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ABSTRACT

Dynamic Orchestration of Massively Data Parallel Execution

by

Mehrzad Samadi

Advisor: Scott Mahlke

Graphics processing units (GPUs) are specialized hardware accelerators capable of render-

ing graphics much faster than conventional general-purpose processors. They are widely

used in personal computers, tablets, mobile phones, and game consoles. Modern GPUs

are not only efficient at manipulating computer graphics, but also are more effective than

CPUs for algorithms where processing of large data blocks can be done in parallel. This is

mainly due to their highly parallel architecture.

While GPUs provide low-cost and efficient platforms for accelerating massively paral-

lel applications, tedious performance tuning is required to maximize application execution

efficiency. Achieving high performance requires the programmers to manually manage the

amount of on-chip memory used per thread, the total number of threads per multiprocessor,

the pattern of off-chip memory accesses, etc.

In addition to a complex programming model, there is a lack of performance portabil-
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ity across various systems with different runtime properties. Programmers usually make

assumptions about runtime properties when they write code and optimize that code based

on those assumptions. However, if any of these properties changes during execution, the

optimized code performs poorly. To alleviate these limitations, several implementations of

the application are needed to maximize performance for different runtime properties. How-

ever, it is not practical for the programmer to write several different versions of the same

code which are optimized for each individual runtime condition.

In this thesis, we propose a static and dynamic compiler framework to take the bur-

den of fine tuning different implementations of the same code off the programmer. This

framework enables the programmer to write the program once and allow a static compiler

to generate different versions of a data parallel application with several tuning parameters.

The runtime system selects the best version and fine tunes its parameters based on runtime

properties such as device configuration, input size, dependency, and data values.
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CHAPTER I

Introduction

Heterogeneous systems that combine traditional processors with powerful GPUs have

become standard in most systems ranging from servers to cell phones. GPUs achieve their

high performance and energy efficiency by providing a massively parallel architecture with

hundreds of in-order cores while exposing parallelism and the memory hierarchy to the

programmer. Different speedups from 2.5x [57] to 100x [71] have been achieved on the

GPU architecture compared to the CPUs.

While GPUs provide an inexpensive and highly parallel system for accelerating mas-

sively parallel workloads, efficiently utilizing GPU resources is challenging mostly due to

the programming complexity posed to application developers. Graphics chip manufactur-

ers, such as NVIDIA and AMD, have tried to alleviate the complexity problem by introduc-

ing user-friendly programming models, such as CUDA [72] and OpenCL [46]. Although

such programming models abstract away the underlying GPU architecture by providing

a unified processor model, achieving high performance still requires the programmers to

manually manage the amount of on-chip memory used per thread, the total number of

threads per multiprocessor, and the pattern of off-chip memory accesses [89]. Often the
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Figure 1.1: Comparison of peak and achieved performance for matrix multiplication on different

GPUs

programmer must perform a tedious cycle of performance tuning to extract the desired per-

formance. Figure 1.1 shows the theoretical peak performance , the performance achieved

by highly optimized matrix multiplication from CUBLAS library and, the performance of

matrix multiplication benchmark from NVIDIA SDK for different generations of NVIDIA

GPUs. As shown in the figure, even the highly optimized code (CUBLAS) cannot effi-

ciently utilize GPU resources and gain near peak performance. This gap is considerably

larger for a moderately optimized code such as matrix multiplication from NVIDIA SDK.

In addition to complex programming model, a lack of performance portability across

various systems with different runtime properties is another major challenge. Programmers

usually make assumptions about runtime properties when they write a code and optimize it

based on those assumptions. However, if any of these properties changes during execution,

the optimized code performs poorly. We will explain how these runtime properties such
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as underlying architecture, input size and dimensions, data dependencies between threads,

and data values (Figure 1.2) impact the performance of fixed implementation code in the

following paragraphs.

Device Portability: Different GPUs vary in several key micro-architectural parameters

such as number of registers, maximum number of active threads, and the size of global

memory. These parameters will vary even more when newer high performance cards, such

as NVIDIA’s Kepler [73], and future resource-constrained mobile GPUs with less resources

are released. This heterogeneity in hardware leads to a different set of optimization choices

for each GPU. As a result, optimization decisions for one generation of GPUs are likely to

be poor choices for another generation. We call this problem device portability.

Input portability: The portability issue is not specific to executing applications on dif-

ferent GPU targets. Even for a fixed GPU target, changing the problem size and dimensions

can make an implementation of an algorithm sub-optimal, resulting in poor performance

3
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portability. We refer to this problem as input portability. The main cause of this effect is

that the workload of each thread in the application is set based on the input size. Therefore,

a fixed implementation works well for a certain range of these values but for other input

dimensions, either there would not be enough threads to run in parallel and hide memory

latency , or the data chunk that each block is operating on would be too small to amortize

the overhead of parallel execution.

Irregular Dependency: Irregular dependencies in data parallel codes are another limita-

tion which prevents the fixed implementation code from performing efficiently. Common

parallelization techniques cannot parallelize the applications that contain irregular depen-

dencies that manifest infrequently, or statically-unresolvable dependencies that may not

manifest during runtime at all. Therefore, ambiguous memory dependencies or control

flow divergences in a small number of threads can negatively affect thousands of other

threads on a GPU. The compiler analyses used for automatic parallelization are usually

too conservative and fragile, resulting in small or no performance gains on commodity

computer systems. One way to solve this problem is to use speculation.

Value Portability: Finally, data values also can have a great impact on the overall perfor-

mance of a fixed implementation application. We refer to this problem as value portability.

For example, performance of atomic operations is highly correlated with the addresses that

those operations modify, which in turn depend on the input values. An atomic instruction

performs a read-modify-write atomic operation on one element residing in global or shared

memory. As the GPU serializes accesses to the same element, performance of atomic in-
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structions is inversely proportional to the number of threads per warp that access the same

address. If we prevent atomic operations to access the same address, overall performance

will be improved.

To alleviate these limitations, several implementations of the application are needed to

maximize performance under different runtime properties. However, it is not practical for

the programmer to write different versions of the same code and optimize them separately.

Furthermore, as most of these runtime properties are not predictable statically, a dynamic

solution is necessary to choose the best implementation to maximize the performance dur-

ing runtime. In this thesis, we propose a static/dynamic compiler framework to take the

burden of fine tuning different implementations of the same code off the programmer as

shown in Figure 1.3. The static compiler generates different versions of the data parallel

application with several tuning parameters. The runtime system selects the best version

and fine tunes its parameters based on runtime properties such as device configuration, in-

put size, dependency, and data values. The remainder of this chapter describes different

frameworks that are specifically designed for each of these runtime properties explained

above.
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1.1 Sponge

To overcome the device portability problem, we propose Sponge [44], a streaming

compiler for the StreamIt language that is capable of automatically producing customized

CUDA code for a wide range of GPUs. Sponge consists of stream graph optimizations

which optimizes the organization of the computation graph and an efficient CUDA code

generator to express the parallelism for the target GPU. Producing efficient CUDA code is

a multi-variable optimization problem and can be difficult for software programmers due

to the unconventional organization and the interaction of computing resources of GPUs.

Sponge is equipped with a set of optimizations to handle the memory hierarchy of GPUs

and also to efficiently utilize the processing units.

1.2 Adaptic

In order to mitigate the input portability problem, we propose an adaptive input-aware

compilation system, called Adaptic [93], which is capable of automatically generating op-

timized CUDA code for a wide range of input sizes and dimensions from a high-level

algorithm description. Adaptic decomposes the problem space based on the input size into

discrete scenarios and creates a customized implementation for each scenario. Decomposi-

tion and customization of the problem space are accomplished through a suite of optimiza-

tions. These include a set of memory optimizations which coalesce memory access patterns

employed by the high-level streaming model and efficiently execute algorithms that access

several neighboring memory locations at the same time. Adaptic uses an additional group

of optimizations to effectively break up the work in large program segments for efficient

6



execution across many threads and blocks. The final optimizations combine the work of

different functions to reduce the memory overhead so that their execution overhead can be

reduced.

Adaptic uses these optimizations to generate different versions of the code. At runtime,

based on the provided input to the program, the best version of the generated code is se-

lected and executed to maximize performance. This method frees application developers

from the tedious task of fine-tuning and possibly changing the algorithm for each input

range as shown in Figure 1.3.

1.3 Paragon

To overcome dependency limitation, we propose cooperative speculative loop execution

on GPUs and CPUs using Paragon [92, 91] for implicitly data-parallel programs written in

C/C++. Paragon, using data-parallel speculation and distributed conflict detection engines

designed, enables programmers to transparently take advantage of GPUs for pieces of their

applications that are possibly-data-parallel. The programmers does not need to manually

change the application or rely on complex compiler analyses, thus reducing the cost of port-

ing to GPUs. Further, the set of applications that can be mapped onto a GPU is broadened

beyond loops that exclusively use arrays with affine indices. Paragon’s use of cooperative

execution between the GPU and CPU increases the performance of the overall system in the

presence of conflicts since the CPU is not left idle while the GPU is speculatively running

an application.

The static phase of Paragon mainly performs loop classification and generates CUDA
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code for the runtime system which monitors the loops on the GPU for dependency viola-

tions. The runtime phase also performs light-weight one-time loop monitoring and decides

which loops are more likely to benefit from executing on the GPU. Therefore, for each

loop, runtime system decides to run it on GPU, CPU or both.

1.4 Sage

In order to maximize the performance for different data values, we use approximate

computing to simplify or skip processing on the computationally expensive input data.

We propose Sage [95] a framework for performing systematic runtime approximation on

GPUs that enables the programmer to implement a program once in CUDA, and depending

on the target output quality (TOQ), trade accuracy for performance based on the evaluation

metric provided by the user. SAGE has two phases: offline compilation and runtime kernel

management. During offline compilation, SAGE performs approximation optimizations

on each kernel to create multiple versions with varying degrees of accuracy. At runtime,

SAGE uses a greedy algorithm to tune the parameters of the approximate kernels to identify

configurations with high performance and a quality that satisfies the TOQ. This approach

reduces the overhead of tuning as measuring the quality and performance for all possible

configurations can be expensive. Since the behavior of approximate kernels may change

during runtime, SAGE periodically performs a calibration to check the output quality and

performance and updates the kernel configuration accordingly.
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1.5 Paraprox

One of the main challenges to use approximation to provide good performance for

different data values is generating approximate programs. Since there is no single approx-

imation method that works for all applications, we propose a software framework called

Paraprox [94]. Paraprox identifies common patterns found in data-parallel programs and

uses a custom-designed approximation technique for each detected pattern. Paraprox is

applicable to a wide range of applications as it determines the proper approximation opti-

mizations that can be applied to each input program.

To automatically create approximate kernels, Paraprox utilizes four optimization tech-

niques which target six data parallel patterns: Map, Scatter/Gather, Reduction, Scan, Sten-

cil, and Partition. Paraprox applies approximate memoization to map and scatter/gather

patterns where computations are replaced by memory accesses. For reduction patterns,

Paraprox uses sampling plus adjustment to compute the output by only computing the re-

duction of a subset of the data. The stencil & partition approximation algorithm is based

on the assumption that adjacent locations in an input array are typically similar in value

for such patterns. Therefore, Paraprox accesses a subset of values in the input array and

replicates that subset to construct an approximate version of the array. For scan patterns,

Paraprox only performs the scan operation on a subset of the input array and uses the results

to predict the results for the rest of the array.
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CHAPTER II

Data Parallel Programming Model

The CUDA programming model is a multi-threaded SIMD model that enables imple-

mentation of general purpose programs on heterogeneous GPU/CPU systems. There are

two different device types in CUDA: the host processor and the GPU. A CUDA program

consists of a host code segment that contains the sequential portion of the program, which

is run on the CPU, and a parallel code segment which is launched from the host onto one or

more GPU devices. Recent generations of NVIDIA’s GPUs, Fermi and Kepler, can support

concurrent kernel execution, where different kernels of the same application context can

execute on the GPU at the same time. Concurrent kernel execution allows programs that

execute a number of small kernels to utilize the whole GPU. It is also possible to overlap

data transfers between CPU and GPU, and kernel execution. The threading and memory

abstraction of the CUDA model is shown in Figure 2.1.

The threading abstraction in CUDA consists of three levels of hierarchy. The basic

block of work is a thread. A group of threads executing the same code are combined to-

gether to form a thread block or simply a block. Together, these thread blocks combine

to form the parallel segments called grids where each grid is scheduled onto a GPU at a

10
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time. Threads within a thread block are synchronized together through a barrier operation

( syncthreads()). However, there is no explicit software or hardware support for synchro-

nization across thread blocks. Synchronization between thread blocks is performed through

the global memory of the GPU, and the barriers needed for synchronization are handled by

the host processor. One way to communicate between threads of different thread blocks is

using atomic instructions. An atomic construct performs a read-modify-write atomic oper-

ation on one element residing in global or shared memory. For example, atomicInc() reads

a 32-bit word from an address in the global or shared memory, increments it, and writes the

result back to the same address. The operation is atomic in the sense that it is guaranteed to

be performed without interference from other threads. In other words, no other thread can

access this address until the operation is complete [72].

NVIDIA GPUs use a single instruction multiple thread (SIMT) model of execution

where multiple thread blocks are mapped to streaming multiprocessors (SM). Each SM

contains a number of processing elements called Streaming Processors (SP). A thread exe-

cutes on a single SP. Threads in a block are executed in smaller execution groups of threads

called warps. All threads in a warp share one program counter and execute the same in-

11
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structions. If conditional branches within a warp take different paths, causing control path

divergence, the warp will execute each branch path serially, stalling the other paths until all

the paths are complete. Such control path divergences severely degrade the performance.

The memory abstraction in CUDA consists of multiple levels of hierarchy. The low-

est level of memory is registers, which are on-chip memories private to a single thread.

The next level of memory is shared memory, which is an on-chip memory shared only by

threads within the same thread block. On devices with compute capability 2.0 and higher,

there is also an L1 cache for each SM and an L2 cache shared by all SMs, both of which are

used to cache accesses to local or global memory, The same on-chip memory is used for

both L1 and shared memory: It can be configured by the programmer as 48 KB of shared

memory and 16 KB of L1 cache or as 16 KB of shared memory and 48KB of L1 cache.

Finally, the last level of memory is global memory, which is an off-chip memory ac-

cessible to all threads in the grid. This memory is used primarily to stream data in and out

of the GPU from the host processor. Three other memory levels exist on-chip called the

Local memory, texture memory and constant memory. Local memory resides in the device

memory and has high latency like global memory accesses. Local memory is mainly used

as spill memory for local arrays and is private to a single thread. Mapping arrays to shared

memory instead of spilling to local memory can provide much better performance. Tex-

ture memory is accessible through special built-in texture functions and constant memory

is accessible to all threads in the grid.

Because off-chip global memory access has high latency, GPUs support coalesced

memory accesses. Coalescing memory accesses allows one bulk memory request from

multiple threads in a half-warp (full warp in Fermi and Kepler architecture) to be sent to

12



global memory instead of multiple separate requests. In order to coalesce memory accesses

in recent generations of GPUs, all accesses of a warp should be adjacent and in the same

cache line. Effective memory bandwidth is an order of magnitude lower than using non-

coalesced memory accesses which further signifies the importance of memory coalescing

for achieving high performance.

In modern GPUs, such as the NVIDIA GTX 560, there are 8 SMs each with 48 SPs.

Each SM processes warp sizes of 32 threads. The memory sizes for this GPU are: 48K

of registers and 64 KB configurable shared/L1 per SM and 1GB of global memory shared

across all threads in the GPU.
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CHAPTER III

Adaptive Input-aware Compilation

3.1 Introduction

GPUs are specialized hardware accelerators capable of rendering graphics much faster

than conventional general-purpose processors. They are widely used in personal comput-

ers, tablets, mobile phones, and game consoles. Modern GPUs are not only efficient at

manipulating computer graphics, but also are more effective than CPUs for algorithms

where processing of large data blocks is done in parallel. This is mainly due to their highly

parallel architecture. Recent works have shown that in optimistic cases, speedups of 100-

300x [71], and in pessimistic cases, speedups of 2.5x [57], can be achieved using modern

GPUs compared to the latest CPUs.

While GPUs provide inexpensive, highly parallel hardware for accelerating parallel

workloads, the programming complexity remains a significant challenge for application

developers. Developing programs to effectively utilize GPU’s massive compute power and

memory bandwidth requires a thorough understanding of the application and details of the

underlying architecture. Graphics chip manufacturers, such as NVIDIA and AMD, have

14



tried to alleviate part of the complexity by introducing new programming models, such as

CUDA [72] and OpenCL [46]. Although these models abstract the underlying GPU archi-

tecture by providing unified processing interfaces, developers still need to deal with many

problems such as managing the amount of on-chip memory used per thread, total number

of threads per multiprocessor, and the off-chip memory access pattern in order to maximize

GPU utilization and application performance [89]. Therefore, programmers must manually

perform a tedious cycle of performance tuning to achieve the desired performance.

Many prior efforts have tried to address this programmability challenge mostly along

three interrelated angles. The works in [20, 44, 21, 45, 54, 55] provide high-level abstrac-

tions at the language level to enable easier expression of algorithms. These abstractions are

later used by the compiler to generate efficient binaries for GPUs. Adding annotations to

current models (CUDA or OpenCL) or popular languages (C or Fortran) to guide compiler

optimizations is another method used in [39, 122, 117]. Finally, works in [106, 13, 121] try

to automatically generate optimized code from a basic, possibly poor performing, parallel

or sequential implementation of an application.

The hard problem of finding the optimal implementation of an algorithm on a single

GPU target is further complicated when attempting to create software that can be run effi-

ciently on multiple GPU architectures. For example, NVIDIA GPUs have different archi-

tectural parameters, such as number of registers and size of shared memory, that can make

an implementation which is optimal for one architecture sub-optimal for another. The sit-

uation is even worse if the goal is to have an optimal implementation for GPUs across

multiple vendors. We call this effect the device portability problem.

However, the portability issue is not specific to moving applications across different

15
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Figure 3.1: Performance of the transposed matrix vector multiplication benchmark from the

CUBLAS library on an NVIDIA Tesla C2050. The X-axis shows the input dimensions in number

of rows x number of columns format.

GPU targets. Even for a fixed GPU target, changing the problem size and dimensions

can make an implementation of an algorithm sub-optimal, resulting in poor performance

portability. Figure 3.1 illustrates this issue for the transposed matrix vector multiplication

(TMV) benchmark from the CUBLAS library [70]. The benchmark performs consistently

between 12 and 17 GFLOPs over the input dimension range of 1Kx4K to 128Kx32 on an

NVIDIA Tesla C2050 GPU. However, when input dimensions fall out of this range, the

performance degrades rapidly by upto a factor of more than 20x. The main reason for

this effect is that the number of blocks and threads in the application are set based on the

number of rows and columns in the input matrix. Therefore, this benchmark works well

for a certain range of these values and for other input dimensions, either there would not be

enough blocks to run in parallel and hide memory latency (towards the left end of X-axis in

the figure), or the data chunk that each block is operating on would be too small to amortize

the overhead of parallel block execution (towards the right end of X-axis in the figure).

In general, there are various reasons for this input portability problem such as unbal-
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anced workload across processors, excessive number of threads, and inefficient usage of

local or off-chip memory bandwidth. Unbalanced workloads occur when a kernel has a

small number of blocks causing several processors to be idle during execution, which leads

to under-utilization of GPU resources and poor performance. Excessive number of threads

result in sequential thread execution due to lack of enough resources in the GPU to run all

threads in parallel. Finally, memory access patterns in some program segments are deter-

mined based on the size or dimensions of the input. Therefore, memory optimizations must

be adapted based on the input to efficiently utilize the memory bandwidth.

One solution to the input portability problem is to have the programmer design and

develop different algorithms for each input range and size. However, this would impose

a considerable implementation effort and verification overhead as applications become

larger, more complex, and need to work across a vast range of inputs. For instance, as

we show later, five kernel implementations are created to sustain high performance across

the complete input spectrum in the TMV benchmark. Multi-kernel applications compli-

cate matters as programmers must deal with the cross-product of choices for each kernel

as the input is varied. Clearly, automatic tools will become essential to guarantee high

performance across various input sizes.

Figure 3.2 shows a classification of prior works that have focused on improving GPU

programmability, based on their support for portability across different targets (horizontal

dimension) or inputs (vertical dimension). The entries in the lower left region focus on

a combination of higher level programming paradigms and optimizing compilers for pro-

gramming GPUs. The entries in the lower right focus on device portability as well, and use

machine description to generate optimized code for various hardware targets. However,no
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Figure 3.2: Classification of prior works that have focused on improving GPU programmability

based on their support for device portability and input portability.

prior work has looked into ways to solve this problem.

In this work, we focus on tackling the input portability problem while providing GPU

device portability. We employ a high-level streaming programming model to express target

algorithms. This model provides explicit communication between various program ker-

nels and its structured and constrained memory access lets the compiler make intelligent

optimization decisions without having to worry about dependences between kernels. An

adaptive input-aware compilation system, called Adaptic, is proposed that is capable of

automatically generating optimized CUDA code for a wide range of input sizes and di-

mensions from a high-level algorithm description. Adaptic decomposes the problem space

based on the input size into discrete scenarios and creates a customized implementation

for each scenario. Decomposition and customization are accomplished through a suite of

optimizations that include a set of memory optimizations to coalesce memory access pat-

terns employed by the high-level streaming model and to efficiently execute algorithms

that access several neighboring memory locations at the same time. In addition, a group

of optimizations are introduced to effectively break up the work in large program segments

for efficient execution across many threads and blocks. Finally, two optimizations are in-
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troduced to combine the work of two segments so that execution overhead can be reduced.

An enhanced version of the performance model introduced in [42] is employed to pre-

dict application behaviour for each range of input size and dimensions. Based on these

predictions, optimizations are applied selectively by the compiler. At runtime, based on the

provided input to the program, the best version of the generated code is selected and exe-

cuted to maximize performance. This method frees application developers from the tedious

task of fine-tuning and possibly changing the algorithm for each input range.

The specific contributions offered by this work are as follows:

• We introduce input portability as a first class programmability challenge for GPUs

and provide means to solve it.

• We propose input-aware optimizations to overcome memory related performance de-

ficiencies and break up the work fairly between working units based on the input size

and dimensions.

• We develop an adaptive compilation and runtime system that optimizes performance

for various input ranges by conforming to the user input and identifying and adjusting

required optimizations.

The rest of the chapter is organized as follows. In Section 3.2, the stream program-

ming model is discussed. An overview of the Adaptic compiler is given in Section 3.3,

while Section 3.4 describes the proposed input-aware optimizations in detail. Experiments

are presented in Section 3.5. Related works are discussed in Section 3.6, and finally, Sec-

tion 3.7 concludes the chapter.
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3.2 Background

Exposed communication and an abundance of parallelism are the key features making

stream programming a flexible and architecture-independent solution for parallel program-

ming. In this work, we employ a stream programming model based on Synchronous Data

Flow (SDF) models [53]. In SDF, computation is performed by actors, which are inde-

pendent and isolated computational units, communicating only through data-flow buffers

such as FIFOs. SDF, and its many variants, expose input and output processing rates of

actors. This provides many optimization opportunities that can lead to efficient scheduling

decisions for assignment of actors to cores, and allocation of buffers in local memories.

One way of writing streaming programs is to include all the computation performed

in an actor inside a work method. This method runs repeatedly as long as the actor has

data to consume on its input port. The amount of data that the work method consumes

is called the pop rate. Similarly, the amount of data each work invocation produces is

called the push rate. Some streaming languages, including StreamIt [109], also provide

non-destructive reads, called peek, which do not alter the state of the input buffer. In

this work, we use the StreamIt programming language to implement streaming programs.

StreamIt is an architecture-independent streaming language based on SDF and allows the

programmer to algorithmically describe the computational graph. In StreamIt, actors can

be organized hierarchically into pipelines (i.e., sequential composition), split-joins (i.e.,

parallel composition), and feedback loops (i.e., cyclic composition).

To ensure correct functionality in StreamIt programs, it is important to create a steady

state schedule which involves rate-matching of the stream graph. There is a buffer between
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each two consecutive actors and its size is determined based on the program’s input size

and pop and push rates of previous actors. Rate-matching assigns a repetition number to

each actor. In a StreamIt schedule, an actor is enclosed by a for-loop that iterates as many

times as this repetition number.

Finally, since StreamIt programs are incognizant of input size and dimensions, Adap-

tic’s input code is the same for all inputs but the output implementation will be different

for various input sizes.

3.3 Adaptic Overview

The Adaptic compiler takes a platform-independent StreamIt program, ranges of its

possible input size and dimension values, and the target GPU as input, and generates op-

timized CUDA code based on those ranges and the target. A StreamIt program consists

of several actors that can be described as fine-grained jobs executed by each thread. Each

actor in the StreamIt graph is converted to a CUDA kernel with a number of threads and

blocks. By performing input-aware stream compilation, Adaptic decides how many threads

and blocks to assign to the CUDA kernel generated for each actor. Figure 3.3 shows Adap-

tic’s compilation flow that consists of four main components: baseline input-unaware opti-

mizations, performance model, input-aware optimizations, and CUDA code generation. In

addition, a matching runtime system selects appropriate kernels and sets their input param-

eters according to the program input at execution time. This section gives an overview of

these four components as well as the runtime kernel management, while Section 3.4 details

our proposed input-aware optimizations.
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Figure 3.3: Compilation flow in Adaptic.

Input-unaware Optimizations: This step performs a set of input-unaware basic opti-

mizations on the program and decides whether each actor should be executed on the CPU

or GPU. This decision may be changed later by input-aware optimizations. Input-unaware

optimizations are similar to those introduced in [44]. They include optimizations such as

loop unrolling, data prefetching, and memory transfer acceleration. They can be used to

generate CUDA code that is reasonably optimized and works for all input sizes, but gains

its best performance for certain ranges of input and is suboptimal outside those ranges.
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Figure 3.4: Three different types of kernels in Adaptic’s performance model.

Performance Model: Adaptic relies on a high-level performance model to estimate the

execution time of each kernel and to decide on using different optimizations for various

problem sizes and GPU targets. This model is similar to the one described in [42], and

classifies CUDA kernels into three categories of memory-bound, computation-bound, and

latency-bound. Figure 3.4 illustrates a high-level overview of these kernel types.

As shown in the figure, memory-bound kernels have enough warps to efficiently hide

the computation latency. Execution time of each warp is dominated by memory accesses,

which are overlapped with computation. Therefore, in these kernels Adaptic estimates the

execution time of the kernel by the total time spent on memory accesses. This estimation

is computed based on the number of coalesced and non-coalesced accesses and the number

of synchronization points, all of which are dependent on the input and can be computed at

compile time as a function of input size and dimensions. GPU target is also an important

factor in computing the performance estimation.

In computation-bound kernels, since most of the time is spent on computation, the

execution time can be estimated to be the total computation time. It should be noted that in

these kernels, a large number of active warps is also assumed so that the scheduler would be
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able to hide memory access latencies with computation. The performance model estimates

the computation time using the number of computation instructions and synchronization

points which are both input-dependent. Similar to memory-bound kernels, GPU target

affects the execution time estimation here as well.

The last category, latency-bound kernels, are those that do not have enough active warps

on each SM, and the scheduler cannot hide the latency of the computation or memory by

switching between warps. Execution time of these latency-bound kernels is estimated by

adding up the computation and memory access times. The GPU determines how many

active warps are needed for effectively hiding the latency. There are two situations that

lead to a small number of active warps and make the kernels latency-bound. First, if there

is not enough data parallelism in the kernel, not many thread blocks can be launched at a

time and therefore few active warps are assigned to each SM. In addition, when each thread

block uses a large portion of resources such as shared memory or registers, due to the lack

of resources, the GPU scheduler can not assign enough thread blocks to each SM.

In order to determine the type of each kernel, Adaptic counts the number of active

warps on each SM. Based on this number and the target GPU, it determines whether the

kernel is latency-bound or not. If not, Adaptic treats that kernel as both memory-bound

and computation-bound and calculates the corresponding execution cycles. The maximum

of these two numbers determines the final kernel category. Based on these categories, The

performance model estimates the execution time of a kernel both before and after applying

each optimization as a function of input dimensions. The performance break-even points

determine the dimensions at which the corresponding optimization should be enabled or

disabled.
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Input-aware Optimizations: At each input-aware optimization phase, its potential per-

formance impact for all input ranges is estimated using the model. These input ranges are

provided by previous input-aware phases. If the optimization is beneficial, it is added to

the optimization list for the whole range. However, if the optimization is only suitable

for a subset of that range, Adaptic divides the range into smaller subranges, and populates

optimization lists for each new subrange accordingly. In other words, Adaptic divides up

operating input ranges to subranges if necessary, and applies different optimizations to each

subrange. Therefore, separate kernels should be later generated for these subranges.

