figure 3.4: Heaps encountered in the proof of Proposition 3.1.14.
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Figure 3.5: Dynkin diagrams encountered in the proof of Proposition 3.1.14.

Notice that b 6= d; this would imply that a is the long end of a double bond, but the
interval between the vertices labeled d contains a and another vertex whose label is adjacent
to d (this contradicts Proposition 3.1.6). Thus a is a fork of the Dynkin diagram. Thus
e = b. However all the other labels shown are distinct. Hence the diagram in Figure 3.5 (c)
is a subdiagram of the Dynkin diagram. This contradicts finiteness, finishing the proof.

3.1.3 W -graph for a minuscule quotient

Recall that and v ∈ W J is fully commutative, and hence its τ -invariant must be commutative.

Lemma 3.1.15. Suppose that for some k, Pk+1,k is a Λ-fence. If w ∈ W J and fl(w) ⊆
Pr,r−1,...,k then |τ(w)| 6 |Pk| and equality holds if and only if fl(w) = Pr,r−1,...,k.

Proof. Let x1, . . . , xn be the left-to-right enumeration of Pk consistent with the embedding.
Choose i0 ∈ {1, . . . , n}. Since P is unimodal, we know that for j > k, Pj−1,j is either a
Λ-fence or N -fence. Using these fences we can define injections φj : Pj → Pj−1. Since Pk+1,k

is a Λ-fence we can make sure that xi0 /∈ φk+1(Pk+1). For i = 1, . . . , n define Si := {x ∈
Pr,r−1,...k : φk+1 ◦φk+2 ◦ · · ·◦φrank(x)(x) = xi} These n chains partition Pr,r−1,...k. The minimal
elements of fl(w) (whose labels comprise τ(w)) form an antichain, so there are at most n of
them.

If there are n of them then fl(w) contains at least one element from each Si, and in
particular contains xi0 (since Si0 = {xi0}). But i0 was an arbitrary index, so fl(w) ⊃ Pk. So
fl(w) = Pr,r−1,...,k.
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Theorem 3.1.16. Let Γ be an admissible molecular graph (for W ) with vertices in bijection
with W J such that

1. for any vertex v of Γ, τ(v) is the left descent set of v as an element of W J ,

2. if v → w is an edge of Γ then v and w are related in left weak (equivalently, Bruhat)
order,

3. if v < w are vertices of Γ and l(w)− l(v) = 1 then v → w is an edge of Γ,

4. if v → w is an edge of Γ and |l(v)− l(w)| 6= 1 then v < w and the lengths of v and w
have different parities.

Then Γ is the W -graph of the parabolic representation of W with respect to WJ .

Lemma 3.1.17. Suppose that Γ is an admissible molecular graph satisfying the conditions
of Theorem 3.1.16, and v → w is an arc of Γ for some v < w. Then there exists u < w

which is connected by a simple edge to w.

Proof. Suppose not. Let k be the lowest level of fl(w), and x1, . . . xn be an enumeration of
Pk consistent with the embedding. Suppose that xi ∈ fl(w) is labeled by s (so s is in the
descent set of w). Then fl(sw) is obtained from fl(w) by removing xi. The edge from w

to sw cannot be simple by assumption, so xi−1 and xi+1 must exist and belong to fl(w).
Repeating this argument yields that Pk ⊂ fl(w). Moreover, the same argument shows that
Pk,k+1 is a Λ-fence. Since v → w is an arc, we have |τ(v)| > |τ(w)| = n. However v < w,
and so fl(v) ( fl(w). This contradicts Lemma 3.1.15.

Proof of Theorem 3.1.16. We know that the parabolic W -graph satisfies the four conditions,
so it suffices to prove that such an admissible molecular graph is unique.

Clearly all simple edges of Γ and non-surprising arcs are determined by conditions (1)−(4)
together with admissibility of Γ. Suppose v → w is a surprising arc of Γ. We wish to show
that m(v → w) is uniquely determined. We will show that the weight of v → w is determined
by the weights of arcs which have a lower head (in the Bruhat order). This will finish the
proof by induction.

Since v → w is an arc, we may fix s ∈ τ(v) \ τ(w). Now for any s′ ∈ τ(w), we have
s /∈ τ(s′w). Indeed, if (w, s′w) is an arc, then s /∈ τ(w) ⊃ τ(s′w). If (w, s′w) is a simple edge
then any element in τ(s′w) \ τ(w) must be bonded to s′. However s and s′ are not bonded
since they both belong to τ(v).

Moreover, whenever (w, s′w) is a simple edge, we can apply LPR2 with type (s, s′) from
v to s′w. We know that s /∈ τ(s′w), so we need to only make sure that there is a witness.
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Figure 3.6: Structure of a possible surprising arc in the W -graph of a minuscule quotient.

Now there exists k ∈ τ(s′w) \ τ(w), and it must be bonded to s′. Thus k /∈ τ(v), and we
can apply LPR2. We will next show that there exists s′ ∈ τ(w) such that the edge (w, s′w)
is simple, and the instance of LPR2 from v to s′w described above involves no alternating
paths that go as high as w.

Suppose, toward a contradiction, that this is not the case. Notice that condition (4)
prevents any path from going above w. So for every s′ such that (w, s′w) is simple, any
instance of LRP2 from v to s′w involves an (s, s′)- or (s′, s)-alternating path v → w′ → s′w

with l(w) = l(w′). The edge w′ → s′w is directed downward. Because of Proposition 1.2.4,
the path must have type (s, s′), and we must have w′ = ss′w (see Figure 3.6).

Let k be the lowest level of fl(w) in P , and let x1, . . . , xn be an enumeration of Pk
consistent with the embedding.

Suppose first that fl(w)k ( Pk (see Figure 3.7). Then, without loss of generality, for
some i we have xi ∈ fl(w) and xi+1 /∈ fl(w). Let s′ be the label of xi. Let y ∈ Pk+1 be the
common cover of xi and xi+1 and t be its label. Thus s′ ∈ τ(w)\τ(s′w) and t ∈ τ(s′w)\τ(w)
(since fl(s′w) is obtained from fl(w) be removing xi). So w → s′w is a simple edge. By
assumption, there exists an ss′-alternating path v → w′ → s′w with l(w) = l(w′). Now
t ∼ s′, so t /∈ τ(v). Since v → w′ is an arc, we know that t /∈ τ(w′). Thus the heap of w′

is obtained from the heap of s′w by attaching xi+1. But since s ∈ τ(w′) and s /∈ τ(s′w), we
know that the label of xi+1 was s.

Suppose in the situation of the last paragraph that i + 1 < n. Let y′ ∈ Pk+1 be the
common cover of xi+1 and xi+2 and let t′ be its label. We know that y′ ∈ fl(s′w); otherwise
we would have l(w′) > l(s′w)+1 = l(w). So y′ ∈ fl(w). However t′ ∼ s, so t′ /∈ τ(v) ⊃ τ(w),
so y′ is not minimal in fl(w). Since xi+1 /∈ fl(w), we must have xi+2 ∈ fl(w).
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Figure 3.7: Rank levels k and k + 1 of the heap of w.

Recalling that no two elements in a rank level have the same label, the observations in the
last two paragraphs (and their mirror images) imply that fl(w) contains all but, perhaps,
one element of Pk, and that element is labeled s. Moreover the argument implies that all
covers of that element are in fl(w) (hence Pk+1 ⊂ fl(w)). Then τ(v) contains the set of
labels of the entire Pk.

If Pk+1,k is a Λ-fence, then Lemma 3.1.15 implies that fl(v) ⊇ Pr,...,k ⊇ fl(w), which
contradicts the fact that v 6 w. So there exists ỹ ∈ Pk+1 (labeled t̃) which covers only one
element x̃ (labeled s̃) of Pk.

Suppose s̃ = s. Now x̃ /∈ fl(w), since otherwise we would have s ∈ τ(w). Then t̃ ∈ τ(w).
However this contradicts the fact that t̃ /∈ τ(v) ⊃ τ(w) (since t̃ ∼ s). Thus s̃ 6= s and
x̃ ∈ fl(w). Now w → s̃w is a simple edge and an ss̃-alternating path v → w′ → s̃w with
l(w) = l(w′) is impossible. Indeed, we know that w′ would need to be ss̃w, and since there
is no way to cover ỹ from the bottom other than by x̃, t̃ ∈ τ(w′). This is impossible because
t̃ ∼ s and hence t̃ /∈ τ(v). This finishes the proof.

3.2 Quasi-minuscule quotients

3.2.1 Preliminaries

Let (W,S) be an irreducible finite Weyl group, (Φ,∆) the corresponding root system, α the
dominant short root.

Let Φs := Wα be the orbit of short roots. Let J ⊂ S be the set of simple reflections that
fix α. The quotient W/WJ is referred to as the quasi-minuscule quotient.

There is a bijection between W J and Φs given by w 7→ wα. Since we will be primarily
thinking in terms of roots, we use this bijection to define, for γ = wα, τ(γ) = τ(w), l(γ) =
l(w), etc.

In [Ste01b], Stembridge introduces a partial order on short roots called the Cayley order
as the transitive closure of relations of the form

β > γ when for some si ∈ S, siβ = γ and 〈β, αi〉 > 0.
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He proceeds to show that, in the case of a finite crystallographic root system, this ordering
restricted to positive short roots is identical to the standard one ([Ste01b, Proposition 3.2]),
i.e. β > γ if β − γ is a sum of positive simple roots.

He also shows ([Ste01b, Proof of Theorem 2.6]) that the map w 7→ −wα gives an order
isomorphism between the order ideal of the left weak order {w ∈ W | 1 6L w 6L σα} ,
where σα is the reflection in α, and Φs.

Now by [Ste01b, Theorem 2.6(c)], we know that σα ∈ W J . Since W J is an ideal with
respect to the weak order, we know that w 7→ −wα is an order isomorphism W J → Φs.
Hence w 7→ wα is an order anti-isomorphism W J → Φs.

The Bruhat order on Φs only requires the additional covering relations αi < −αj when i
and j are bonded, as compared to the left weak order. We reserve the sign 6 for the Bruhat
order on Φs, even though most of the pictures will be based on the Cayley order and hence
look “upside-down.”

Below we collect a few more general facts about quasi-minuscule quotients before moving
on to a type-by-type analysis.

Proposition 3.2.1. If α ∈ Φs and β ∈ Φ then 〈α, β∨〉 ∈ {0,±1,±2}. Moreover 〈α, β∨〉 =
±2 if and only if α = ±β.

Proof. See [Bou02, VI.1.3].

Proposition 3.2.2. For γ ∈ Φs, τ(γ) = {s ∈ S : 〈γ, α∨s 〉 < 0}.

Proof. This is a consequence of the fact that the Cayley order is reverse-graded by length.

Proposition 3.2.3. Suppose γ ∈ Φs, si, sj ∈ τ(γ), and si and sj do not commute. Then
γ = −αi − αj.

Proof. We know that 〈γ, α∨i 〉 6 −1,
〈
γ, α∨j

〉
6 −1, and 〈αj, α∨i 〉 6 −1. So

〈γ, sjα∨i 〉 =
〈
γ, α∨i − 〈α∨i , αj〉α∨j

〉
= 〈γ, α∨i 〉 − 〈α∨i , αj〉

〈
γ, α∨j

〉
6 −2.

By Proposition 3.2.1, we know that 〈γ, sjα∨i 〉 > −2. So

〈γ, α∨i 〉 = −1,
〈
γ, α∨j

〉
= −1, 〈αj, α∨i 〉 = −1,

and γ = −(sjα∨i )∨ = −sjαi = −αi − αj.

We now review the finite crystallographic root systems for each Lie type. For the series we
review the explicit root system constructions, give the descent sets for all the short roots, and
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show a representative Cayley order. For the exceptional types, we just present the Cayley
order since finding the W -graph is a computer calculation. The vertices of the Cayley graphs
are labeled by descent sets and by coordinates with respect to the simple roots.

3.2.1.1 Type An

This root system is constructed in the subspace of Rn+1 = span{ε1, . . . , εn+1} given by
ε1 + · · ·+ εn+1 = 0. The simple roots are

∆ = {εi+1 − εi | i ∈ {1, . . . , n}}.

Denote αi = εi+1 − εi. The Weyl group W = Sn+1 permutes the basis vectors. So the set of
roots is

Φ = Φs = {εi − εj | i, j ∈ {1, . . . , n}}.

Denote αi,j = εi − εj. The positive roots are Φ+ = {αi,j | i > j}.
Next we can find the descent sets. If i and j are not adjacent (and 1 6 i, j 6 n+ 1) then

τ(αi,j) =



{si, sj−1}, if i < n+ 1 and j > 1,

{si}, if i < n+ 1 and j = 1,

{sj−1}, if i = n+ 1 and j > 1,

∅, if i = n+ 1 and j = 1.

If 1 6 i 6 n then

τ(αi+1,i) =


{si−1, si+1}, if 1 < i < n,

{sn−1}, if i = n,

{s2}, if i = 1.

If 1 6 i 6 n then
τ(αi,i+1) = {si}.

The ascent set of a root consists of elements which are not in the descent set, but which
nevertheless alter the root (i.e. the simple generators for the stabilizer of the root are precisely
those simple reflections which are neither ascents nor descents).

On can also describe the length fairly easily:

l(αi,j) = n− (i− j), if i > j, l(αi,j) = n− (i− j)− 1, if i < j.
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Figure 3.8: The Cayley order on the short roots of A6. The τ -invariants are labeled in green.
The dashed lines are additional Bruhat order coverings.

Finally one can describe the Bruhat order. If i > j then

[α, αi,j] = {αk,l | l 6 j < i 6 k},

and if i < j then

[α, αi,j] = {αk,l | i 6 k < l 6 j} ∪ {αk,l | j − 1 6 k > l 6 i+ 1}.

A representative example of the Hasse diagram for the Cayley order is shown in Figure
3.8

3.2.1.2 Type Bn

This root system is constructed in Rn = span{ε1, . . . , εn}. The simple roots are

∆ = {ε1} ∪ {εi+1 − εi | i ∈ {1, . . . , n− 1}}.
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Denote α1 = ε1, αi = εi−εi−1 for 2 < i 6 n. The Weyl group W is the group of permutations
and sign changes of the basis vectors. So the set of roots is

Φ = {±εi | i = 1, . . . , n} ∪ {±εi ± εj | i < j ∈ {1, . . . , n}},

and the set of short roots is
Φs = {±εi | i = 1, . . . , n}.

The descent sets are

τ(εi) =

si+1, if i < n,

∅, if i = n,

and
τ(−εi) = {si}.