Code Generation: At the end of the compilation flow, the code generation stage gener-

ates optimized CUDA kernels for each input range based on optimization lists constructed

by the optimization phase and the performance model. Since the performance model uses

the target specifications to make optimization decisions, code generation is different for

different targets. In addition, necessary code for runtime kernel management is also gener-

ated by the code generation unit based on the kernels and their operating input ranges. All

these codes are later translated to a binary using the native CUDA compiler.

Runtime Kernel Management: A runtime kernel management unit is developed to dy-

namically select a properly optimized kernel at runtime based on the program input. This

unit also determines the values of parameters that should be passed to each kernel at launch

time including the number of blocks, number of threads per block, and the size of allocated

shared memory. In order to remove kernel management overhead at runtime, this unit is

completely executed on the CPU during the initial data transfer from CPU to GPU.
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3.4 Input-aware Optimizations

As mentioned in Section 3.1, several factors such as inefficient use of memory band-

width, unbalanced workload across processors, and excessive number of threads lead to

ineffectiveness of input-unaware optimizations in sustaining performance across different

inputs. The goal of input-aware optimizations in this work is to deal with these inefficien-

cies.

Two memory optimizations are introduced in Section 3.4.1 to solve inefficient use of

local or off-chip memory bandwidth. In addition, two other sets of optimizations, namely

actor segmentation and actor integration are detailed in Sections 3.4.2 and 3.4.3 respec-

tively to tackle both unbalanced processor workload and excessive number of threads.

3.4.1 Memory Optimizations

In this section, two memory optimizations, memory restructuring and incremental mem-

ory access are explained.

3.4.1.1 Memory Restructuring

One of the most effective ways to increase the performance of GPU applications is co-

alescing off-chip memory accesses. When all memory accesses of one warp are in a single

cache line, the memory controller is able to coalesce all accesses into a single global mem-

ory access. Figure 3.5(a) illustrates how an actor with four pops and four pushes accesses

global memory. In this example, each actor in each thread accesses four consecutive mem-

ory words. The first pop operations in threads 0 to 64 access memory word locations 0, 4,
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Figure 3.5: Memory restructuring optimization. (a) Global memory access pattern of an actor with

four pops and four pushes. Since accessed addresses are not adjacent, accesses are not coalesced.

(b) Access patterns after memory restructuring. Accessed addresses are adjacent at each point in

time and accesses are all coalesced.

8,. . . , 252, second pop operations access locations 1, 5, 9,. . . , 253, etc. Since these loca-

tions are not consecutive in memory, non-coalesced global memory accesses occur, leading

to poor performance.

There are two ways to coalesce these memory accesses. One way is to transfer all data

to the shared memory in a coalesced manner and since shared memory is accessible by all

threads in a block, each thread can work on its own data. In this method, each thread fetches

other threads’ data from global memory as well as part of its own data. The same method

can be applied for write backs to global memory as well. All threads write their output to

shared memory and then they transfer all data in a coalesced pattern to the global memory.

Although using shared memory for coalescing accesses can improve performance, it has

two shortcomings: number of threads is limited by the size of shared memory and the total

number of instructions is increased due to address computations.

We use another method for coalescing accesses and that is to restructure the input array

in a way that each pop access in all threads accesses consecutive elements of one row of the

input in global memory. Figure 3.5(b) shows how this restructuring coalesces all memory

accesses without using shared memory. This method has the advantage of minimizing the
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number of additional instructions and does not limit the number of threads by the size of

shared memory. In addition, since this optimization is not using shared memory to coalesce

off-chip memory accesses, shared memory can be utilized to store real shared data.

This optimization is not applicable when there are two or more actors with mismatching

push and pop rates in the program. In those cases, rate matching buffers between kernels

also have to be restructured, which involves extra write and reads from global memory,

leading to poor performance.

However, as the work in [108] shows, most consecutive actors in streaming benchmarks

have matching rates. Therefore, using memory restructuring would be beneficial. The CPU

can restructure the data at generation time and transfer it to the global memory of the GPU.

The GPU launches kernels and when all of them are finished, the CPU reads back the output

data. Due to the dependency of pop and push rates of some of the actors are on input size,

this optimization can have different effects for various sizes.

In addition to coalescing global memory accesses, memory restructuring can also be

applied to shared memory to remove bank conflicts. After applying this optimization, all

threads access consecutive addresses in shared memory. Since adjacent addresses in shared

memory belong to different shared memory banks, there would be no bank conflicts.

3.4.1.2 Incremental Memory Access

This optimization can be applied to actors that access multiple neighboring points in

their input array. The indexes of these accesses increase linearly in each iteration. In

StreamIt, non-destructive read (peek) is used in these actors to read the neighbors’ data.

These actors are most common in simulation benchmarks, for instance, the temperature of
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5-Point Stencil(pop,peek:size, push:size)

for (index=0; index<size; index++)

if (not on edge)

Top    = peek(index – width)

Bottom = peek(index + width)

Right  = peek(index + 1)

Left   = peek(index – 1) 

Center = peek(index – 1)

push(func(Top,Bottom,Right,Left,center))

(a) (b)

Figure 3.6: Incremental-access actors. (a) An example StreamIt code of a five-point stencil actor.

(b) Memory access pattern of this actor.

each point on a surface is computed based on the temperature of its neighbors. Figure 3.6(a)

shows an example StreamIt code of a five-point stencil actor that has incremental access

pattern and Figure 3.6(b) illustrates its corresponding access pattern. In this example, each

element is dependent on its top, bottom, right, and left elements. Each thread first reads

all top elements, which are consecutive, leading to coalesced memory accesses. The same

pattern holds for bottom, right, left and center elements. However, the main problem with

this class of actors is excessive global memory accesses. For instance, accessing all top,

bottom, left, right and center elements in each thread simply means accessing the whole

input five times.

An efficient way to alleviate this problem is to use shared memory such that each block

brings in one tile of data to shared memory and works on that. Since the data close to tile

edges is needed for both neighboring tiles, tiles should be overlapped. These overlapping

regions, called halo parts, are brought in for each tile at all four edges. Since branch diver-

gence occurs only within a warp [72], both tile and halo part widths should be multiples of

warp size to make all accesses coalesced and prevent control flow divergence.

These halo parts should be as small as possible to minimize extra memory accesses.

The ratio of the halo part size to the main tile size is decreased by merging several tiles and

29

adaptic/figs/incremental.ps


76543210

10

32

1010

3232

1

3

010

232

5454545454

1

3

0

2

54

7676767676

76543210

76

Figure 3.7: A super tile assigned to one block. Dark gray addresses are main part and light gray

parts are halo parts. Numbers in each small box indicates which thread reads this address.

forming a super tile. Each super tile is assigned to one block and each thread computes

several output elements in different tiles. In this case, each block brings in a super tile from

global memory to shared memory, performs the computation, and writes back the super tile

to global memory.

Figure 3.7 shows a super tile assigned to a block in our example. Dark gray elements

construct the main tiles while the light gray elements are halo parts. The number in each

element indicates the thread index reading that element’s address. In this example, warp

size is equal to 2 and there are 8 threads in each block. Each tile is 4x2 and by merging four

tiles together, one super tile with 4x8 elements is formed. Since all width values should

be multiples of warp size to maintain memory coalescing, the width of right and left halo

parts in this example are set to 2.

Increasing the size of super tiles leads to an increase in the allocated shared memory for

each block, which in turn, could result in lower number of concurrent blocks executed on

each GPU SM. Since this issue may change the type of kernel from computation-bound or

memory-bound to latency-bound, the data size processed by each block should be chosen

carefully. Adaptic uses the following reuse metric to find the optimal shape and size for

each tile:
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Figure 3.8: A generic incremental-access CUDA code. First, different halo parts and the super tile

are moved from global to shared memory. Subsequently, computations are performed on the shared

memory data.

Reuse Metric =
Memory Accesses Served

Extra Parts Size

=

∑
T ile

Element Accesses

Halo Size

As can be seen, maximizing the number of served memory accesses while minimizing

the size of extra halo parts, maximizes the reuse metric. In this formula, Element Accesses

is the number of times each element in the shared memory is accessed during the compu-

tation of the whole output matrix, and the summation is taken over all elements in the tile.

Since the best tile is the one with small halo parts that can compute a large chunk of output,

Adaptic uses rectangular tiles with maximum Reuse Metrics if possible. However, the

size of each super tile should not be more than the maximum shared memory per block,

which is a constant value based on the target GPU. The super tile’s size is dependent on the

input size. For small input sizes it is beneficial to use smaller super tiles in order to have

more blocks. Large super tiles are advantageous for large input sizes to reduce excessive

memory accesses.

Once the size of super tiles and halo parts are determined, the output CUDA code will
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be similar to the code shown in Figure 3.8. First, the kernel reads in the super tile and all its

halos to the shared memory, after which synchronization makes shared memory visible to

all threads. Subsequently, each block starts working on its own data residing in the shared

memory to perform the computation and output the results.

3.4.2 Actor Segmentation

Optimizations in this category attempt to divide the job of one large actor between

several threads/blocks to increase the performance. In order to have balanced workload

across processors with efficient number of threads, this segmentation should be done based

on the input size.

Reduction is one of the important algorithms used in many GPU applications. The goal

of stream reduction optimization is to efficiently translate reduction operations to CUDA in

streaming programs. Intra-actor parallelization’s goal is to break the dependency between

iterations of large loops and make them more amenable to execution on GPUs.

3.4.2.1 Stream Reduction

A reduction operation generally takes a large array as input, performs computations on

it, and generates a single element as output. This operation is usually parallelized on GPUs

using a tree-based approach, such that each level in the computation tree gets its input from

the previous level and produces the input for the next level. In uniform reduction, each

tree level reduces the number of elements by a fixed factor and the last level outputs one

element as the final result. The only condition for using this method is that the reduction

operation needs to be associative and commutative.
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Shared memory reduction

Initial Reduction Kernel
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Merge Kernel

push(Result)

Reduction(pop:size, push:1)

for (i = 0; i < size; i++)

Result= Result pop()

(c)

(b)(a)

Global memory

reduction

Shared memory

reduction

Figure 3.9: Stream reduction technique. (a) StreamIt code for a reduction actor. (b) Each block

is responsible for computing output for one chunk of data in two phases. In the first phase, each

thread reads from global memory and writes reduction output to the shared memory and in the

second phase, shared memory data is reduced to one output element. (c) In the two kernel approach,

different blocks of the first kernel work on different chunks of data and the second kernel reads all

reduction kernel’s output and compute final result.

A naive way of implementing the tree-based approach in StreamIt is to represent each

tree node as an individual actor with small pop/push rates. Executing one kernel for each

small actor would make the kernel launching overhead significant and degrade the per-

formance dramatically. Another method of representing reduction in StreamIt is using one

filter that pops in the whole input array and pushes the final result as shown in Figure 3.9(a).

Optimizations in [44] can not translate this actor to an efficient kernel due to the limited

number of possible in-flight threads.

On the other hand, Adaptic automatically detects reduction operations in its streaming

graph input using pattern matching. After this detection phase, it replaces the reduction
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actor with a highly optimized kernel in its output CUDA code based on the input size

and the target GPU. This reduction kernel receives Narrays different arrays with Nelements

elements each as input, and produces one element per array as output. Data is initially read

from global memory, reduced and written to shared memory, and read again from shared

memory and reduced to the final result for each array. In this work, we introduce two

approaches for translating reduction actors to CUDA kernels.

When the array input size, Nelements, is small compared to the total number of input

arrays, Narrays, Adaptic produces a single reduction kernel in which each block computes

the reduction output for one input array. Thus, this kernel should be launched with Narrays

blocks. This approach is beneficial for large array counts so that Adaptic can launch enough

blocks to fill up the resources during execution.

However, when the array input size (Nelements), is large compared to total number of

input arrays (Narrays), the reduction output for each array is computed individually by two

kernels. The first kernel, called the initial reduction kernel, chunks up the input array and

lets each block reduce a different data chunk. The number of these blocks, Ninitial blocks is

dependent on the value of Nelements and the target GPU. Since there is no global synchro-

nization between threads of different blocks, results of these blocks (Ninitial blocks ∗Narrays

elements) are written back to global memory. Subsequently, another kernel, called the

merge kernel, is launched to merge the outputs from different blocks of the initial reduc-

tion kernel down to Narrays elements. In the merge kernel, each block is used to compute

the reduction output of one input array. Therefore, this kernel should be launched with

Narrays blocks.

Figure 3.10 shows Adaptic’s resulting CUDA code for the initial reduction kernel. In
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for ( index=tid; index<size; index+= numberOfThreads)

Result = Result Input[Index];

Result = 0; 

SharedData[tid] = Result;

activeThreads = blockDim;

while (activeThreads > WARP_SIZE){

if (tid <activethreads) 

activeThreads /=2;

sync();

SharedData[tid] = SharedData[tid+activeThreads];

}

Output[bid] = SharedData[0];

if tid = 0

Initial Kernel Reduction<<<reductionBlocks, threads>>>

Stride = WARP_SIZE;

if (tid < WARP_SIZE)

while (stride > 1){ 

sync();

SharedData[tid] = SharedData[tid + stride];

stride /=2;}

/* Global memory reduction phase */ 

/* Shared memory reduction phase */ 

L1

L2

numberOfThreads = BlockDim * gridDim; 

Figure 3.10: The initial reduction kernel’s CUDA code.

the first phase, the input array in global memory is divided into chunks of data. Each

thread computes the output for each chunk, and copies it to shared memory. The amount

of shared memory usage in each block is equal to Threads per Block ∗ Element Size.

As discussed in Section 3.4.1.1, all global memory accesses are coalesced as a result of

memory restructuring and there would be no bank conflicts in shared memory in this phase.

In the next phase, the results stored in shared memory are reduced in multiple steps

to form the input to the merge kernel. At each step of this phase, the number of active

threads performing reduction are reduced by half. Loop L1 in Figure 3.10 represents these

steps. They continue until the number of active threads equals the number of threads in

a single warp. At this point, reducing the number of threads any further would cause

control-flow divergence and inferior performance. Therefore, we keep the number of active

threads constant and just have some threads doing unnecessary computation (Loop L2 in

Figure 3.10). It should be noted that after each step, synchronization is necessary to make

shared memory changes visible to other threads. Finally, the thread with tid = 0 computes
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the final initial reduction result and writes it back to the global memory.

3.4.2.2 Intra-actor Parallelization

The goal of intra-actor parallelization is to find data parallelism in large actors. As

mentioned before, it is difficult to generate optimized CUDA code for actors with large

pop or push rates, consisting of loops with high trip counts. This optimization breaks these

actors into individual iterations which are later efficiently mapped to the GPU. Using data

flow analysis, Adaptic detects cross-iteration dependences. If no dependence is found,

Adaptic simply assigns each iteration to one thread and executes all iterations in parallel. It

also replaces all induction variable uses with their correct value based on the thread index.

In some cases, Adaptic breaks the dependence between different iterations by eliminat-

ing recurrences. Suppose the loop contains an accumulator variable count incremented

by a constant C in every iteration (count = count + C). This accumulation causes

cross-iteration dependences in the loop, making thread assignment as described impos-

sible. However, intra-actor parallelization technique breaks this dependence by changing

the original accumulation construct to count = initial value + induction variable ∗ C

and making all iterations independent.

In general, this optimization is able to remove all linear recurrence constructs and re-

place them by independent induction variable-based counterparts. This is similar to the

accumulator expansion optimization that parallelizing compilers perform to break these

recurrences and exploit loop level parallelism on CPUs [116].
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3.4.3 Actor Integration

This optimization merges several actors or threads together to balance threads’ work-

loads based on the input size in order to get the best performance. Two types of actor

integration optimization are introduced in this work. Vertical integration technique reduces

off-chip memory traffic by storing intermediate results in the shared rather than global

memory. Horizontal integration technique reduces off chip memory accesses and synchro-

nization overhead and also lets the merged actors share instructions.

3.4.3.1 Vertical Integration

During this optimization, Adaptic vertically integrates some actors to improve perfor-

mance by reducing memory accesses, removing kernel call overhead, and increasing in-

struction overlap. The reason for its effectiveness is that integrated actors can communicate

through shared memory and there is no need to write back to the global off-chip memory.

Also, integrating all actors together results in one kernel and global memory accesses of this

one kernel are coalesced by the memory restructuring optimization. However, since input

and output buffers of the middle actors in the integrated kernel are allocated in the shared

memory, the number of active threads executing these actors are limited by the size of

shared memory. This limitation often prevents Adaptic from integrating all actors together.

Based on the performance model, Adaptic finds the best candidates for this optimizations.

Since push and pop rates of some actors are dependant on the input size, this optimiza-

tion is beneficial for some ranges of input size. To maintain a steady state schedule, each

actor is executed with a different number of threads based on its number of iterations as

37



Integration Kernel <<<Blocks, threads>>>

if threadId < (# threads for A)

A;

sync();

if threadId < (# threads for B)

B;

sync();

if threadId < (# threads for C)

C;

sync();

Figure 3.11: Generated CUDA code after integrating actors A, B, and C.

shown in Figure 3.11.

Another optimization made possible after actor integration is replacing transfer actors

with index translation. Transfer actors are the ones that do not have any computation part

and their task is only to reorganize data in the input buffer and write it to the output buffer.

Since input and output buffers of the middle actors in integrated kernels are both allocated

in the shared memory, there is no need to read the data from input buffer, shuffle it, and

write it to the output buffer. This task can be done by index translation. Index translation

gets thread indexes based on the transfer pattern, generates the new index pattern, and

passes it to the next actor.

3.4.3.2 Horizontal Integration

The goal of horizontal integration is removing excessive computations or synchroniza-

tions by merging several threads or actors that can run in parallel. There are two kinds

of horizontal integration techniques: horizontal actor integration and horizontal thread in-

tegration. In streaming languages, we use a duplicate splitter to allow different actors to

work on the same data. In this case, instead of launching one kernel for each actor, one

kernel is launched to do the job of all the actors working on the same data. Therefore, in
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addition to reducing kernel overheads, memory access and synchronization overheads are

also reduced. For example, assume there is a program that needs maximum and summa-

tion of all elements in an array. Instead of running two kernels to compute these values,

Adaptic launches one kernel to compute both. In this case, off-chip memory accesses and

synchronizations only happen once instead of twice.

Horizontal thread integration merges several consecutive threads working on consec-

utive memory locations in one kernel. This method reduces the number of threads and

blocks used by the kernel. Merged threads can share part of the computation and decrease

the number of issued instructions. When the number of kernel blocks is high, it is beneficial

to use horizontal thread integration to reduce the number of threads and blocks and allow

them to run in parallel. Otherwise it is better not to integrate threads and have more threads

with less work to increase the possibility hiding memory latency by switching between

threads.

3.5 Experiments

A set of benchmarks from the NVIDIA CUDA SDK [69] and the CUBLAS library [70]

are used for evaluation. We developed StreamIt versions of these benchmarks, compiled

them with Adaptic, and compared their performance with the original hand-optimized

benchmarks. A case study is performed on a CUBLAS benchmark to investigate the ef-

fect of our optimizations over a wide range of inputs. We also present case studies on

two real world applications, biconjugate gradient stabilized method [112] and support vec-

tor machine [22], executed on two different GPUs, to demonstrate how Adaptic performs
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Figure 3.12: Adaptic-generated code speedups normalized to the hand-optimized CUDA code for

7 different input sizes.

on larger programs with many actors and on different GPU targets. Adaptic compilation

phases are implemented in the backend of the StreamIt compiler [109] and its C code gen-

erator is modified to generate CUDA code. Both Adaptic’s output codes and the original

benchmarks are compiled for execution on the GPU using NVIDIA nvcc 3.2. GCC 4.1 is

used to generate the x86 binary for execution on the host processor. The target system has

an Intel Xeon X5650 CPU and an NVIDIA Tesla C2050 GPU with 3GB GDDR5 global

memory. The other system used for experiments in Sections 3.5.2.2 and 3.5.2.3 has an Intel

Core 2 Extreme CPU and an NVIDIA GeForce GTX 285 GPU with 2GB GDDR2 global

memory.

3.5.1 Input Portability

In order to show how Adaptic handles portability across different input problem sizes,

we set up seven different input sizes for each benchmark and compared their performance

with the original CUDA code running with the same input sizes. It should be noted that

these seven input sizes are chosen from the working range of the CUDA benchmarks, as

there are many sizes for which the SDK benchmarks would not operate correctly.

Figure 3.12 shows the results for eight CUDA benchmarks that were sensitive to changes
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in the input size, while results for input-insensitive benchmarks are discussed in Sec-

tion 3.5.3. As can be seen, Adaptic-generated code is better than the hand-optimized

CUDA code for all problem sizes in Scalar Product, MonteCarlo, Ocean FFT, and Con-

volution Separable from the SDK, and Isamax/Isamin, Snrm2, Sasum, and Sdot from

CUBLAS. A combination of actor segmentation and actor integration were used to op-

timize all CUBLAS benchmarks. In addition to these optimizations, memory restructuring

was applied to Sdot.

Sdot is computing the dot product of two vectors. For large vectors, using the two

kernel reduction is beneficial, but for small sizes, in order to reduce kernel launch overhead,

Adaptic uses the one kernel reduction. Using input-aware optimizations leads to upto 4.5x

speedup in this benchmark compared to the original program. Convolution Separable has

two actors, and processes data row-wise in one and column-wise in the other. Memory

optimizations are effective for this benchmark as both of these two actors have incremental

memory access pattern. Therefore, as the input becomes smaller, Adaptic reduces the super

tile sizes adaptively to retain the high number of blocks and, therefore, achieves better

performance than the baseline hand-optimized code. OceanFFT also has an incremental

access actor and Adaptic uses different tile sizes to improve performance over the hand-

optimized code. Scalar Product computes scalar products of pairs of vectors. The original

benchmark uses the single kernel reduction, and it achieves good performance when there

are many pairs of vectors in the input. However, for fewer pairs of vectors, it is better to use

the whole GPU to compute the result for each pair. Using the two kernel reduction for those

inputs, Adaptic is able to achieve upto 6x speedup compared to the original hand-optimized

version.
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MonteCarlo performs about the same as the original hand-optimized version. The rea-

son is that the original benchmark already has two kernels performing the same task, but

optimized for different ranges of input problem sizes. In other words, MonteCarlo has

originally been developed in an input portable way. Therefore, the output of Adaptic is

similar to the original version and the performance is the same for all sizes.

Since Adaptic generates different kernels for some actors in the input streaming pro-

gram, the output binary size could be larger than the original binary optimized for one

specific range. In our experiments including the case studies, Adaptic’s output binaries

were on average 1.4x and upto 2.5x larger than their input-unaware counterparts, which is

quite reasonable considering the fact that some kernels could have upto five different ver-

sions for various input ranges. However, because each program also has kernels with one

versions, the combination leads to this moderate code size increase.

These results further show the fact that our approach in Adaptic is able to adaptively

generate optimized CUDA code for different problem sizes without any source code mod-

ifications.

3.5.2 Case studies

3.5.2.1 Transposed Matrix Vector multiplication

In this section, we look into the effects of our optimizations on the performance of

the transposed matrix vector multiplication benchmark from CUBLAS over a wide range

of input sizes and dimensions. As was mentioned in Section 3.1, the original benchmark

cannot provide sustainable performance gains for different input dimensions. However,
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with the aid of input-aware optimizations, Adaptic is able to generate five different kernels

with different structures, where each kernel is parameterized to get better performance for

a specific range of input dimensions. At runtime the proper kernel is launched based on the

program input.

In the first kernel, which is beneficial for matrices with many columns and few rows,

Adaptic uses the two kernel version of reduction. For each row, one kernel is launched

and the whole GPU is used to compute the dot product of one row with the input vector.

The second kernel is a single-kernel reduction function where each block is responsible for

one row. This kernel achieves its best performance for square matrices. In the third kernel,

in addition to the single-kernel reduction function, by using horizontal thread integration,

Adaptic adaptively merges several rows and each block is responsible for computing several

dot products instead of one. This kernel is beneficial for matrices with more rows than

columns. The fourth kernel is also similar to the single-kernel reduction, except that in

its shared memory reduction phase, each thread is responsible for computing one output.

The last kernel generated by Adaptic achieves its best performance for matrices with many

rows and few columns. In this case, the size of each row is small and the corresponding

actor has small pop rates. For this kind of actor, our baseline optimizations are effective in

generating efficient code. Therefore, Adaptic does not need to add optimization to that. In

this kernel, each thread is responsible for computing the dot product of a single row and

the input vector.

Figure 3.13 compares the performance of this benchmark with Adaptic-generated code

for three different matrix sizes over a range of matrix dimensions. As it can be seen,

although for some input dimensions Adaptic’s performance is really close to CUBLAS, for
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Figure 3.13: Transposed matrix vector multiplication performance comparison of CUBLAS and

Adaptic.
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Figure 3.14: Performance of the Adaptic-generated Biconjugate gradient stabilized method bench-

mark normalized to the CUBLAS implementation on two different GPU targets.

most of them Adaptic outperforms CUBLAS by a large margin. This figure shows how

Adaptic can adaptively maintain its performance across various input ranges.

3.5.2.2 Biconjugate gradient stabilized method

The biconjugate gradient stabilized method (BiCGSTAB) is an iterative method used

for finding the numeral solution of nonsymmetric linear systems such as Ax=B for x where

A is a square matrix. This method has 11 linear steps that can be written easily with the

CUBLAS library for GPUs. We wrote this program both in StreamIt and CUDA with

CUBLAS functions and measured the performance of the two for different sizes of A.

Figure 3.14 shows an in-depth comparison and breakdown of the effects of Adaptic’s indi-
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vidual optimizations on this benchmark for different input sizes across two GPU targets -

NVIDIA Tesla C2050 and GTX285. The baseline in this figure is the generated code after

only applying size-unaware optimizations. The Sgemv, Sdot, Sscal and Saxpy CUBLAS

functions were used to implement the CUDA version of this benchmark. The problem of

using the CUBLAS library is that the programmer should split each step into several sub-

steps to be able to use CUBLAS functions. Execution of these sub-steps leads to more

memory accesses and kernel launch overhead.

On the other hand, Adaptic merges all these sub-steps together and launches a single

kernel for one step. As shown in Figure 3.14, most of the speedup for small sizes comes

from the integration optimization. Since most of the execution time is spent in matrix

vector multiplication for large sizes such as 8192x8192, the effect of integration is not

as high for these sizes. However, actor segmentation that generates smaller actors and

increases parallelism, and memory restructuring play more important roles in achieving

better performance for larger sizes.

3.5.2.3 Nonlinear Support Vector Machine Training

Support Vector Machines (SVMs) are used for analyzing and recognizing patterns in

the input data. The standard two class SVM takes a set of input data and for each input

predicts which class it belongs to among the two possible classes. This classification is

based on a model, which is generated after training with a set of example inputs. Support

vector machine training and classification are both very computationally intensive.

We implemented a StreamIt version of this algorithm based on the implementation

in [22]. The kernel function used for training is the Gaussian Radial Basis Function (RBF).
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push(result )

Distance( pop:2×size, push:1)

for ( index = 0 ; index < size; index ++)

diff = pop() - pop()

result = result + (diff × diff)

Final( pop:1, push:1)

push(exp(-gamma × pop()))

Figure 3.15: StreamIt implementation of the RBF kernel.
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Figure 3.16: Performance of the Adaptic-generated SVM training benchmark compared to the

hand-optimized CUDA code in the GPUSVM implementation on two different GPU targets.

The StreamIt implementation of this function is shown in Figure 3.15. It has two actors that

compute the Gaussian RBF of the input using equation: Φ(−→xi ,
−→xj ) = exp(−γ ‖ −→xi−

−→xj ‖
2).

Figure 3.16 shows the performance of the Adaptic-generated code compared to the

GPUSVM [22] hand-optimized CUDA code in this benchmark for four different input

datasets. On average, Adaptic achieves 65% of the performance of the GPUSVM imple-

mentation. The reason for the large performance gap in Adult and USPS datasets is that

GPUSVM performs an application-specific optimization where it utilizes unused regions

of the GPU memory to cache the results of some heavy computations’ results. In case those

computations have to be performed again, it simply reads the results in from the memory.

Therefore, for input sets which cause a lot of duplicate computations, including Adult and

USPS, GPUSVM performs better than Adaptic-generated code.

In this program, unlike the previous example, actor integration is not very effective
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and most of the performance improvement comes from actor segmentation. On average,

actor segmentation, memory restructuring, and actor integration improve the performance

by 37%, 4%, and 1%, respectively.

3.5.3 Performance of Input Insensitive Applications
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Figure 3.17: Adaptic-optimized code speedups normalized to the hand-optimized CUDA code,

both running on the NVIDIA Tesla C2050.

Although the main goal of Adaptic compiler is to maintain good performance across

a wide range of inputs, it also performs well on the benchmarks that are not sensitive to

input. Figure 3.17 shows the performance of Adaptic-optimized codes normalized to the

original hand-optimized CUDA codes in these input insensitive benchmarks. All results are

gathered for problem sizes that the CUDA codes are written for. As can be seen, a combi-

nation of Adaptic optimizations makes the average performance of our compiler generated

code on par with the hand-optimized benchmarks, while writing StreamIt applications as

the input to Adaptic involves much less effort by the programmer compared to the hand-

optimized programs.

In BlackScholes, VectorAdd, Saxpy, Scopy, Sscal, Sswap, and Srot, due to their low rate
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pop/push actors, memory restructuring proves quite effective in improving performance.

Using this optimization, all accesses are coalesced without using shared memory. In these

benchmarks, Adaptic allocates each input vector in one row of the two dimensional input

array to make all accesses coalesced. In BlackScholes, due to the low number of instruc-

tions executed in each thread, adding one or two extra instructions by the compiler degrades

performance. This sensitivity to the number of instructions is the reason behind the 20%

performance degradation between Adaptic and the hand-optimized code in this benchmark.

VectorAdd’s performance, on the other hand, is almost equal to the hand-optimized version.

In DCT, actor integration speeds up the program by 9% compared to the hand-optimized

code. Finally, intra-actor parallelization makes QuasiRandomGenerator runs 4% faster

than the baseline hand-optimized code. In the Histogram benchmark, the hand-optimized

version is about 2x faster compared to the Adaptic-generated code. This performance

degradation by Adaptic is mainly due to the fact that the granularity of computations in

this benchmark are one byte and Adaptic automatically changes this granularity to 4 bytes.

This leads to heavier threads compared to the hand-optimized version and causes slow-

down. Working at the byte granularity in Adaptic requires a complex process to remove

shared memory bank conflicts which is quite difficult in the automatic compiler generated

code.

3.6 Related Work

The most common languages GPU programmers use to write GPU code are CUDA

and OpenCL. Although these new languages partially alleviate the complexity of GPU pro-
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gramming, they do not provide an architecture independent solution. There is an extensive

literature investigating many alternative methods to support device portability.

Works in [20, 44, 111, 21, 45, 54, 55, 79, 38] focus on generating optimized CUDA

code from higher levels of abstraction. The Sponge compiler [44] compiles StreamIt pro-

grams and generates optimized CUDA to provide portability between different GPU de-

vices. The work in [111] compiles stream programs for GPUs using software pipelining

techniques. Copperhead [21] provides a nested set of parallel abstractions expressed in the

Python programming language. Their compiler gets Python code as input and generates

optimized CUDA code. It uses built-in functions of Python such as sort, scan, and reduce

to abstract common CUDA program constructs. The work in [55] automatically gener-

ates optimized CUDA programs from OpenMP programs. Works in [45] and [54] choose

Haskell and BSGP as their input languages and compile them to CUDA. BSGP is bulk

synchronous GPU programming language which is similar to sequential C with parallel

primitives. Brook for GPUs [20] is one of the first papers about compilation for GPUs,

which extends the C language to include simple data-parallel constructs. Compiling Mat-

lab file to CUDA is also investigated in [79]. CnC CUDA [38] use Intel’s Concurrent

Collections programming model to generate optimized CUDA code. All these works look

into improving the programmability of GPUs, and in some cases, provide target device.

However, Adaptic provides portability across different inputs as well as GPU targets. In

addition, Adaptic employs various input-aware optimizations and its output performance is

comparable to hand written CUDA code.

Several other works have focused on automatically optimizing CUDA kernels [122,

121, 42]. The work in [121] performs GPU code compilation with a focus on memory

49



optimizations and parallelism management. The input to this compiler is a naive GPU

kernel function and their compiler analyzes the code and generates optimized CUDA code

for various GPU targets. CUDA-Lite [122] is another compilation framework that takes

naive GPU kernel functions as input and tries to coalesce all memory accesses by using

shared memory. Hong et al. [42] propose an analytical performance model for GPUs that

compilers can use to predict the behavior of their generated code. None of these works

provide means to address the input portability problem.

There are other works that have focused on generating CUDA code from sequential

input [39, 13, 117, 106]. hiCUDA [39] is a high level directive based compiler framework

for CUDA programming where programmers need to insert directives into sequential C

code to define the boundaries of kernel functions. The work in [13] is an automatic code

transformation system that generates CUDA code from input sequential C code without

annotations for affine programs. In [117], by using C pragma preprocessor directives,

programmers help compiler to generate efficient CUDA code. In [106], programmers use

C# language and a library to write their programs and let the compiler generate efficient

GPU code.

Gordon et al.( [37] and [36]) perform stream graph refinements to statically determine

the best mapping of a StreamIt program to a multi-core CPU. Researchers have also pro-

posed ways to map and optimize synchronous data-flow languages to SIMD engines [43],

distributed shared memory systems [49]. In a recent work [108], the authors talk about the

usefulness of different features of StreamIt to a wide range of streaming applications.

It should be noted that StreamIt language has several limitations that make writing

general StreamIt programs difficult. First of all, StreamIt is limited to the well structured
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programs with regular memory accesses. For applications with irregular memory accesses,

it is hard to program in StreamIt. Hence, compiling this kind of program from StreamIt to

CUDA is not practical. Similar to other streaming languages, only streaming benchmarks

can be written by StreamIt. Writing codes that reuse one data often may lead to many

duplication of input data and makes analyzing these actors very hard. In addition, removing

all these duplications from the program is not straight forward and they results in more

memory accesses and poor performance.

The work in [87] is one of the early studies about increasing performance of reduction

on GPU and [119] tries to extract parallelism from complex reduction codes by using gen-

eral reduction function. Ravi et al. [82] map reduction to heterogeneous system and divide

computation between CPU and GPU. Mapping stencil loops to GPUs and tiling size trade-

off are also studied by [13] and [64]. However, Adaptic applies input-aware optimizations

adaptively and more generally on streaming applications to provide input portability.

3.7 Conclusion

GPUs provide an attractive platform for accelerating parallel workloads. However, their

programming complexity poses a significant challenge to application developers. In addi-

tion, they have to deal with portability problems across both different targets and various

inputs. While device portability has received a great deal of attention in the research com-

munity, the input portability problem has not been investigated before. This problem arises

when a program optimized for a certain range of inputs, shows poor performance along

different input ranges.
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In this work, we proposed Adaptic, an adaptive input-aware compiler for GPUs. Us-

ing this compiler, programmers can implement their algorithms once using the high-level

constructs of a streaming language and compile them to CUDA code for all possible input

sizes and various GPUs targets. Adaptic, with the help of its input-aware optimizations,

can generate highly-optimized GPU kernels to maintain high performance across different

problem sizes. At runtime, Adaptic’s runtime kernel management chooses the best per-

forming kernel based on the input. Our results show that Adaptic’s generated code has

similar performance to the hand-optimized CUDA code over the original program’s input

comfort zone, while achieving upto 6x speedup when the input falls out of this range.
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CHAPTER IV

Cooperative Loop Speculation

4.1 Introduction

In recent years, multicore CPUs have become commonplace, as they are widely used

not only for high-performance computing in servers but also in consumer devices such as

laptops and mobile devices. Besides CPUs, GPUs have presented programmers with a

different approach to parallel execution. Researchers have shown that for applications that

fit the execution model of GPUs, in the optimistic case, speedups of 100-300x [71], and

in the pessimistic case, speedups of 2.5x [57] can be achieved between the most recent

versions of GPUs compared to the latest multicore CPUs.

The main languages for developing applications for GPUs are CUDA and OpenCL.

While they try to offer a more general purpose way of programming GPUs, extracting

high performance from GPUs is still a daunting challenge. Difficulty in extracting massive

data-level parallelism, utilizing the non-traditional memory hierarchy, complicated thread

scheduling and synchronization semantics, and lack of efficient handling of control in-

structions are the main complications that arise while porting applications to GPUs [90].
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As a result of this complexity, the computational power of graphics engines is often under-

utilized or not used at all.

Although many researchers have proposed new ways to solve these problems [19, 28,

123, 120], there is still no solution for an average programmer to target GPUs. To efficiently

run a sequential or parallel (for small number of cores) C/C++ application on a GPU, there

are two primary methods used by developers: manually re-designing the underlying algo-

rithm of an application for GPUs to get rid of the memory and control bottlenecks, or using

a compiler to perform automatic parallelization. In most cases, it is difficult to manually

identify the bottlenecks and redesign an application for the massively data-parallel execu-

tion engines of GPUs. This solution is clearly not suitable for average programmers and

often expensive to apply due to the cost of re-implementing and redesigning large chunks

of legacy applications. The second solution is to use compiler analysis to automatically ex-

tract enough data-parallelism from an application to gain some performance benefit from

the resulting code on the target GPU. In many cases, ambiguous memory dependencies or

control flow divergences in a small number of threads can negatively affect thousands of

other threads on a GPU. The main problem with this approach is that the compiler analyses

used for automatic parallelization are usually too conservative and fragile resulting in small

or no performance gains on most commodity computer systems.

In this work, we take a different approach to this problem. Considering the amount

of parallelism exposed by GPUs and their ubiquity in consumer devices, we propose co-

operative speculative loop execution on GPUs and CPUs using Paragon for implicitly

data-parallel programs written in C/C++. Paragon, using data-parallel speculation and

distributed conflict detection engines carefully designed for cores in GPUs, enables pro-
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grammers to transparently take advantage of GPUs for pieces of their applications that are

possibly-data-parallel without manually changing the application or relying on complex

compiler analyses, thus reducing the cost of migrating to GPUs. Further, the set of appli-

cations that can be mapped onto a GPU is broadened beyond loops that exclusively use

arrays with affine indices. Paragon’s use of cooperative execution between the GPU and

CPU increases the performance of the overall system in the presence of conflicts since the

CPU is not left idle while the GPU is speculatively running an application.

The idea of speculative loop execution is not a new one. Speculative parallelization has

been extensively investigated in both hardware and software (see Section 4.7) in the context

of multicore CPUs [102, 47, 114, 40, 63, 75, 110]. However, speculation techniques for

multicore CPUs are not designed to scale to thousands of active threads and deal with the

complex memory hierarchy available on GPUs. Paragon’s compilation and runtime system

is the first system, that we are aware of, that explores the idea of cooperative speculation by

leveraging GPUs and CPUs simultaneously while using lightweight and scalable conflict

detection and recovery for large numbers of data-parallel threads. In Paragon, the CPU is

used to execute parts of an application that are sequential, and both the GPU and CPU are

utilized for execution of possibly-parallel for-loops. The GPU and CPU both start execut-

ing their version of a possibly-parallel for-loop (sequential on the CPU, data-parallel on

the GPU). The GPU executes the for-loop assuming there is no data-dependency between

the iterations, but monitors all the active threads for possible dependency violations. If a

dependence violation is detected, the GPU waits for the execution of the dependency on the

CPU, and then resumes the remaining iterations. This approach puts otherwise idle GPUs

to productive use albeit at the cost of energy efficiency.
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The Paragon compilation system is divided into two parts: static compilation for specu-

lation and cooperative execution management. The static part mainly performs loop classi-

fication and generates CUDA code for the runtime system which monitors the loops on the

GPU for dependency violations. The execution management also performs light-weight

one-time loop monitoring and decides which loops are more likely to benefit from exe-

cuting on the GPU. These two phases together enable the execution of C/C++ loops with

statistically improbable cross-iteration data dependencies on the GPU.

In summary, the main contributions of this work are:

• Static compilation and runtime systems for cooperative speculative execution on

GPU/CPUs

• Lightweight runtime conflict detection on GPUs

• Low overhead rollback mechanism by using the concurrency between GPUs and

CPUs

4.2 Motivation

Parallelizing an existing single-threaded application for a multi-core system is often

more challenging as it may not have been developed to be easily parallelized in the first

place. It will be even harder to extract the fine-grained parallelism necessary for efficient

use of many core systems like GPUs with thousands of threads. Therefore, several auto-

matic static parallelization techniques for GPUs have been proposed to exploit more paral-

lelism [39, 13, 117, 58, 106].
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However, even the best static parallelization techniques cannot parallelize programs

that contain irregular dependencies that manifest infrequently, or statically-unresolvable

dependencies that may not manifest during runtime at all. Removing these dependencies

speculatively will dramatically improve the parallelization possibilities. This work opti-

mistically assumes that these programs can be executed in parallel on the GPU, and relies

on a runtime monitor to ensure that no dependency violation is produced.

Applications that are implicitly data-parallel but at the same time difficult to parallelize

often contain array index expressions that cannot be statically analyzed. We have identi-

fied three common types of loops that demonstrate this property: non-linear array access,

indirect array access, and array access through pointers.

Non-linear array access: If a loop accesses an array with a nonlinear function of loop’s

induction variables, it is hard to statically disambiguate the loop-carried dependencies. To

illustrate, Figure 4.1(a) shows the make lattice() function in the milc benchmark

from SPEC2006. This function accesses the lattice array with the index i, which

depends on the induction variables (x, y, z, and t) and the loop-independent vari-

able squaresize. As shown in lines 4 to 8 of Figure 4.1(a), the index is calculated

through modulo operation with loop-independent variables, which makes it difficult to dis-

ambiguate cross-iteration dependencies at the compile time. In fact, this loop may or may

not have dependencies between iterations depending on squaresize.

Indirect array access: This type of access occurs when an array index is produced in

runtime. For example, Figure 4.1(b) shows the code for forward elimination of a matrix in
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1 for(t=0; t<nt; t++) for(z=0; z<nz; z++)

2 for(y=0; y<ny; y++) for(x=0; x<nx; x++)

3 if(node_number(x,y,z,t)==mynode()){

4 xr=x%squaresize[XUP];

5 yr=y%squaresize[YUP];

6 zr=z%squaresize[ZUP];

7 tr=t%squaresize[TUP];

8 i=xr+squaresize[XUP] *(yr+squaresize[YUP] *(zr+squaresize[ZUP

]*tr));

9 lattice[i].x = x;

10 lattice[i].y = y;

11 lattice[i].z = z;

12 lattice[i].t = t;

13 lattice[i].index=x+nx*(y+ny*(z+nz*t));}

(a)

1 for(i=1; i<n; i++)

2 for(j=iaL[i]; j<iaL[i+1]-1; j++)

3 x[i] = x[i] - aL[j] * x[jaL[j]];

(b)

1 void VectorAdd(int n, float *c, float *a, float *b)

2 for(int i=0; i<n; i++)

3 *(c + i) = *(a + i) + *(b + i);

(c)

Figure 4.1: Code examples for (a) non-linear array access, (b) indirect array access, (c) array access

through pointer

compressed sparse row (CSR) format where suffix L denotes the array for lower triangular

matrix. Forward elimination is generally used as a part of Gaussian elimination algorithm,

which changes the matrix to a triangular form to solve the linear equations. CSR uses three

arrays to store a sparse matrix, (1) a real array a[1:nnz] contains the nonzero elements

of the matrix row by row, (2) an integer array ja[1:nnz] stores the column indices of the

nonzero elements stored in a, and (3) an integer array ia[1:n+1] contains the indices to

the beginning of each row in the arrays a and ja.
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Like the previous example, a static compiler cannot determine whether these loops are

parallelizable since the inner loop in Figure 4.1(b) accesses arrays using another array value

as an index, which can be identified only at runtime. Since the inner loop is a sparse dot

product of the i-th row of array a and the dense vector x, runtime-profiling will categorize

this loop as a parallel loop.

Array access through pointers: This type of access also makes it difficult for static

compilers to parallelize a loop. Figure 4.1(c) shows a function that simply adds two vec-

tors taking pointers as parameters. If there is a possibility that the pointer c overlaps with

either a or b, the loop cannot be parallelized. Conservative static compiler will give up par-

allelizing the loop if there is any chance of pointer aliasing. If the runtime behavior shows

that the probability of pointer aliasing is low, it is beneficial to speculatively parallelize the

loop at the runtime.

As described in these examples, loops that are not possible to parallelize at compile

time must be re-investigated at runtime. For loops that have cross-iteration dependencies

with low probabilities, speculatively parallelizing loops on the GPU will yield a great per-

formance speed up.

4.3 Paragon Overview

The main goal of Paragon’s execution system is to automatically extract fine-grain data

parallelism from its sequential input code and generate efficient C/CUDA code to run on a

heterogeneous system consisting of a CPU and GPU. However, applications with irregular

or complex data-dependencies are hard or even impossible to parallelize at compile time.
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To overcome this problem, Paragon detects possibly-parallel loops and runs them specula-

tively on the GPU. As with any speculation system, two mechanisms are required: check-

pointing state to enable execution rollback and runtime dependence checking to identify

miss-speculations.

Paragon utilizes a check-pointing mechanism that is tailored for GPU-enabled systems.

Traditionally, at each checkpoint, before starting speculative kernel execution, the specu-

lative execution system takes a snapshot of the architectural state. Storing copies of a few

registers at transaction threads in a CPU core is relatively cheap. For GPUs, however, with

thousands of threads running, naively check-pointing large register files would incur sig-

nificant overhead [35]. Therefore, it is not practical to use traditional CPU check-pointing

mechanisms on the GPU.

Since GPUs and CPUs have separate memory systems, there is no need for special

check-pointing before launching a speculative kernel on the GPU. Paragon always keeps

one version of the correct data in the CPU’s memory and in case of conflict, it uses the

CPU’s data to recover. To reduce the overhead of recovery, Paragon uses cooperative exe-

cution. Instead of waiting for a speculative kernel to finish and run the recovery process if

it is needed, Paragon runs the safe sequential version of the kernel on the CPU in parallel to

the GPU version. If there was a conflict in the speculative execution on the GPU, Paragon

ignores the GPU’s results and waits for the safe execution to finish and uses its result to run

the next kernel. On the other hand, if there was not any conflict, Paragon terminates the

CPU execution after GPU kernel is finished successfully. Cooperative execution is key to

achieving good performance in Paragon.

The second speculation mechanism is runtime dependence checking to identify miss-
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speculations. Bulk tracking of memory dependences using signatures along with dedicated

structures works well for CPUs with limited numbers of threads. However, for tracking

memory accesses of thousands threads, large signatures per thread are needed. Main-

taining and accessing these large signatures dramatically degrades the performance on the

GPU. Also, many of these traditional conflict detection approaches need fast communica-

tion mechanism between the cores, which is not available in GPUs. Therefore, Paragon

uses a distributed conflict detection mechanism that can check memory accesses of many

threads in parallel. This conflict detection mechanism is done in two phases. In the first

phase, Paragon updates the write-log and read-log for each memory access. Then, Paragon

checks the write-log and read-log to detect any conflicts. Both of these phases are specif-

ically designed to utilize the data-parallel power of the GPU to reduce the overhead of

conflict detection.

Figure 4.2 shows an example of Paragon’s execution for a program with five different

code segments. Like most programs, this program starts with a sequential code. There

are four loops with different characteristics in this example. Loop1 and Loop3 are paral-

lel. Loop2 is a possibly-parallel loop that has complex or data-dependent cross-iteration

dependency so the compiler is unable to guarantee the safe parallel execution of this loop.

Finally, Loop4 has cross-iteration dependencies and it is statically classified as a sequential

loop. Paragon launches a conflict management thread (CMT) on the CPU. The CMT is

responsible for orchestrating GPU-CPU transfers, running kernels on the GPU or the CPU

and managing the cooperative execution between CPU and GPU for speculative kernels. In

order to run a kernel on the CPU, the CMT launches another thread called working thread

on the CPU.
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Figure 4.2: An example of running a program with Paragon. (a) sequential run (b) execution

without any conflict (c) execution with conflict.

In this example, Paragon starts the execution by running the sequential part on the CPU.

After running the sequential code, Paragon transfers the data needed for the execution

of Loop1 to the GPU and starts the parallel version of Loop1. Since Loop2 is possibly-

parallel, it should be speculatively executed on the GPU. In order to keep the correct data

at this checkpoint, Paragon transfers data to the CPU. For reentrant loops that do not update

their input arrays, using asynchronous concurrent execution, Paragon launches the CUDA

kernel for Loop2 at the same time. If Loop2 reads and writes to the same array (i.e. non-

reentrant), Paragon should wait for the data to be completely transferred to the CPU, and

then launch the GPU kernel. The CPU executes the safe and sequential version of Loop2

after it receives the data needed for execution of Loop2 from the GPU. Paragon checks for

conflicts in the speculative execution of possibly-parallel loops such as Loop2. The conflict
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Figure 4.3: Compilation flow in Paragon.

detection process is done in parallel on the GPU with two kernels: the execution kernel

and checking kernel. The execution kernel executes the loop and also marks addresses

accessed by this loop. The checking kernel investigates all these addresses in parallel to

detect conflicts and will set a conflict flag if it detects any dependency violation. After

Loop2 is finished, the GPU transfers the conflict flag to the CPU. Based on the conflict

flag, there are two possibilities: first, if there was no conflict (Figure 4.2(b)), the CMT

stops the working thread which is executing Loop2 on the CPU and uses the GPU data to

start Loop3. The second case is when a conflict is found in parallel execution of Loop2 as

shown in Figure 4.2(c). In this case, Paragon waits for the CPU execution to finish, then

transfers data needed for the Loop3 to the GPU. Since Loop3 is a do-all loop, this loop will

be executed only on the GPU without speculation. In order to run the sequential Loop4,

Paragon copies the output of Loop3 to the CPU.

Figure 4.3 shows the overall flow of Paragon’s compilation and runtime system.

4.4 Compiling for Data-Parallel Speculation

One of the main challenges in Paragon is how to perform light-weight speculation and

conflict detection on a massively data-parallel engine similar to a GPU. Traditional ap-

proaches for performing speculation on a multi-core system fall short in this context due
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to the vast number of active threads, complex memory architecture, and communication

and synchronization overheads in GPUs. Therefore, Paragon is equipped with light-weight

data-parallel speculation and distributed conflict detection engines to address these issues.

Paragon focuses on loops in sequential C/C++ applications. As shown in Figure 4.3,

Paragon first performs loop classification to determine which code segments are safe to

parallelize. Based on this information, loop classification categorizes each loop into one of

the following three categories: parallel (do-all), sequential and possibly-parallel. Parallel

loops do not have any cross-iteration dependency and can be run in parallel on the GPU.

Sequential parts, which will be run on the CPU, are parts that do not have enough paral-

lelism to run on the GPU or have system function calls. Loops that static analysis cannot

determine if they are parallel or sequential, will be in the last group called possibly-parallel

loops.

Loop classification passes all this information to the code generation and instrumenta-

tion units. Since the sequential loops will be run on the CPU, Paragon generates only C

code for such loops. For parallel loops, CUDA kernels will be generated. Code generation

generates the CPU and GPU code with instrumentation for possibly-parallel loops. The

purpose of the instrumentation is to detect any possible conflict in the execution of un-

safe kernels. This distributed conflict detection mechanism has two kernels: the execution

kernel and the checking kernel. These two kernels and instrumentations that need to be

added will be discussed in Section 4.4.3. Before that, in the next two parts, Paragon’s loop

classification and code generation are explained.
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4.4.1 Loop Classification

Loop classification categorizes each loop into one of the following three categories:

parallel (do-all), sequential and possibly-parallel. Paragon is using static analyses and

transformations such as scalar and array privatization, symbolic data dependence testing,

reduction recognition and induction variable substitution to detect parallel loops [116].

Besides detection of parallel loops using static analyses, Paragon also searches for se-

quential loops with indirect, nonlinear or pointer accesses which may be parallel and marks

them as possibly-parallel loops. The rest of the loops will be marked as sequential loops.

Loop classification sends these information to the next stages which are kernel generation

and instrumentation for conflict detection.

Distributing the workload evenly among thousands of threads is the main key to gaining

good performance on a GPU. How to assign loop iterations to threads running on the GPU

is a significant challenge for the compiler. This section illustrates how Paragon distributes

iterations of the loop among GPU threads.

For single do-all loops, Paragon assigns the loop’s iterations to the GPU’s threads based

on the trip count. If the trip count is fixed and it is smaller than the maximum number of

possible threads, Paragon assigns one iteration per thread. Since our experiments show

that the best number of threads per block is constant (for our GPUs, it is equal to 256),

the number of threads per block (TpB) is always equal to 256. Therefore, the number of

blocks will be equal to the trip count divided by 256. This number can be easily changed

based on the GPU for which Paragon is compiling. If the trip count is more than the

maximum possible number of threads, Paragon assigns more than one iteration per thread.
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1 #pragma unroll

2 for (i=0; i<iterationsPerThread ; i++)

3 perform iteration #(i * blockDim + threadId)

(a)

1 for (i=threadId ; i<tripCount ; i+=blockDim)

2 perform iteration #(i)

(b)

Figure 4.4: Generated CUDA code for parallel loops with (a) Fixed trip count, (b) Variable trip

count.

The number of iterations per thread (IpT) is always a power of two to make it easier to

handle on the GPU. In this case, number of blocks (B) will be:

B =
Trip Count

TpB ∗ IpT

4.4.2 Kernel Generation

On the other hand, if the trip count is not known during the compile time, the compiler

cannot assign a specific number of iterations to each thread. In this case, Paragon sets the

number of blocks to a predefined value but this number will be tuned based on the previ-

ous runs of this kernel. As shown in Figure 4.4(b), each thread will run iterations until no

iterations are left. We could use this method for loops with fixed trip counts, but our ex-

periments show that assigning the exact iterations per thread increases the performance for

these loops. If the number of threads launched is less than the number of iterations, some
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threads will be idle during the kernel execution and that may degrade the performance.

Another advantage is that for loops similar to the loop in Figure 4.4(a) which has a fixed

trip count, the compiler can unroll the loop efficiently.

Nested do-all loops will be easy to compile if Paragon can merge those loops and gen-

erate one do-all loop. However, it is not always possible. For imperfectly-nested loops,

which all assignment statements are not contained in the innermost loop, it is hard to merge

nested loops. In these cases, Paragon merges nested loops as far as it is possible. Finally,

two loops will be mapped to the GPU. The outer loop will be mapped to the blocks, and the

inner loop will be mapped to threads of blocks. Therefore, number of blocks will be equal

to the trip count of the outer loop and the number of threads per block is still equal to 256.

Reduction loop: A reduction operation generally takes a large array as its input, performs

computations on it, and generates a single element as its output. This operation is usually

parallelized on GPUs using a tree-based approach, such that each level in the computation

tree gets its input from the previous level and produces the input for the next level. In a

uniform reduction, each tree level reduces the number of elements by a fixed factor and the

last level outputs one element as the final result. The only condition for using this method

is that the reduction operation needs to be associative and commutative.

Paragon automatically detects reduction operations in its input using reduction variable

analysis [116]. After this detection phase, the compiler replaces the reduction loop with

a highly optimized kernel in its output CUDA code. Paragon uses the optimized CUDA

version of the reduction kernel as described in different studies such as the work proposed

by Roger et al. [87].
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If there are multiple do-all loops and the innermost loop is a reduction loop, Paragon

compiles them based on the trip count of the outer loops. If the trip counts of the outer loops

are low, Paragon maps the outer loops to the blocks and each block executes the reduction

loop. On the other hand, if the outer loops have a high number of iterations, Paragon may

assign each reduction process to one thread. Therefore, iterations of the outer loops will be

distributed among threads and each thread executes one instance of the innermost loop.