A representative example of the Hasse diagram for the Cayley order is shown in Figure
3.9

3.2.1.3 Type Cn

This root system is constructed in Rn = span{ε1, . . . , εn}. The simple roots are

∆ = {2ε1} ∪ {εi+1 − εi | i ∈ {1, . . . , n− 1}}.

Denote α1 = 2ε1, αi = εi − εi−1 for 2 < i 6 n. The Weyl group W is the group of
permutations and sign changes of the basis vectors. So the set of roots is

Φ = {±2εi | i = 1, . . . , n} ∪ {±εi ± εj | i < j ∈ {1, . . . , n}},

and the set of short roots is

Φs = {±εi ± εj | i < j ∈ {1, . . . , n}}.

For i < j, let α+,−
i,j = εi − εj, and similarly for other signs.
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The descent sets are:

τ(α+,+
i,j ) =



{si+1, sj+1}, if j < n, j 6= i+ 1,

{si+1}, if j = n, j 6= i+ 1,

{sj+1}, if j < n, j = i+ 1,

∅, if j = n, i = n− 1,

τ(α+,−
i,j ) =

{si+1, sj}, if j 6= i+ 1,

{si+1}, if j = i+ 1,

τ(α−,+i,j ) =

{si, sj+1}, if j < n,

{si}, if j = n,

τ(α−,−i,j ) =

{si, sj}, if j 6= i+ 1,

{si}, if j = i+ 1.

A representative example of the Hasse diagram for the Cayley order is shown in Figure
3.10

3.2.1.4 Type Dn

This root system is constructed in Rn = span{ε1, . . . , εn}. The simple roots are

∆ = {ε1 + ε2} ∪ {εi+1 − εi | i ∈ {1, . . . , n− 1}}.

Denote α1 = ε1 + ε2, αi = εi − εi−1 for 2 < i 6 n. The Weyl group W is the group of
permutations and sign changes of an even number of signs of the basis vectors. So the set
of roots is

Φ = Φs = {±εi ± εj | i < j ∈ {1, . . . , n}}.

For i < j, let α+,−
i,j = εi − εj, and similarly for other signs.

The descent sets are:

τ(α+,+
i,j ) =



{si+1, sj+1}, if j < n, j 6= i+ 1,

{si+1}, if j = n, j 6= i+ 1,

{sj+1}, if j < n, j = i+ 1,

∅, if j = n, i = n− 1,
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Figure 3.10: The Cayley order on the short roots of C6. The dashed lines are additional
Bruhat order coverings.

82



τ(α+,−
i,j ) =

{si+1, sj}, if j 6= i+ 1,

{si+1}, if j = i+ 1,

τ(α−,+i,j ) =



{si, sj+1}, if j < n, i > 2,

{si}, if j = n, i > 2,

{s1, s2, sj+1}, if j < n, i = 2,

{s1, s2}, if j = n, i = 2,

{s1, sj+1}, if 2 < j < n, i = 1,

{s3}, if j = 2, i = 1,

{s1}, if j = n, i = 1,

τ(α−,−i,j ) =



{si, sj}, if j 6= i+ 1, i 6= 2,

{si}, if j = i+ 1, i 6= 2,

{s1, s2, sj}, if j 6= 3, i = 2,

{s1, s2}, if j = 3, i = 2.

A representative example of the Hasse diagram for the Cayley order is shown in Figure
3.11

3.2.1.5 Type E6

The Hasse diagram for the Cayley order is shown in Figure 3.12. The vertices are labeled
by the coordinates of the corresponding roots with respect to simple roots, and by descent
sets.

3.2.1.6 Type E7

The Hasse diagram for the Cayley order is shown in Figure 3.13. The vertices are labeled
by the coordinates of the corresponding roots with respect to simple roots, and by descent
sets.

3.2.1.7 Type E8

The Hasse diagram for the Cayley order is shown in figure 3.14. The vertices are labeled by
the coordinates of the corresponding roots with respect to simple roots, and by descent sets.
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Figure 3.11: The Cayley order on the short roots of D6. The dashed lines are additional
Bruhat order coverings.
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Figure 3.12: The Cayley order on the short roots of E6.
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Figure 3.13: The Cayley order on the short roots of E7.
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Figure 3.14: The Cayley order on the short roots of E8.

87



3.2.1.8 Type F4

The Hasse diagram for the Cayley order is shown in Figure 3.9 The vertices are labeled by
the coordinates of the corresponding roots with respect to simple roots, and by descent sets.

3.2.1.9 Type G2

The Hasse diagram for the Cayley order is shown in Figure 3.9 The vertices are labeled by
the coordinates of the corresponding roots with respect to simple roots, and by descent sets.

3.2.2 Results

3.2.2.1 Type An

In this case we can describe both the W -graph and the parabolic Kazhdan-Lusztig polyno-
mials for the case u = −1.

Theorem 3.2.4. The W -graph of the quasi-minuscule representation of type An has no
surprising edges (in the sense of section 1.2.2). See Figure 3.15 for an example of the
resulting W -graph.

Proof. The size of the τ -invariant is limited to 0, 1, or 2, and the only element with empty
τ -invariant is the lowest one in Bruhat order. Thus if β → γ is an arc, then |τ(β)| =
2, |τ(γ)| = 1. We know all the τ -invariants from the explicit construction; the only roots
with a singleton descent sets are

{αi,i+1}ni=1, {αi,1}ni=2, {αn+1,j}nj=2.

The first group is the negative simple roots, and the last two are the sides of the top
pyramid in the picture of the Cayley order. These last two groups, together with α, form
an order filter of the Cayley order on positive roots, and hence an order ideal of the Bruhat
order. Since there are no elements with larger τ -invariants below them, no arc points at
these elements.

Suppose β → γ is a surprising arc. Then γ = αi,i+1 = −αi for some 1 6 i 6 n, and
τ(γ) = {si}. All the roots below γ in Bruhat order are positive. The positive roots whose
τ -invariants properly contain {si} are {αi,j, j = 2, . . . , i − 1} and {αj,i+1, j = i + 2, . . . , n}.
Out of these, at most two (αi,i−1, αi+2,i+1) are one level away from γ while the rest are
further away. So

β ∈ {αi,j, j = 2, . . . , i− 2} ∪ {αj,i+1, j = i+ 3, . . . , n}.
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Figure 3.15: The W -graph for the quasi-minuscule quotient of A6. The τ -invariants are
labeled in green.

First, consider 2 6 i 6 n − 1. Then there is a simple edge between γ and αi, and
τ(αi) = {si−1, si+1}. Suppose β = αi,j for some 2 6 j 6 i − 2. Then τ(β) = {si, sj−1}.
The simple edge starting at β which activates the bond (i, i + 1) goes to αi+1,j whose τ -
invariant is {si+1, sj−1}. By AT1 (with sj−1 as the witness), m(β, γ) = m(αi+1,j, αi). But
m(αi+1,j, αi) = 0 since both τ -invariants have the same size. The case β = αj,i+1 for some
i+ 3 6 j 6 n is handled in the same way.

Now consider the two edge cases for i. Suppose i = 1. There is a simple edge between γ

and α1, and τ(α1) = {s2}. We must have β = αj,2 for some 4 6 j 6 n, and τ(β) = {s1, sj}.
The simple edge from β activating the bond (1, 2) goes to αj,3, whose τ -invariant is {s2, sj}.
By AT1, m(β, γ) = m(αj,3, α1). But αj,3 6> α1 since α1 is a maximal positive root. Also
αj,3 66 α1 since the only roots smaller than α1 have singleton (or empty) τ -invariants. Hence
m(αj,3, α1) = 0. This finishes the case i = 1. The case i = n is handled in the same way.

Thus any potential surprising arc must have weight 0.

Now we calculate the Kazhdan-Lusztig polynomials for the case u = −1. We use the
shorthand notation Pk,l;i,j for P [−1]

αk,l,αi,j
.

89



Theorem 3.2.5. If i > j, then

Pk,l;i,j =

1 , if l 6 j < i 6 k,

0 , otherwise.

Hence the Kazhdan-Lusztig polynomials restricted to the positive roots are 1 precisely when
the two roots are related in Bruhat order.

Proof. We know that αk,l 6 αi,j precisely when l 6 j < i 6 k. Hence we know that if the
inequality does not hold then the Kazhdan-Lusztig polynomial is zero. Hence from now on
we assume that the inequality holds. We proceed by induction on the position of αi,j in the
Bruhat order. There are five cases.

Case 1. Suppose i < n+ 1 and k = i. Then τ(αi,j) = {si, sj−1} and si ∈ τ(αk,l). Hence

Pi,l;i,j = Pi+1,l;i+1,j + qPi,l;i+1,j −
∑

αi,l6z6αi+1,j

si /∈Asc(z)

Pi,l;zµ
[−1](z, αi+1,j)q(l(αi,j)−l(z))/2.

Now Pi+1,l;i+1,j = 1 by induction, Pi,l;i+1,j = 0 since αi,l 66 αi+1,j, and the sum is over an
empty interval. So the original Kazhdan-Lusztig polynomial is 1.

Case 2. Suppose i = n+1, k = i and l = j−1. In particular, j > 1. Then τ(αi,j) = {sj−1}
and sj−1 ∈ Asc(αk,l). Hence

Pn+1,j−1;n+1,j = qPn+1,j;n+1,j−1 + Pn+1,j−1;n+1,j−1

−
∑

αn+1,j−16z6αn+1,j−1
sj−1 /∈Asc(z)

Pn+1,j−1;zµ
[−1](z, αn+1,j−1)q(l(αn+1,j)−l(z))/2.

Now Pn+1,j−1;n+1,j−1 = 1 by induction, Pn+1,j;n+1,j−1 = 0 since the roots are not correctly
related in Bruhat order, and the sum is over an empty set (the interval contains only one
element and sj−1 is in its ascent set).

Case 3. Suppose i = n + 1, k = i and l < j − 1. Then τ(αi,j) = {sj−1} and sj−1 /∈
Asc(αk,l) ∪ τ(αk,l). Hence

Pn+1,l;n+1,j = (1 + q)Pn+1,l;n+1,j−1 −
∑

αn+1,l6z6αn+1,j−1
sj−1 /∈Asc(z)

Pn+1,l;zµ
[−1](z, αn+1,j−1)q(l(αn+1,j)−l(z))/2.

Now Pn+1,l;n+1,j−1 = 1 by induction. Also, the only element below αn+1,j−1 for which the
µ-coefficient is nonzero (in fact, it is 1) is αn+1,j, and sj−1 is not in its ascent set (it is a
descent). So Pn+1,l;n+1,j = 1 + q − q2/2 = 1.
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Case 4. Suppose k = i+ 1. Then si ∈ τ(αi,j) and si ∈ Asc(αk,l). Hence

Pi+1,l;i,j = qPi,l;i+1,j + Pi+1,l;i+1,j −
∑

αi+1,l6z6αi+1,j

si /∈Asc(z)

Pi+1,l;zµ
[−1](z, αi+1,j)q(l(αi,j)−l(z))/2.

Now Pi,l;i+1,j = 0 since the two roots are not correctly related in the Bruhat order, and
Pi+1,l;i+1,j = 1 by inductive assumption. The only element of the interval with nonzero
µ-coefficient is αi+1,j−1 and si ∈ Asc(αi+1,j−1). So Pi+1,l;i,j = 1.

Case 5. Suppose k > i+ 1. Then si ∈ τ(αi,j) and si /∈ Asc(αk,l) ∪ τ(αk,l). Hence

Pk,l;i,j = (1 + q)Pk,l;i+1,j −
∑

αk,l6z6αi+1,j

si /∈Asc(z)

Pk,l;zµ
[−1](z, αi+1,j)q(l(αi,j)−l(z))/2.

Now Pk,l;i+1,j = 1 by inductive assumption. The only elements below αi+1,j with nonzero
µ-coefficients are αi+2,j and αi+1,j−1, but si ∈ Asc(αi+1,j−1). So Pk,l;i,j = 1 + q − q = 1.

Theorem 3.2.6. If i < j, then

Pk,l;i,j =



1 + qj−i , if l < i < j < k,

1 , if i+ 1 > l < k ∈ {j, j − 1},

1 , if j − 1 6 k > l ∈ {i, i+ 1},

1 , if i 6 k < l 6 j,

0 , otherwise.

Proof. We already know the last case since that is precisely when αk,l 6≤ αi,j. Let us first
handle the case when αk,l is also a negative root, i.e. i 6 k < l 6 j. If i = k and j = l then
the result is trivial. Without loss of generality (by symmetry of the Coxeter graph) we may
assume i < k. Two cases are required here:

Case 1. Suppose k = i+ 1. Then si ∈ τ(αi,j) and si ∈ Asc(αk,l). Hence

Pi+1,l;i,j = qPi,l;i+1,j + Pi+1,l;i+1,j −
∑

αi+1,l6z6αi+1,j

si /∈Asc(z)

Pi+1,l;zµ
[−1](z, αi+1,j)q(l(αi,j)−l(z))/2.

Now Pi,l;i+1,j = 0 since the elements are not correctly related in the Bruhat order, and
Pi+1,l;i+1,j = 1 by induction. Also, the only element in the interval for which the µ-coefficient
is nonzero is αi+1,j−1 and si is in its ascent set. So Pi+1,l;i,j = 1.
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Case 2. Suppose k > i+ 1. Then si ∈ τ(αi,j) and si /∈ Asc(αk,l) ∪ τ(αk,l). Hence

Pk,l;i,j = (1 + q)Pk,l;i+1,j −
∑

αk,l6z6αi+1,j

si /∈Asc(z)

Pk,l;zµ
[−1](z, αi+1,j)q(l(αi,j)−l(z))/2.

Now Pk,l;i+1,j = 1 by induction. Also, the only element in the interval for which the µ-
coefficient is nonzero is αi+2,j and si is not in its ascent set (nor is it a descent). So
Pn+1,l;n+1,j = 1 + q − q = 1.

Now we assume l < i < j < k. So αk,l is a positive root. This will require three
cases. Before proceeding, we mention, for use in induction, that the nonzero µ-coefficient
appears precisely when k = j + 1, l = i− 1 (this is not manifested in the W -graph since the
τ -invariants of the two roots coincide).

Case 1. Suppose j = i+ 1. Then si ∈ τ(αi,j) and si /∈ Asc(αk,l) ∪ τ(αk,l). Hence

Pk,l;i,i+1 = (1 + q)Pk,l;i+1,i −
∑

αk,l6z6αi+1,i

si /∈Asc(z)

Pk,l;zµ
[−1](z, αi+1,i)q(l(αi,i+1)−l(z))/2.

Now Pk,l;i+1,i = 1 by the previous theorem. Also, the only elements in the interval for which
the µ-coefficients are nonzero are αi+2,i and αi+1,i−1. Both of these have si in their ascent
sets. So Pk,l;i,i+1 = 1 + q.

Case 2. Suppose j = i+ 2. Then si ∈ τ(αi,j) and si /∈ Asc(αk,l) ∪ τ(αk,l). Hence

Pk,l;i,i+2 = (1 + q)Pk,l;i+1,i+2 −
∑

αk,l6z6αi+1,i+2
si /∈Asc(z)

Pk,l;zµ
[−1](z, αi+1,i+2)q(l(αi,i+2)−l(z))/2.

Now Pk,l;i+1,i+2 = 1 + q by induction. Also, the elements below αi+1,i+2 for which the µ-
coefficients are nonzero are αi+2,i+1, αi+1,i,αi+3,i+2 and αi+3,i. However αi+1,i and αi+3,i have
si in their ascent sets. So Pk,l;i,i+1 = (1 + q)(1 + q)− q − q = 1 + q2.

Case 3. Suppose j > i+ 2. Then si ∈ τ(αi,j) and si /∈ Asc(αk,l) ∪ τ(αk,l). Hence

Pk,l;i,j = (1 + q)Pk,l;i+1,j −
∑

αk,l6z6αi+1,j

si /∈Asc(z)

Pk,l;zµ
[−1](z, αi+1,j)q(l(αi,j)−l(z))/2.

Now Pk,l;i+1,j = 1 + qj−i−1 by induction. Also, the elements below αi+1,j for which the µ-
coefficients are nonzero are αi+2,j, αi+1,j−1, and αj+1,i. However αi+1,j−1 and αj+1,i have si
in their ascent sets. So Pk,l;i,i+1 = (1 + q)(1 + qj−i−1)− (1 + qj−i−2)q = 1 + qj−i.

Now we assume i + 1 > l < k ∈ {j, j − 1}. This will require six cases. The third case
from the theorem statement follows from this one via the diagram symmetry, so we will not
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treat it explicitly.
Case 1. Suppose j = k = i + 1. Then l < i + 1. However the case l = i is trivial since

then αi,j and αk,l are a distance 1 apart. So we may assume l < i. Then si ∈ τ(αi,j) and
si ∈ Asc(αk,l). Hence

Pi+1,l;i,i+1 = qPi,l;i+1,i + Pi+1,l;i+1,i −
∑

αi+1,l6z6αi+1,i

si /∈Asc(z)

Pi+1,l;zµ
[−1](z, αi+1,i)q(l(αi,i+1)−l(z))/2.

Now Pi,l;i+1,i = 0 since the roots are not correctly related in Bruhat order, and Pi+1,l;i+1,i = 1
by induction. Also, the only element in the interval for which the µ-coefficient is nonzero is
αi+1,i−1 and si is in its ascent set. So Pi+1,l;i,j = 1.

Case 2. Suppose j = k + 1 = i+ 1. Then si ∈ τ(αi,j), si ∈ τ(αk,l) and l < i. Hence

Pi,l;i,i+1 = Pi+1,l;i+1,i + qPi,l;i+1,i −
∑

αi,l6z6αi+1,i

si /∈Asc(z)

Pi,l;zµ
[−1](z, αi+1,i)q(l(αi,i+1)−l(z))/2.

Now Pi+1,l;i+1,i = 1 by induction, Pi,l;i+1,i = 0 since the roots are not correctly related in
Bruhat order, and the sum is over an empty interval. So Pi,l;i,i+1 = 1.

Case 3. Suppose j = k = i+ 2. Then l < i+ 2. Then si+1 ∈ τ(αi,j) and si+1 ∈ Asc(αk,l).
Hence

Pi+2,l;i,i+2 = qPi+1,si+1(l);i,i+1 + Pi+2,l;i,i+1 −
∑

αi+2,l6z6αi,i+1
si+1 /∈Asc(z)

Pi+2,l;zµ
[−1](z, αi,i+1)q(l(αi,i+2)−l(z))/2.

Now by induction

Pi+1,si+1(l);i,i+1 =

0, if l = i+ 1,

1, if l < i+ 1,
Pi+2,l;i,i+1 =

1, if l = i+ 1 or l = i,

1 + q, if l < i.

The only elements below αi,i+1 for which the µ-coefficient is nonzero are αi+1,i, αi+2,i+1, αi,i−1

and αi+2,i−1. Now si+1 is in the ascent set of αi+2,i+1 and αi+2,i−1. Also αi+1,i is above αi+2,l

precisely when l < i+ 1, and αi,i−1 is above αi+2,l precisely when l < i. So Pi+2,l;i,i+2 = 1.
Case 4. Suppose j = k+1 = i+2. Then l < i+1. Then si+1 ∈ τ(αi,j) and si+1 ∈ τ(αk,l).

Hence

Pi+1,l;i,i+2 = Pi+2,l;i,i+1 + qPi+1,l;i,i+1 −
∑

αi+1,l6z6αi,i+1
si+1 /∈Asc(z)

Pi+1,l;zµ
[−1](z, αi,i+1)q(l(αi,i+2)−l(z))/2.
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Now by induction

Pi+2,l;i,i+1 =

1, if l = i,

1 + q, if l < i,
Pi+1,l;i,i+1 = 1.

The only elements below αi,i+1 for which the µ-coefficient is nonzero are αi+1,i, αi+2,i+1, αi,i−1

and αi+2,i−1. However αi+2,i+1 and αi+2,i−1 and not above αi+1,l. Also αi+1,i is above αi+1,l

precisely when l < i+ 1, and αi,i−1 is above αi+1,l precisely when l < i. So Pi+1,l;i,i+2 = 1.
Case 5. Suppose j = k > i + 2. Note that l 6 i + 1 < j − 1. Then sj−1 ∈ τ(αi,j) and

sj−1 ∈ Asc(αk,l). Hence

Pj,l;i,j = qPj−1,l;i,j−1 + Pj,l;i,j−1 −
∑

αj,l6z6αi,j−1
sj−1 /∈Asc(z)

Pj,l;zµ
[−1](z, αi,j−1)q(l(αi,j)−l(z))/2.

Now by induction

Pj−1,l;i,j−1 = 1; Pj,l;i,j−1 =

1, if l = i or l = i+ 1,

1 + qj−i−1, if l < i.

The only elements below αi,j−1 for which the µ-coefficient is nonzero are αi+1,j−1, αi,j−2, and
αj,i−1. Now sj−1 is in the ascent set of αi+1,j−1 and of αj,i−1. So Pj,l;i,j = qPj−1,sj−1(l);i,j−1 +
Pj,l;i,j−1 − qPj,l;i,j−2 = 1, since, by induction,

Pj,l;i,j−2

1, if l = i or l = i+ 1,

1 + qj−i−2, if l < i.

Case 6. Suppose j = k + 1 > i+ 2. Then sj−1 ∈ τ(αi,j) and sj−1 ∈ τ(αk,l). Hence

Pj−1,l;i,j = Pj,l;i,j−1 + qPj−1,l;i,j−1 −
∑

αj−1,l6z6αi,j−1
sj−1 /∈Asc(z)

Pj−1,l;zµ
[−1](z, αi,j−1)q(l(αi,j)−l(z))/2.

Now by induction

Pj,l;i,j−1 =

1, if l = i or l = i+ 1,

1 + qj−i−1, if l < i,
Pj−1,l;i,j−1 = 1.

The only elements below αi,j−1 for which the µ-coefficient is nonzero are αi+1,j−1, αi,j−2, and
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αj,i−1. However sj−1 is in the ascent set of αi+1,j−1 and of αj,i−1. Now

Pj−1,l;i,j−2 =

1, if l = i or l = i+1,

1 + qj−i−2, if l < i,

so Pj−1,l;i,j = 1.

3.2.2.2 Type Bn, n > 2

In this case the Cayley order is a chain and all the τ -invariants (besides the one of α) are
singletons. Hence there is no possibility for surprising arcs and the W -graph is is fully
described by the Cayley order. An example of the resulting W -graph is shown in Figure
3.16.

3.2.2.3 Type Cn, n > 3

In this case we can fully describe the W -graph:

Theorem 3.2.7. If n = 3 then from the Hasse diagram of the Cayley order it is clear that
no surprising arcs are possible in the W -graph of the quasi-minuscule representation of type
Cn. If n > 3 then the surprising arcs are:

1. α+,+
i,i+2 → α+,+

i−1,i, 2 6 i 6 n− 3,

2. α−,−i,i+2 → α−,−i+2,i+3, 1 6 i 6 n− 3.

3. α+,+
1,3 → α+,−

1,2 ,

4. α−,+1,3 → α−,−1,2 ,

See Figure 3.17 for an example.

Proof. First show that the weight of each arc mentioned above is 1, and then prove that no
other possible surprising arc has nonzero weight.

Suppose 2 6 i 6 n − 3. Then τ(α+,+
i,i+2) = {si+1, si+3} and τ(α+,+

i−1,i) = {si+1}. The bond
(i+ 1, i+ 2) can be activated from both roots; from α+,+

i,i+2 it is activated on an edge to α+,+
i,i+1,

and from α+,+
i−1,i on the edge to α+,+

i−1,i+1. By Kazhdan-Lusztig transport,

µ(α+,+
i,i+2, α

+,+
i−1,i) = µ(α+,+

i,i+1, α
+,+
i−1,i+1) = 1,

where the last equality holds since the pair of roots are a left weak order covering. Hence
the first group of arcs indeed has weight 1.
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Figure 3.16: The W -graphs for the quasi-minuscule quotients of B4, F4, and G2. In the case
of B4 the roots are labeled in accordance with the explicit description in section 3.2.1. In
the other cases, the roots are labeled by coordinates in the simple roots. The bar denotes
the negative of the root.
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Suppose 1 6 i 6 n − 3. We have τ(α−,−i,i+2 = {si, si+2} and τ(α−,−i+2,i+3) = {si+2}. By
Kazhdan-Lusztig transport (with respect to the bond (i+ 1, i+ 2)),

µ(α−,−i,i+2, α
−,−
i+2,i+3) = µ(α−,−i+1,i+2, α

−,−
i+1,i+3) = 1,

where the last equality holds since the pair of roots are a left weak order covering. Hence
the fourth group of arcs indeed has weight 1.

The remaining two arc weights can be determined from a single use of the Kazhdan-
Lusztig transport corresponding to the double bond. The (1, 2)-string of α−,+1,3 also contains
α−,+2,3 and α+,+

1,3 . The (1, 2)-string of α−,−1,2 also contains α+,−
1,2 and α−,+1,2 . By Kazhdan-Lusztig

transport,
µ(α−,+1,3 , α

−,−
1,2 ) = µ(α+,+

1,3 , α
+,−
1,2 ) = µ(α−,+1,3 , α

−,+
1,2 ) = 1,

where the last equality holds since the pair of roots are a left weak order covering. The
reason these arcs appear only for n > 3 is that if n = 3 then the τ -invariants of the vertices
joined by them coincide. This finishes the check that all the arcs claimed are indeed present.

Now we need to show that no other surprising arcs have nonzero weight. Since the
maximal size of the τ -invariants is 2, any surprising arc must start at a root with two
elements in the τ -invariant and end at a root with one element in the τ -invariant. Hence we
list the elements with singleton τ -invariants:

α+,+
i,n , 1 6 i 6 n− 1, α+,+

i,i+1, 1 6 i 6 n− 2, α+,−
i,i+1, 1 6 i 6 n− 1,

α−,+i,n , 1 6 i 6 n− 1, α−,−i,i+1, 1 6 i 6 n− 1.

Notice that {α±,+i,n | 1 6 i 6 n − 1} ∪ {α} is an order ideal in the weak (hence Bruhat,
since all these roots are positive) order. Hence these roots cannot be ends of surprising arcs.
The remaining possible endpoints need to be examined carefully.

Let 1 6 i 6 n − 2, and examine the root α+,+
i,i+1. We have τ(α+,+

i,i+1) = {i + 2}. Since the
root is positive, the only roots below it in Bruhat order must be positive. The possibilities
are

α+,+
i+1,j, i+ 2 < j < n; α+,+

j,i+1, 1 6 j < i;
α−,+i+2,j, i+ 2 < j < n; α−,+j,i+1, 1 6 j < i+ 1.

Since weak order and standard order are dual on positive roots, we see that only α+,+
i+1,j for

i+2 < j < n are, in fact, lower in the Bruhat order. Thus we consider the arc α+,+
i+1,j → α+,+

i,i+1.
The case j = i + 3 has already been handled (there indeed is an arc there), so we assume
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j > i+ 3. By Kazhdan-Lusztig transport,

m(α+,+
i+1,j, α

+,+
i,i+1) = m(α+,+

i,j , α
+,+
i,i+2).

The τ -invariants of α+,+
i,j , and α+,+

i,i+2 are, respectively, {si+1, sj+1} and {si+1, si+3}. These
are incomparable and the two roots are not related by a simple reflection (since j > i + 3).
Hence the weight of the arc must be 0.

Let 1 6 i 6 n − 1, and examine the root α+,−
i,i+1, whose τ -invariant is {si+1}. Since the

root is a negative simple one, the only roots below it in Bruhat order must be positive. The
possibilities are

α+,+
i,j , i+ 1 < j < n; α+,+

j,i , 1 6 j < i− 1;
α−,+i+1,j, i+ 1 < j < n; α−,+j,i , 1 6 j < i.

The cases that have already been treated (there are arcs there) are: j = i+ 2 in the bottom
left case, j = i − 1 in the bottom right case, and i = 1, j = 3 in the top left case. We now
assume we are not in any of these.

If i > 1 then an application of Kazhdan-Lusztig transport in each of the cases yields

µ(α+,+
i,j , α

+,−
i,i+1) = µ(α+,+

i−1,j, α
−,+
i,i+1) = 0; µ(α+,+

j,i , α
+,−
i,i+1) = µ(α+,+

j,i+1, α
−,+
i,i+1) = 0;

µ(α−,+i+1,j, α
+,−
i,i+1) = µ(α−,+i,j , α

−,+
i,i+1) = 0; µ(α−,+j,i , α

+,−
i,i+1) = µ(α−,+j,i+1, α

−,+
i,i+1) = 0.

The above arc weights must be zero since the pairs of roots have incomparable τ -invariants,
but are not related by a simple reflection.

If i = 1 then the second column of cases does not exist and an application of the double
bond Kazhdan-Lusztig transport handles both rows of the first column:

m(α+,+
1,j , α

+,−
1,2 ) = m(α−,+2,j , α

+,−
1,2 ) = m(α−,+1,j , α

−,+
1,2 ) = 0.

The last equality holds since the pairs of roots have incomparable τ -invariants, but are not
related by a simple reflection (remember that the case j = 3 has been handled).