After generating CUDA codes for parallel and possibly-parallel loops, Paragon inserts

copying instructions between the kernels. All live-in and live-out variables for all ker-

nels are determined by Paragon at compile time. After each kernel, Paragon inserts copy

instructions based on previous and next kernel’s types. If both consecutive kernels are par-

allel or sequential there is no need to transfer data. If one of them is parallel and the other

one is sequential, transferring data is needed. In cases where at least one of the kernels is

possibly-parallel, Paragon adds copy instructions in both directions: from the CPU to the

GPU and from the GPU to the CPU. Cooperative execution management will decide how

to move the data at runtime based on the place of correct data.

4.4.3 Instrumenting for Conflict Detection

One of the main challenges for speculative execution on the GPU is designing a con-

flict detection mechanism that works effectively for thousands of threads. Traditional

techniques used for multi-core CPUs are not well-suited for GPUs because of the non-

traditional memory hierarchy , different synchronization tradeoffs on GPUs, and also the

vast number of active threads available at runtime.

To deal with these constraints, we designed a distributed conflict detection mechanism
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in our system. Paragon detects the dependencies between different iterations of possibly-

parallel loops with two kernels: the execution kernel and the checking kernel. The first

kernel executes the computations and also tags load and store addresses, and the checking

kernel inspects these addresses to find a conflict. In this case, a conflict means writing

to the same address by multiple threads (WAW dependency) or writing to an address by

one thread and reading the same address by other threads (RAW dependency). The rest of

this section describes the implementation execution and checking kernels for indirect and

pointer memory accesses.

4.4.3.1 Execution Kernel Instrumentation

Indirect Memory Accesses: Execution kernel is instrumented to mark the elements that

are accessed during runtime. Traditionally, Bloom filters have been used to track the de-

pendencies between threads with very low overhead. However, using a Bloom filter for

keeping track of thousands of threads at the same time requires large signatures [16]. Fur-

thermore, accessing these signatures on the GPU needs uncoalesced accesses which leads

to the performance degradation on the GPU. Therefore, instead of using a Bloom filter,

Paragon stores all memory accesses in read-log and write-log arrays separately. During

execution, each store to a conflict-candidate array will be marked in the corresponding

write-log array and each load from that array will be marked in the corresponding read-log

array.

For indirect and nonlinear array accesses, Paragon detects the arrays that can cause

conflicts (conflict-candidate arrays), and for each of those arrays, it allocates write-log and

read-log arrays. Write-log array is used to mark elements in the conflict-candidate array
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that are modified during execution. Similarly, read-log array is used to mark elements in

the conflict-candidate array that are read during execution.

Since the order of execution of threads on the GPU is not known a priori, any two

threads which write to the same address can potentially cause a WAW conflict. This conflict

may result in a wrong output. Therefore, if the number of writes to one address is more than

one, there is considered a WAW dependency violation and that loop is not parallelizable.

To detect WAW dependencies, Paragon utilized two approaches:

• Atomic Method: In this approach, Paragon uses CUDA atomic increment instruc-

tions to increment the number of writes for each store in a kernel. This method

used GPU-specific atomic instruction. Based on the values stored in the read and

write logs, the checking kernel can detect dependency violations. Figure 4.5 shows

an example of using atomic approach. Figure 4.5(a) shows the original code and

Figure 4.5(b) shows the execution kernel using atomic operation. Since each itera-

tion modified x[i] and also reads x[jal[j]], these accesses to array x can cause con-

flicts.Therefore, Paragon instruments all accesses to array x. In order to prevent false

positive conflict detection, Paragon just set the write log for x[i] not read log. As

shown in this example, if Paragon statically detects that one thread accesses the same

element several times, it just keep track of only one of those accesses.

• Reduction Method: In this approach, each thread sets the addresses of writes in the

write-log array and also each thread counts the number of addresses that it modifies

and stores this number in the total-writes array (tw) as shown in Figure 4.6(a). The

checking kernel then compares these numbers to detect any possible dependency
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1 for(i=1; i<n; i++)

2 for(j=iaL[i]; j<iaL[i+1]-1; j++)

3 x[i] = x[i] - aL[j] * x[jaL[j]];

(a)

1 Execution_Kernel()

2 initialize sharedSum to zero

3 for (i=blockIdx.x; i<n ; i+=gridDim.x){

4 sum = 0;

5 for (j=jaL[i]+threadIdx.x;j<iaL[i+1]-1;j+=blockDim.x){

6 sharedSum[j] += aL[j] * x[jaL[j]];

7 rd_log_x[jaL[j]] = 1; /* Marking elements that are read */

8 }

9 sum = compute_sum(sharedSum);

10 if (threadIdx.x == 0){

11 x[i] -= sum;

12 AtomicInc(wr_log_x[i]);} /* Marking elements that are written */

13 }

(b)

1 Checking_Kernel()

2 tid = blockIdx.x * blockDim.x + threadIdx.x;

3 wr = wr_log_x[tid];

4 rd = rd_log_x[tid];

5 conflict = wr >> 1 /* WAW */ | (rd & wr) /* RAW */;

6 if (conflict) conflictFlag = 1;

(c)

Figure 4.5: Generated CUDA code for example code in (a) with atomic approach. (b) the execution

kernel code with instrumentation, (c) the checking kernel.

violations. This approach is a variation of LRPD [81] which is employed in multi-

core CPUs.

In addition to the output dependency (WAW conflicts), writes to and reads from the

same address by two different threads may violate the dependency constraints (RAW con-

flict), and the GPU’s result may not be valid anymore. In this case, one read is sufficient to

cause a conflict and invalidate the results. Therefore, for decreasing the overhead of main-
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1 Execution_Kernel()

2 initialize sharedSum to zero

3 write_count = 0;

4 for (i=blockIdx.x; i<n ; i+=gridDim.x){

5 sum = 0;

6 for (j=jaL[i]+threadIdx.x;j<iaL[i+1]-1;j+=blockDim.x){

7 sharedSum[j] += aL[j] * x[jaL[j]];

8 rd_log_x[jaL[j]] = 1; /* Marking elements that are read */

9 }

10 sum = compute_sum(sharedSum);

11 if (threadIdx.x == 0){

12 x[i] -= sum;

13 wr_log_x[i] = 1; /* Marking elements that are written */

14 write_count_x ++;} /* Counting the number of writes */

15 }

16 tw_x[thread_id] = write_count_x;

(a)

1 Distinct_Writes_x = compute_sum(wr_log_x);

2 Total_Writes_x = compute_sum(tw_x);

3 Checking_Kernel()

4 tid = blockIdx.x * blockDim.x + threadIdx.x;

5 if (tid == 0)

6 if (Total_Writes_x != Distinct_Writes_x)

7 conflictFlag = 1; /* WAW */

8 wr = wr_log_x[tid];

9 rd = rd_log_x[tid];

10 conflict = (rd & wr); /* RAW */

11 if (conflict) conflictFlag = 1;

(b)

Figure 4.6: Generated CUDA code for example code in Figure 4.1(b) with reduction approach. (a)

the execution kernel code with instrumentation, (b) the checking kernel.

taining read-log array, Paragon does not increment read-log elements atomically. Instead,

it just sets the corresponding bit in the read-log for each read without using any atomic

instruction as shown in Figures 4.5(b) and 4.6(a).

Pointer Memory Accesses: The execution kernel is different for loops with pointer ac-

cesses, because these loops access memory through pointers and, statically, it is not clear

which array they access. In this case, for loops with pointer accesses, it is hard to detect
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1 int Find_Array(Pointer p)

2 for (index = 0: number_of_Arrays)

3 diff = p - GPU_Table[index].begin;

4 if (diff >=0 & diff<GPU_Table[index].size)

5 return index; /* begin <= p < begin + size */

6 return -1;

(a)

1 bool Range_Check(Pointer Max, Pointer Min, int p_Array)

2 begin = GPU_Table[p_Array].begin;

3 size = GPU_Table[p_Array].size;

4 if (Min >= begin & Max < size + begin)

5 return True; /* all the accesse were to the same array */

6 else

7 return False;

(b)

Figure 4.7: CUDA functions that Paragon uses to check pointer memory accesses. (a) Finding

array that each pointer accesses, this function is called outside the main loop, (b) For each pointer,

Paragon computes the minimum and maximum addresses that are accessed through that pointer.

The range check function checks these maximums and minimums at the end of the execution kernel

to see if all accesses were to the corresponding array or not.

which arrays may cause conflicts. Therefore, Paragon allocates one write-log array and one

read-log array whose size is equal to the sum of the sizes of arrays that this loop accesses.

Each array has its own range in the write-log and read-log arrays. At the beginning

of the kernel, Paragon again detects which array each pointer accesses and determines its

corresponding address in the write-log and read-log arrays as shown in Figure 4.7(a). Each

pointer’s address is compared to the beginning and finish addresses of all arrays, which are

stored in GPU Table, to find the corresponding array. By doing this, Paragon is able to

detect conflicts when two or more pointers access the same array. Since this process is

done at the beginning of the kernel and outside of the main loop, its overhead is small for

the kernels that have high trip count loops.

In order to keep track of the arrays that each kernel accesses, Paragon stores the start
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address and size of arrays that are statically allocated on the CPU in a global table. A

similar table is also loaded into GPU’s memory. In order to find the arrays corresponding

to each of the input pointers, Paragon compares the address of each of the kernel’s input

pointers with the start addresses and sizes of all the allocated arrays before launching the

kernel. Afterwards, Paragon transfers these arrays to the GPU memory before launching

the kernel. If the array that the pointer accesses is not found in the address table, the

pointer is accessing dynamically allocated arrays. In this case, Paragon will run the loop

sequentially on the CPU. Moreover, Paragon assumes that each pointer accesses only one

array during the kernel execution. Therefore, if a pointer accesses more than one array,

Paragon will detect that and raise the conflict flag.

Also, Paragon translates the pointers from the CPU’s memory address space to the

GPU’s memory address space. In order to do this translation, Paragon subtracts the start

address of the CPU array from the pointer address and adds it to the start address of the

corresponding GPU array. Similarly, Paragon translates these pointers from the GPU to the

CPU after the execution of the kernel.

4.4.3.2 Checking kernel implementation:

After running the execution kernel, the checking kernel will be launched. This kernel

investigates the read-log and write-log arrays to find conflicts.

RAW Conflicts: To find RAW conflicts, the easiest implementation of the checking ker-

nel is to check all addresses to detect memory addresses that are read and modified during

execution as shown in Figures 4.5(c) and 4.6(b). If there is at least one write and one read
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(rd & wr), the checking kernel will set the conflict flag.

WAW Conflicts: Detecting WAW conflicts is different for reduction and atomic methods.

• Reduction Method: For the reduction approach, Paragon calculates the sum of

writes performed by all threads and number of distinct writes performed as follows:

Total Writes =
Threads∑

i=0

tw[i]

Distinct Writes =
Addresses∑

i=0

write-log[i]

These two sums are computed using reduction kernels as shown in Figure 4.6(b). If

Total Writes is more than Distinct Writes, it means that two or more threads write to

the same address which is an output conflict.

• Atomic Method: Since the exact number of writes to each address is known in the

atomic approach, there is no need to launch reduction kernels. Line 5 of Figure 4.5(c)

checks the number of writes and reads of the corresponding element. If the number

of writes is more than one (wr ≫ 1) the checking kernel will set the conflict flag.

For loops with pointer accesses, Paragon runs the same checking kernel as Figure 4.5(c),

but it also takes an additional step to make sure no cross-array dependency violation is hap-

pening. Paragon assumes that each pointer accesses only one array during the execution

of a kernel. Therefore, for kernels with pointers that may access multiple arrays, Paragon

raises the conflict flag. In order to detect these pointers, Paragon keeps track of the maxi-

mum and the minimum addresses that each pointer accesses. By computing maximum and
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minimum with the max and min intrinsic functions available in CUDA, this range check

process is done without any data-flow divergences. At the end of the kernel, All these max-

imums and minimums will be checked to see if each pointer accesses only one array or not

as shown in Figure 4.7(b). If Paragon detects that a pointer accesses different arrays during

the kernel execution, it stops the GPU execution and transfers the execution to the CPU.

Whenever Paragon finds a conflict, it will set the conflict flag. This flag will be sent

to the CPU and, based on that, the CMT makes further decisions. These decisions will be

discussed in Section 4.5.

Checking Kernel Optimizations : To optimize the checking kernel execution, Paragon

applies two optimizations when it is possible:

• Selective Checking: Checking all addresses to find conflicts is not always necessary

and may degrade the performance. Instead, it will be advantageous to just check

those addresses that at least one of the execution kernel’s threads writes to them. In

order to check these addresses, the checking kernel should regenerate addresses that

threads of the execution kernel wrote to them. For each store, Paragon starts from

the index of the store instruction and traverses the data flow graph in the reverse

order, to build up a slice of instructions on which the store depends, either directly or

indirectly. This process stops when it reaches the input variables or the loop indices.

The checking kernel executes these instructions to regenerate the store indices and

investigates them to find a conflict.
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• Removing Checking Kernel: Paragon uses an optimization for loops in which

WAW dependencies are the only possible source of conflicts. In these types of loops,

there is no need to launch the checking kernel because the atomicInc function returns

the old value of the write-log element. For each write that may cause conflict, the

execution kernel increments the corresponding element in the write-log array and it

also checks the old value. If the old value is more than zero, it shows that another

thread already wrote to the same element. In such a case, this access is marked as a

conflict.

4.5 Cooperative Execution Management

The cooperative execution management unit in Paragon is a runtime component that is

in charge of deciding where a loop should execute, coordinating execution of a possibly-

parallel loop between the CPU and GPU, and orchestrating data transfers between the host

and GPU memories. Paragon tries to increase the efficiency of speculation by utilizing both

GPU and CPU at the same time. This cooperation between CPU and GPU can reduce the

overhead of speculation in case of miss-speculations.

During runtime, the first invocation of possibly-parallel loops will be monitored to

find any dependency between different iterations. After loop monitoring, possibly-parallel

loops will be categorized as a parallel or sequential loop based on the number of dependen-

cies found in the monitoring result. Sequential loops will be run on the CPU, and parallel

loops will be run speculatively on the GPU. For speculative execution on the GPU, Paragon

requires the original code to be augmented with the instructions that drive the runtime de-
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pendence analysis.

The main unit of cooperative execution management is the CMT which uses monitoring

information to decide which kernels should be executed on the GPU and which of them

should be run on the CPU. The CMT also takes care of data movement between CPU and

GPU especially in miss-speculation cases.

4.5.1 Loop Monitoring

This section describes how Paragon monitors possibly-parallel loops on the CPU to find

the dependency between iterations and uses this information to improve the performance

of the generated code. Paragon executes the first invocation of possibly-parallel loops on

the CPU with two threads: working thread and monitoring thread. The working thread

executes the loop sequentially and the monitoring thread monitors the loop in parallel to

decrease the overhead of monitoring. The monitoring thread keeps track of all memory ac-

cesses. This one-time monitoring has a negligible overhead because Paragon only monitors

possibly-parallel loops in parallel with the real execution.

The monitoring thread executes every instruction from the loop except stores and keeps

track of the number of conflicts. After monitoring each possibly-parallel loop, if there

was no conflict (Read-After-Write, Write-After-Read, and Write-After-Write), the moni-

toring thread marks the kernel as a parallel kernel for the CMT. If there were conflicts,

the monitoring thread marks the loop as sequential. After all possibly-parallel kernels are

categorized based on the monitoring results, Paragon enters the kernel execution phase. In

this phase, Paragon keeps track of the number of iterations that each loop has. Based on

these numbers, it will tune the number of blocks for the next execution of each kernel on
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the GPU to get the best performance.

4.5.2 Conflict Management Thread (CMT)

Conflict management thread is a thread running on the CPU and its responsibility is to

manage GPU-CPU transfers and run kernels speculatively on the GPU. The CMT decides

which kernel should be executed on the CPU or GPU. In case of conflicts, it uses the

correct data on the CPU to run the next kernel. If there was a dependency violation, the

CMT does not launch the next kernel on the GPU and waits for the working thread on the

CPU to finish. Based on the next kernel type, the CMT makes different decisions. If the

next kernel should be run on the GPU, the CMT transfers all live-out variables to the GPU

and launches the next kernel. If the next kernel is possibly-parallel, in addition to the GPU

version, one version will also be run on the CPU. The last case is that the next kernel is

sequential, so the CMT runs the sequential code on the CPU.

If there was no conflict in the GPU execution, the CMT sets a global variable to inform

the working thread on the CPU to stop. To decrease the overhead, the working thread

checks that global variable once every several iterations ( 10 in our experiments). This

global variable works as a memory barrier to manage the data transferring between CPU

and GPU. If the next kernel is parallel, the CMT will launch the next kernel. Otherwise, it

transfers live-out variables and runs the next kernel on the CPU.

4.5.3 Execution Scenarios

This section explains the advantages and disadvantages of using cooperative loop exe-

cution for different possible scenarios. Figure 4.8 shows four different possibilities for an
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Figure 4.8: Different scenarios for Paragon execution. This figure compares the execution time (τ )

of Loop2 for different scenarios. τ is equal to the time between termination of the first loop and the

start of the last loop. L is the execution time of the Loop2 on the CPU and G is the speedup of the

GPU execution of the Loop2 with instrumentation compared to the sequential CPU execution. T is

the transfer time between the CPU and the GPU.

example with three loops. In this example, the Loop2 is a possibly-parallel loop and based

on the characteristics of the Loop1 and the Loop3, different scenarios may take place. In

the first scenario shown in Figure 4.8(a), Loop1 and Loop3 are sequential loops and they

will be executed on the CPU. Figure 4.8(b) shows a case when both Loop1 and Loop3 are

do-all loops and will be run on the GPU. In Figures 4.8(c) and 4.8(d), one of these two

loops is do-all and the other one is sequential.

For each of these scenarios, there are three cases: the first case is the baseline when

Paragon does not run the possibly-parallel (Loop2) speculatively on the GPU. In all baseline

cases, Loop2 will be executed on the CPU. In the next two cases, Paragon runs the loop

speculatively on the GPU. If there was no conflict in the GPU execution, Paragon uses the

GPU’s results and launches the next kernel. In the last case, there is a conflict in the GPU

execution. Therefore, Paragon continues the CPU version of Loop2 and uses its results to

execute the last loop.

Figure 4.8 compares the execution time (τ ) of Loop2 which includes the transfer times
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needed for executing this loop. In other words, τ is equal to the time between the termina-

tion of the first loop and the start of the last loop. L is the execution time of Loop2 on the

CPU and G is the speedup of the GPU execution of Loop2 compared to the sequential run

of Loop2. For the sake of simplicity, it is assumed that transfer time from the GPU to the

CPU is equal to the transfer time from the CPU to the GPU, which is equal to T.

If the Loop2 does not modify the inputs of the loop, there is no need to wait for the

transfer operation to be over, and Paragon can perform the transfer and launch the kernel

at the same time. For example in Figure 4.8(b) with no conflicts, if Loop2 is reentrant, the

GPU version can start right after the Loop1. However, if Loop2 is not reentrant, Paragon

transfers the data to the CPU before starting Loop2 on the GPU to make sure that there is

a correct version of the data in the CPU’s memory. Dashed arrows in Figure 4.8 represent

these kind of transfers, which based on the characteristics of the possibly-parallel loop,

may or may not affect the execution time.
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Figure 4.9: This figure shows performance and speculative overhead for different execution scenar-

ios in Figure 4.8 . Part (a) illustrates speedup of different scenarios compared to the baseline when

there is no conflict. Scenario b in the best case (b b) has the highest speedup and scenario a in the

worst case (a w) has the lowest speedup. All the legends are sorted based on the speedup on top of

the figure. Part (b) illustrates the overhead of theses scenarios compared to the baseline in case of

miss-speculation.
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Input Size Output Size Number of loops

FDTD 4096 x 4096 matrix 4096 x 4096 matrix 6

Seidel 4096 x 4096 matrix 4096 x 4096 matrix 2

Jacobi1d 16M array 16M array 1

Jacobi2d 4096 x 4096 matrix 4096 x 4096 matrix 2

Gemm two 4096 x 4096 matrix 4096 x 4096 matrix 3

Tmv 4096 x 4096 matrix + 4096 array 4096 array 2

Saxpy two 32M array 32M array 1

House two 32M array 32M array 2

Ipvec 32M array 32M array 1

Ger two 64K array + sparse 64k x 64k matrix sparse 64k x 64k matrix 2

Gemver two 64K array + sparse 64k x 64k matrix 64k array 6

FWD 64K array + sparse 64k x 64k matrix 64k array 2

SOR 64K array + sparse 64k x 64k matrix 64k array 2

Table 4.1: Application specifications for Paragon evaluation

Figure 4.9a shows the speedup that Paragon can gain with speculation for different

L/T s. This Speedup is equal to τbaseline/τnoconflict. In fused architectures where the CPU

and the GPU are integrated on the same die and share DRAM, like in AMD Fusion, or L3

cache, like in Intel Sandy Bridge, transfer time is low compared to the discrete GPUs 1. As

it can be seen in the figure, speedup for these systems will be close to GPU’s gain (G) in all

scenarios. The interesting point in this figure is that speedup is increasing by decreasing the

transfer time except in scenario (b) with reentrant loop (the best case). The reason for that

is Loop1 and Loop3 are both executed on the GPU. In the baseline case, Paragon should

transfer the input data of Loop2 to the CPU, execute that loop, and transfer the data back

to the GPU. For speculative execution, there is no need to transfer the data. Therefore,

reducing the transfer time will reduce the advantage of speculation over baseline for this

scenario.

Figure 4.9b shows the overhead of miss-speculation for scenarios 4.8(a) and 4.8(c) in

the worst case (non- reentrant loop) for different L/T s. All other scenarios do not have

any performance overhead in case a conflict happens. With decreasing transfer cost, this

overhead decreases rapidly as shown in this figure.

1A typical discrete GPU has a separate memory from system memory and data transfer is done through

PCIExpress
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4.6 Experiments

Paragon compilation phases are implemented in the backend of the Cetus compiler [56].

We modified the C code generator in Cetus to generate CUDA code. Paragon’s output

codes are compiled for execution on the GPU using NVIDIA nvcc 4.0. GCC 4.4.6 is used

to generate the x86 binary for execution on the host processor. The target system has an

Intel i7 CPU and an NVIDIA GTX 560 GPU with 2GB GDDR5 global memory.

In order to evaluate Paragon, we compiled benchmarks with pointer and indirect mem-

ory accesses, and compared their performance with hand-optimized unsafe parallelized C

code. 2 We implemented unsafe parallel versions of these benchmarks for the CPU with

2 and 4 threads and for the GPU too. Although there are many works on speculation for

CPUs like CorD [110], their performance cannot be better than unsafe parallel versions.

For example, CorD has 7% overhead. That’s why we use unsafe code as an upper bound in

our performance measurements for comparison purposes. A summary of the benchmarks

characteristics is shown in Table 4.1. Also, we present a case study of accelerating a real-

world application, Rayleigh quotient iteration, which will be discussed in Section 4.6.4.

Benchmarks with pointer memory accesses: We re-implemented six benchmarks from

the Polybench benchmark suite [77] in C with pointers to show Paragon’s performance for

loops with pointers.

FDTD, Finite Difference Time Domain method, is a powerful computational technique

for modeling electromagnetic space. This benchmark has three pair of different stencil

2Unsafe means sequential code that is optimistically parallelized and does not perform any dynamic

dependence checking or synchronization/locking to ensure correct results.
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loops and all these loops are highly memory intensive. The Seidel benchmark uses the

Gauss-Seidel method which is an iterative method used to solve a linear systems of equa-

tions. Seidel is a stencil benchmark with more computation than FDTD. Jacobi is another

stencil method to solve linear systems; We used one dimensional and two dimensional

versions of this benchmark.

Gemm is a general matrix multiplication benchmark that has three nested loops. The

innermost loop is a reduction loop and two outer loops are parallel. As mentioned before,

Paragon decides which loops should be parallelized based on the number of iterations.

Since both outer loops have high trip counts, Paragon parallelizes these loops and executes

reduction sequentially inside each thread. It should be noted that this code is automatically

generated for matrix multiply with pointers, so most compilers cannot detect that these

loops are parallel. For the CPU version, we parallelized the outermost loop.

Tmv is a transposed matrix vector multiplication benchmark that has two nested loops.

The outer one is a do-all loop and the inner one is a reduction loop. The outer loop will be

mapped to thread blocks and each thread block performs the reduction in parallel.

Benchmarks with indirect memory accesses: Seven benchmarks from the sparse ma-

trix library are used to show Paragon’s performance for loops with indirect array accesses.

We selected them because they have loops that cannot be analyzed by traditional compil-

ers. For each sparse matrix benchmark, we generated matrices randomly with one percent

nonzero elements.

Saxpy adds a sparse array with a dense array and writes the result in the dense array.

The householder reflection benchmark, House, computes the reflection of a plane or hyper-
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plane containing the origin. This method is widely used in linear algebra to compute QR

decompositions. This benchmark consists of two parts. The first part is a reduction loop

that cannot cause conflict and this loop will be compiled to CUDA without any instrumen-

tation. The second part has a loop which is similar to Saxpy and it may have cross-iteration

dependencies.

Ipvec is a dense matrix benchmark that shuffles all elements of the input array based

on another array and puts the results in the output array. Sparse BLAS functions Ger and

Gemver also have loops that can cause conflicts. Dependencies between different iterations

of these loops cannot be analyzed statically so we need to use Paragon to run these loops

on the GPU speculatively.

Forward Elimination with Level Scheduling, FWD, is another method which is used in

solving linear systems. FWD’s code is shown in Figure 4.1 and it has both reads and writes

to the conflicted array. The next benchmark is SOR, a Multicolor SOR sweep in the EllPack

format, and its code is similar to FWD. This benchmark has two loops: the outer loop is

do-across and the inner loop is parallel, but traditional static compilers cannot easily detect

that.

4.6.1 Performance

Figures 4.10b and 4.10a compare the performance of the benchmarks with pointer and

indirect memory accesses to the unsafe parallel execution. The Paragon-Reduction version

is the performance of the Paragon’s generated code with instrumentation using reduction

to check the dependencies. Paragon-Atomic uses the CUDA atomic instruction to find the

conflicts on the fly. CPU 4 and 2 are unsafe parallel CPU versions without any checks
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Figure 4.10: This figure shows performance of Paragon approaches compared to unsafe parallelized

versions. Baseline is running the code sequentially on the CPU. Part (a) illustrates performance

comparison of Paragon with unsafe parallel versions on the GPU and CPU with 4 and 2 threads for

loops with pointers. Part (b) shows performance for loops with indirect accesses.

for conflicts. GPU is unsafe parallel version of applications without any instrumentations.

All these different versions are compared with the sequential runs on the CPU without any

threading.

Since memory accesses in benchmarks with indirect accesses are irregular, the GPU’s

performance is lower for these benchmarks than regular access benchmarks. In these loops,

unlike the pointer loops, Paragon marks arrays that can cause conflicts. Since Paragon

only checks memory accesses for these arrays, the overhead of conflict checking is lower

compared to the pointer loops.

As shown in Figures 4.10b and 4.10a, for all benchmarks except Ipvec, Paragon-

Atomic performs better than Paragon-Reduction. Since atomic instructions are slower than

non-atomic memory accesses, maintaining write history of different iterations in Paragon-

Reduction has less overhead than Paragon-Atomic. However, in order to find conflicts,

Paragon-Reduction needs to calculate sum of two arrays: write-log and total-writes. Since

these two reduction operations have a large overhead for large array sizes, the performance
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of the Paragon-Atomic approach is better than Paragon-Reduction. The performance gap

between these two approaches is higher for benchmarks with higher checking kernel over-

head. Paragon-Reduction performs better than Paragon-Atomic for Ipvec because atomic

memory-accesses performs poorly for the many uncoalesced memory accesses found in

Ipvec.

For benchmarks with pointer accesses, Paragon-Atomic is 6.8x faster than CPU execu-

tion with 4 threads. For these benchmarks, Paragon is 12x faster than 2 thread execution.

Also, Paragon-Atomic is 1.3x faster than Paragon-Reduction approach on average. As can

be seen in Figure 4.10a, the performance of the Paragon-Atomic is 2.5x better than the

unsafe parallel version of the code running on the CPU with 4 threads for benchmarks with

indirect accesses. Paragon-Atomic is 3.4x faster than 2 thread execution. Also, Paragon-

Atomic is 1.3x faster than Paragon-Reduction approach on average. It should be noted that

in the CPU version, we assumed that there is no conflict between different iterations and,

therefore, our results are pessimistic. Figure 4.10a shows that running safely on the GPU

is better than running unsafely on the CPU for these data parallel loops.