Let 1 6 i 6 n− 1 and examine the root α−,−i,i+1, whose τ -invariant is {si}.
The possibilities for the beginnings of the arcs are (ignoring Bruhat order issues for a
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while.):
α+,+
i−1,j, i < j < n; α+,+

j,i−1, 1 6 j < i− 2;
α−,+i,j , i < j < n; α−,+j,i−1, 1 6 j < i− 1;
α+,−
i−1,j, i < j 6 n; α+,−

j,i , 1 6 j < i− 1;
α−,−i,j , i+ 1 < j 6 n; α−,−j,i , 1 6 j < i− 1.

Now the bottom four of these have negative roots, and on the negative roots the Cayley
and standard orderings coincide and they are both dual to the Bruhat order. This allows us
to eliminate the bottom left group and most of the 3-rd row left group. The only element of
that group which is below α−,−i,i+1 is α+,−

i−1,j. However these two elements are an even distance
apart, so there is no possibility for an arc. Similarly by parity we can eliminate α+,−

i−2,i.
Of the remaining, the cases that have already been treated (there are arcs there) are:

j = i− 2 in the bottom right case, and i = 1, j = 3 in the case in row 2, column 1. We now
assume we are not in any of these.

If i > 1 then an application of Kazhdan-Lusztig transport in each of the cases yields

µ(α+,+
i−1,j, α

−,−
i,i+1) =

µ(α+,+
i−2,j, α

−,−
i−1,i+1), i > 2;

µ(α−,+2,j , α
+,−
1,3 ), i = 2;

µ(α+,+
j,i−1, α

−,−
i,i+1) = µ(α+,+

j,i , α
−,−
i−1,i+1);

µ(α−,+i,j , α
−,−
i,i+1) =

µ(α−,+i−1,j, α
−,−
i−1,i+1) = 0, i > 2;

µ(α+,+
1,j , α

+,−
1,3 ), i = 2;

µ(α−,+j,i−1, α
−,−
i,i+1) = µ(α−,+j,i , α

−,−
i−1,i+1);

µ(α+,−
j,i , α

−,−
i,i+1) = µ(α+,−

j,i+1, α
−,−
i−1,i+1);

µ(α−,−j,i , α
−,−
i,i+1) = µ(α−,−j,i+1, α

−,−
i−1,i+1).

All the µ-values on the right-hand sized of the equalities are 0.
If i = 1 then the only possibilities for the start of the arc are α−,+1,j for 1 < j < n.

The case j = 2 is eliminated by parity and the case j = 3 has been handled. For j > 4,
Kazhdan-Lusztig transport (the double bond version) gives

µ(α−,+1,j , α
−,−
1,2 ) = µ(α−,+1,j , α

−,+
1,2 ) = 0.

This finishes the proof.
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Figure 3.17: The W -graph for the quasi-minuscule quotient of C6. The τ -invariants are
labeled in green.
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3.2.2.4 Type Dn, n > 4

In this case we give a conjecture for what the W -graph is, but we cannot prove it at this
point.

Conjecture 3.2.8. For any n > 4, the following are surprising arcs in the W -graph of the
quasi-minuscule representation of type Dn:

1. For 1 6 k 6 n− 3,
α−−k,k+2

↘
α+−
k,k+2 → α−−k,k+1

↗
α+−
k+1,k+3

2. For 4 6 k 6 n,
α−−1,k

↗
α−+

2,k−1

↘
α+−

1,k

3. α−+
2,3 → α−−2,3 .

For n > 5 the following are also surprising arcs:

4. α++
k−1,k+1 → α++

k−2,k−1, 3 6 k 6 n− 2,

5. α−+
1,4 → α−−1,2 ,

6. α++
1,4 → α+−

1,2 ,

7. α++
2,4 → α−+

1,2 .

Se Figure 3.18 for an example.

3.2.2.5 Type Em, m ∈ {6, 7, 8}

This is, for the most part, a computer calculation. The computer-generated data is shown
in Appendix A.
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Figure 3.18: The W -graph for the quasi-minuscule quotient of D6. The τ -invariants are
labeled in green.

102



3.2.2.6 Type F4

A computer calculation imposing Kazhdan-Lusztig transport yields the graph in Figure 3.16.
We note that the double-bond version of Kazhdan-Lusztig transport is necessary to nail down
the weights (all of them are either 0 or 1). Alternatively one can achieve the same goal by
using the (full) Polygon Rule.

3.2.2.7 Type G2

The situation is similar to the one for type B; the graph is shown in Figure 3.16.
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CHAPTER 4

Type A molecules are Kazhdan-Lusztig

There are no known examples of admissible An-cells besides the Kazhdan-Lusztig cells (Stem-
bridge has checked it up to n = 9). Hence one may formulate

Conjecture 4.0.9. The only possible admissible type A cells are the Kazhdan-Lusztig ones.

A possible strategy of proof is as follows:

1. Show that any An-molecule is isomorphic to a molecule in the Kazhdan-Lusztig graph.

2. It is known that each Kazhdan-Lusztig An-cell has only one molecule, and the simple
edges are well understood (they are called dual Knuth moves). The second step is to
prove that no cell may have multiple molecules. The fact that no admissible An-cell
may contain two or more Kazhdan-Lusztig molecules has been checked for n 6 12
([Ste]).

3. The last part is to prove that there can be only one An-graph with a given underlying
molecule. For Kazhdan-Lusztig molecules this has been checked for n 6 13 ([Ste]).

In this section we complete the first part of the above program. Together with the above
computations, this result implies that all admissible An-cells up to n = 12 are Kazhdan-
Lusztig. The main ingredient of the proof is the Assaf’s axiomatization of graphs on tableaux
generated by dual Knuth moves ([Ass08]). Five of the axioms follow easily from the molecules
axioms, but the last one presents a challenge. Recently Roberts suggested a revised version
of the last axiom ([Rob13]). Using it one can give a short computerized proof of our result.

The results were announced in the proceedings of FPSAC 2013 ([Chm13a], [Chm13b]).

4.1 Dual equivalence graphs

This section summarizes the relevant definitions and results of [Ass08]. The results are
restated to make the similarity with the W -molecule world more apparent.
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Fix n ∈ Z>0. Let (W,S) be a Coxeter system of type An. Identify S in a natural way
with {1, . . . , n}. Define bi to be the bond (i, i+ 1). Then B := {b1, . . . , bn−1} is the set of all
bonds. For examples with small n we will use the notation a, b, c, . . . instead of b1, b2, b3, . . . .

Definition 4.1.1. A signed colored graph of type n + 1 is a tuple (V,E, τ, β), where (V,E)
is a finite undirected simple graph, τ : V → 2S, and β : E → 2B.

Denote by Ei the set of edges with label i (i.e. such that the corresponding value of β
contains i); we call these i-colored edges. This is a slight reindexing from Assaf’s original
definition; in the original Ei was the set of edges whose label contains i− 1.

We start by constructing a family, indexed by partitions, of signed colored graphs.

4.1.1 “Standard” dual equivalence graphs

Let λ be a partition of n + 1. Let SY T (λ) be the set of standard Young tableaux of shape
λ. Using the English convention for tableaux, the left-descent set of a tableau T is

τ(T ) := {1 6 i 6 n : i is located in a higher row than i+ 1 in T}.

The set of vertices of our graph is V := SY T (λ) (see Example 4.1.2).
By a diagonal of a tableau we mean a NW − SE diagonal. A dual Knuth move is the

exchange of i and i+1 in a standard tableau, provided that either i−1 or i+2 lies (necessarily
strictly) between the diagonals containing i and i+1. This corresponds to dual Knuth moves
on the symmetric group via, for example, the “content reading word” (reading each diagonal
from top to bottom, and concatenating in order of increasing height of the diagonals). The
dual Knuth moves define the edges of our graph:

E := {(T, U) : T and U are related by a dual Knuth move}.

A dual Knuth move between tableaux T and U activates the bond bi if i lies in precisely
one of τ(T ) and τ(U), and i+ 1 lies precisely in the other. Denote this condition by T

bi− U .
For (T, U) ∈ E, let

β(T, U) := {bi ∈ B : T
bi− U}.

The graph Gλ := (V,E, τ, β) is a signed colored graph of type n+ 1.
One can give a slightly more explicit description of activations on tableaux. Notice that

i, i + 1, and i + 2 have to lie on three distinct diagonals in any tableau. We have T
bi− U

precisely when T and U differ by switching the two of the above entries on the outside
diagonals, provided that the middle diagonal does not contain i+ 1.
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Figure 4.1: The standard dual equivalence graphs corresponding to the shapes 311 and 32.

Example 4.1.2. Two standard dual equivalence graphs, corresponding to the shapes 311 and
32, are shown in Figure 4.1. The values of τ are shown in red in the lower right-hand corner
of each vertex.

4.1.2 Axiomatics

Now we review Assaf’s axiomatization of the above construction.
A vertex w of a signed colored graph is said to admit an i-neighbor if precisely one of i

and i+ 1 lies in τ(w).

Definition 4.1.3. A dual equivalence graph of type n+1 is a signed colored graph (V,E, τ, β)
such that for any 1 6 i < n:

1. For w ∈ V , w admits an i-neighbor if and only if there exists x ∈ V which is connected
to w by an edge of color i. In this case x must be unique.

2. Suppose (w, x) is an i-colored edge. Then i ∈ τ(w) iff i /∈ τ(x), i + 1 ∈ τ(w) iff
i+ 1 /∈ τ(x), and if h < i− 1 or h > i+ 2 then h ∈ τ(w) iff h ∈ τ(x).

In other words, going along an i-colored edge switches i and i + 1 in the τ -invariant,
and does not affect any labels except i− 1, i, i+ 1, and i+ 2.

3. Suppose (w, x) is an i-colored edge. If i − 1 ∈ τ(w)∆τ(x) then (i − 1 ∈ τ(w) iff
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Figure 4.2: Possible connected components of restrictions of a dual equivalence graph to i-
and (i+ 1)-colored edges.
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Figure 4.3: Possible connected components of restrictions of a dual equivalence graph to i-,
(i+ 1)- and (i+ 2)-colored edges.

i + 1 ∈ τ(w)), where ∆ is the symmetric difference. If i + 2 ∈ τ(w)∆τ(x) then
(i+ 2 ∈ τ(w) iff i ∈ τ(w)).

4. If i < n− 2, consider the subgraph on all the vertices and i- and (i+ 1)-colored edges.
Each of its connected components has the form shown in Figure 4.2. If i < n − 3,
consider the subgraph on all the vertices and i-, (i+1)- and (i+2)-colored edges. Each
of its connected components has the form shown in Figure 4.3.

5. Suppose (w, x) ∈ Ei, (x, y) ∈ Ej, and |i− j| > 3. Then there exists v ∈ V such that
(w, v) ∈ Ej, (v, y) ∈ Ei.

6. Consider a connected component of the subgraph on all the vertices and edges of colors
6 i. If we erase all the i-colored edges it breaks down into several components. Any
two of these are connected by an i-colored edge.

Examples of A4 dual equivalence graphs can be found on the right of Figure 4.5.
A morphism of signed colored graphs is a map on vertex sets which preserves τ and β.

Proposition 4.1.4. The graph Gλ is a dual equivalence graph. Moreover, {Gλ}λ is a com-
plete collection of isomorphism class representatives of connected dual equivalence graphs.

Proof. The references are to [Ass08]. The first statement is Proposition 3.5. The second is
a combination of Theorem 3.9 and Proposition 3.11.

Remark 4.1.5. There is some redundancy in the definition as presented. Namely, β can be
calculated from τ : an edge (u, v) is i-colored if and only if i lies in precisely one of τ(u) and
τ(v), while i+ 1 lies in precisely the other. Assaf needed a slightly more general definition,
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Figure 4.4: Examples of restriction for standard dual equivalence graphs.

so β was not redundant. We think of β as a piece of data about a dual equivalence graph,
and keep it as part of the definition to be consistent with the original.

A weak dual equivalence graph is a signed colored graph satisfying conditions 1− 5 of the
Definition 4.1.3.

4.1.3 Restriction

Suppose G is a signed colored graph of type n+ 1. For 0 6 k < n+ 1, a (k + 1)-restriction
of G consists of the same vertex set V , the τ function post-composed with intersection with
{1, . . . , k}, and the β function post-composed with restriction to {b1, . . . , bk−1}. The (k+1)-
restriction of G is a signed colored graph of type k + 1. The property of being a (weak)
dual equivalence graph is preserved by restriction. By a (k + 1)-component of G we mean
either the connected component of the restriction, or the induced subgraph of G on vertices
corresponding to such connected component. It should be clear from the context which of
these we are talking about.

The n-components of Gλ are obtained by fixing the position of n+1 in the tableau. Such
a component is isomorphic to Gµ, where µ is formed from λ by erasing the outer corner
which contained n+ 1. On the above examples this looks as shown in Figure 4.4.

The condition of being a weak dual equivalence graph is already quite powerful. The
following lemma is relevant to us. It essentially says that a weak dual equivalence graph
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Figure 4.5: Molecules and dual equivalence graphs for type A4.

with a nice restriction property is necessarily a cover of a dual equivalence graph.

Lemma 4.1.6. Suppose G is a weak dual equivalence graph of type n+1. Suppose moreover
that each n-component is a dual equivalence graph. Then there is a surjective morphism
ϕ : G → Gλ for some partition λ of n + 1, which restricts to an isomorphism on the n-
components.

Let C ∼= Gµ be an n-component. Then for any partition ν 6= µ of n with ν ⊂ λ, there
exists a unique n-component D with ϕ(D) = Gν which is connected to C by an En−1 edge.
Also, two n-components which are isomorphic to Gµ are not connected by an En−1 edge.

Proof. The references are again to [Ass08]. The existence of the morphism is shown in
Theorem 3.14. Its surjectivity follows by Remark 3.8. The fact that it restricts to an
isomorphism on the n-components follows from the proof of Theorem 3.14. The covering
properties from the second paragraph are shown in Corollary 3.15, though the last one is
not explicitly mentioned.

4.1.4 Molecules and dual equivalence graphs

In this section we make more precise the relationship between molecules and dual equivalence
graphs which may be guessed from Figure 4.5.

Proposition 4.1.7. The simple part of an An-molecule, with the corresponding τ function
and edges labeled by activated bonds, is a weak dual equivalence graph.

Proof. Axioms (1), (2), (3) follow directly from SR, BR, and CR. Axiom (4) was demon-
strated in Example 1.1.4 and Proposition 1.1.8. Axiom (5) is a weaker version of the Local
Polygon Rule.

Consider the graph Gλ. It is clear that (viewed as a directed graph with edge weights of
1) it is an admissible S-labeled graph for the An root system. It is well known that it forms
the simple part of an An-molecule (the left Kazhdan-Lusztig cell) which we call Gλ.
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Figure 4.6: A schematic representation of a “cabling” of edges.

Definition 4.1.8. An An-molecule is Kazhdan-Lusztig if it is isomorphic to Gλ, i.e. if its
simple part is a dual equivalence graph.

Remark 4.1.9. We can explicitly describe the simple edges of any parabolic restriction of
Gλ. Let J = {j1, . . . , jk}. Then the relevant tableau entries are J ′ := {j1, j1 + 1, j2, j2 +
1, . . . , jk, jk + 1}. The simple edges of the WJ -restriction of Gλ are dual Knuth moves that
exchange two entries of J ′ provided the “witness” between them is also in J ′.

4.2 Classification of admissible An-molecules

In this section we show that any An-molecule is Kazhdan-Lusztig. The proof will proceed
by induction on n, so the preliminary results will start with an An-molecule whose An−1-
submolecules are Kazhdan-Lusztig.

The first of these results states that if two such An−1-submolecules are connected by a
simple edge, then the connected An−2-submolecules are isomorphic and there is a “cabling”
of edges (possibly arcs) of weight 1 between them (see Figure 4.6).

Lemma 4.2.1. Let M be an An-molecule whose An−1-submolecules are Kazhdan-Lusztig.
Suppose A and B are two such submolecules which are joined by a simple edge (in M),
namely there exist x ∈ A, y ∈ B such that the edge (x, y) is simple. Let A′ (resp. B′) be the
An−2-submolecule of M containing x (resp. y). Then there is an isomorphism ψ between A′

and B′ such that ψ(x) = y. Moreover, if n ∈ τ(x) then m(z, ψ(z)) = 1 for all z ∈ A′.

Proof. By Lemma 4.1.6 we know that there is a surjective morphism ϕ : M → Gλ for some
λ. Then ϕ(A) ∼= Gµ and ϕ(B) ∼= Gν , for some µ, ν which are formed from λ by erasing an
outer corner (these outer corners must be different since no two molecules corresponding to
the same shape may be connected; Lemma 4.1.6).

Let T = ϕ(x), U = ϕ(y). Thus T has n+ 1 in position λ \ µ and U has n+ 1 in position
λ \ ν. Now there is a simple edge between T and U , i.e. one is obtained from the other
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Figure 4.7: An illustration for the statement of Lemma 4.2.2.

ηµ ν

Figure 4.8: Partitions µ, ν and η from Lemma 4.2.2.

by a Knuth move. The only Knuth move in An which moves n + 1 is one that exchanges
n and n + 1, in the presence of n − 1 between them. Hence T has n in position λ \ ν and
U has n in position λ \ µ. Hence the An−2-molecule containing T has standard tableaux on
λ \ (µ ∪ ν) as vertices, and Knuth moves between them as edges. The same is true for the
An−2 molecule containing U . Thus the two molecules are isomorphic and the isomorphism is
given by switching n and n+1. Now we can use ϕ to lift it up to an isomorphism ψ : A′ → B′.

Suppose n ∈ τ(x). Then n /∈ τ(y). So for any x′ ∈ A′, we have n ∈ τ(x′), and similarly
for any y′ ∈ B′, n /∈ τ(y′). Then repeated application of AT1 shows that the weight of the
edge between z ∈ A′ and ψ(z) is the same as between x and y, namely 1.

The second preliminary result shows that if, out of three An−1-submolecules, two pairs
(satisfying some conditions) are connected by simple edges, then the third pair is also con-
nected by a simple edge (see Figure 4.7). The conditions will later be removed to show that
any two An−1-submolecules of an An-molecule are connected by a simple edge.

Lemma 4.2.2. Let M be an An-molecule whose An−1-submolecules are Kazhdan-Lusztig.
By Lemma 4.1.6, there is a surjective morphism ϕ : M → Gλ for some partition λ of n+ 1.
Let A,B,C be An−1-submolecules of M such that A and B are both connected to C by simple
edges. Then A ∼= Gµ, B ∼= Gν, C ∼= Gη, for some partitions formed by deleting outer corners
of λ. The three partitions have to be different by Lemma 4.1.6. Suppose moreover that the
deleted corner for η was the highest of the three (see Figure 4.8).

Then A and B are connected by a simple edge.

Proof. Notice that the role of A and B is symmetric, so without loss of generality we may
assume that the deleted corner for µ was the lowest of the three.
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Figure 4.9: A simple edge in Gλ.

To prove the existence of an edge between A and B, we will choose a simple edge of C
and show, using arc transport rules, that its weight is equal to the weight of an edge between
a vertex of A and a vertex of B whose τ invariants are incomparable. This will show that
the edge in question is simple.

Consider a simple edge in Gλ (which happens to lie in the submolecule isomorphic to Gη)
of the form shown in Figure 4.9.

Let us describe precisely the kind of tableau we are looking for on the left. We want n+1
to occupy the cell λ \ η, n to occupy the cell λ \ ν, and n− 1 to occupy the cell λ \ µ. There
exists an outer corner of µ ∩ ν ∩ η which now lies on a diagonal between n and n+ 1; place
n − 3 there. Place n − 2 in the outer corner of µ ∩ ν ∩ η between n − 1 and n. Similarly,
place n− 4 between n− 2 and n− 3. Fill in the rest of the tableau in an arbitrary way. The
two resulting tableaux differ by a Knuth move: one may flip n− 2 and n− 3 since n− 4 is
between them. So this is indeed a simple edge in Gλ.

Now look at the A4-molecules involved after restricting to the rightmost copy of A4 in
An. The restriction corresponds to allowing Knuth moves that exchange entries > n − 3
provided the “witness” between them is also > n− 3 (in particular, the original simple edge
will become directed in the restriction). These are shown in Figure 4.10. The weight of the
left blue (directed) edge is 1 since it was a simple edge before the restriction. It is equal to
the weight of the right blue (dashed) edge by AT3.

In the original Gλ, before restriction, we may then use the cabling of Lemma 4.2.1, to
further transport this edge weight as in Figure 4.11. Thus we have shown that the weight
of the right blue edge in this figure is 1.

In Gλ this is not very interesting since the two tableaux are seen to be related by a Knuth
move; let us lift our sequence of moves up to M . Our original simple edge was located in
the submolecule isomorphic to Gη. The preimage under ϕ of that simple edge lies in C.
Now consider the preimages of the two A4-molecules. The preimage of the right end of
the molecule on the top will lie in A since it is the only molecule isomorphic to Gµ which
is connected to C by a simple edge (Lemma 4.1.6). Similarly, the preimage of the right
end of the molecule on the bottom is in B. So there is an edge of weight 1 from A to B.
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Figure 4.10: Transport along A4 molecules in Gλ.
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The transport along a cabling does not change the An−1-molecules involved, however the
τ -invariants of the right blue edge in Figure 4.11 are manifestly incomparable (one has n− 1
while the other has n). This produces a simple edge between A and B.

We can now finish the proof of the theorem.

Theorem 4.2.3. Any An-molecule is Kazhdan-Lusztig.

Proof. We know that the simple part of an An-molecule is a weak dual equivalence graph.
It remains to show that it satisfies the axiom (6), namely that any two An−1-submolecules
are connected by a simple edge.

Proceed by induction on n, the case n = 1 being trivial. Let M be an An-molecule.
By inductive assumption, all An−1-molecules are Kazhdan-Lusztig. So, according to Lemma
4.1.6 there is a covering M → Gλ, for some partition λ of n+ 1.

Choose two of these An−1-submolecules of M , A and Z. Choose a path of simple edges
between them which goes through the fewest number of submolecules. If it does not go
through other submolecules, then we are done. Suppose that is not so. Let A, B, C be the
first three submolecules on the path (it may happen that Z = C). The partitions µ, ν, η
corresponding to A,B, and C are formed by removing outer corners of λ; they are all distinct
by Lemma 4.1.6.

Consider the following string of submolecules connected by simple edges: A−B−C−A′−
B′, with A ∼= A′, B ∼= B′, and some of these possibly equalities (this is possible by Lemma
4.1.6). Out of µ, ν, and η choose the partition which is formed by removing the highest box
of λ. In the above string, choose a copy of the corresponding submolecule with submolecules
attached on both sides (for example, if λ \µ was highest of the three, then we should choose
A′). Then the triple consisting of this submolecule and the two adjacent ones satisfies the
condition of the Lemma 4.2.2 (in the example, it would be the triple C−A′−B′). Applying
the lemma we get that A′ = A, and B′ = B. But then A is connected to C, contradicting
our assumption that the path went through a minimal number of submolecules.

So any two An−1-submolecules are connected by an edge, finishing the proof.

Remark 4.2.4. In [Rob13], Roberts gives a revised version of Assaf’s axiom 6 which is more
suitable for computer calculations. Proving our theorem using this alternate axiomatization
amounts to checking that all the A5-molecules are Kazhdan-Lusztig. This provides a simple
computerized proof of our result.

114



4.3 Cycles in the binding graph

In the introduction to this section we outlined a possible strategy for proving Conjecture
4.0.9. The second stage of that strategy is to show that no An-cell may contain multiple
molecules. One way to achieve this would be to show that the binding graph (see section
1.1.6) is acyclic. As stated, this is known to be false. McLarnan and Warrington ([MW03])
have shown that the Kazhdan-Lusztig cell corresponding to the partition 5533 has an arc
whose weight is bigger than 1. Since the Local Polygon Rule follows from arc transport, the
self binding space of this molecule should be nontrivial. However the self-binding space of a
molecule is an affine translate of the pairwise binding space of two copies of the molecule with
the same parity. Hence the binding graph must have loops. A computation of Stembridge
also found molecules where the pairwise binding space between a molecule and its copy with
opposite parity is nonzero (for example, the molecule corresponding to the shape 4422).

Remark 4.3.1. The following simple observation about limitations of Kazhdan-Lusztig trans-
port (and hence the Local Polygon Rule) will allow us to find more general cycles in the
binding graph.

Suppose (W,S) is a Coxeter system with at most double bonds. For a subset J of S let
grow(J) be the set J ∪ {s ∈ S|s ∼ t for some t ∈ J}. Suppose u → v is a potential arc in
an sBCS graph G and τ(u) ⊇ grow(τ(v)). Then no instance of Kazhdan-Lusztig transport
relates the weight of this arc to the weight of any other arc.

Example 4.3.2. We will look for a 2-cycle G1 ↔ G2 in the binding graph of type A, where G2

is a hook-shape molecule and G1 is a molecule of another shape (for us it will be a square).
All we need for a possible cycle (as we shall see a little later) is a pair (J, L) of subsets of S
which appear as τ -invariants in G1 with the property that:

• There exist subsets K1, K2 with |K1| = |K2|, grow(J) ⊆ K1 and grow(K2) ⊆ L.

This can, for example, be found if the shape of G1 is a 6x6 square. The τ -invariant of
the row-superstandard tableau (shown in Figure 4.12 (a)) is J = {6, 12, 18, 24, 30}. The
τ -invariant of the column-superstandard tableau (shown in Figure 4.12 (b)) is L = [35] \ J .
Let

K1 = {5, 6, 7, 11, 12, 13, 17, 18, 19, 23, 24, 25, 29, 30, 31}.

So |K1| = 15. The largest set K̃2 such that grow(K̃2) = L has size 20. Let K2 be any
15-element subset of this set.

Now let us return to the concrete task. We take G1 to be the molecule whose shape is a
6x6 square, and G2 is a molecule whose shape is the hook (21, 115). Hence the τ -invariants
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Figure 4.12: Superstandard tableaux.

of G2 are all the 15-element subsets of S. Fix the parities of G1 and G2 so that the row-
superstandard tableau in G1 and the vertex with τ -invariant K1 in G2 have opposite parities.
The freedom in the choice of K2 allows us to pick K2 so that the column-superstandard
tableau in G1 and the vertex with τ -invariant K2 in G2 have opposite parities. This gives
a 2-cycle in the binding graph since by Remark 4.3.1 the dimension of the binding space
between G1 and G2 with the given parities is at least 1 in either direction.

Example 4.3.3. A computation done by Stembridge found that the earliest 2-cycles obtained
by means of Remark 4.3.1 occur in A13:

(5, 3, 3, 3)↔ (4, 4, 3, 3), (4, 4, 4, 2)↔ (4, 4, 4, 1, 1).
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APPENDIX A

Quasi-minuscule W -graphs for type E

We present the result of the calculation of the W -graphs of the quasi-minuscule quotients of
types E6, E7, and E8 below. The first column of each table gives the number of each vertex
(in no particular order). The second column gives the coordinates of the corresponding root
in terms of the simple roots. The third column gives the τ -invariant of the corresponding
root, and the fourth lists all the vertices reached (possibly) from the given one.

The entries in black correspond to simple edges, while the entries in blue correspond to
arcs of weight 1. Entries in red correspond to potential arcs whose weight was not determined
by Kazhdan-Lusztig transport. All the weights of such arcs can be fixed by imposing the
(full) Polygon Rule.

Table A.1: The W -graph of the quasi-minuscule quotient of E6.