On average, for benchmarks with pointer accesses and indirect array accesses, the un-

safe parallel GPU versions are respectively 1.9x and 1.5x faster than Paragon-Atomic’s

performance. The reason is that in loops with pointers, all arrays can cause conflicts, and

Paragon’s approach can lead to 2x more memory accesses. These extra memory accesses

can degrade the performance of memory-intensive loops. The unsafe GPU code’s perfor-

mance is not realistically achievable and we report this number to show the potential of our

system if further optimizations and smarter runtime systems are deployed in Paragon.
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Figure 4.11: Breakdown of Paragon’s overhead compared to unsafe parallel version on the GPU

for loops with pointers.

4.6.2 Overhead breakdown

Figure 4.11 shows the overhead of Paragon execution compared to the unsafe GPU

execution without any instrumentation. This figure also breaks down the overhead into five

groups: write-log maintenance, read-log maintenance, checking kernel execution, detecting

which arrays each pointer accesses, and range check of indices that each pointer accesses.

Note that only benchmarks with pointer memory accesses have find-arrays or range-check

overhead.

Saxpy, House, Ipvec, Ger and Gemver only write to the conflict-candidate arrays. Since

the atomicInc function used in Paragon-Atomic approach returns the old value, there is no

need to launch the checking kernel. For each write in the execution kernel, each thread

atomically increments the corresponding element in the write-log and it checks the old

value. If the old value is more than zero, the execution kernel sets the conflict flag. There-

fore, for these benchmarks there is no checking-kernel overhead.

For all benchmarks, the write-log overhead is higher for Paragon-Atomic than Paragon-

Reduction. The reason is that Paragon-Atomic uses atomic instructions to update the

write-log which are not as fast as just writing to the global memory. Also, since Paragon-
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Reduction needs to count the number of writes with executing two reduction kernels, the

overhead of the checking kernel is higher for Paragon-Atomic approach.

SOR and FWD benchmarks read from an array and write to the same array with differ-

ent address. Consequently, both Paragon approaches need to launch the checking kernel.

Therefore, the overhead breakdown is similar for both approaches.

Benchmarks with pointer memory accesses have range-check and find-arrays overhead,

too. Find-arrays overhead is negligible for benchmarks with high computation such as

Gemm because finding arrays is done only once for each kernel. Range-check overhead

is high for benchmarks with a large number of memory accesses such as Gemm and Tmv

because for each memory access, Paragon needs to compare the accessed address with

maximum and minimum addresses that are accessed by that pointer. Since the Gemm and

Tmv have more reads than writes, the overhead of maintaining the read-log is higher than

write-log’s maintenance overhead. The effect of finding arrays is smaller on Jacobi2d

compared to the same value in Jacobi1d because the two dimensional version has more

computation and memory accesses and finding array process is done completely outside of

the loop at the beginning of the kernel.

On average, for Paragon-Atomic scheme, the overhead introduced by checking kernel

is 6% for indirect access and 14% for pointer access benchmarks. As mentioned before,

this overhead is higher for Paragon-Reduction scheme. The checking kernel overhead for

Paragon-Reduction is 57% and 39% for benchmarks with indirect and pointer memory

accesses, respectively. For benchmarks with indirect memory accesses, maintaining write-

log overhead is 74% for Paragon-Atomic but it is 25% for Paragon-Reduction. Since the

only difference between two schemes is how they detect write-write conflicts, the effects
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Figure 4.12: This figure shows the performance of Paragon for all four different scenarios to the se-

quential C code. Part (a) illustrates performance for loops with pointers. Part (b) shows performance

for loops with indirect accesses.

of read-log, range-check and find-arrays are similar for both approaches.

4.6.3 Execution Scenarios Performance

This section describes the impact of transferring data between CPU and GPU for dif-

ferent scenarios discussed in Section 4.5.3. Figures 4.12b and 4.12a compare the perfor-

mance of the benchmarks with pointer and indirect memory accesses to the sequential C

code on the CPU for all four different scenarios. As discussed in Section 4.5.3, transferring

overhead is high for scenario (a) because the previous and next kernel are executed on the

CPU. In this case, Paragon transfers the input data to the CPU and transfers the result back.

That’s why performance improvement for scenario (a) is smaller than the gain reported in

Figures 4.10a and 4.10a which do not consider the transferring time.

On the other hand, transferring time helps the Paragon to get better speedups for sce-

nario (b). In this scenario, baseline transfers the data from the GPU to the CPU, run the

possibly-parallel kernel, and transfer the data back to the GPU. Instead, Paragon executes
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the possibly parallel kernel on the GPU and if the loop is re-entrant, there is no need to wait

for transferring data. For this scenario, Paragon gets more than 8x speedup for both types

of loops on average.

For scenarios (c) and (d), final performance gain is dependant on transferring time for

input or output data, and whether the loop is re-entrant or not. For loops with pointer

accesses, Paragon cannot decide whether the loop is reentrant. Therefore, it waits for the

transfer. That’s the reason that transferring overhead for scenarios (c) and (d) is higher for

loops with pointer accesses than loops with indirect accesses.

4.6.4 Case study

In this section, we look into the effects of our compiler on the performance of the

Rayleigh quotient benchmark. We used this benchmark to demonstrate Paragon’s perfor-

mance for applications with several loops where a large amount of data has to be shipped

back and forth between the GPU and CPU. We also investigate the overhead of Paragon

execution in the presence of conflicts in this section. A Rayleigh quotient iteration is an

eigenvalue algorithm which extends the idea of the inverse iteration by using the Rayleigh

quotient to obtain increasingly accurate eigenvalue estimates.

Rayleigh quotient iteration is an iterative method, that is, it must be repeated until it

converges to an answer. Fortunately, very rapid convergence is guaranteed and no more

than a few iterations are needed in practice. The Rayleigh quotient iteration algorithm

converges cubically for symmetric matrices, given an initial vector that is sufficiently close

to an eigenvector of the matrix that is being analyzed.

To solve the linear systems in lines 3 and 9 in Figure 4.13, we used biconjugate gradient
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1 rayleigh(A,epsilon,mu,x)

2 x = x / norm(x);

3 y = (A-mu*eye(rows(A))) \ x;

4 lambda = transpose(y)*x;

5 mu = mu + 1 / lambda

6 error = norm(y-lambda*x) / norm(y)

7 while (error > epsilon){

8 x = y / norm(y);

9 y = (A-mu*eye(rows(A))) \ x;

10 lambda = transpose(y)*x;

11 mu = mu + 1 / lambda

12 error = norm(y-lambda*x) / norm(y)

13 }

Figure 4.13: Rayleigh quotient code

stabilized method (BiCGSTAB) which is an iterative method used for finding the numeral

solution of linear systems such as Ax=B for x where A is a square matrix. The whole

BiCGSTAB process can be executed on the GPU.

If matrix A is a sparse matrix, computing A-mu*eye(rows(A)) will be a possibly-parallel

code. In this case, a conservative compiler will run this part on the CPU and transfer the

result from the CPU to the GPU. However, Paragon speculatively runs this loop on the

GPU and removes the transfer overhead. We observed that this loop is executed 5.3x faster

on the GPU and if we consider the transfer time, this speedup will be increased to 7.8x.

The effect of this speculation on the whole benchmark is dependant on how accurate linear

systems in lines 3 and 9 should be solved.

To show the overhead of Paragon’s execution in case of conflict, we added one write-

write dependency to every twenty iterations of the speculative kernel. As expected, the

performance impact of detecting conflict and using the CPU’s data to continue the execu-

tion is negligible. Our experiments show that the overhead is less than one percent for this

benchmark.
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4.7 Related Work

As many-core architectures have become mainstream, there has been a large body of

work, such as SUIF [115] and Polaris [17], on static compiler techniques to automatically

parallelize applications to utilize thread-level-parallelism. These compilers automatically

detect loops that can be parallelized using static analyses, and transform the loops for paral-

lel execution. However, it is hard to statically decompose the application to take advantage

of the growing number of processor cores [52, 51]. One of the most challenging issues

in automatic parallelization is to discover loop-carried dependencies. Although various

research projects on loop-dependence analysis [80] and pointer analysis [74] have tried to

disambiguate dependencies between iterations, parallelism in most real applications cannot

be uncovered at compile time due to irregular access patterns, complex use of pointers, and

input-dependent variables.

For those applications that are hard to parallelize at compile time, thread-level specula-

tion (TLS) is used to resolve loop-carried dependencies at runtime. In order to implement

TLS, several extra compiler and runtime steps such as buffering memory access addresses

for each thread, checking violations, and recovery procedures in case of conflicts between

threads, are necessary. Software-only approaches [102, 18, 114, 27, 47, 48, 40, 63, 75, 110]

implement all these steps in software. However, most existing proposals for software-only

speculative runtimes target tens of cores at most [63, 75, 110]. Kim et. al. [47] targets 100

cores but even their method is not applicable to the GPU because they validate the correct-

ness of all speculative memory accesses on a core in parallel to the loop execution on other

cores. However, this parallel check is not possible on the GPU due to communication and
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synchronization overheads on the GPU.

There are previous works that have focused on generating CUDA code from sequential

input [39, 13, 117, 58, 106]. HiCUDA [39] is a high level directive based compiler frame-

work for CUDA programming where programmers need to insert directives into sequential

C code to define the boundaries of kernel functions. The work proposed by Baskaran et

al. [13] is an automatic code transformation system that generates CUDA code from input

sequential C code without annotations for affine programs. In the system developed by

Wolfe [117], by using C pragma preprocessor directives, programmers help the compiler to

generate efficient CUDA code. Tarditi et al. [106] proposed accelerator, in which program-

mers use C# and a library to write their programs and let the compiler generate efficient

GPU code. The work by Leung et al. [58] proposes an extension to a Java JIT compiler that

executes program on the GPU. Delite [24] is another approach which aims at simplifying

the creation of performance oriented DSLs and compiling them for heterogeneous systems,

including systems with GPUs. Our approach is orthogonal to these systems and can be in-

tegrated in such compilation frameworks to increase the efficiency of these systems by

enabling them to run more applications on the GPU. In order to improve the performance

of automatic parallelization, Paragon can take advantage of Polyhedral models [15, 78, 12]

which can perform more powerful automatic parallelization.

While none of the previous works on automatic compilation for current GPUs con-

sidered speculation, there are other works [65, 30, 61] which studied the possibility of

speculative execution on the GPU. Menon et al. [65] modified the GPU hardware to sup-

port voltage speculation. Gregory et al. [30] described speculative execution on multi-GPU

systems exploiting multiple GPUs, but they explored the use of traditional techniques to
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extract parallelism from a sequential loop in which each iteration launches a GPU kernel.

This approach leveraged the possibility of speculatively partitioning several kernels on mul-

tiple GPUs. Liu et al. [61] showed the possibility of using GPUs for speculative execution

using a GPU-like architecture on FPGAs. They implemented software value prediction

techniques to accelerate programs with limited parallelism, and software speculation tech-

niques which re-executes the whole loop in case of a dependency violation.

Recent works [23, 35] proposed software and hardware transactional memory systems

for graphic engines. In these works each thread is a transaction and if a transaction aborts, it

needs to re-execute. This re-execution of several threads among thousands of threads may

lead to control divergence on the GPU, and will degrade the performance. For Paragon,

each kernel is a transaction and if it aborts, Paragon uses the CPU’s results instead of re-

executing the kernels. There are many other works that try to improve the performance of

GPUs by different approaches such as reducing the overhead of divergence [19, 28, 123],

coalescing more memory accesses [123], improving inter-block communication [120], gen-

erating different kernels for different input sizes [93].

4.8 Conclusion

GPUs provide an attractive platform for accelerating parallel workloads. Due to their

non-traditional execution model, developing applications for GPUs is usually very chal-

lenging. As a result, these devices are left under-utilized in many commodity systems. Sev-

eral languages have emerged to solve this challenge, but past research has shown that devel-

oping applications in these languages is a difficult task because of the tedious performance
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optimization cycle or inherent algorithmic characteristics of an application. Also, previous

approaches of automatically generating optimized parallel code in CUDA for GPUs using

complex compiler infrastructures have failed to utilize GPUs that are present in everyday

computing devices.

In this work, we proposed Paragon: a static/dynamic compiler platform to speculatively

and cooperatively run possibly-data-parallel pieces of sequential applications on GPUs and

CPUs. Paragon monitors the dependencies for possibly-data-parallel loops running spec-

ulatively on the GPU and non-speculatively on the CPU using a light-weight distributed

conflict detection designed specifically for GPUs, and transfers the execution to the CPU

in case a conflict is detected. Paragon resumes the execution on the GPU after the CPU

resolves the dependency. We looked at two classes of implicitly data-parallel applications:

applications with indirect and pointer memory accesses. Our experiment show that, for

applications with indirect memory accesses, Paragon achieves 2.5x on average and up to

4x speedup compared to unsafe CPU execution with 4 threads. Also, for applications with

pointer memory accesses, Paragon achieves 6.8x on average and up to 30x speedup com-

pared to unsafe CPU execution with 4 threads.
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CHAPTER V

Self-Tuning Approximation

5.1 Introduction

To keep up with information growth, companies such as Microsoft, Google and Ama-

zon are investing in larger data centers with thousands of machines equipped with multi-

core processors to provide the necessary processing capability on a yearly basis. The latest

industry reports show that in the next decade the amount of information will expand by a

factor of 50 while the number of servers will only grow by a factor of 10 [31]. At this rate,

it will become more expensive for companies to provide the compute and storage capacity

required to keep pace with the growth of information. To address this issue, one promising

solution is to perform approximate computations on massively data-parallel architectures,

such as GPUs, and trade the accuracy of the results for computation throughput.

There are many domains where it is acceptable to use approximation techniques. In

such cases some variation in the output is acceptable, and some degree of quality degrada-

tion is tolerable. Many image, audio, and video processing algorithms use approximation

techniques to compress and encode multimedia data to various degrees that provide trade-
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Quality: 100% 95% 90% 86%

Figure 5.1: Application of image blurring filter with varying degrees of output quality. Four levels

of output quality are shown: 100%, 95%, 90%, and 86%.

offs between size and correctness such as lossy compression techniques. For example,

while trying to smooth an image, the exact output value of a pixel can vary. If the output

quality is acceptable for the user or the quality degradation is not perceivable, approxima-

tion can be employed to improve the performance. In the machine learning domain, exact

learning and inference is often computationally intractable due to the large size of input

data. To mitigate this, approximate methods are widely used to learn realistic models from

large data sets by trading off computation time for accuracy [50, 100]. We believe that

as the amount of information continues to grow, approximation techniques will become

ubiquitous to make processing such information feasible.

To illustrate this behavior more concretely, consider the two examples shown in Fig-

ures 5.1 and 5.2. Figure 5.1 shows the output of a blurring filter applied to an image with

varying degrees of quality loss. The leftmost image shows the correct output, and the

subsequent images to the right show the results with 5%, 10%, and 14% quality loss, re-

spectively. For most people, it is difficult to observe any significant differences between

the first three images. Therefore, a range of outputs are acceptable. However, the fourth

image is noticeably distorted and would be unacceptable to many users. This illustrates that

limited losses in output quality may be unnoticeable, but approximation must be controlled
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Quality: 100% 90% 65%95%

Figure 5.2: Clustering of a sample data set into four clusters using the K-means algorithm. Exact

and approximate clusters’ centers are also shown four levels of output quality: 100%, 95%, 90%

and 65%.

and closely monitored to ensure acceptable quality of results.

Figure 5.2 provides a similar set of results but for the K-means data clustering algo-

rithm. The leftmost image shows the correct output: each input data (dot) is clustered into

one of four groups as indicated by the color of the dot with the centroid of each cluster

marked by the triangle. The subsequent images show the results with 5%, 10% and 35%

quality loss, respectively. In each image, the dots colored red represent the misclassified

data points and the ‘X’s show the approximate centroids. Again, for small amounts of

quality loss (3 leftmost images), the application output largely matches the correct output

due to the inherent error-tolerance of data clustering. However, the rightmost image shows

poor results particularly for one of the clusters (green cluster) with more than half the input

data misclassified and the centroid substantially out of position.

The idea of approximate computing is not a new one and previous works have studied

this topic in the context of more traditional CPUs and proposed new programming models,

compiler systems, and runtime systems to manage approximation [84, 86, 2, 10, 96, 9, 32].

In this work, we instead focus on approximation for GPUs. GPUs represent affordable but
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powerful compute engines that can be used for many of the domains that are amenable

to approximation. However, in the context of GPUs, previous approximation techniques

have two limitations: (1) the programmer is responsible for implementing and tuning most

aspects of the approximation, and (2) approximation is generally not cognizant of the hard-

ware upon which it is run. There are several common bottlenecks on GPUs that can be

alleviated with approximation. These include the high cost of serialization, memory band-

width limitations, and diminishing returns in performance as the degree of multithreading

increases. Because many variables affect each of these characteristics, it is very difficult

and time consuming for a programmer to manually implement and tune a kernel.

Our proposed framework for performing systematic runtime approximation on GPUs,

SAGE, enables the programmer to implement a program once in CUDA, and depending

on the target output quality (TOQ) specified for the program, trade the accuracy for perfor-

mance based on the evaluation metric provided by the user. SAGE has two phases: offline

compilation and runtime kernel management. During offline compilation, SAGE performs

approximation optimizations on each kernel to create multiple versions with varying de-

grees of accuracy. At runtime, SAGE uses a greedy algorithm to tune the parameters of

the approximate kernels to identify configurations with high performance and a quality that

satisfies the TOQ. This approach reduces the overhead of tuning as measuring the qual-

ity and performance for all possible configurations can be expensive. Since the behavior

of approximate kernels may change during runtime, SAGE periodically performs a cali-

bration to check the output quality and performance and updates the kernel configuration

accordingly.

To automatically create approximate CUDA kernels, SAGE utilizes three optimization
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techniques. The first optimization targets atomic operations, which are frequently used in

kernels where threads must sequentialize writes to a common variable (e.g., a histogram

bucket). The atomic operation optimization selectively skips atomic operations that cause

frequent collisions and thus cause poor performance as threads are sequentialized. The next

optimization, data packing, reduces the number of bits needed to represent input arrays,

thereby sacrificing precision to reduce the number of high-latency memory operations. The

third optimization, thread fusion, eliminates some thread computations by combining adja-

cent threads into one and replicating the output of one of the original threads. A common

theme in these optimizations is to exploit the specific microarchitectural characteristics of

the GPU to achieve higher performance gains than general methods, such as ignoring a

random subset of the input data or loop iterations [2], which are unaware of the underlying

hardware.

In summary, the main contributions of this work are:

• The first static compilation and runtime system for automatic approximate execution

on GPUs.

• Three GPU-specific approximation optimizations that are utilized to automatically

generate kernels with variable accuracy.

• A greedy parameter tuning approach that is utilized to determine the tuning parame-

ters for approximate versions.

• A dynamic calibration system that monitors the output quality during execution to

maintain quality with a high degree of confidence, and takes corrective actions to

stay within the bounds of target quality for each kernel.

101



The rest of the chapter is organized as follows. Section 5.2 discusses why SAGE

chooses these three approximation optimizations. Section 5.3 explains how the SAGE

framework operates. Approximation optimizations used by SAGE are discussed in Sec-

tion 5.4. The results of using SAGE for various benchmarks are presented in Section 5.5.

Section 5.6 proposes a new way to monitor quality during runtime. Section 5.7 discusses

the related work in this area and how SAGE is different from previous works. The summary

and conclusion of this work is outlined in Section 5.8.

5.2 Approximation Opportunities

The central idea behind SAGE is to automatically detect and systematically skip or

simplify processing of the operations that are particularly expensive to perform on GPUs.

In order to do this, SAGE exploits three specific characteristics of GPUs.

Contention caused by atomic operations has a significant impact on performance.

Atomic operations are widely used in parallel sorting and reduction operations [73] so that

many different threads can update the same memory address in parallel code, as seen in the

NVIDIA SDK Histogram application. As the GPU serializes accesses to the same element,

performance of atomic instructions is inversely proportional to the number of threads per

warp that access the same address. Figure 5.3(a) shows how the performance of atomicAdd

decreases rapidly as the number of conflicts per warp increases for the Histogram bench-

mark. SAGE’s first optimization improves performance by skipping atomic instructions

with high contention.

Efficiently utilizing memory bandwidth is essential to improving performance.
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Figure 5.3: Three GPU characteristics that SAGE’s optimizations exploit. These experiments are

performed on a NVIDIA GTX 560 GPU. (a) shows how accessing the same element by atomic

instructions affects the performance for the Histogram kernel. (b) illustrates how the number of

memory accesses impacts performance while the number of computational instructions per thread

remains the same for a synthetic benchmark. (c) shows how the number of thread blocks impacts

the performance of the Blackscholes kernel.

Considering the large number of cores on a GPU, achieving high throughput often depends

on how quickly these cores can access data. Optimizing global memory bandwidth utiliza-

tion is therefore an important factor in improving performance on a GPU. Figure 5.3(b)

shows the impact of the number of memory accesses per thread on the total performance

of a synthetic benchmark. In this example, the number of computational instructions per

thread is constant and only the number of memory accesses per thread is varied. As the rel-

ative number of memory accesses increases, performance deteriorates as the memory band-

width limitations of the GPU are exposed. The second optimization improves the memory

bandwidth utilization by packing the input elements to reduce the number of memory ac-
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cesses.

As long as there are enough threads, the number of threads does not significantly

affect the performance. Since the number of threads running on the GPU is usually more

than 10x the number of cores, fewer threads can finish the same job with similar perfor-

mance. Figure 5.3(c) illustrates how changing the number of thread blocks in a kernel can

affect its performance for the Blackscholes benchmark with 4M options. The baseline is

the same kernel using 480 blocks. This figure shows that even 48 blocks (10% of the base-

line) can utilize most of the GPU resources and achieve comparable performance. Based

on these findings, SAGE’s third optimization performs a low overhead thread fusion that

joins together adjacent threads. After fusing threads, SAGE computes the output for one of

the original, or active, threads and broadcasts it to the other neighboring inactive threads.

By skipping the computation of the inactive threads, SAGE can achieve considerable per-

formance gain.

5.3 SAGE Overview

The main goal of the SAGE framework is to trade accuracy for performance on GPUs.

To achieve this goal, SAGE accepts CUDA code and a user-defined evaluation metric as

inputs and automatically generates approximate kernels with varying degrees of accuracy

using optimizations designed for GPUs. The SAGE framework consists of two main steps:

offline compilation and runtime kernel management. Figure 5.4 shows the overall operation

of the SAGE compiler framework and runtime.

The offline compilation phase investigates the input code and finds opportunities for
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Figure 5.4: An overview of the SAGE framework.

trading accuracy for performance. This phase automatically generates approximate ver-

sions of CUDA kernels using three optimizations which are tailored for GPU-enabled sys-

tems. These optimizations systematically detect and skip expensive GPU operations. Each

optimization has its own tuning parameters that SAGE uses to manage the performance-

accuracy tradeoff. These optimizations are discussed in Section 5.4.

The runtime management phase dynamically selects the best approximate kernel whose

output quality is better than the user-defined target output quality (TOQ). The runtime

management phase consists of three parts: tuning, preprocessing and optimization cali-

bration. Using a greedy algorithm, tuning finds the fastest kernel with better quality than

the TOQ. The main goal of preprocessing is to make sure that the data needed by these

approximate kernels is ready before execution. As the program behavior can change dur-

ing runtime, SAGE monitors the accuracy and performance dynamically in the calibration

phase. If the output quality does not meet the TOQ, calibration chooses a less aggressive

approximate kernel to improve the output quality.
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5.3.1 Tuning

The goal of the tuning phase is to find the fastest approximate kernel whose output

quality satisfies the TOQ. Instead of searching all possible configurations, SAGE uses an

online greedy tree algorithm to find reasonable approximation parameters as fast as pos-

sible to reduce the tuning overhead. Each node in the tree corresponds to an approximate

kernel with specific parameters as shown in Figure 5.5. All nodes have the same number

of children as the number of optimizations used by SAGE, which is two in this example.

Each child node is more aggressive than its parent for that specific optimization which

means that a child node has lower output quality than its parent. At the root of the tree

is the unmodified, accurate version of the program. SAGE starts from the exact version

and uses a steepest-ascent hill climbing algorithm [88] to reach the best speedup while not

violating the TOQ. SAGE checks all children of each node and chooses the one with the

highest speedup that satisfies the TOQ. If the two nodes have similar speedups, the node

with better output quality will be chosen. This process will continue until tuning finds one

of three types of nodes:

1. A node that outperforms its siblings with an output quality close to the TOQ. Tuning

stops when a node has an output quality within an adjustable margin above the TOQ.

This margin can be used to control the speed of tuning, and how close the output

quality is to the TOQ.

2. A node whose children’s output quality does not satisfy the TOQ.

3. A node whose children have less speedup.
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Figure 5.5: An example of the tuning process. A node, K(X,Y ), is a kernel optimized using two

approximation methods. X and Y are the aggressiveness of the first and second optimizations,

respectively.

In the example shown in Figure 5.5, it takes six invocations (nodes) for the tuner to find

the final kernel. Once tuning completes, SAGE continues the execution by launching the

kernel that the tuner found. SAGE also stores the tuning path, or the path from the root

to the final node, and uses it in the calibration phase to choose a less aggressive node in

case the output quality drops below the TOQ. If this occurs, the calibration phase traverses

back along the tuning path until the output quality again satisfies the TOQ.

For all applications that we tried, the depth of the search tree for tuning is small (less

than 4). Therefore, hill climbing algorithms can find the optimal solution for all of these

applications and the final result is independent of the hill climbing strategy.

5.3.2 Preprocessing

Two of SAGE’s optimizations need preprocessing to prepare the data necessary for the

generated kernel. For the data packing optimization, preprocessing packs the input data for

the next kernel. For the atomic operation optimization, the preprocessor checks input data

to predict how much contention occurs during execution of atomic instructions. Details of

preprocessing for these approximation optimizations are described in Section 5.4.
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SAGE runs the preprocessor on the CPU in parallel to GPU execution using syn-

chronous execution. At each time quantum, the GPU runs the selected kernel on a chunk

of data while the CPU preprocesses the next chunk before transferring it to GPU memory.

This way preprocessing is completely overlapped by kernel execution and its overhead is

negligible.

5.3.3 Optimization Calibration

As the program behavior can change at runtime, SAGE monitors the accuracy and per-

formance dynamically. After every N invocations of the kernel, the calibration unit runs

both the exact and approximate kernels on the GPU to check the output quality and perfor-

mance. We call N the calibration interval. Computing the output quality is also executed

on the GPU in parallel to reduce the overhead of calibration. If the measured quality is

lower than the TOQ, SAGE switches to a slower but more precise version of the program.

These decisions are based on the tuning path previously described in Section 5.3.1. By

backtracking along the tuning path, SAGE identifies more accurate kernels and calibrates

their quality. This process will continue until the output quality satisfies the TOQ. Sec-

tion 5.6 discusses different variations of the quality monitoring techniques and their impact

on the overall output quality and performance.

Although checking every N th invocation does not guarantee that all invocations satisfy

the TOQ, checking more samples will increase our confidence that the quality of the output

is acceptable. In order to compute the confidence, we assume that the prior distribution is

uniform. Therefore, the posterior distribution will be BETA(k + 1, n + 1 − k), where

n is the number of observed samples and k is the number of samples that satisfies the
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Figure 5.6: SAGE’s confidence in output quality versus the number of calibrations points for three

different confidence intervals (CI).

hypothesis [105]. In this case, the hypothesis is that the output quality is better than the

TOQ. Figure 5.6 shows how confidence increases as more samples are checked for three

different confidence intervals. For example, for a confidence interval equal to 95% and 50

calibration points, confidence is 93%. In other words, after checking 50 invocations, we are

93% confident that more than 95% of the invocations have better quality than the TOQ. If

there is an application working on frames of a video at a rate of 33 frames per second and

our calibration occurs every 10 kernel invocations, the runtime will be 99.99% confident

that more than 95% of output frames will meet the TOQ in under a minute.

At the beginning of execution, there is low confidence and the runtime management

system performs calibration more frequently to converge to a stable solution faster. As

confidence improves, the interval between two calibration points is gradually increased so

that the overhead of calibration is reduced. Every time the runtime management needs to

change the selected kernel, the interval between calibrations is reset to a minimum width

and the confidence is reset to zero.
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5.4 Approximation Optimizations

This section details three GPU optimizations that SAGE applies to improve perfor-

mance by sacrificing some accuracy: atomic operation optimization, data packing, and

thread fusion.