Vertex Simple root coordinates τ -invariant Neighbors
1 (1, 2, 2, 3, 2, 1) {}
2 (1, 1, 2, 3, 2, 1) {2} 3
3 (1, 1, 2, 2, 2, 1) {4} 2, 4, 5
4 (1, 1, 2, 2, 1, 1) {5} 3, 7
5 (1, 1, 1, 2, 2, 1) {3} 3, 6
6 (0, 1, 1, 2, 2, 1) {1} 5
7 (1, 1, 2, 2, 1, 0) {6} 4
8 (1, 1, 1, 2, 1, 1) {3, 5} 9, 10, 11, 4, 5, 18, 20
9 (0, 1, 1, 2, 1, 1) {1, 5} 8, 12, 13, 6, 35
10 (1, 1, 1, 2, 1, 0) {3, 6} 8, 12, 15, 7, 36
11 (1, 1, 1, 1, 1, 1) {4} 8, 14
12 (0, 1, 1, 2, 1, 0) {1, 6} 9, 10, 41, 42
13 (0, 1, 1, 1, 1, 1) {1, 4} 9, 17, 18, 11, 29
14 (1, 0, 1, 1, 1, 1) {2} 11
15 (1, 1, 1, 1, 1, 0) {4, 6} 10, 19, 20, 11, 30
16 (0, 1, 1, 1, 1, 0) {1, 4, 6} 21, 22, 23, 12, 13, 15, 31, 32, 34
17 (0, 0, 1, 1, 1, 1) {1, 2} 13, 24, 14

(Continued on the next page.)
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The W -graph of the quasi-minuscule quotient of E6 (ctd.)
Vertex Simple root coordinates τ -invariant Neighbors

18 (0, 1, 0, 1, 1, 1) {3} 13
19 (1, 0, 1, 1, 1, 0) {2, 6} 15, 25, 14
20 (1, 1, 1, 1, 0, 0) {5} 15
21 (0, 0, 1, 1, 1, 0) {1, 2, 6} 16, 26, 28, 17, 19, 37, 61
22 (0, 1, 0, 1, 1, 0) {3, 6} 16, 27, 18, 38
23 (0, 1, 1, 1, 0, 0) {1, 5} 16, 27, 20, 40
24 (0, 0, 0, 1, 1, 1) {2, 3} 17, 29, 18
25 (1, 0, 1, 1, 0, 0) {2, 5} 19, 30, 20
26 (0, 0, 1, 1, 0, 0) {1, 2, 5} 21, 32, 33, 23, 25, 56, 57
27 (0, 1, 0, 1, 0, 0) {3, 5} 22, 23, 31
28 (0, 0, 0, 1, 1, 0) {2, 3, 6} 21, 33, 34, 22, 24, 54, 55
29 (0, 0, 0, 0, 1, 1) {4} 24, 35
30 (1, 0, 1, 0, 0, 0) {4} 25, 36
31 (0, 1, 0, 0, 0, 0) {4} 27, 37
32 (0, 0, 1, 0, 0, 0) {1, 4} 26, 38, 30, 39, 42
33 (0, 0, 0, 1, 0, 0) {2, 3, 5} 26, 28, 39, 27, 37, 38, 40, 48, 49, 50
34 (0, 0, 0, 0, 1, 0) {4, 6} 28, 40, 29, 39, 41
35 (0, 0, 0, 0, 0, 1) {5} 29, 41
36 (1, 0, 0, 0, 0, 0) {3} 30, 42
37 (0,−1, 0, 0, 0, 0) {2} 31
38 (0, 0,−1, 0, 0, 0) {3} 32
39 (0, 0, 0,−1, 0, 0) {4} 33
40 (0, 0, 0, 0,−1, 0) {5} 34
41 (0, 0, 0, 0, 0,−1) {6} 35
42 (−1, 0, 0, 0, 0, 0) {1} 36
43 (0,−1, 0,−1, 0, 0) {2, 4} 48, 49, 37, 39, 58, 72
44 (0, 0,−1,−1, 0, 0) {3, 4} 48, 50, 52, 38, 39, 58, 66
45 (0, 0, 0,−1,−1, 0) {4, 5} 49, 50, 51, 39, 40, 58, 65
46 (0, 0, 0, 0,−1,−1) {5, 6} 51, 40, 41, 65
47 (−1, 0,−1, 0, 0, 0) {1, 3} 52, 38, 42, 66
48 (0,−1,−1,−1, 0, 0) {2, 3} 43, 44, 56
49 (0,−1, 0,−1,−1, 0) {2, 5} 43, 45, 54
50 (0, 0,−1,−1,−1, 0) {3, 5} 44, 45, 55, 57
51 (0, 0, 0,−1,−1,−1) {4, 6} 45, 46, 54, 55
52 (−1, 0,−1,−1, 0, 0) {1, 4} 44, 47, 56, 57
53 (0,−1,−1,−1,−1, 0) {2, 3, 5} 58, 59, 60, 48, 49, 50, 65, 66, 70, 72
54 (0,−1, 0,−1,−1,−1) {2, 6} 49, 51
55 (0, 0,−1,−1,−1,−1) {3, 6} 50, 51, 61
56 (−1,−1,−1,−1, 0, 0) {1, 2} 48, 52
57 (−1, 0,−1,−1,−1, 0) {1, 5} 50, 52, 61
58 (0,−1,−1,−2,−1, 0) {4} 53

(Continued on the next page.)
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The W -graph of the quasi-minuscule quotient of E6 (ctd.)
Vertex Simple root coordinates τ -invariant Neighbors

59 (0,−1,−1,−1,−1,−1) {2, 3, 6} 53, 62, 64, 54, 55, 68
60 (−1,−1,−1,−1,−1, 0) {1, 2, 5} 53, 63, 64, 56, 57, 69
61 (−1, 0,−1,−1,−1,−1) {1, 6} 55, 57
62 (0,−1,−1,−2,−1,−1) {4, 6} 59, 65, 58
63 (−1,−1,−1,−2,−1, 0) {1, 4} 60, 66, 58
64 (−1,−1,−1,−1,−1,−1) {1, 2, 6} 59, 60, 67, 61, 72
65 (0,−1,−1,−2,−2,−1) {5} 62
66 (−1,−1,−2,−2,−1, 0) {3} 63
67 (−1,−1,−1,−2,−1,−1) {1, 4, 6} 64, 68, 69, 62, 63, 71
68 (−1,−1,−2,−2,−1,−1) {3, 6} 67, 70, 66
69 (−1,−1,−1,−2,−2,−1) {1, 5} 67, 70, 65
70 (−1,−1,−2,−2,−2,−1) {3, 5} 68, 69, 71
71 (−1,−1,−2,−3,−2,−1) {4} 70, 72
72 (−1,−2,−2,−3,−2,−1) {2} 71

Table A.2: The W -graph of the quasi-minuscule quotient of E7.

Vertex Simple root coordinates τ -invariant Neighbors
1 (2, 2, 3, 4, 3, 2, 1) {}
2 (1, 2, 3, 4, 3, 2, 1) {1} 3
3 (1, 2, 2, 4, 3, 2, 1) {3} 2, 4
4 (1, 2, 2, 3, 3, 2, 1) {4} 3, 5, 6
5 (1, 1, 2, 3, 3, 2, 1) {2} 4
6 (1, 2, 2, 3, 2, 2, 1) {5} 4, 8
7 (1, 1, 2, 3, 2, 2, 1) {2, 5} 9, 10, 5, 6, 17
8 (1, 2, 2, 3, 2, 1, 1) {6} 6, 11
9 (1, 1, 2, 3, 2, 1, 1) {2, 6} 7, 12, 13, 8, 30
10 (1, 1, 2, 2, 2, 2, 1) {4} 7, 14
11 (1, 2, 2, 3, 2, 1, 0) {7} 8
12 (1, 1, 2, 3, 2, 1, 0) {2, 7} 9, 16, 11
13 (1, 1, 2, 2, 2, 1, 1) {4, 6} 9, 16, 17, 18, 10, 25, 27
14 (1, 1, 1, 2, 2, 2, 1) {3} 10, 15
15 (0, 1, 1, 2, 2, 2, 1) {1} 14
16 (1, 1, 2, 2, 2, 1, 0) {4, 7} 12, 13, 20, 21
17 (1, 1, 2, 2, 1, 1, 1) {5} 13
18 (1, 1, 1, 2, 2, 1, 1) {3, 6} 13, 19, 21, 22, 14
19 (0, 1, 1, 2, 2, 1, 1) {1, 6} 18, 23, 24, 15, 62
20 (1, 1, 2, 2, 1, 1, 0) {5, 7} 16, 25, 17
21 (1, 1, 1, 2, 2, 1, 0) {3, 7} 16, 18, 23
22 (1, 1, 1, 2, 1, 1, 1) {3, 5} 18, 24, 27, 17, 36
23 (0, 1, 1, 2, 2, 1, 0) {1, 7} 19, 21, 69

(Continued on the next page.)
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The W -graph of the quasi-minuscule quotient of E7 (ctd.)
Vertex Simple root coordinates τ -invariant Neighbors

24 (0, 1, 1, 2, 1, 1, 1) {1, 5} 19, 22, 29, 55
25 (1, 1, 2, 2, 1, 0, 0) {6} 20
26 (1, 1, 1, 2, 1, 1, 0) {3, 5, 7} 28, 31, 32, 20, 21, 22, 40, 44, 52
27 (1, 1, 1, 1, 1, 1, 1) {4} 22, 30
28 (0, 1, 1, 2, 1, 1, 0) {1, 5, 7} 26, 33, 34, 23, 24, 48, 61
29 (0, 1, 1, 1, 1, 1, 1) {1, 4} 24, 35, 36, 27, 49
30 (1, 0, 1, 1, 1, 1, 1) {2} 27
31 (1, 1, 1, 2, 1, 0, 0) {3, 6} 26, 34, 38, 25, 63
32 (1, 1, 1, 1, 1, 1, 0) {4, 7} 26, 37, 38, 27, 57
33 (0, 1, 1, 1, 1, 1, 0) {1, 4, 7} 28, 39, 40, 41, 29, 32, 54
34 (0, 1, 1, 2, 1, 0, 0) {1, 6} 28, 31, 68, 70
35 (0, 0, 1, 1, 1, 1, 1) {1, 2} 29, 42, 30
36 (0, 1, 0, 1, 1, 1, 1) {3} 29
37 (1, 0, 1, 1, 1, 1, 0) {2, 7} 32, 43, 30, 64
38 (1, 1, 1, 1, 1, 0, 0) {4, 6} 31, 32, 43, 44, 56
39 (0, 0, 1, 1, 1, 1, 0) {1, 2, 7} 33, 45, 47, 35, 37, 99
40 (0, 1, 0, 1, 1, 1, 0) {3, 7} 33, 46, 36
41 (0, 1, 1, 1, 1, 0, 0) {1, 4, 6} 33, 45, 46, 48, 34, 38, 57, 58, 60
42 (0, 0, 0, 1, 1, 1, 1) {2, 3} 35, 49, 36
43 (1, 0, 1, 1, 1, 0, 0) {2, 6} 37, 38, 50
44 (1, 1, 1, 1, 0, 0, 0) {5} 38
45 (0, 0, 1, 1, 1, 0, 0) {1, 2, 6} 39, 41, 51, 53, 43, 64, 94
46 (0, 1, 0, 1, 1, 0, 0) {3, 6} 40, 41, 52, 65
47 (0, 0, 0, 1, 1, 1, 0) {2, 3, 7} 39, 53, 54, 40, 42, 91, 92
48 (0, 1, 1, 1, 0, 0, 0) {1, 5} 41, 52, 44, 67
49 (0, 0, 0, 0, 1, 1, 1) {4} 42, 55
50 (1, 0, 1, 1, 0, 0, 0) {2, 5} 43, 56, 44
51 (0, 0, 1, 1, 0, 0, 0) {1, 2, 5} 45, 58, 59, 48, 50, 87, 88
52 (0, 1, 0, 1, 0, 0, 0) {3, 5} 46, 48, 57
53 (0, 0, 0, 1, 1, 0, 0) {2, 3, 6} 45, 47, 59, 60, 46, 84, 85
54 (0, 0, 0, 0, 1, 1, 0) {4, 7} 47, 60, 61, 49
55 (0, 0, 0, 0, 0, 1, 1) {5} 49, 62
56 (1, 0, 1, 0, 0, 0, 0) {4} 50, 63
57 (0, 1, 0, 0, 0, 0, 0) {4} 52, 64
58 (0, 0, 1, 0, 0, 0, 0) {1, 4} 51, 65, 56, 66, 70
59 (0, 0, 0, 1, 0, 0, 0) {2, 3, 5} 51, 53, 66, 52, 64, 65, 67, 77, 78, 79
60 (0, 0, 0, 0, 1, 0, 0) {4, 6} 53, 54, 67, 66, 68
61 (0, 0, 0, 0, 0, 1, 0) {5, 7} 54, 68, 55, 67, 69
62 (0, 0, 0, 0, 0, 0, 1) {6} 55, 69
63 (1, 0, 0, 0, 0, 0, 0) {3} 56, 70
64 (0,−1, 0, 0, 0, 0, 0) {2} 57

(Continued on the next page.)
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The W -graph of the quasi-minuscule quotient of E7 (ctd.)
Vertex Simple root coordinates τ -invariant Neighbors

65 (0, 0,−1, 0, 0, 0, 0) {3} 58
66 (0, 0, 0,−1, 0, 0, 0) {4} 59
67 (0, 0, 0, 0,−1, 0, 0) {5} 60
68 (0, 0, 0, 0, 0,−1, 0) {6} 61
69 (0, 0, 0, 0, 0, 0,−1) {7} 62
70 (−1, 0, 0, 0, 0, 0, 0) {1} 63
71 (0,−1, 0,−1, 0, 0, 0) {2, 4} 77, 78, 64, 66, 89, 116
72 (0, 0,−1,−1, 0, 0, 0) {3, 4} 77, 79, 82, 65, 66, 89, 102
73 (0, 0, 0,−1,−1, 0, 0) {4, 5} 78, 79, 80, 66, 67, 89, 100
74 (0, 0, 0, 0,−1,−1, 0) {5, 6} 80, 81, 67, 68, 100, 109
75 (0, 0, 0, 0, 0,−1,−1) {6, 7} 81, 68, 69, 109
76 (−1, 0,−1, 0, 0, 0, 0) {1, 3} 82, 65, 70, 102, 126
77 (0,−1,−1,−1, 0, 0, 0) {2, 3} 71, 72, 87
78 (0,−1, 0,−1,−1, 0, 0) {2, 5} 71, 73, 84
79 (0, 0,−1,−1,−1, 0, 0) {3, 5} 72, 73, 85, 88
80 (0, 0, 0,−1,−1,−1, 0) {4, 6} 73, 74, 84, 85, 86
81 (0, 0, 0, 0,−1,−1,−1) {5, 7} 74, 75, 86
82 (−1, 0,−1,−1, 0, 0, 0) {1, 4} 72, 76, 87, 88
83 (0,−1,−1,−1,−1, 0, 0) {2, 3, 5} 89, 90, 93, 77, 78, 79, 100, 102, 110, 116
84 (0,−1, 0,−1,−1,−1, 0) {2, 6} 78, 80, 91
85 (0, 0,−1,−1,−1,−1, 0) {3, 6} 79, 80, 92, 94
86 (0, 0, 0,−1,−1,−1,−1) {4, 7} 80, 81, 91, 92
87 (−1,−1,−1,−1, 0, 0, 0) {1, 2} 77, 82
88 (−1, 0,−1,−1,−1, 0, 0) {1, 5} 79, 82, 94
89 (0,−1,−1,−2,−1, 0, 0) {4} 83
90 (0,−1,−1,−1,−1,−1, 0) {2, 3, 6} 83, 95, 96, 98, 84, 85, 106
91 (0,−1, 0,−1,−1,−1,−1) {2, 7} 84, 86
92 (0, 0,−1,−1,−1,−1,−1) {3, 7} 85, 86, 99
93 (−1,−1,−1,−1,−1, 0, 0) {1, 2, 5} 83, 97, 98, 87, 88, 107, 123
94 (−1, 0,−1,−1,−1,−1, 0) {1, 6} 85, 88, 99
95 (0,−1,−1,−2,−1,−1, 0) {4, 6} 90, 100, 101, 89, 109
96 (0,−1,−1,−1,−1,−1,−1) {2, 3, 7} 90, 101, 104, 91, 92, 111
97 (−1,−1,−1,−2,−1, 0, 0) {1, 4} 93, 102, 89, 124, 126
98 (−1,−1,−1,−1,−1,−1, 0) {1, 2, 6} 90, 93, 103, 104, 94, 116, 121
99 (−1, 0,−1,−1,−1,−1,−1) {1, 7} 92, 94
100 (0,−1,−1,−2,−2,−1, 0) {5} 95
101 (0,−1,−1,−2,−1,−1,−1) {4, 7} 95, 96, 105
102 (−1,−1,−2,−2,−1, 0, 0) {3} 97
103 (−1,−1,−1,−2,−1,−1, 0) {1, 4, 6} 98, 106, 107, 108, 95, 97, 113, 115, 120
104 (−1,−1,−1,−1,−1,−1,−1) {1, 2, 7} 96, 98, 108, 99, 119
105 (0,−1,−1,−2,−2,−1,−1) {5, 7} 101, 109, 100
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The W -graph of the quasi-minuscule quotient of E7 (ctd.)
Vertex Simple root coordinates τ -invariant Neighbors

106 (−1,−1,−2,−2,−1,−1, 0) {3, 6} 103, 110, 111, 102
107 (−1,−1,−1,−2,−2,−1, 0) {1, 5} 103, 110, 100, 122
108 (−1,−1,−1,−2,−1,−1,−1) {1, 4, 7} 103, 104, 111, 112, 101, 118
109 (0,−1,−1,−2,−2,−2,−1) {6} 105
110 (−1,−1,−2,−2,−2,−1, 0) {3, 5} 106, 107, 113
111 (−1,−1,−2,−2,−1,−1,−1) {3, 7} 106, 108
112 (−1,−1,−1,−2,−2,−1,−1) {1, 5, 7} 108, 114, 115, 105, 107
113 (−1,−1,−2,−3,−2,−1, 0) {4} 110, 116
114 (−1,−1,−2,−2,−2,−1,−1) {3, 5, 7} 112, 117, 118, 110, 111, 122
115 (−1,−1,−1,−2,−2,−2,−1) {1, 6} 112, 117, 109, 126
116 (−1,−2,−2,−3,−2,−1, 0) {2} 113
117 (−1,−1,−2,−2,−2,−2,−1) {3, 6} 114, 115, 120, 125
118 (−1,−1,−2,−3,−2,−1,−1) {4, 7} 114, 119, 120, 113
119 (−1,−2,−2,−3,−2,−1,−1) {2, 7} 118, 121, 116
120 (−1,−1,−2,−3,−2,−2,−1) {4, 6} 117, 118, 121, 122, 124
121 (−1,−2,−2,−3,−2,−2,−1) {2, 6} 119, 120, 123
122 (−1,−1,−2,−3,−3,−2,−1) {5} 120
123 (−1,−2,−2,−3,−3,−2,−1) {2, 5} 121, 124, 122
124 (−1,−2,−2,−4,−3,−2,−1) {4} 123, 125
125 (−1,−2,−3,−4,−3,−2,−1) {3} 124, 126
126 (−2,−2,−3,−4,−3,−2,−1) {1} 125

Table A.3: The W -graph of the quasi-minuscule quotient of E8.

Vertex Simple root coordinates τ -invariant Neighbors
1 (2, 3, 4, 6, 5, 4, 3, 2) {}
2 (2, 3, 4, 6, 5, 4, 3, 1) {8} 3
3 (2, 3, 4, 6, 5, 4, 2, 1) {7} 2, 4
4 (2, 3, 4, 6, 5, 3, 2, 1) {6} 3, 5
5 (2, 3, 4, 6, 4, 3, 2, 1) {5} 4, 6
6 (2, 3, 4, 5, 4, 3, 2, 1) {4} 5, 7, 8
7 (2, 2, 4, 5, 4, 3, 2, 1) {2} 6
8 (2, 3, 3, 5, 4, 3, 2, 1) {3} 6, 10
9 (2, 2, 3, 5, 4, 3, 2, 1) {2, 3} 11, 12, 7, 8, 16
10 (1, 3, 3, 5, 4, 3, 2, 1) {1} 8
11 (2, 2, 3, 4, 4, 3, 2, 1) {4} 9, 13
12 (1, 2, 3, 5, 4, 3, 2, 1) {1, 2} 9, 14, 10, 26
13 (2, 2, 3, 4, 3, 3, 2, 1) {5} 11, 15
14 (1, 2, 3, 4, 4, 3, 2, 1) {1, 4} 12, 16, 17, 11, 24
15 (2, 2, 3, 4, 3, 2, 2, 1) {6} 13, 18
16 (1, 2, 2, 4, 4, 3, 2, 1) {3} 14
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The W -graph of the quasi-minuscule quotient of E8 (ctd.)
Vertex Simple root coordinates τ -invariant Neighbors

17 (1, 2, 3, 4, 3, 3, 2, 1) {1, 5} 14, 19, 20, 13
18 (2, 2, 3, 4, 3, 2, 1, 1) {7} 15, 21
19 (1, 2, 2, 4, 3, 3, 2, 1) {3, 5} 17, 22, 24, 16, 32
20 (1, 2, 3, 4, 3, 2, 2, 1) {1, 6} 17, 22, 23, 15, 47
21 (2, 2, 3, 4, 3, 2, 1, 0) {8} 18
22 (1, 2, 2, 4, 3, 2, 2, 1) {3, 6} 19, 20, 27, 28, 45
23 (1, 2, 3, 4, 3, 2, 1, 1) {1, 7} 20, 25, 27, 18
24 (1, 2, 2, 3, 3, 3, 2, 1) {4} 19, 26
25 (1, 2, 3, 4, 3, 2, 1, 0) {1, 8} 23, 29, 21
26 (1, 1, 2, 3, 3, 3, 2, 1) {2} 24
27 (1, 2, 2, 4, 3, 2, 1, 1) {3, 7} 22, 23, 29, 31
28 (1, 2, 2, 3, 3, 2, 2, 1) {4, 6} 22, 30, 31, 32, 24, 40, 41
29 (1, 2, 2, 4, 3, 2, 1, 0) {3, 8} 25, 27, 33
30 (1, 1, 2, 3, 3, 2, 2, 1) {2, 6} 28, 34, 35, 26
31 (1, 2, 2, 3, 3, 2, 1, 1) {4, 7} 27, 28, 33, 34, 36
32 (1, 2, 2, 3, 2, 2, 2, 1) {5} 28
33 (1, 2, 2, 3, 3, 2, 1, 0) {4, 8} 29, 31, 37, 38
34 (1, 1, 2, 3, 3, 2, 1, 1) {2, 7} 30, 31, 37
35 (1, 1, 2, 3, 2, 2, 2, 1) {2, 5} 30, 40, 32
36 (1, 2, 2, 3, 2, 2, 1, 1) {5, 7} 31, 38, 41, 32, 50
37 (1, 1, 2, 3, 3, 2, 1, 0) {2, 8} 33, 34
38 (1, 2, 2, 3, 2, 2, 1, 0) {5, 8} 33, 36, 43
39 (1, 1, 2, 3, 2, 2, 1, 1) {2, 5, 7} 42, 44, 46, 34, 35, 36, 54, 58, 67
40 (1, 1, 2, 2, 2, 2, 2, 1) {4} 35, 45
41 (1, 2, 2, 3, 2, 1, 1, 1) {6} 36
42 (1, 1, 2, 3, 2, 2, 1, 0) {2, 5, 8} 39, 48, 49, 37, 38, 62, 105
43 (1, 2, 2, 3, 2, 1, 1, 0) {6, 8} 38, 50, 41
44 (1, 1, 2, 3, 2, 1, 1, 1) {2, 6} 39, 52, 41, 74, 77
45 (1, 1, 1, 2, 2, 2, 2, 1) {3} 40, 47
46 (1, 1, 2, 2, 2, 2, 1, 1) {4, 7} 39, 49, 51, 52, 40
47 (0, 1, 1, 2, 2, 2, 2, 1) {1} 45
48 (1, 1, 2, 3, 2, 1, 1, 0) {2, 6, 8} 42, 54, 55, 43, 44, 82, 97
49 (1, 1, 2, 2, 2, 2, 1, 0) {4, 8} 42, 46, 56, 112
50 (1, 2, 2, 3, 2, 1, 0, 0) {7} 43
51 (1, 1, 1, 2, 2, 2, 1, 1) {3, 7} 46, 53, 56, 57, 45
52 (1, 1, 2, 2, 2, 1, 1, 1) {4, 6} 44, 46, 57, 58, 70
53 (0, 1, 1, 2, 2, 2, 1, 1) {1, 7} 51, 59, 60, 47, 119
54 (1, 1, 2, 3, 2, 1, 0, 0) {2, 7} 48, 61, 50
55 (1, 1, 2, 2, 2, 1, 1, 0) {4, 6, 8} 48, 61, 62, 63, 49, 52, 74, 76, 91
56 (1, 1, 1, 2, 2, 2, 1, 0) {3, 8} 49, 51, 59, 120
57 (1, 1, 1, 2, 2, 1, 1, 1) {3, 6} 51, 52, 60, 64
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58 (1, 1, 2, 2, 1, 1, 1, 1) {5} 52
59 (0, 1, 1, 2, 2, 2, 1, 0) {1, 8} 53, 56, 127, 128
60 (0, 1, 1, 2, 2, 1, 1, 1) {1, 6} 53, 57, 66, 111
61 (1, 1, 2, 2, 2, 1, 0, 0) {4, 7} 54, 55, 67, 68
62 (1, 1, 2, 2, 1, 1, 1, 0) {5, 8} 55, 67, 58, 98
63 (1, 1, 1, 2, 2, 1, 1, 0) {3, 6, 8} 55, 65, 68, 69, 56, 57, 83
64 (1, 1, 1, 2, 1, 1, 1, 1) {3, 5} 57, 66, 70, 58, 81
65 (0, 1, 1, 2, 2, 1, 1, 0) {1, 6, 8} 63, 71, 72, 59, 60, 86, 118
66 (0, 1, 1, 2, 1, 1, 1, 1) {1, 5} 60, 64, 73, 104
67 (1, 1, 2, 2, 1, 1, 0, 0) {5, 7} 61, 62, 74
68 (1, 1, 1, 2, 2, 1, 0, 0) {3, 7} 61, 63, 71
69 (1, 1, 1, 2, 1, 1, 1, 0) {3, 5, 8} 63, 72, 75, 76, 62, 64, 88
70 (1, 1, 1, 1, 1, 1, 1, 1) {4} 64, 77
71 (0, 1, 1, 2, 2, 1, 0, 0) {1, 7} 65, 68, 126
72 (0, 1, 1, 2, 1, 1, 1, 0) {1, 5, 8} 65, 69, 78, 79, 66, 110
73 (0, 1, 1, 1, 1, 1, 1, 1) {1, 4} 66, 80, 81, 70, 96
74 (1, 1, 2, 2, 1, 0, 0, 0) {6} 67
75 (1, 1, 1, 2, 1, 1, 0, 0) {3, 5, 7} 69, 78, 83, 84, 67, 68, 93, 98, 107
76 (1, 1, 1, 1, 1, 1, 1, 0) {4, 8} 69, 82, 84, 70
77 (1, 0, 1, 1, 1, 1, 1, 1) {2} 70
78 (0, 1, 1, 2, 1, 1, 0, 0) {1, 5, 7} 72, 75, 85, 86, 71, 102, 117
79 (0, 1, 1, 1, 1, 1, 1, 0) {1, 4, 8} 72, 85, 87, 88, 73, 76, 103
80 (0, 0, 1, 1, 1, 1, 1, 1) {1, 2} 73, 89, 77
81 (0, 1, 0, 1, 1, 1, 1, 1) {3} 73
82 (1, 0, 1, 1, 1, 1, 1, 0) {2, 8} 76, 90, 77
83 (1, 1, 1, 2, 1, 0, 0, 0) {3, 6} 75, 86, 91, 74, 120
84 (1, 1, 1, 1, 1, 1, 0, 0) {4, 7} 75, 76, 90, 91, 113
85 (0, 1, 1, 1, 1, 1, 0, 0) {1, 4, 7} 78, 79, 92, 93, 94, 84, 109
86 (0, 1, 1, 2, 1, 0, 0, 0) {1, 6} 78, 83, 125, 128
87 (0, 0, 1, 1, 1, 1, 1, 0) {1, 2, 8} 79, 92, 95, 80, 82, 170
88 (0, 1, 0, 1, 1, 1, 1, 0) {3, 8} 79, 93, 81
89 (0, 0, 0, 1, 1, 1, 1, 1) {2, 3} 80, 96, 81
90 (1, 0, 1, 1, 1, 1, 0, 0) {2, 7} 82, 84, 97, 121
91 (1, 1, 1, 1, 1, 0, 0, 0) {4, 6} 83, 84, 97, 98, 112
92 (0, 0, 1, 1, 1, 1, 0, 0) {1, 2, 7} 85, 87, 99, 101, 90, 163
93 (0, 1, 0, 1, 1, 1, 0, 0) {3, 7} 85, 88, 100
94 (0, 1, 1, 1, 1, 0, 0, 0) {1, 4, 6} 85, 99, 100, 102, 86, 91, 113, 114, 116
95 (0, 0, 0, 1, 1, 1, 1, 0) {2, 3, 8} 87, 101, 103, 88, 89, 159, 160
96 (0, 0, 0, 0, 1, 1, 1, 1) {4} 89, 104
97 (1, 0, 1, 1, 1, 0, 0, 0) {2, 6} 90, 91, 105
98 (1, 1, 1, 1, 0, 0, 0, 0) {5} 91
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99 (0, 0, 1, 1, 1, 0, 0, 0) {1, 2, 6} 92, 94, 106, 108, 97, 121, 156
100 (0, 1, 0, 1, 1, 0, 0, 0) {3, 6} 93, 94, 107, 122
101 (0, 0, 0, 1, 1, 1, 0, 0) {2, 3, 7} 92, 95, 108, 109, 93, 152, 153
102 (0, 1, 1, 1, 0, 0, 0, 0) {1, 5} 94, 107, 98, 124
103 (0, 0, 0, 0, 1, 1, 1, 0) {4, 8} 95, 109, 110, 96
104 (0, 0, 0, 0, 0, 1, 1, 1) {5} 96, 111
105 (1, 0, 1, 1, 0, 0, 0, 0) {2, 5} 97, 112, 98
106 (0, 0, 1, 1, 0, 0, 0, 0) {1, 2, 5} 99, 114, 115, 102, 105, 148, 149
107 (0, 1, 0, 1, 0, 0, 0, 0) {3, 5} 100, 102, 113
108 (0, 0, 0, 1, 1, 0, 0, 0) {2, 3, 6} 99, 101, 115, 116, 100, 144, 145
109 (0, 0, 0, 0, 1, 1, 0, 0) {4, 7} 101, 103, 116, 117
110 (0, 0, 0, 0, 0, 1, 1, 0) {5, 8} 103, 117, 118, 104
111 (0, 0, 0, 0, 0, 0, 1, 1) {6} 104, 119
112 (1, 0, 1, 0, 0, 0, 0, 0) {4} 105, 120
113 (0, 1, 0, 0, 0, 0, 0, 0) {4} 107, 121
114 (0, 0, 1, 0, 0, 0, 0, 0) {1, 4} 106, 122, 112, 123, 128
115 (0, 0, 0, 1, 0, 0, 0, 0) {2, 3, 5} 106, 108, 123, 107, 121, 122, 124, 136, 137, 138
116 (0, 0, 0, 0, 1, 0, 0, 0) {4, 6} 108, 109, 124, 123, 125
117 (0, 0, 0, 0, 0, 1, 0, 0) {5, 7} 109, 110, 125, 124, 126
118 (0, 0, 0, 0, 0, 0, 1, 0) {6, 8} 110, 126, 111, 125, 127
119 (0, 0, 0, 0, 0, 0, 0, 1) {7} 111, 127
120 (1, 0, 0, 0, 0, 0, 0, 0) {3} 112, 128
121 (0,−1, 0, 0, 0, 0, 0, 0) {2} 113
122 (0, 0,−1, 0, 0, 0, 0, 0) {3} 114
123 (0, 0, 0,−1, 0, 0, 0, 0) {4} 115
124 (0, 0, 0, 0,−1, 0, 0, 0) {5} 116
125 (0, 0, 0, 0, 0,−1, 0, 0) {6} 117
126 (0, 0, 0, 0, 0, 0,−1, 0) {7} 118
127 (0, 0, 0, 0, 0, 0, 0,−1) {8} 119
128 (−1, 0, 0, 0, 0, 0, 0, 0) {1} 120
129 (0,−1, 0,−1, 0, 0, 0, 0) {2, 4} 136, 137, 121, 123, 150, 190
130 (0, 0,−1,−1, 0, 0, 0, 0) {3, 4} 136, 138, 142, 122, 123, 150, 167
131 (0, 0, 0,−1,−1, 0, 0, 0) {4, 5} 137, 138, 139, 123, 124, 150, 164
132 (0, 0, 0, 0,−1,−1, 0, 0) {5, 6} 139, 140, 124, 125, 164, 177, 238////