5.4.1 Atomic Operation Optimization

Idea: An atomic operation is capable of reading, modifying, and writing a value back to

memory without interference from any other thread. All threads that try to access the same

location are sequentialized to assure atomicity. Clearly, as more threads access the same

location, performance suffers due to serialization. However, if all threads access different

locations, there is no conflict and the overhead of the atomic instruction is minimal. This

optimization discards instances of atomic instructions with the highest degree of conflicts

to eliminate execution segments that are predominantly serial, while keeping those with

little or no conflicts. As a result of reducing serialization, SAGE can improve performance.

Detection: SAGE first finds all the atomic operations inside loops used in the input CUDA

kernel and categorizes them based on their loop. For each category, SAGE generates two

approximate kernels which will be discussed later.

To make sure that dropping atomic instructions does not affect the control flow of the

program, SAGE checks the usage of the output array of atomic operations. It traces the

control and data dependence graph to identify the branches which depend on the value of

the array. If it finds any, SAGE does not apply this optimization. To detect failed conver-

gence due to dropped atomic operations, a watchdog timer can be instrumented around the
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kernel launch to prevent infinite loops.

Implementation: The atomic operation optimization performs preprocessing to predict the

most popular address for the next invocation of the kernel while the GPU continues exe-

cution of the current invocation. To accomplish this, SAGE uses an approach introduced

in MCUDA [103] to translate the kernel’s CUDA code to C code, and then profiles this

code on the CPU. To expedite preprocessing, SAGE marks the addresses as live-variables

in the translated version and performs dead code elimination to remove instructions that

are not used to generate addresses. In cases where the GPU modifies addresses during ex-

ecution, the CPU prediction may be inaccurate. SAGE addresses this by launching a GPU

kernel to find the most popular address. The overhead of preprocessing will be discussed

in Section 5.5.

This optimization uses preprocessing results to find the number of conflicts per warp

during runtime as follows. First, it uses the CUDA ballot function1 to determine which

threads access the popular address. Next, it performs a population count on the ballot’s

result using the popc function2 in order to find the number of threads within a warp which

access the popular address.

By using runtime conflict detection, the atomic operation optimization generates two

types of approximate kernels: kerM and kerL. kerM skips one iteration that contains the

most conflicts. kerL skips all iterations except the one containing the least number of

conflicts. Both types of kernels contain the code necessary to detect conflicts for each loop

iteration at runtime. As all threads within a warp continue to execute the same iterations,

1 ballot() takes a predicate as input, and evaluates the predicate for all threads of the warp. It returns an

integer whose Nth bit is set if and only if the predicate is non-zero for the Nth thread of the warp [72].
2 popc() sums the number of set bits in an integer input [72].

111



Conflict Det 0
Iteration 0

Iteration 1

Iteration 2

Iteration 3

Warp 0 Warp 0

Conflicts

2

8

17

12

Conflict Det 1

Iteration 0

Conflict Det 2

Iteration 1

Conflict Det 3

Iteration 3

Conflict Det 0

Warp 0

Conflict Det 1

Conflict Det 2

Conflict Det 3

Iteration 0

(a) Original ex ecution (b) ker M execution (c) ker L execution

Figure 5.7: An illustration of how atomic operation optimization reduces the number of iterations

in each thread.

no control divergence overhead is added by this optimization. Since kerL skips more loop

iterations than kerM , kerL is more aggressive than kerM .

Figure 5.7 illustrates how kerM and kerL use conflict detection to discard atomic in-

structions with a large number of conflicts for sample code with four iterations per thread.

In this example, each iteration contains an atomic operation. The number of conflicts in

each iteration is shown on the left in Figure 5.7(a).

As shown in Figure 5.7(b), kerM computes the number of conflicts for the first two

iterations and executes the one with fewer conflicts (Iteration 0). kerM continues execution

by computing the number of conflicts for Iteration 2. Since Iteration 2 has more conflicts

than the previously skipped Iteration 1, kerM executes Iteration 1 and skips Iteration 2.

Finally, SAGE executes Iteration 3 because it has fewer conflicts than Iteration 2, which

was most recently skipped. At the end of the kernel’s execution, kerM detected and skipped

the loop iteration which had the most conflicts (Iteration 2) using SAGE’s online conflict

detection. It accomplished this without needing to run the loop once to gather conflict data,

and a second time to apply approximation using this data.

On the other hand, kerL performs conflict detection by running the original loop with-
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out any atomic instructions. This finds the iteration with the minimum number of conflicts

per warp. After conflict detection, kerL executes the found iteration, this time running the

atomic instruction. In the example in Figure 5.7(c), kerL selected Iteration 0 after it found

that this iteration had the minimum number of conflicts (two).

Parameter Tuning: In order to tune how many atomic instructions kerM or kerL skip,

SAGE modifies the number of blocks of the CUDA kernel. Equations 5.1, 5.2, and 5.3 show

the relationship between the number of blocks and the percentage of skipped instructions

for both kerM and kerL. Since the number of threads per block (TPB) is usually constant,

if the total number of iterations (the trip count of the loop) is constant, more blocks will

increase the number of threads and reduce the number of iterations per thread which can be

derived from Equation 5.1. A lower number of iterations per thread (IPT ) results in more

dropped iterations which can be computed by Equation 5.2. However, even with the highest

possible number of blocks (two iterations per thread), the dropped percentage of iterations

is at most 50% for kerM . In order to discard more than 50% of iterations, tuning switches

to kerL. With this kernel, the dropped iteration percentage can go from 50% to near 100%

which can be computed using Equation 5.3. Figure 5.8 shows how this optimization affects

the percentage of dropped iterations by varying the number of blocks per kernel for two

different input sizes.

total = IPT × TPB × Blocks (5.1)

skipped kerM =
1

IPT
× TotalIts (5.2)

skipped kerL =
IPT − 1

IPT
× TotalIts (5.3)
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the number of blocks for one and four million data points. kerM drops only one iteration per thread

and kerL executes only one iteration per thread. In this case, the threads per block (TPB) is set to

256.

5.4.2 Data Packing Optimization

Idea: In GPUs, memory bandwidth is a critical shared resource that often throttles

performance as the combined data required by all the threads often exceeds the memory

system’s capabilities. To overcome this limitation, the data packing optimization uses a

lossy compression approach to sacrifice the accuracy of input data to lower the memory

bandwidth requirements of a kernel. SAGE accomplishes this by reducing the number

of memory accesses by packing the input data, thereby accessing more data with fewer

requests but at the cost of more computation. This optimization packs the read-only in-

put data in the preprocessing phase and stores it in the global memory. Each thread that

accesses the global memory is required to unpack the data first. This approach is more ben-

eficial for iterative applications which read the same array in every iteration. Most iterative

machine learning applications perform the same computation on the same data repeatedly

until convergence is achieved.
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Unlike other approximate data type techniques used for CPUs which are implemented

in hardware and target computations [96], this software optimization’s goal is to reduce the

number of memory requests with an overhead of a few additional computation instructions.

All computations are done with full precision after unpacking. The added computation

overhead is justifiable because, for most GPU kernels which are memory bound, it is more

beneficial to optimize memory accesses at the cost of a few extra computation instructions

than to optimize the computation of the kernel.

Detection: To apply this optimization, SAGE finds the read-only input arrays of kernels.

As unpacking occurs in each thread, the memory access pattern must be known statically

so that SAGE is able to pack the data before the kernel executes. In many applications

which operate on a matrix, each thread is working on the columns/rows of the input matrix.

Therefore, SAGE packs the columns/rows of the input matrix and each thread must unpack

a column/row before performing the computation. For each candidate input array, SAGE

generates an approximate kernel.

It is possible that this optimization causes a divide by zero situation as the least sig-

nificant bits are truncated. However, the GPU does not throw divide by zero exceptions.

Rather, it produces a large number as the result. Therefore, the program will continue

without stopping and only the output quality may be affected.

Implementation: This optimization performs a preprocessing step which normalizes the

data in the input matrix to the range [0,1). The scaling coefficients used are stored in the

constant memory of the GPU.

After deciding the number of quantization bits (q bits), the preprocessor packs ratio(=

number of bits per int
q bits

) number of floats into one unsigned integer. The packing process is
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Figure 5.9: An example of how the data packing optimization reduces the number of global memory

accesses.

done by keeping the most significant q bits of each float and truncating the rest of the

bits. Figure 5.9(a) shows the original memory accesses before applying the data packing

optimization and Figure 5.9(b) illustrates an example of packing two floats in the place of

one integer. When a GPU thread accesses the packed data, it reads an unsigned integer.

Each thread unpacks that integer and rescales the data by using coefficients residing in the

constant memory and uses the results for the computation.

Parameter Tuning: To control the accuracy of this optimization, SAGE sweeps the num-

ber of quantization bits per float from 16 to 2 to change the memory access ratio from 2 to

16.
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5.4.3 Thread Fusion Optimization

Idea: The underlying idea of the thread fusion optimization is based on the assumption

that outputs of adjacent threads are similar to each other. For domains such as image or

video processing where neighboring pixels tend to have similar values, this assumption is

often true. In this approach, SAGE executes a single thread out of every group of consec-

utive threads and copies its output to the other inactive threads. By doing this, most of the

computations of the inactive threads are eliminated.

Detection: The thread fusion approach works for kernels with threads that do not share

data. In kernels which use shared memory, all threads both read and write data to the shared

memory. Therefore, by deactivating some of the threads, the output of active threads might

be changed too, and this will result in an unacceptable output quality. Therefore, SAGE

uses this optimization for kernels which do not use shared memory.

Implementation: In this approach, one thread computes its result and copies its output

to adjacent threads. This data movement can be done through shared memory, but the

overhead of sharing data is quite high due to synchronizations and shared memory latency.

It also introduces control divergence overhead, and the resulting execution is too slow to

make the optimization worthwhile. Instead, SAGE reduces the number of threads through

fusion. Fused threads compute the output data for one of the original threads which are

called active threads. Fused threads copy the results of the active threads to the inactive

threads. Since this data movement occurs inside the fused thread, the transferring overhead

is much less than that of using shared memory. However, in order to copy the data, fused

threads should compute output addresses for inactive threads.
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To fuse threads, SAGE translates the block ID and thread ID of the fused threads to

use in the active threads. For inactive threads, SAGE walks back up the use-def chain to

mark instructions that are necessary to compute the output index. Fused threads compute

these instructions for all inactive threads to find which addresses they write to, and copy

the active thread output values to those addresses.

There are two ways to fuse the threads: One involves reducing the number of threads

per block and the other one involves fusing blocks in addition to threads and reducing

the number of blocks of the kernel. Since reducing the number of threads per block re-

sults in poor resource utilization, SAGE additionally fuses blocks of each kernel. Fig-

ure 5.10(a) shows the original thread configuration before applying the optimization, and

Figure 5.10(b) shows the thread configuration after fusing two adjacent threads and thread

blocks. In the new configuration, each thread computes one output element and writes it to

two memory locations. Although the thread fusion optimization reduces the overall compu-

tations performed by the kernel, reducing more blocks may result in poor GPU utilization

as shown in Figure 5.3(c). Therefore, at some point, SAGE stops the fusion process as it

eventually leads to slowdown.

Parameter Tuning: SAGE changes the number of threads that are fused together to control

performance and output accuracy.

5.5 Experimental Evaluation

In this section, we show how the optimizations in SAGE affect the execution time and

accuracy of different applications. Ten applications from two domains are used: machine
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Figure 5.10: The thread fusion optimization reduces the computation executed by this kernel by

fusing two adjacent threads together and broadcasting the single output for both threads.

learning and image processing. A summary of the application characteristics is shown in

Table 5.1. As each optimization targets specific, common performance bottlenecks of GPU

applications, each application has usually one or two bottlenecks that SAGE optimizes as

described in Table 5.1.

Domain Input Data
Approximation

Opportunity
Evaluation Metric

K-Means ML 1M random points, 32 features Atomic, Packing Mean relative difference

Naive Bayes ML KDD Cup [34] Atomic Mean relative difference

Histogram IP 2048 x 2048 images Atomic Mean relative difference

SVM ML USPS [34] Fusion, Packing Mean relative difference

Fuzzy K-Means ML KDD Cup [34] Packing Mean relative difference

Means Shift ML KDD Cup [34] Packing Mean relative difference

Image Binarization IP 2048 x 2048 images Fusion 1 if incorrect, 0 if correct

Dynamic Range Compression IP 2048 x 2048 images Fusion Mean pixel difference

Mean Filter IP 2048 x 2048 images Fusion Mean pixel difference

Gaussian Smoothing IP 2048 x 2048 images Fusion Mean pixel difference

Table 5.1: Application specifications (ML = Machine Learning, IP = Image Processing)
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5.5.1 Applications

The Naive Bayes Classifier is based on the Bayesian theorem. The training process is

done by counting the number of points in each cluster and the number of different feature

values in each cluster. To implement Naive Bayes Classifier training, we divide the data

points between the threads and each thread uses an atomicInc operation to compute number

of points in each cluster. This implementation is based on OptiML’s implementation [104].

K-Means is a commonly used clustering algorithm used for data mining. This algorithm

has two steps which are iteratively executed. The first step computes the centroids of all

clusters. The second step finds the nearest centroid to each point. We launch one kernel to

compute all centroids. Each thread processes a chunk of data points and each block has an

intermediate sum and the number of points for all clusters. Atomic instructions are used in

this kernel because different threads may update the same cluster’s sum or number. After

launching this kernel, a reduction operation adds these intermediate sums and counters to

compute centroids. As each iteration reads the same input data and changes the centroids

based on that, SAGE applies both atomic operation and data packing optimizations to this

benchmark.

Support Vector Machines (SVMs) are used for analyzing and recognizing patterns in

the input data. The standard two class SVM takes a set of input data and for each input,

predicts which class it belongs to from the two possible classes. We used Catanzaro’s [22]

implementation for this application. Fuzzy K-Means is similar to K-Means clustering ex-

cept that in fuzzy clustering, each point has a degree of belonging to clusters rather than

belonging completely to just one cluster. Unlike K-Means, cluster centroids are a weighted
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average of all data points. Therefore, there is no need to use atomic operations.

Mean Shift Clustering is a non-parametric clustering that does not need to know the

number of clusters apriori. The main idea behind this application is to shift the points

toward local density points at each iteration. Points that end up in approximately the same

place belong to the same cluster. Histogram is one of the most common kernels used in

image processing applications such as histogram equalization for contrast enhancement or

image segmentation. Histogram plots the number of pixels for each tonal value.

Image Binarization converts an image to a black and white image. This application

is used before optical character recognition. Dynamic Range Compression increases the

dynamic range of the image. Mean Filter is a smoothing filter which is used to reduce

noise in images. It smoothes an image by replacing each pixel with the average intensity

of its neighbors. Gaussian Smoothing is another smoothing filter which is used to blur

images. We used the texture memory to store the input image to improve the performance

of these two applications.

5.5.2 Methodology

The SAGE compilation phases are implemented in the backend of the Cetus com-

piler [56]. We modified the C code generator in Cetus to read and generate CUDA code.

SAGE’s output codes are compiled for execution on the GPU using NVIDIA nvcc 4.0.

GCC 4.4.6 is used to generate the x86 binary for execution on the host processor. The

target system has an Intel Core i7 CPU and an NVIDIA GTX 560 GPU with 2GB GDDR5

global memory.

Output Quality: To assess the quality of each application’s output, we used an application-
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specific evaluation metric as shown in Table 1. Since SAGE uses an online calibration, it is

limited to a computationally simple metric that minimizes the overhead. Also, the chosen

metric is normalized (0%-100%) so that we can present results that can easily be compared

to one another. It is very easy to modify SAGE so that different metrics, like PSNR or

MSE, can be used. In all cases, we compare the output of the original application to the

output of the approximate kernel.

Based on a case study by Misailovic et al. [68], the preferred quality loss range is

between 0-10% for applications such as video decoding. Other works [96, 10, 33] have

benchmarks that have quality loss around 10%. We also used the LIVE image quality as-

sessment database [99, 124] to verify this threshold. Images in this database have different

levels of distortion by white noise and were evaluated by 24 human subjects. The quality

scale is divided into five equal portions: ”Bad”,”Poor”,”Fair”,”Good”, and ”Excellent”. We

measured output quality of images used in the LIVE study with our evaluation metric. The

results show that more than 86% of images with quality loss less than 10% were evaluated

as ”Good” or ”Excellent” by human subjects in the LIVE study. Therefore, we used 90%

as the target output quality in our experiments. We also perform our experiments with 95%

target quality to show how SAGE trades off accuracy for performance per application.

Loop Perforation: SAGE optimizations are compared to another well-known and general

approximation approach, loop perforation [2], which drops a set of iterations of a loop. For

atomic operation and data packing optimizations, we drop every N th iteration of the loops.

For thread fusion optimization, dropping the N th thread results in poor performance due to

thread divergence. Instead, we dropped the last N iterations to avoid such divergence. We

changed N to control the speedup and output quality generated by loop perforation. The
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Figure 5.11: Performance for all applications approximated using SAGE compared to the loop

perforation technique for two different TOQs. The results are relative to the accurate execution of

each application on the GPU.

loop perforation technique is only applied to loops that are modified by SAGE to evaluate

the efficiency of SAGE’s optimizations. Also, it should be noted that loop perforation and

data packing are orthogonal approaches and can be used together.

5.5.3 Performance Improvement

Figures 5.11(a) and 5.11(b) show the results for all applications with a TOQ of 95%

and 90%, respectively. Speedup is compared to the exact execution of each program. As
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computing centroids in K-Means is done by averaging over points in that cluster, ignoring

some percentage of data points does not dramatically change the final result. However,

since computing the centroids is not the dominant part of K-Means, the K-Means appli-

cation achieves better performance by using the data packing optimization rather than the

atomic operation optimization. In Section 5.5.4, we show how SAGE gets better speedup

by combining these optimizations.

For the Naive Bayes classifier, computing probabilities is similar to averaging in K-

Means. Since the atomic instructions take most of the execution time in this application,

SAGE gets a large speedup by using this approximation optimization. On the other hand,

loop perforation proportionally decreases the output quality. By decreasing the TOQ from

95% to 90%, the speedup increased from 3.6x to 6.4x.

For the Histogram application, although most of the execution time is dedicated to

atomic operations, SAGE gets a smaller speedup than K-Means. The reason is that unlike

K-Means, Histogram does not have similar averaging to compute the results and dropping

data points directly affects the output quality. Therefore, quality loss is increased rapidly

by dropping more data, and as a result, the speedup is only 1.45x for 90% TOQ.

The data packing optimization shows strong performance for memory bound applica-

tions such as fuzzy K-Means. Fuzzy K-Means is one of the more error-tolerant applications

and ignoring half of the input bits does not affect the output quality significantly. SVM also

shows good speedup when using 16 bits and 8 bits per float, but the quality drops below the

TOQ at 4 bits per float. For MeanShift, the speedup does not increase with more packing.

Therefore, the speedup of SAGE is similar for both 90% and 95% TOQ.

SAGE uses the thread fusion optimization for four applications: Dynamic range com-
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pression, Image Binarization, Mean Filter, and Gaussian Smoothing. We used 2048 x 2048

pixel images to compute the quality for these applications. Dynamic Range compression

and Image Binarization performances are reduced after fusing more than four threads. This

is mainly because of the memory accesses and fewer numbers of blocks needed to fully

utilize the GPU. Therefore, tuning stops increasing the aggressiveness of the optimization

because it does not provide any further speedup. As seen in the figures, these two ap-

plications show the same speedup for both quality targets. However, for Mean Filter and

Gaussian Smoothing, increasing the number of fused threads results in better performance.

By decreasing the TOQ, the speedup of Mean Filter goes from 1.7x to 3.1x.

Performance-Accuracy Curve: Figure 5.12 shows a performance-accuracy curve for

three sample applications to show how SAGE manages the speedup-accuracy tradeoff.

Here, the atomic operation optimization is used for Naive Bayes. As the percentage of

dropped iterations is increased, both quality loss and speedup are increased. Since SAGE

changes the approximate kernel from kernelmax to kernelmin, there is a performance jump

between 96% and 95% output qualities. SAGE uses the data packing optimization for

Fuzzy K-Means and controls the speedup by changing the number of floats that are packed.

The performance-accuracy curve for Mean Filter is also shown in Figure 5.12 to show how

the thread fusion optimization impacts speedup and quality. By fusing more threads, both

speedup and quality loss are increased. After fusing more than eight threads, speedup de-

creases because of poor GPU utilization.

Error Distribution: To study the application level quality loss in more detail, Figure 5.13

shows the cumulative distribution function (CDF) of final error for each element of the

application’s output with a TOQ of 90%. The CDF shows the distribution of output errors
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Figure 5.12: Performance-accuracy curves for three sample applications. The atomic operation

optimization is used for Naive Bayes classifier. The data packing is used for Fuzzy K-Means appli-

cation and the thread Fusion is applied to Mean Filter.

among an application’s output elements and shows that only a modest number of output

elements see large error. The majority (78% to 100%) of each transformed application’s

output elements have an error of less than 10%. As can be seen in this figure, for Image

Binarization, most of the pixels have zero percent error but others have 100 percent. These

pixels correspond to the edges of objects in the picture where adjacent threads outputs are

dissimilar.

5.5.4 Case Studies

This section describes how SAGE uses the tuning and calibration phase to control the

accuracy and performance for two example applications. In both cases, the tuning margin is

set to 1% which means that tuning stops if it finds a kernel with output quality one percent

better than the TOQ. In these examples, we assumed that we have enough confidence

about the output quality to show how the calibration interval changes during runtime.

In the first example, we run the Gaussian Smoothing application on 100 consecutive

frames of a video. Figure 5.14(a) shows the accumulative speedup and accuracy for this

example. For this experiment, we assume that the TOQ is 90%. SAGE starts with the
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Figure 5.13: Cumulative distribution function (CDF) of final error for each element of all applica-

tion’s output with the TOQ equal to 90%. The majority of output elements (more than 78%) have

less than 10% error.

exact kernel and increases the aggressiveness of the optimization until the output quality is

near 90%. In order to compute the output quality for tuning, SAGE runs the approximate

and exact versions one after the other. Therefore, during tuning, the output quality that

the user observes is 100% and there is a temporary slowdown. As seen in Figure 5.14(a),

it takes three different invocations to tune this application. After tuning, SAGE uses the

final kernel that is found by tuning to continue the execution and the speedup starts to

increase. The initial interval between two calibrations is set to 10 invocations. SAGE runs

both versions (exact and approximate) to compute the output quality for calibration. The

first calibration happens at the 10th invocation after tuning and the output quality is now

better than the TOQ. Therefore, there is no need to change the kernel. As it is shown in

the figure, each calibration has a negative impact on the overall performance. Therefore,

after each calibration where output quality is better than TOQ, SAGE increases the interval

between two consecutive calibrations to reduce the calibration overhead.

The second example is K-Means. We run K-Means with 100 random input data sets

of 1M points each and 32 dimensions. Each data set has 32 clusters with a random radius
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and one of the clusters is dominant. Figure 5.14(b) shows the accuracy and speedup for all

invocations. K-Means starts with the exact kernel, after which SAGE increases the aggres-

siveness of both optimizations: atomic operation and data packing. Since data packing is

more effective than atomic operation, SAGE continues tuning the kernel by packing two

floats. Again, SAGE checks both child nodes and packing still provides the best speedup

for the next tuning level. At the end of tuning, packing more data does not further improve

performance. Therefore, SAGE increases the dropped iterations by using the atomic oper-

ation optimization. Tuning is stopped because the output quality is between 91% and 90%.

As seen in the figure, it takes six different invocations to tune. The first calibration happens

10 invocations after tuning is finished. In subsequent calibrations, accuracy is in the margin

of the TOQ and SAGE begins to gradually increase the interval between two calibrations.

As mentioned in Section 5.3.3, SAGE does not guarantee that output quality is always

better than the TOQ. As seen in Figure 5.14, at some point, quality drops below 90%. This

is because we sample invocations for calibration.

5.5.5 Runtime Overhead

Preprocessing Overhead: For the data packing optimization, SAGE transfers the

packed data instead of the actual data. For the atomic optimization, preprocessing sends

the most popular address as a new argument to the approximate kernel. Therefore, there is

no additional transferring overhead for these two optimizations.

Since preprocessing is done on the CPU in parallel to GPU execution, the overhead

is negligible for all benchmarks except K-Means. In K-Means, addresses used by atomic

operations are changed dynamically during GPU execution, and SAGE finds the most pop-
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(a) Gaussian Smoothing
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(b) K-Means

Figure 5.14: Performance and output quality for two applications for 100 invocations with different

input-sets. The horizontal dashed line represents the TOQ.

ular address on the GPU. However, the preprocessing overhead is less than 1% to find the

cluster with maximum number of points.

Tuning overhead: Tuning overhead is dependent on how many invocations are needed to

tune the application for the specified TOQ. When it is 90%, all our applications take three

to six invocations to tune. These results are considerably better than checking all config-

urations. For example, searching the whole configuration for K-Means needs 20x more

invocations. This gain will be larger for benchmarks with more kernels and approximation

opportunities.

Calibration overhead: Calibration overhead is a function of how much speedup SAGE
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Figure 5.15: Calibration overhead for two benchmarks for different calibration intervals.

can achieve by using approximation and the interval between two consecutive calibration

phases. Equation 5.4 shows the calibration overhead for calibration interval N . te is the

execution time of one exact invocation of the application, G is the gain achieved by SAGE

using approximation, and tc is the time that SAGE spends to compute the output quality.

Since this quality checking phase is done in parallel on the GPU, it is negligible compared

to the actual execution of the application.

overheadcalibration =
tcalibration
ttotal

=
te + tc

N × te/G+ te + tc
(5.4)

Figure 5.15 illustrates the calibration overhead for the two case studies (TOQ is 90%)

for different calibration intervals. This overhead is about 1% for calibration intervals more

than 100. Gaussian Smoothing has a higher overhead compared to K-Means because SAGE

enables a better speedup for Gaussian Smoothing. Therefore, for Gaussian Smoothing, the

difference between execution time of the exact and approximate versions is larger.
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5.6 CPU-GPU Collaborative Quality Monitoring

This section describes different variations of the quality monitoring and calibration

technique proposed in this paper. As mentioned in Section 5.3, in order to reduce the cali-

bration overhead, SAGE only checks every N th invocation of the program. This approach

works efficiently for applications that have temporal similarity, where two consecutive in-

put sets shows similar output quality using the same configuration of approximation meth-

ods. One example of this type of application is applying the Gaussian filter on different

frames of a video as we showed in Section 5.5.4. Since this application has temporal sim-

ilarity, there is a small difference between the maximum sampled error (MSE) and the

maximum real error (MRE). Figure 5.16 illustrates the difference between the MSE and

the MRE for one calibration interval of Gaussian Smoothing from Figure 5.14(a). To illus-

trate this difference for various input sets, we applied Gaussian Smoothing to all frames of

10 different videos. Figure 5.17 shows the percent difference between MSE and MRE.

As the interval between two calibrations increases, this difference increases. However,

even with a calibration interval of 100 invocations, the difference between these errors is

less than 10% for most of the videos.

However, this quality monitoring approach does not work efficiently for applications

that do not have temporal similarity. Because in these applications, calibration samples

are not representative of all invocations. Also, it is not possible to check the output qual-

ity for all invocations due to its high overhead. To solve this problem, we propose a new

collaborative CPU-GPU quality monitoring technique (CCG) [94] which runs the quality

monitoring code on the CPU while the GPU executes approximate data-parallel kernels.
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Figure 5.17: The percent difference between maximum real error (MRE) and maximum sampled

error (MSE) during calibrations for 10 videos. The number of frames is displayed next to the

video’s name in parentheses.

Instead of checking every N th invocation, this technique checks the quality of all invo-

cations and runs the quality checking on the CPU in parallel to the GPU execution using

synchronous execution. At each time quantum, the GPU runs the selected kernel for an

invocation while the CPU computes the output quality for the next invocation. To make the

overhead of quality checking almost zero, it should be completely overlapped by the kernel

execution as shown in Figure 5.18.