133 (0, 0, 0, 0, 0,−1,−1, 0) {6, 7} 140, 141, 125, 126, 177, 189
134 (0, 0, 0, 0, 0, 0,−1,−1) {7, 8} 141, 126, 127, 189, 240
135 (−1, 0,−1, 0, 0, 0, 0, 0) {1, 3} 142, 122, 128, 167, 217
136 (0,−1,−1,−1, 0, 0, 0, 0) {2, 3} 129, 130, 148
137 (0,−1, 0,−1,−1, 0, 0, 0) {2, 5} 129, 131, 144
138 (0, 0,−1,−1,−1, 0, 0, 0) {3, 5} 130, 131, 145, 149
139 (0, 0, 0,−1,−1,−1, 0, 0) {4, 6} 131, 132, 144, 145, 146
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140 (0, 0, 0, 0,−1,−1,−1, 0) {5, 7} 132, 133, 146, 147, 239////

141 (0, 0, 0, 0, 0,−1,−1,−1) {6, 8} 133, 134, 147
142 (−1, 0,−1,−1, 0, 0, 0, 0) {1, 4} 130, 135, 148, 149
143 (0,−1,−1,−1,−1, 0, 0, 0) {2, 3, 5} 150, 151, 155, 136, 137, 138, 164, 167, 179, 190
144 (0,−1, 0,−1,−1,−1, 0, 0) {2, 6} 137, 139, 152
145 (0, 0,−1,−1,−1,−1, 0, 0) {3, 6} 138, 139, 153, 156
146 (0, 0, 0,−1,−1,−1,−1, 0) {4, 7} 139, 140, 152, 153, 154
147 (0, 0, 0, 0,−1,−1,−1,−1) {5, 8} 140, 141, 154, 240////

148 (−1,−1,−1,−1, 0, 0, 0, 0) {1, 2} 136, 142
149 (−1, 0,−1,−1,−1, 0, 0, 0) {1, 5} 138, 142, 156
150 (0,−1,−1,−2,−1, 0, 0, 0) {4} 143
151 (0,−1,−1,−1,−1,−1, 0, 0) {2, 3, 6} 143, 157, 158, 162, 144, 145, 173
152 (0,−1, 0,−1,−1,−1,−1, 0) {2, 7} 144, 146, 159
153 (0, 0,−1,−1,−1,−1,−1, 0) {3, 7} 145, 146, 160, 163
154 (0, 0, 0,−1,−1,−1,−1,−1) {4, 8} 146, 147, 159, 160
155 (−1,−1,−1,−1,−1, 0, 0, 0) {1, 2, 5} 143, 161, 162, 148, 149, 174, 205
156 (−1, 0,−1,−1,−1,−1, 0, 0) {1, 6} 145, 149, 163
157 (0,−1,−1,−2,−1,−1, 0, 0) {4, 6} 151, 164, 165, 150, 177
158 (0,−1,−1,−1,−1,−1,−1, 0) {2, 3, 7} 151, 165, 166, 169, 152, 153, 180
159 (0,−1, 0,−1,−1,−1,−1,−1) {2, 8} 152, 154
160 (0, 0,−1,−1,−1,−1,−1,−1) {3, 8} 153, 154, 170
161 (−1,−1,−1,−2,−1, 0, 0, 0) {1, 4} 155, 167, 150, 209, 217
162 (−1,−1,−1,−1,−1,−1, 0, 0) {1, 2, 6} 151, 155, 168, 169, 156, 190, 200
163 (−1, 0,−1,−1,−1,−1,−1, 0) {1, 7} 153, 156, 170
164 (0,−1,−1,−2,−2,−1, 0, 0) {5} 157
165 (0,−1,−1,−2,−1,−1,−1, 0) {4, 7} 157, 158, 171, 172
166 (0,−1,−1,−1,−1,−1,−1,−1) {2, 3, 8} 158, 172, 176, 159, 160, 187, 235
167 (−1,−1,−2,−2,−1, 0, 0, 0) {3} 161
168 (−1,−1,−1,−2,−1,−1, 0, 0) {1, 4, 6} 162, 173, 174, 175, 157, 161, 184, 186, 196
169 (−1,−1,−1,−1,−1,−1,−1, 0) {1, 2, 7} 158, 162, 175, 176, 163, 195
170 (−1, 0,−1,−1,−1,−1,−1,−1) {1, 8} 160, 163
171 (0,−1,−1,−2,−2,−1,−1, 0) {5, 7} 165, 177, 178, 164, 189
172 (0,−1,−1,−2,−1,−1,−1,−1) {4, 8} 165, 166, 178, 236
173 (−1,−1,−2,−2,−1,−1, 0, 0) {3, 6} 168, 179, 180, 167
174 (−1,−1,−1,−2,−2,−1, 0, 0) {1, 5} 168, 179, 164, 201
175 (−1,−1,−1,−2,−1,−1,−1, 0) {1, 4, 7} 168, 169, 180, 181, 182, 165, 192
176 (−1,−1,−1,−1,−1,−1,−1,−1) {1, 2, 8} 166, 169, 182, 170, 202, 233
177 (0,−1,−1,−2,−2,−2,−1, 0) {6} 171
178 (0,−1,−1,−2,−2,−1,−1,−1) {5, 8} 171, 172, 183, 237
179 (−1,−1,−2,−2,−2,−1, 0, 0) {3, 5} 173, 174, 184
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180 (−1,−1,−2,−2,−1,−1,−1, 0) {3, 7} 173, 175, 187
181 (−1,−1,−1,−2,−2,−1,−1, 0) {1, 5, 7} 175, 185, 186, 188, 171, 174, 198
182 (−1,−1,−1,−2,−1,−1,−1,−1) {1, 4, 8} 175, 176, 187, 188, 172, 199, 231
183 (0,−1,−1,−2,−2,−2,−1,−1) {6, 8} 178, 189, 177, 238, 240
184 (−1,−1,−2,−3,−2,−1, 0, 0) {4} 179, 190
185 (−1,−1,−2,−2,−2,−1,−1, 0) {3, 5, 7} 181, 191, 192, 193, 179, 180, 201, 203, 212
186 (−1,−1,−1,−2,−2,−2,−1, 0) {1, 6} 181, 191, 177, 217
187 (−1,−1,−2,−2,−1,−1,−1,−1) {3, 8} 180, 182, 234
188 (−1,−1,−1,−2,−2,−1,−1,−1) {1, 5, 8} 181, 182, 193, 194, 178, 229
189 (0,−1,−1,−2,−2,−2,−2,−1) {7} 183
190 (−1,−2,−2,−3,−2,−1, 0, 0) {2} 184
191 (−1,−1,−2,−2,−2,−2,−1, 0) {3, 6} 185, 186, 196, 213, 216
192 (−1,−1,−2,−3,−2,−1,−1, 0) {4, 7} 185, 195, 196, 199, 184
193 (−1,−1,−2,−2,−2,−1,−1,−1) {3, 5, 8} 185, 188, 197, 199, 187, 208, 228
194 (−1,−1,−1,−2,−2,−2,−1,−1) {1, 6, 8} 188, 197, 198, 183, 186, 221, 227
195 (−1,−2,−2,−3,−2,−1,−1, 0) {2, 7} 192, 200, 202, 190
196 (−1,−1,−2,−3,−2,−2,−1, 0) {4, 6} 191, 192, 200, 201, 209
197 (−1,−1,−2,−2,−2,−2,−1,−1) {3, 6, 8} 193, 194, 203, 204, 191, 219, 225
198 (−1,−1,−1,−2,−2,−2,−2,−1) {1, 7} 194, 203, 189
199 (−1,−1,−2,−3,−2,−1,−1,−1) {4, 8} 192, 193, 202, 230
200 (−1,−2,−2,−3,−2,−2,−1, 0) {2, 6} 195, 196, 205
201 (−1,−1,−2,−3,−3,−2,−1, 0) {5} 196
202 (−1,−2,−2,−3,−2,−1,−1,−1) {2, 8} 195, 199, 232
203 (−1,−1,−2,−2,−2,−2,−2,−1) {3, 7} 197, 198, 207
204 (−1,−1,−2,−3,−2,−2,−1,−1) {4, 6, 8} 197, 206, 207, 208, 196, 199, 215, 216, 223
205 (−1,−2,−2,−3,−3,−2,−1, 0) {2, 5} 200, 209, 201
206 (−1,−2,−2,−3,−2,−2,−1,−1) {2, 6, 8} 204, 210, 211, 200, 202, 218
207 (−1,−1,−2,−3,−2,−2,−2,−1) {4, 7} 203, 204, 210, 212
208 (−1,−1,−2,−3,−3,−2,−1,−1) {5, 8} 204, 212, 201, 226
209 (−1,−2,−2,−4,−3,−2,−1, 0) {4} 205, 213
210 (−1,−2,−2,−3,−2,−2,−2,−1) {2, 7} 206, 207
211 (−1,−2,−2,−3,−3,−2,−1,−1) {2, 5, 8} 206, 214, 215, 205, 208
212 (−1,−1,−2,−3,−3,−2,−2,−1) {5, 7} 207, 208, 216
213 (−1,−2,−3,−4,−3,−2,−1, 0) {3} 209, 217
214 (−1,−2,−2,−3,−3,−2,−2,−1) {2, 5, 7} 211, 218, 220, 210, 212, 226
215 (−1,−2,−2,−4,−3,−2,−1,−1) {4, 8} 211, 219, 220, 209
216 (−1,−1,−2,−3,−3,−3,−2,−1) {6} 212
217 (−2,−2,−3,−4,−3,−2,−1, 0) {1} 213
218 (−1,−2,−2,−3,−3,−3,−2,−1) {2, 6} 214, 223, 216, 232
219 (−1,−2,−3,−4,−3,−2,−1,−1) {3, 8} 215, 221, 222, 213
220 (−1,−2,−2,−4,−3,−2,−2,−1) {4, 7} 214, 215, 222, 223
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221 (−2,−2,−3,−4,−3,−2,−1,−1) {1, 8} 219, 224, 217, 240
222 (−1,−2,−3,−4,−3,−2,−2,−1) {3, 7} 219, 220, 224, 225
223 (−1,−2,−2,−4,−3,−3,−2,−1) {4, 6} 218, 220, 225, 226, 230
224 (−2,−2,−3,−4,−3,−2,−2,−1) {1, 7} 221, 222, 227, 239
225 (−1,−2,−3,−4,−3,−3,−2,−1) {3, 6} 222, 223, 227, 228
226 (−1,−2,−2,−4,−4,−3,−2,−1) {5} 223
227 (−2,−2,−3,−4,−3,−3,−2,−1) {1, 6} 224, 225, 229, 238
228 (−1,−2,−3,−4,−4,−3,−2,−1) {3, 5} 225, 229, 230, 226, 234
229 (−2,−2,−3,−4,−4,−3,−2,−1) {1, 5} 227, 228, 231, 237
230 (−1,−2,−3,−5,−4,−3,−2,−1) {4} 228, 232
231 (−2,−2,−3,−5,−4,−3,−2,−1) {1, 4} 229, 233, 234, 230, 236
232 (−1,−3,−3,−5,−4,−3,−2,−1) {2} 230
233 (−2,−3,−3,−5,−4,−3,−2,−1) {1, 2} 231, 235, 232
234 (−2,−2,−4,−5,−4,−3,−2,−1) {3} 231
235 (−2,−3,−4,−5,−4,−3,−2,−1) {2, 3} 233, 236, 234
236 (−2,−3,−4,−6,−4,−3,−2,−1) {4} 235, 237
237 (−2,−3,−4,−6,−5,−3,−2,−1) {5} 236, 238
238 (−2,−3,−4,−6,−5,−4,−2,−1) {6} 237, 239
239 (−2,−3,−4,−6,−5,−4,−3,−1) {7} 238, 240
240 (−2,−3,−4,−6,−5,−4,−3,−2) {8} 239
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[Cou99] Michèle Couillens, Généralisation parabolique des polynômes et des bases de
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[KL80] , Schubert varieties and Poincaré duality, Proc. Symp. Pure Math, vol. 36,
1980, pp. 185–203.

[LS81] Alain Lascoux and Marcel-Paul Schützenberger, Polynômes de Kazhdan et Lusztig
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