However, since GPU’s the performance is higher than the CPU’s for data parallel ker-

nels, the CPU cannot keep up with the GPU while computing the output quality for the
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Figure 5.18: An example of collaborative CPU-GPU quality monitoring (CCG)

whole input data set. We solved this problem by two means: First, we parallelized the

output quality computing on the CPU with four threads. Second, instead of performing

full quality checking, this technique runs partial quality checking, which applies the exact

and approximate kernels to a subset of input data and compares the results to estimate the

overall output quality. To perform partial quality monitoring, we identified three central

challenges that must be solved.

First, it is not straight-forward how to generate partial quality checking code for gen-

eral applications automatically. In this paper, we wrote these codes manually. However,

it is possible to use the same pattern-based compilation method as used in Paraprox [92].

Paraprox creates approximate kernels by recognizing common computation idioms found

in data-parallel programs (e.g., Map, Scatter/Gather, Reduction, Scan, Stencil, and Parti-

tion) and substituting approximate implementations in their place. It is possible to generate

pattern-based partial checking codes too.

Second, the subset of the input data that is used for partial quality monitoring should

be chosen carefully to be a representative for the whole input data set. For now, we chose

a uniformly distributed data from the input array and applied partial quality monitoring to

that.

Third, the method of choosing the aggressiveness of approximation for the next kernel

based on the partial output quality is important to get the best accuracy. In this work,
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we checked the output for three levels of approximation for each invocation ( the current

level, one level more aggressive, and one level less aggressive). After computing the partial

output quality for three approximate versions, the CPU will decide which one to use for the

next kernel.

We illustrate by applying two image processing applications, Mosaic and Mean filter,

to 1600 flower images. Since these images have different characteristics and their order

is random, there is no similarity between two consecutive images. To approximate these

benchmarks, we used the approximation methods described in Paraprox [92]. For the Mo-

saic application, loop perforation [2] was used. For Mean filter, we assumed that neighbor

pixels have similar values. Based on this assumption, rather than accessing all neighbors

within a tile, we access only a subset of them and assume the rest of the neighbors have the

same value.

To show the calibration efficiency, we considered four alternatives to SAGE’s calibra-

tion technique:

Conservative Fixed Interval (CFI): This technique checks the output quality every

N th invocation. The output quality is computed by running the approximate and exact

versions sequentially. After that, the runtime system computes the output quality by com-

paring the exact and approximate outputs. Since this process has a high overhead, quality

checking has a high impact on the overall performance of this technique.

At the point of quality checking, if the measured quality is lower than TOQ − delta,

the runtime system switches to a slower but more precise version of the program. Since

this technique only reduces the aggressiveness of the approximate versions, we call it con-

servative.
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Conservative Adaptive Interval (CAI): This approach reduces the monitoring over-

head of CFI by performing quality checking more frequently to converge to a stable so-

lution faster at the beginning of kernel execution. If the output quality is higher than

TOQ − delta, the interval between two checking points is gradually increased so that

the overhead of quality checking is reduced. Every time the runtime management needs to

change the selected kernel (output quality is lower than TOQ−delta), the interval between

checking points is reset to a minimum width. Like CFI, this technique is conservative, so

the overall performance might be less than ideal. This approach is the same as the calibra-

tion technique used in SAGE if delta = 0.

Aggressive Fixed Interval (AFI): To improve performance, unlike the aforementioned

techniques, AFI looks for opportunities to reduce the output quality. At the checking point,

if the output quality is higher than TOQ + delta, the runtime system increases the ag-

gressiveness of the approximate versions. On the other hand, if the output quality is lower

than TOQ − delta, the runtime system decreases the aggressiveness of the approximate

versions.

Aggressive Adaptive Interval (AAI): This technique is similar to AFI but with adap-

tive intervals. Since this technique is both adaptive and non-conservative, its overall per-

formance should be higher than the last three mentioned techniques.

Figure 5.19a shows the percent of images for which their output quality is not accept-

able (lower than TOQ−delta) for all four quality monitoring techniques mentioned above.

Figure 5.19b shows the overall speedup of different techniques for applying the Mosaic and

Mean filter applications on all 1600 images. In these experiments, we set the TOQ to 95%

and delta is 1%. As expected, the conservative techniques’ (CFI and CAI) output qualities
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Figure 5.19: (a) Percent of images with unacceptable quality (lower than TOQ−delta) for different

quality monitoring techniques. (b) Overall speedup of applying two programs on all 1600 images

considering the calibration overhead.

are always better than those of the aggressive techniques. However, they do not show great

performance. Aggressive techniques provide better speedups but the quality of more than

25% of images is not acceptable using such techniques. The reason for this that aggressive

techniques are based on the assumption that it is possible to predict the quality of images

by computing the quality of every N th invocation. However, this assumption is not true for

applications that do not have temporal similarity. As seen in these figures, the CCG outper-

forms other techniques mostly because its monitoring overhead is negligible and it checks
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Figure 5.20: Quality distribution of 1600 images using collaborative CPU-GPU quality monitor-

ing (CCG)

the quality for all different invocations. To study the output quality of unacceptable images

processed by CCG, Figure 5.20 shows the quality distribution of all images. This figure

shows that although quality of about 5% of images is not acceptable, even those images

have quality really close to the TOQ.

To study the impact of conservative/aggressive methods on performance, Figure 5.21

shows the approximation speedup when applying the Mosaic application to 1600 images.

This speedup is representative of the aggressiveness of the approximation method used for

each image. Figure 5.21a shows the aggressiveness of approximation when calibrating

using the conservative fixed interval (CFI) technique. Since this approach is conserva-

tive, the speedup just decreases over time and it will choose a pessimistic approximation

method to make sure that fewer images have unacceptable quality. On the other hand, Fig-

ure 5.21b shows the aggressiveness of approximation for the aggressive adaptive interval

(AAI). This technique switches between two most aggressive approximation methods for

all of the images. Therefore, AAI provides a better performance than conservative tech-

niques. However, using this technique, many images have unacceptable output quality as
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(b) Aggressive Adaptive Interval

Figure 5.21: Instantaneous speedup of applying the Mosaic application to all 1600 images using

two calibration intervals (CFI and AAI). This speedup is representative of the aggressiveness of the

approximation method used for each image.

shown in Figure 5.19a.

5.7 Related Work

Trading accuracy for other benefits such as improved performance or energy con-

sumption is a well-known technique [86, 2, 101, 41, 10, 96, 9, 32, 92, 94]. Some of

these techniques are software-based and can be utilized without any hardware modifica-

tions [86, 101, 41, 2, 98, 92, 94]. Agarwal et al. [2] used code perforation to improve
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performance and reduce energy consumption. They perform code perforation by discard-

ing loop iterations. Instead of skipping every N th iteration or random iterations, SAGE

skips iterations with the highest performance overhead which results in the same accuracy

loss but better performance gain. Rinard et al. [86] terminate parallel phases as soon as

there are too few remaining tasks to keep all of the processors busy. Since there are usu-

ally enough threads to utilize the GPU resources, this approach is not beneficial for GPUs.

Sartori et al. [98] also use a software approach which targets control divergence that can be

added to the SAGE framework. Samadi et al. [92] introduced pattern-based approximation

framework, Paraprox, which detects common patterns in the input data-parallel program

and applies pattern-specific approximation methods.

Green [10] is another flexible framework that developers can use to take advantages of

approximation opportunities to achieve better performance or energy consumption. The

Green framework requires the programmer to provide approximate kernels or to annotate

their code using extensions to C and C++. In contrast to these techniques, this paper auto-

matically generates different approximate kernels for each application. Another difference

is that SAGE’s framework is specially designed for GPUs with thousands of threads and

its approximation techniques are specially tailored for GPU-enabled devices. Also, the

process of finding the candidate kernel to execute is different from that of the Green frame-

work. Instead of offline training, SAGE uses an online greedy tree algorithm to find the

final kernel more quickly. Ansel et. al. [9] also propose language extensions to allow the

programmer to mark parts of code as approximate. They use a genetic algorithm to se-

lect the best approximate version to run. Unlike these approaches, Paraprox chooses the

approximation optimization based on the patterns detected in the input code and generates
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approximate versions automatically for each pattern without programmer annotation. Para-

prox, however, can be utilized by the runtime systems introduced in these works to optimize

performance. Samadi and Mahlke [94] proposed CPU-GPU collaborative monitoring tech-

nique which predicts the quality for all kernel invocations instead of time sampling method

used in SAGE.

EnerJ [96] uses type qualifiers to mark approximate variables. Using this type system,

EnerJ automatically maps approximate variables to low power storage and uses low power

operations to save energy. Esmaeilzadeh et al. [32] used the same approach to map ap-

proximate variables to approximate storage and operations. While these approximate data

type optimizations need hardware support, our data packing optimization is applicable to

current GPU architectures and does not require any hardware modification. Another work

by Esmaeilzadeh [33] designs neural processing unit (NPU) accelerators to accelerate ap-

proximate programs. Li and Yeung [59] used approximate computing concept to design a

light weight recovery mechanism. Relax [29] is a framework that discards the faulty com-

putations in fault-tolerant applications. Sampson et. al. [97] show how to improve memory

array lifetime using approximation.

Finally, there exists a large variety of work which maps machine learning and im-

age processing applications to the GPU such as Support Vector Machine [22] and K-

Means [60]. OptiML [104] is another approach which proposes a new domain specific

language (DSL) for machine learning applications that target GPUs.

Besides approximate systems, there are a number of systems [8, 93] that support adap-

tive algorithm selection to evaluate and guide performance tuning. PetaBricks [8] intro-

duces a new language and provides compiler support to select amongst multiple imple-
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mentations of algorithms in order to solve a problem. Adaptic [93] is a compiler which

automatically generates different kernels based on the input size for GPUs.

5.8 Conclusion

Approximate computing, where computation accuracy is traded for better performance

or higher data throughput, provides an efficient mechanism for computation to keep up

with exponential information growth. For several domains such as multimedia and learning

algorithms, approximation is commonly used today. In this work, we proposed the SAGE

framework for performing systematic runtime approximation on GPUs.

Our results demonstrate that SAGE enables the programmer to implement a program

once in CUDA and, depending on the target output quality (TOQ) specified for the pro-

gram, automatically trade accuracy for performance. Across ten machine learning and im-

age processing applications, SAGE yields an average of 2.5x speedup with less than 10%

quality loss compared to the accurate execution on a NVIDIA GTX 560 GPU. This paper

also shows that there are GPU-specific characteristics that can be exploited to gain sig-

nificant speedups compared to hardware-incognizant approximation approaches. We also

discussed how SAGE controls the accuracy and performance at runtime using optimization

calibration in two case studies.
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CHAPTER VI

Pattern-Based Approximation

6.1 Introduction

Over the past few years, the information technology industry has experienced a mas-

sive growth in the amount of data that it collects from consumers. Analysts reported that

in 2011 alone the industry gathered a staggering 1.8 zettabytes of information, and they

estimate that by 2020, consumers will generate 50 times this figure [31]. Most major busi-

nesses that host such large-scale data-intensive applications, including Google, Amazon,

and Microsoft, frequently invest in new, larger data centers containing thousands of multi-

core servers. However, it seems that such investments in new hardware alone may not

translate to the computation capability required to keep up with the deluge of data. Rather,

it may be necessary to consider using alternative programming models that exploit the data

parallel computing abilities of existing servers in order to address this problem. This work

focuses on applying one such model, approximate computing, where the accuracy of results

is traded off for computation speed, to solve the problem of processing big data.

Approximation is applicable in domains where some degree of variation or error can
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be tolerated in the result of computation. For domains where some loss of accuracy during

computation may cause catastrophic failure, e.g. cryptography, approximation should not

be applied. However, there are many important domains where approximation can greatly

improve application performance, including multimedia processing, machine learning, data

analysis, and gaming. Video processing algorithms are prime candidates for approximation

as occasional variation in results do not cause the failure of their overall operation. For ex-

ample, a consumer using a mobile device can tolerate occasional dropped frames or a small

loss in resolution during video playback, especially when this allows video playback to

occur seamlessly. Machine learning and data analysis applications also provide opportuni-

ties to exploit approximation to improve performance, particularly when such programs are

operating on massive data sets. In this situation, processing the entire dataset may be infea-

sible, but by sampling the input data, programs in these domains can produce representative

results in a reasonable amount of time.

Improving performance by applying approximation has been identified as an important

goal by prior works [84, 86, 2, 10, 96, 9, 32, 33]. These works have studied this topic and

proposed new programming models, compiler systems, and runtime systems to systemat-

ically manage approximation. However, these approaches have three critical limitations.

We categorize the prior works based on these limitations:

• Programmer-based [10, 9]: In these systems, the programmer must write different

approximate versions of a program and a runtime system decides which version to

run. Although the programmer may best understand how his code works, writing dif-

ferent versions of the same program with varying levels of approximation is neither
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easy nor practical to be applied generally.

• Hardware-based [96, 32, 33]: These approaches introduce hardware modifications

such as imprecise arithmetic units, register files, or accelerators. Although these

systems work for general algorithms, they cannot be readily utilized without manu-

facturing new hardware. Furthermore, having both exact and approximate versions

of the same hardware increases the hardware design complexity and the difficulty of

validating and verifying such hardware.

• Software-based [84, 86, 2, 95]: Previous software-based approximation techniques

do not face the problems of the other two categories as they (a) remove the burden

of writing several versions of the program from the programmer, and (b) can be used

with existing, commodity systems. However, with past approaches, one solution

does not fit all applications. Each of these solutions works only for a small set of

applications. They either cannot achieve a desired amount of performance improve-

ment or generate unacceptable computation errors for applications that they were not

explicitly built to handle.

To address these issues, this work proposes a software framework called Paraprox.

Paraprox identifies common patterns found in data-parallel programs and uses a custom-

designed approximation technique for each detected pattern. Paraprox enables the pro-

grammer to write software once and run it on a variety of modern processors, without

manually tuning code for different hardware targets. It is applicable to a wide range of

applications as it determines the proper approximation optimizations that can be applied to

each input program. Because Paraprox does not apply a single solution to all programs, it
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overcomes the aforementioned limitation of prior software-based approaches.

In this work, we identify different patterns commonly found in data parallel workloads

and we propose a specialized approximation optimization for each pattern. We closely

study data parallel programs because they are well-fitted for execution on prevalent multi-

core architectures such as CPUs and GPUs. Paraprox is capable of targeting any data

parallel architecture, provided that the underlying runtime supports such hardware.

Overall, Paraprox enables the programmer to implement a kernel once using the OpenCL

or CUDA data parallel languages and, depending on the target output quality (TOQ) spec-

ified for the kernel, tradeoff accuracy for performance. To control the efficiency, accuracy,

and performance of the system, each optimization allows some variables to be dynamically

varied. After Paraprox generates the approximate kernels, a runtime system tunes the afore-

mentioned variables to get the best performance possible while meeting the constraints of

the TOQ.

To automatically create approximate kernels, Paraprox utilizes four optimization tech-

niques which target six data parallel patterns: Map, Scatter/Gather, Reduction, Scan, Sten-

cil, and Partition. Paraprox applies approximate memoization to map and scatter/gather

patterns where computations are replaced by memory accesses. For reduction patterns,

Paraprox uses sampling plus adjustment to compute the output by only computing the re-

duction of a subset of the data. The stencil & partition approximation algorithm is based

on the assumption that adjacent locations in an input array are typically similar in value

for such patterns. Therefore, Paraprox accesses a subset of values in the input array and

replicates that subset to construct an approximate version of the array. For scan patterns,

Paraprox only performs the scan operation on a subset of the input array and uses the results
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to predict the results for the rest of the array.

The specific contributions of this work are as follows:

• Pattern based compilation system for approximate execution.

• Automatic detection of data parallel patterns in OpenCL and CUDA kernels.

• Four pattern-specific approximation optimizations which are specifically designed

for six common data parallel computation patterns.

• The ability to control performance and accuracy tradeoffs for each optimization at

runtime using dynamic tuning parameters.

The rest of the chapter is organized as follows. Section 6.2 explains how the Paraprox

framework operates. Approximate optimizations used by Paraprox are discussed in Sec-

tion 6.3. The results of using Paraprox for various benchmarks and architectures are pre-

sented in Section 6.4. Limitations of Paraprox’s framework are discussed in Section 6.5.

Section 6.6 discusses the related work in this area and how Paraprox is different from

previous work. Section 6.7 concludes this chapter and summarizes its contributions and

findings.

6.2 Paraprox Overview

In order to generate approximate programs, Paraprox must detect data parallel patterns

for optimization. As shown in Figure 6.1, these patterns have distinct characteristics that

require specialized optimizations in order to create fast, approximate versions. In the fol-

lowing list, we describe the characteristics of the six patterns that Paraprox targets. These
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Figure 6.1: The data parallel patterns that Paraprox targets: (a) Map (b) Scatter/Gather (c) Reduc-

tion (d) Scan (e) Stencil (f) Partition.

patterns are chosen from all patterns described in ”structured parallel programming” book

by McCool [62] based on their popularity in data parallel applications that are tolerant to

some degree of approximation.

• Map: In the map pattern, a function operates on every element of an input array

and produces one result per element as shown in Figure 6.1a. To process all the input

elements in parallel, a map function should be pure. A pure function always generates

the same result for the same input, and its execution does not have any side-effects,
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e.g., it cannot read or write mutable state. Since there is no need to synchronize

between two threads and no sharing of data is necessary, the map pattern is perfectly

matched to data parallel, many-core architectures. In parallel implementations of

map patterns, each thread executes one instance of a map function and generates

its corresponding result. This pattern is used in many domains, including image

processing and financial simulations.

• Scatter/Gather: Scatter and gather patterns are similar to map patterns but their

memory accesses are random as illustrated in Figure 6.1b. Based on McCool’s defi-

nition [62], scatter is a map function that writes to random locations, and gather is the

combination of a map function with memory accesses that read from random input

elements. The parallel implementations of scatter/gather patterns are similar to map

implementations. This pattern is commonly found in statistics applications.

• Reduction: When a function combines all the elements of an input array to generate

a single output, it is said to be performing a reduction (Figure 6.1c). If the function

used by the reduction pattern is both associative and commutative, e.g., XOR, the

order in which the reduction operation is applied to its inputs is unimportant. In

this case, tree-based implementations can be used to parallelize such a reduction.

Reductions can be found in many domains, such as machine learning, physics, and

statistics.

• Scan: The all-prefix-sums operation, more commonly termed scan, applies an as-

sociative function to an input array and generates another array. Every N th element

of the output array is the result of applying the scan function on the first N (inclu-
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Figure 6.2: Approximation system framework.

sive scan) or N − 1 (exclusive scan) input elements. An inclusive scan example is

shown in Figure 6.1d. The scan pattern is common in the signal processing, machine

learning, and search domains.

• Stencil: In a stencil pattern, each output element is computed by applying a function

on its corresponding input array element and its neighbors as shown in Figure 6.1e.

This pattern is common in image processing and physics applications.

• Partition: The partition (or tile) pattern is similar to the stencil pattern. The input

array is divided into partitions and each partition is processed separately. Each par-

tition is wholly independent of the others as shown in Figure 6.1f. Partitioning is

commonly used in data parallel applications to efficiently utilize the underlying ar-

chitecture’s memory hierarchy to improve performance. This pattern is common in

domains such as image processing, signal processing, and physics modeling.

In order to manage the output quality during execution, the Paraprox compilation frame-

work should be used in tandem with a runtime system like Green [10] or SAGE [95] as

shown in Figure 6.2. After Paraprox detects the patterns in the program and generates ap-

proximate kernels with different tuning parameters, the runtime profiles the kernels and

tunes the parameters so that it provides the best performance. If the user-defined target
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output quality (TOQ) is violated, the runtime system will adjust by retuning the parameters

and/or selecting a less aggressive approximate kernel for the next execution.

6.3 Approximation Optimizations

We will now discuss the approximation optimizations that are applied to each data

parallel pattern. For each pattern, we describe the intuition behind the optimization, the

algorithm used to detect such a pattern, the implementation of the optimization, and tun-

ing parameters that are used by a runtime to control the performance and accuracy of an

approximate kernel during execution.

6.3.1 Map & Scatter/Gather

6.3.1.1 Idea:

Paraprox applies approximate memoization to optimize map and scatter/gather patterns.

This technique replaces a function call with a query into a lookup table which returns a

precomputed result. Since the size of this lookup table is limited by the size of memory

and by performance considerations, there are situations in which the exact result is not

stored in the table. In such cases, Paraprox finds the element nearest to the input present in

the lookup table and returns that element instead. Consequently, the quality of the output

is inversely proportional to the size of the lookup table (a.k.a. the number of quantization

levels). As this optimization replaces the computations done by map and scatter/gather

functions with a memory access, the unoptimized code should have more latency due to

computation than that of one memory operation in order to achieve speedup.
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To fill the lookup table with precomputed data, Paraprox computes the output of the map

or scatter/gather function for a number of representative input sets (quantization levels)

offline. During runtime, the launched kernel’s threads use this lookup table to find the

output for all input values.

6.3.1.2 Detection:

To detect map or scatter/gather patterns, Paraprox checks all functions in the input pro-

gram to look for functions that can be replaced by a lookup table. There are two require-

ments for such functions. First, these functions should be pure. Pure functions do not have

side effects and their output is only dependent on their inputs. To meet these constraints,

pure functions should not:

• read or write any global or static mutable state.

• call an impure function.

• perform I/O.

In addition to being pure, these functions should not access global memory during ex-

ecution, and their outputs should not be dependent on the thread ID. Therefore, Paraprox

looks for functions which do not contain global/shared memory accesses, atomic opera-

tions, computations involving thread or block IDs, or calls to impure functions. If a function

meets all these conditions, Paraprox marks it as a candidate for approximate memoization.

It should be noted that although Paraprox works at a function granularity, it is possible

to find pure sections of code within a function. Detection of such map or scatter/gather

sections within a function is left for future research.

151



As Paraprox will replace computation with memory accesses, this optimization should

only be applied to computationally intensive map and scatter/gather patterns in order to

achieve high performance improvements. To determine which functions to optimize, Para-

prox computes the sum of the latencies of each instruction in the function as a metric to

estimate the function’s computation cycles as follows:

cycles needed =
∑

inst∈f

latency(inst) (6.1)

Instruction latency values are passed to Paraprox in a table based on the target archi-

tecture. Paraprox uses this latency table to compute the cycles needed for all map and

scatter/gather functions found in the program. For GPUs, we used microbenchmarks from

Wong et al. [118] to measure the latency of all instructions. We found that if a function’s

cycles needed is at least one order of magnitude greater than the L1 read latency, it can

benefit from this approximation. Therefore, Paraprox only applies the approximation on

such functions.

6.3.1.3 Implementation:

Approximate memoization is accomplished in three steps: quantizing the inputs, join-

ing these bit representations of inputs together to create an address, and accessing a lookup

table using that address to get the final result. Figure 6.3(a) shows the dataflow in the

BlackScholesBody function of the BlackScholes benchmark. This function meets all the
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Figure 6.3: (a) illustrates the dataflow graph of the main function of the BlackScholes benchmark.

The function Cnd() is a pure function. (b) shows the approximate kernel created using the map and

scatter/gather technique described in 6.3.1.

candidacy conditions described in Section 6.3.1.2. Figure 6.3(b) shows the approximate

version of the same function.

Paraprox quantizes the function’s inputs to generate an address into the lookup table.

For a quantized input i, Paraprox can control the output quality of the approximate function

by altering the number of bits (qi) used to represent that input. If a pattern has multiple

input variables, e.g. i and i + 1, each input has its own quantization bits (qi and qi+1).

When concatenated together, these quantization bits form the address into the lookup table.

The table’s size is thus equal to 2Q, where Q =
∑n

i=0 qi for all n inputs.

Using fewer bits reduces the number of quantization levels (2qi) that represent an input

value, thus limiting the input’s accuracy. Conversely, increasing the number of bits will
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permit more quantization levels, which will increase the accuracy of the input representa-

tion. If the pattern’s output is very sensitive to small changes in the input and there are not

enough bits allocated to adequately represent this, Paraprox detects that the output quality

is deteriorating and increases qi. On the other hand, if the output is not very sensitive to

changes in the input or the input’s dynamic range is very small, Paraprox can reduce qi.

Bit tuning: The process of determining qi for inputs is called bit tuning and is performed

offline. For each input argument to the function, Paraprox computes the range of the func-

tion’s output by applying training data to the function and storing the results in memory. If

an input at runtime is not within this precomputed range, it will map to the nearest value

present in the lookup table.

If a function has multiple inputs, naively dividing the quantization bits equally amongst

all inputs does not necessarily yield ideal results, so Paraprox can unevenly divide the bits

of the quantized input to favor some inputs over others. For example, in Figure 6.3, the

BlackScholesBody function has five inputs, two of which (R and V ) are always constant

during profiling. When Paraprox detects this, it chooses to allot all quantized bits to repre-

sent the other three variable inputs.

Our experiments show that the overall speedup of this optimization is dependent on

the size of the lookup table but not the number of bits in qi assigned to each input. How-

ever, the quantization bits still need to be distributed carefully amongst inputs to guarantee

satisfactory output quality.

To reduce output quality loss for a given lookup table size, bit tuning uses a tree algo-

rithm. Each node in the tree corresponds to an approximate kernel with a specific qi bits
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Figure 6.4: An example of how Paraprox’s bit tuning finds the number of bits assigned to each

input for the BlackScholesBody function. The lookup table has 32768 entries and its address is 15

bits wide. The output quality is printed beside each node. Bit tuning’s final selection is outlined

with a dotted box.

per input. The root node divides bits equally between the inputs. Figure 6.4 shows the tree

for the example shown in Figure 6.3(b). In this example, the lookup table size is 32768,

which implies that the address into the table is 15 bits wide. The root of the tree shows that

this address initially is evenly split into five bits each for the three variable inputs. Each

child node is different from its parent such that one bit is reassigned from one input to an

adjacent input.

The bit tuning process starts from the root and uses a steepest ascent hill climbing

algorithm to reach a node with the highest output quality. Paraprox checks all the children

of each node and selects the one with the best output quality. This process will continue

until it finds a node for which all of its children have lower output quality than itself. In

the example shown in Figure 6.4, Paraprox starts from node (q1 = 5, q2 = 5, q3 = 5)

and checks all its children. Among them, node (5,6,4) has the best output quality. Since

all children of node (5,6,4) have a lower output quality than itself, node (5,6,4) is selected,

and Paraprox assigns 5, 6, and 4 quantization bits to the first, second, and third inputs,

respectively. Paraprox uses this process to find a configuration that returns the highest

output quality for the specified lookup table size.
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As bit tuning aims to control quality loss, it needs to determine how much error is intro-

duced for each bit configuration it considers. To do so, bit tuning first quantizes the inputs

using the division of bits specified by the current tree node under inspection. It then calcu-

lates the results of the exact and approximate functions and compares the two to compute

a percent difference. Figure 6.4 shows these quality metrics for the BlackScholesBody ex-

ample. It should be noted that bit tuning does not need to use an actual lookup table as it

computes the approximate result that it is currently investigating.

To determine the size of the lookup table, Paraprox starts with a default size of 2048.

For each lookup table size, Paraprox performs bit tuning to find the output quality. If the

quality is better than the TOQ, Paraprox decreases the size of lookup table to see if it can

further improve performance. If the quality is worse than the TOQ, Paraprox doubles the

lookup table’s size, as larger tables improve accuracy. This process stops when Paraprox

finds the smallest table size that has an output quality that satisfies the TOQ.

After computing the size of the lookup table and assigning quantization bits for each

input, Paraprox populates the lookup table. For each quantization level of each input,

Paraprox computes the output and stores it in the lookup table. After filling the lookup

table, Paraprox passes the approximate kernel a pointer to the lookup table. The lookup

table can be allocated in the global memory, or if a target has fast access memories, like

the constant cache or shared memory in GPUs, those can be utilized instead of the global

memory. Section 6.4.4.2 investigates these different options and compares their impacts

on performance. Should the output quality change during runtime, Paraprox can accelerate

the process of switching between different sized lookup tables by storing multiple tables in

memory and changing the pointer passed to the kernel at runtime to reflect this decision.
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Figure 6.5: The average percent differences between adjacent pixels in ten images. More than 75%

of pixels are less than 10% different from their neighbors.

Paraprox can generate as many tables as it can fit in memory. However, in our experiments

we found that no more than three tables are needed for our benchmarks.

6.3.1.4 Tuning Parameter:

To tune the output quality and performance, Paraprox allows the runtime to select

amongst lookup tables of different sizes.

6.3.2 Stencil & Partition

6.3.2.1 Idea:

The stencil and partition approximation algorithm is based on the assumption that ad-

jacent elements in the input array usually are similar in value. This is often the case for

domains such as image and video processing, where neighboring pixels tend to be similar

if not the same. To evaluate this assumption, Figure 6.5 shows the average percent dif-

ference of each pixel with its eight neighbors, which constitute a tile, for all pixels in 10
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different images. As the figure shows, on average, more than 70% of the each image’s pix-

els have less than 10% difference from their neighbors. Therefore, most of the neighbors

of each pixel have similar values.

Under this assumption, rather than access all neighbors within a tile, Paraprox accesses

only a subset of them and assumes the rest of the neighbors have the same value. This is

similar to changing the resolution of the input data. However, the advantage of this opti-

mization over changing the resolution is that it is possible to control the aggressiveness of

approximation during runtime with really low overhead. However, changing the resolution

should be done offline because there is a high overhead to change the resolution during

runtime.

6.3.2.2 Detection:

To detect stencil/partition patterns, Paraprox checks the load accesses to the arrays and

looks for a constant number of affine accesses to the same array, indicating a tile size. These

accesses can be found in loops with a constant loop trip or in manually unrolled loops. After

finding these accesses, Paraprox computes the tile’s size and dimensionality. Paraprox

detects stencil/partition patterns based on the array access indices ((f + i) ∗ w + g + j).

Parameters f , g, and w are the same (loop invariant) for all accesses that are examined.

Parameters i and j can be hand-coded constants or loop induction variables. The size of a

tile can be determined by looking at the dynamic range of i and j.
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(a) (b) (c)

Figure 6.6: The three different schemes Paraprox uses to approximate the stencil pattern. (a) illus-

trates how the value at the center of the tile approximates all neighboring values. (b) and (c) depict

how one row/column’s values approximate the other rows/columns in the tile.

6.3.2.3 Implementation:

To approximate stencil/partition patterns, Paraprox uses three different approximation

schemes: center, row, and column based. For each approximation, a reaching distance

parameter controls the number of memory elements that Paraprox accesses. In the center

based approach, the element at the center of a tile is accessed and Paraprox assumes that

all its neighbors have the same value. When Paraprox accesses an element, its neighbors,

whose distances from the accessed element are less than the reaching distance, will not be

accessed as shown in Figure 6.6a.

Figures 6.6b and 6.6c illustrate the row and column based approximation schemes. In

these schemes, one row/column within a tile is accessed, and all other rows/columns within

a reaching distance from it are assumed to be the same and are left unaccessed.

6.3.2.4 Tuning Parameter:

To control performance and output quality, Paraprox allows a runtime to select from

various approximate kernels and tune each kernel’s reaching distance.
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6.3.3 Reduction

6.3.3.1 Idea:

To approximate reduction patterns, Paraprox aims to predict the final result by com-

puting the reduction of a subset of the input data in a way similar to loop perforation [2].

Figure 6.7 illustrates how this concept is applied. The assumption here is that the data is

distributed uniformly, so a subset of the data can provide a good representation of the entire

array. For example, instead of finding the minimum of the original array, Paraprox finds

the minimum within one half of the array and returns it as the approximate result. If the

data in both subarrays have similar distributions, the minimum of these subarrays will be

close to each other and approximation error will be negligible.

Some reduction operations like addition need some adjustment to produce more ac-

curate results. For example, after computing the sum of half of an array, if the result is

doubled it more closely resembles the results of summing the entire array, thus the output

quality is improved. In this case of addition, Paraprox assumes that the other half of the

array has the exact same sum as the first half, so it doubles the approximated reduction

result.

6.3.3.2 Detection:

Reduction recognition has been studied extensively by previous works [119, 87]. To

detect reduction patterns, Paraprox searches for accumulative instructions that perform an

operation like a = a+ b, where a is called the reduction variable and addition is the reduc-

tion operation. Reduction loops have the following two characteristics: a) they contain an

160



+

Adjustment

Figure 6.7: An illustration of how Paraprox approximates the reduction pattern. Instead of access-

ing all input elements, Paraprox accesses a subset of the input array and adds adjustment code to

improve the accuracy.

accumulative instruction; and b) the reduction variable is neither read nor modified by any

other instruction inside the loop.

In order to parallelize a reduction loop for a data parallel architecture, tree-based re-

duction implementations are often used. These reductions have three phases. In the first

phase (Phase I), each thread performs a reduction on a chunk of input data. In the next

phase (Phase II), each block accumulates the data generated by its threads and writes this

result to the global memory. The final phase (Phase III) then accumulates the results of

all the blocks to produce the final results. All of the phases contain a reduction loop that

Paraprox optimizes, creating approximate kernels for each loop. The runtime determines

which approximate version to execute.

Atomic operations can also be used to write data parallel reductions. An atomic func-

tion performs a read-modify-write atomic operation on one element residing in global or

shared memory. For example, CUDA’s atomicInc() and OpenCL’s atomic inc() both read

a 32-bit word at some address in the global or shared memory, increment it, and write the

result back to the same address [72, 46]. Among atomic operations, the atomic add, min,

max, inc, and, or, and xor operations can be used in a reduction loop. Paraprox searches
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for and marks loops containing these operations as reduction loops.

6.3.3.3 Implementation:

After detecting a reduction loop, Paraprox modifies the loop step size to skip iterations

of the loop. In order to execute every N th iteration and skip the other N − 1 iterations,

Paraprox multiplies the loop step by N . We call N the skipping rate. For example, if

Paraprox multiplies the loop step size by four, only a quarter of the original iterations are

executed and the rest are skipped.

If the reduction operation is addition, Paraprox inserts adjustment code after the loop.

This code multiplies the result by the skipping rate. To make the adjustment more accu-

rate, the reduction variable’s initial value should be equal to zero before the reduction loop.

Otherwise, by multiplying the result, the initial value is multiplied as well which produces

an unacceptable output quality. In order to address this, Paraprox replaces the loop’s re-

duction variable with a temporary variable set to zero just before the loop’s entrance. After

adjustment, Paraprox then adds the scaled temporary variable back to the original reduction

variable to produce the final result.

6.3.3.4 Tuning Parameter:

Paraprox allows a runtime to change the skipping rate in order to tune the speedup and

accuracy of the kernels.
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6.3.4 Scan

6.3.4.1 Idea:

To approximate scan patterns, Paraprox assumes that differences between elements in

the input array are similar to those in other partitions of the same input array. Parallel

implementations of scan patterns break the input array into subarrays and computes the

scan result for each of them. In order to approximate, Paraprox only applies the scan to a

subset of these subarrays and uses its results for the rest of the subarrays.

As the N th element of the scan result is the sum of the first N elements of its input

array, any change to the N th element modifies the N th output element and all elements

afterwards. Therefore, if Paraprox applies approximation to one of the early input ele-

ments, any approximation error will propagate to the results for all the following elements,

resulting in an unacceptable output quality. This effect is studied in Section 6.4.4.3.

In order to avoid this cascading error, rather than uniformly skipping loop iterations,

Paraprox predicts the last elements of the scan results by examining the first output ele-

ments. Figure 6.8 presents an example of how Paraprox copies the first elements of the

result to the end of the array to approximate the last elements.

6.3.4.2 Detection:

The data parallel implementation of the scan pattern is traditionally composed of three

phases as illustrated in Figure 6.9. As an example, this figure shows how these phases

compute the scan results for an input array containing all ones. In the first phase, the

input is divided into many subarrays and each block of threads performs a scan on one
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Figure 6.8: An example of how Paraprox uses the first elements of the scan results to approximate

the end of the output array.

subarray and stores results in a partial scan array. The sum of each subarray is also written

to another array called sumSub. The second phase then runs a scan on the sumSub array.

The ith element of sumSub’s scan result is equal to the sum of elements in subarrays 0 to i.

In the third phase, every ith element of sumSub’s scan result is added to the scan results of

the i+ 1 partial scan subarray to produce the final scan results.

Because of its complicated implementation, detecting a scan pattern is generally diffi-

cult. A programmer can mark scan patterns for the compiler using pragmas, or the compiler

can use template matching to find scan kernels used in benchmarks [73]. Paraprox uses the

second approach by performing a recursive post order traversal of the abstract syntax tree

of the kernel and comparing it with the template. If they match, Paraprox assumes that the

kernel contains a scan pattern.

6.3.4.3 Implementation:

The first phase of the scan pattern takes the longest time to execute, so approximation

techniques should target this phase. As mentioned before, Paraprox approximates the re-
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Figure 6.9: A data parallel implementation of the scan pattern has three phases. Phase I scans each

subarray. Phase II scans the sum of all subarrays. Phase III then adds the result of Phase II to each

corresponding subarray in the partial scan to generate the final result. This figure depicts how the

scan is computed for an input array of all ones.

sults for the last subarrays to prevent the propagation of error through all of the results. In

this approximation, Paraprox assumes that last subarrays have similar scan results to the

first subarrays. Therefore, instead of computing scan results for all subarrays, Paraprox

skips some and uses the first multiple subarrays’ scan results in place of the scan results for

the skipped subarrays.

In order to skip the last N subarrays, Paraprox skips some of the computations in Phases

I and II. In Phase I, Paraprox launches fewer blocks to skip the last N subarrays. In Phase

II, Paraprox changes the argument containing the number of subarrays that is passed to the

kernel.

In Phase III, threads that are responsible for adding to generate the first N subarrays

add their scan results to the last element of Phase II’s results (the sumSub scan array) and

write these results as the scan’s output for the last skipped subarrays. Figure 6.8 shows how
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Applications Domain Input Size Patterns Error Metric

BlackScholes [73] Financial 4M elements Map L1-norm

Quasirandom Generator [73] Statistics 1M elements Map L1-norm

Gamma Correction Image Processing 2048x2048 image Map Mean relative error

BoxMuller [73] Statistics 24M elements Scatter/Gather L1-norm

HotSpot [26] Physics 1024x1024 matrix Stencil-Partition Mean relative error

Convolution Separable [73] Image Processing 2048x2048 image Stencil-Reduction L2-norm

Gaussian Filter Image Processing 512x512 image Stencil Mean relative error

Mean Filter Image Processing 512x512 image Stencil Mean relative error

Matrix Multiply [73] Signal Processing 2560x2560 matrix Reduction-Partition Mean relative error

Image Denoising [73] Image Processing 2048x2048 image Reduction Mean relative error

Naive Bayes [104] Machine Learning 256K elements with 32 features Reduction Mean relative error

Kernel Density Estimation [66] Machine Learning 256K elements with 32 features Reduction Mean relative error

Cumulative Frequency Histograms Signal Processing 1M elements Scan Mean relative error

Table 6.1: Applications specifications for Paraprox evaluation

these threads copy an early portion of the results to generate the result’s last elements.

6.3.4.4 Tuning Parameter:

A runtime can control the number of subarrays Paraprox skips in order to tune output

quality and performance.

6.4 Experimental Evaluation

6.4.1 Methodology

The Paraprox compilation phases are implemented in the Clang compiler version 3.3.

Paraprox’s output codes are then compiled into GPU binaries using the NVIDIA nvcc com-

piler release 5.0. GCC 4.6.3 is used to generate the x86 and OpenCL binaries for execution

on the host processor. To run OpenCL code on the CPU, we used the Intel OpenCL driver.

We evaluated Paraprox using a system with an Intel Core i7 965 CPU and a NVIDIA GTX

560 GPU with 2GB GDDR5 global memory. We selected 13 applications from various

domains and different patterns as benchmarks. We ran each application 110 times with

different input sets. We ran the first 10 executions to train and detect the best kernel, and
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Figure 6.10: Paraprox’s compilation flow.

then we measured and averaged the runtimes of the next 100 executions. A summary of

each application’s characteristics is shown in Table 6.1.

Compilation flow in Paraprox: This section describes Paraprox’s compilation flow as

illustrated in Figure 6.10. First, Clang’s driver generates the abstract syntax tree (AST) of

the input code and sends it to the AST visitor. The AST visitor traverses the AST and runs

the pattern detector on each kernel. The pattern detector identifies the parallel patterns

within each kernel, and informs the action generator which kernels contain what patterns.

The action generator then creates a list of actions for each approximate kernel, where an

action represents a modification to the output CUDA code for each optimization applied.

These actions include: adding, deleting, and substituting an expression in the final code.

For each list of actions, the rewriter copies the input kernel and applies all actions on the

copied version and generates the approximate kernel. To evaluate the impact of Paraprox’s

optimizations on the CPU, we created a CUDA-to-OpenCL script that converts Paraprox’s

generated CUDA code to an equivalent OpenCL version.

6.4.2 Results

In this section, we analyze how Paraprox’s optimizations affect the execution time and

accuracy of different applications. Figure 6.11 presents the results for the benchmarks

run separately on a CPU and a GPU. The speedup is relative the exact execution of each
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Figure 6.11: The performance of all applications approximated by Paraprox for both CPU and

GPU code. The baseline is the exact execution of each application on the same architecture. In

these experiments, the target output quality (TOQ) is 90%.

program on the same architectures. As seen in the figure, Paraprox achieves an average

speedup of ∼2.5x for approximated code run on either the CPU or GPU with a target output

quality of 90%.

Output Quality: To assess the quality of each application’s output, we used application-

specific evaluation metrics as listed in Table 1. For benchmarks that already contained a

specific evaluation metric, the included metric was used. Otherwise, we used the mean

relative error as an evaluation metric. For all benchmarks, we compare the output of the

unmodified, exact application to the output of the approximate kernel created by Paraprox.

A case study by Misailovic et al. [68] shows that users will tolerate quality loss in

applications such as video decoding provided it does not exceed ∼10%. Similar works

[96, 10, 33, 95] cap quality losses for their benchmarks at around 10%. SAGE [95] verified

this threshold using the experiments in the LIVE image quality assessment study [99].

Images in LIVE’s database have different levels of distortion and were evaluated by 24

human subjects, who classified the quality of the images using a scale equally divided
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amongst the following ratings: ”Bad,” ”Poor,” ”Fair,” ”Good,” and ”Excellent.” SAGE [95]

showed that more than 86% of images with quality loss less than 10% were evaluated as

”Good” or ”Excellent” by human subjects in the LIVE study. Therefore, we used 90% as

the minimum target output quality (TOQ) in our experiments.

6.4.3 Performance Improvement

Paraprox applied map approximation to the BlackScholes, Quasirandom Generator,

Gamma Correction, and BoxMuller benchmarks. For BlackScholes, Paraprox detects two

map functions: Cnd() and BlackScholesBody(). Since the estimated cycle count for Cnd() is

low, Paraprox only applies the optimization on BlackScholesBody() which has a high esti-

mated cycle count. As a result, BlackScholes achieves ∼60% improvement in performance

with <10% loss in output quality. BoxMuller has a scatter/gather functionwith two inputs

and two outputs. Gamma Correction is very resilient to quality losses caused by approx-

imation, as its output quality remains at 99% while it achieves >3x speedup on the GPU.

When reducing the lookup table size, however, its output quality drops suddenly to <90%.

BlackScholes and Quasirandom Generator get better results on the CPU but Gamma Cor-

rection and BoxMuller perform better on the GPU. The reason is that for benchmarks that

can retain good output quality with smaller lookup tables, the GPU achieves better per-

formance. However, as the size of lookup table increases, the number of cache misses

increases. In such cases, execution on a CPU is preferable to that on a GPU as cache

misses have a lower impact on the performance for CPUs.

The reduction approximation is applied to the Matrix Multiplication, Naive Bayes trainer,

Image Denoising, and Kernel Density Estimation applications. Matrix Multiplication and
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Image Denoising show similar performance on both the CPU and GPU. On the other hand,

Naive Bayes achieves better speedup on the GPU. The approximated Naive Bayes per-

forms very well on a GPU (>3.5x vs ∼1.5x on a CPU) since this benchmark uses atomic

operations, which are more expensive for GPU architectures with many threads running

concurrently. By skipping a subset of atomic operations, great speedups in execution time

are achieved on a GPU. Since the main component of Kernel Density Estimation is an ex-

ponential instruction and there is hardware support for such transcendental operations on a

GPU (i.e. the special function unit on a CUDA device), skipping these operations provides

better performance improvements for CPUs than it does for GPUs.

The HotSpot, Convolution Separable, Gaussian filter, and Mean Filter applications

contain stencil patterns. HotSpot, Gaussian filter, and Mean filter use 3x3 tiles and Con-

volution Separable has two stencil loops with 1x17 tiles. Since the loop in Mean Filter is

unrolled manually by the programmer and memory accesses are kept outside the function

while computations are inside, there is no reduction loop and the reduction optimization is

not applied. Paraprox just applies the stencil optimization on this application. On the other

hand, Convolution Separable has both stencil and reduction patterns. Paraprox applies

both optimizations on this application. The stencil optimization returns a 1.7x performance

speedup while maintaining 90% output quality while the reduction optimization results in

a 1.6x speedup. On the other hand, the reduction optimization’s performance is better than

stencil optimization for CPU. Therefore, when targeting a GPU Paraprox only used the

results of the stencil optimization in its final kernel, and when targeting a CPU it used the

reduction optimization. Because the partition and stencil optimizations primarily optimize

memory accesses, speedups are greater for GPU approximated code as memory accesses
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Figure 6.12: Controlling the speedup and output quality by varying an optimization’s tuning pa-

rameters for six benchmarks.
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Figure 6.13: The CDF of final error for each element of an application’s output with the TOQ =
90%. The majority of output elements (>70%) have <10% error.

are more costly on this platform.

The Cumulative Histogram benchmark contains a scan pattern. This application is

another resilient application — even when skipping half of the subarrays, the output quality

stays at ∼99%. For this pattern, the speedup is similar for both CPU and GPU approximated

kernels.

Performance-Quality Tradeoffs: Figure 6.12 illustrates how Paraprox manages the performance-

accuracy tradeoff for six benchmarks. The map approximated BlackScholes starts with 95%

output quality and performance similar to the exact version, but as the size of the lookup
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table decreases, the speedup increases to 1.6x speedup with only ∼4% more loss in quality.

Similar behavior is observed for the Quasirandom Generator. When the table size is small

enough to fit in the cache, the speedup gains begin to saturate for these map optimized

kernels. Both Matrix Multiplication and Kernel Density Estimation contain reduction pat-

terns. As Paraprox doubles the skipping rate for these kernels, the difference between two

consecutive nodes grows, thus causing both the speedup and quality loss to grow. The per-

formance of Gaussian Filter and Convolution Separable rises as output quality degrades.

For Convolution Separable, Paraprox changes the reaching distances of both loops in the

kernel to control the output quality. Since Gaussian Filter applies a 2D filter to an image,

Paraprox uses row, column, and center stencil patterns to control the output quality. For

this benchmark, Paraprox gets >2x speedup with <4% quality loss.

Error Distribution: To study each application’s quality losses in more detail, Figure 6.13

shows the cumulative distribution function (CDF) of the error for each element of the appli-

cation’s output with the TOQ = 90%. The CDF illustrates the distribution of output errors

amongst an application’s output elements. The figure shows that only a modest number of

output elements see large output error. The majority (70%-100%) of each approximated

application’s output elements have an error of <10%.

6.4.4 Case Studies

6.4.4.1 Specialized Optimizations Achieve Better Results:

To show that one optimization does not work well when generally applied, we apply

only the reduction optimization to benchmarks that do not contain such a pattern. We
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targets a GPU, and the TOQ = 90%.

chose this optimization as it is most similar to a well-known approximation technique,

loop perforation [2], where loop iterations are skipped to accelerate execution. Figure 6.14

compares the reduction optimization’s performance with Paraprox’s results on a GPU with

the TOQ = 90%. For benchmarks containing map and stencil patterns, skipping iterations

results in unmodified output elements. Therefore, the output quality rapidly decreases,

severely limiting the speedup. For benchmarks with scan patterns, the cascading error will

reduce the output quality and speedup is similarly limited. On average, the reduction opti-

mization alone achieves only ∼25% speedup, compared to the 2.3x speedup that Paraprox

achieves by matching patterns to specialized optimizations.

6.4.4.2 Design Considerations for the Map Optimization:

To fully investigate the impact of map approximation on both accuracy and perfor-

mance, we used four common computationally intensive map functions from different do-

mains:
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• Credit card balance equation [1]: This equation finds the number of months it will

take to pay off credit card debt.

N(i) =
−1

30

ln(1 + b0
p
(1− (1 + i)30))

ln(1 + i)
(6.2)

• Shifted Gompertz distribution [76]: This equation gives the distribution of the

largest of two random variables.

F (x) = (1− e−bx)e−ηe−bx

(6.3)

• Log gamma [11]: This equation calculates the logarithm of the gamma function. To

implement this equation, we used the CUDA lgammaf [72] function.

LG(z) = log(Γ(z)) (6.4)

• Bass diffusion model [14]: This equation describes how new products get adopted

as an interaction between users and potential users.

S(t) = m
(p+ q)2

p

e−(p+q)t

(1 + p
q
e−(p+q)t)2

(6.5)
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For all of these equations, all parameters other than the input variable are constant.

Selecting an Output for an Unrepresented Input: As discussed in Section 6.3.1.3,

there are a limited number of quantization levels based on the size of the lookup table.

It is possible that there are inputs that do not directly map to a precomputed output. In such

cases, Paraprox can either select the nearest precomputed output, or it can apply linear

approximation to the two nearest values in the table to generate a result in between these

values. Figure 6.15 shows the performance-quality curve for all four equations using the

nearest and linear methods on the GPU. For all four equations, nearest gives better per-

formance compared to linear but with lower output quality. Even though the same lookup

table size is used, linear generates more accurate output, but the overhead of adding an-

other memory access and more computation is overwhelming. On the other hand, linear

is better at achieving higher output quality (∼99%). In this experiment, the lookup table is

allocated in the GPU’s global memory.

As seen in Figure 6.15, the shifted Gompertz distribution achieves a lower speedup

than the other functions. This is due to it having many low latency instructions. Both the

Bass and Credit equations execute floating point divisions, which translate to subroutine

calls to code with high latency and low throughput for GPUs [118]. On the other hand,

the Gompertz equation uses several exponential instructions, which are not high latency as

they are handled by a special functional unit on a GPU [72].

Location of the Lookup Table: To find which memory location is best for storing lookup

tables, we created approximate versions of the Bass function that used the constant, shared,
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used to handle inputs that do not map to precomputed outputs: nearest and linear. Nearest chooses

the nearest value in the lookup table to approximate the output. Linear uses linear approximation

between the two nearest values in the table. For all four functions, nearest provides better speedups

than linear at the cost of greater quality loss.

and global memories of the GPU to store the lookup table. Figure 6.16 shows the perfor-

mance versus the table size for these three versions of Bass on the GPU. For lookup tables

stored in global and constant memory, we set the L1 cache size to 32KB and size of the

shared memory to 16KB. When the lookup table is stored in shared memory, we set the

size of the shared memory to 32KB and the L1 cache to 16KB.

Using constant memory never gives optimal results regardless of the cache size. The

reason is that for larger table sizes, using shared memory or the global L1 cache will have

a lower read latency [118].

To compare global and shared memory, we divided the figure into three regions. When

the cache size is small, both global and shared memory show similar speedups. Since it

takes time to warm up the L1 cache for global memory, shared memory outperforms the

global memory in the second region. In the third region, however, by increasing the size

of the lookup table, the overhead of transferring data from global to shared memory is

increased and the global memory outperforms the shared memory.
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Figure 6.16: A comparison of the performance of approximate memoization when the lookup table

is allocated in the constant, shared, and global memories on a GPU.

Based on these results, Paraprox generates both shared and global approximate kernels,

and the runtime system will choose one based on the performance, output quality, and the

lookup table size. If the lookup table is larger than the size of the shared memory, the

lookup table must be stored in global memory.

Lookup Table Size vs. Performance: Figure 6.16 shows that speedup drops when in-

creasing the size of the lookup table. Using the CUDA profiler, we found that the number

of uncoalesced memory accesses is primarily responsible for this. As the lookup table’s

size increases, the number of uncoalesced accesses also increases, thus resulting in lower

speedups as shown in Figure 6.17. This figure shows that the number of instructions that

get serialized increases as the size of the lookup table grows. This serialization is caused

by more uncoalesced accesses.

6.4.4.3 Cascading Error in Scan Patterns:

Paraprox approximates the last subarrays of the results for scan patterns. To illustrate

why this is done, we use the Cumulative frequency histogram benchmark with one million

random input data points. For our first run, we “corrupt” the first input subarray (10% of

177

paraprox/figs/BassSpeedup.ps


0

1

2

3

4

5

6

0

10

20

30

40

50

60

70

8 16 32 64 128 256 512 1K 2K 4K 8K 16K 32K

S
p

ee
d

u
p

In
st

ru
ct

io
n

 S
er

ia
li

za
ti

o
n

 

O
v

er
h

ea
d

(%
)

Lookup Table Size

Serialization Overhead Speedup
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Figure 6.18: The impact of the starting point of the data corruption on an approximated scan

pattern’s final output.

the input elements) by setting its elements to zero. We then move this section of all zeroed

data to the next subarray of elements, and rerun the scan. For each test modifying the first

to the last input subarray, we record the output quality. Figure 6.18 shows the impact of

the starting point of the data corruption on the final output result. When the first subarray

of the input is zeroed, the overall output quality will be ∼67%. This is caused by the error

propagating through the rest of the results. However, if the error happens at the end of the

input array, the output quality will be ∼99%. Therefore, Paraprox only approximates the

last elements of the final scan results to ensure a high output quality.
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6.5 Limitations

Paraprox is a research prototype and it has some limitations. Below, we discuss some

of these limitations which will be addressed in future work.

Runtime System: In this work, our main focus is automatically generating approximate

kernels and providing tuning knobs for a runtime system. Paraprox generates approximate

kernels, and a separate runtime system will decide which one to use and how tune the

selected kernel’s parameters. In our results, we did not consider runtime overhead. How-

ever, as shown in SAGE [95] and Green [10], it is not necessary to constantly monitor the

quality, so checks are performed every N th invocation. Based on the experiments done

in [95], checking the output quality every 40-50 invocations during runtime has less than

5% overhead. This would reduce our reported performance but only by a modest level.

Pattern Recognition: Since we used the AST to detect patterns, variations in code can

make the pattern recognition process difficult, especially when detecting scan patterns.

However, pattern recognition for other patterns like reduction or detecting pure functions

for map and scatter-gather patterns are stable techniques which can detect patterns across a

wide variety of implementations. It is also possible to enhance pattern detection by getting

hints from the programmer or using higher level languages.

Compiler Optimizations: It is possible that approximation eliminates some other com-

piler optimization opportunities such as auto-vectorization. In these cases, an approximate

kernel might not perform as well as expected. Fortunately, the runtime system chooses

which approximate kernel to run based on their speedup and quality. Therefore, if the

approximate kernel does show great performance improvement, the runtime system will

179



choose the original kernel which is highly optimized.

Safety of Optimizations: It is possible that execution of approximate code causes raising

exceptions or segmentation faults. There are compiler analyses that detect the possibility

of crashing to prevent the compiler from applying the optimizations. For example, for a

division that uses an approximated output and may raise a divide by zero exception, it is

possible to instrument the code to skip this calculation where the approximated divisor is

zero. However, improving the safety of approximation techniques is beyond the scope of

this work and it is left for future study.

6.6 Related Work

Pattern-based programming is well-explained by McCool [62]. This book introduces

various parallel patterns. Our focus is on the detection and approximation of data parallel

patterns.

The concept of trading accuracy for improved performance or energy consumption is

well-studied [84, 86, 2, 10, 96, 9, 32, 67, 33, 95, 7, 6]. Previous approximation techniques

can be categorized in three categories:

Software-based: Using software approximation, SAGE’s [95] framework accelerates

programs on GPUs. SAGE’s goal is to exploit the specific microarchitectural character-

istics of the GPU to achieve higher performance. Although these optimization performs

better than general methods, their applicability is limited compared to Paraprox’s approx-

imation methods. SAGE also has a runtime system which Paraprox can use to tune and

calibrate the output quality during runtime.
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Rinard et al. [84, 86] present a technique for automatically deriving probabilistic distor-

tion and timing models that can be used to manage the performance-accuracy tradeoff space

of a given application. Given a program that executes a set of tasks, these models charac-

terize the effect of skipping task executions on the performance and accuracy. Agarwal et

al. [2] use code perforation to improve performance and reduce energy consumption. They

perform code perforation by discarding loop iterations. Paraprox uses a similar method

for reduction patterns, but while loop perforation is applied only to sequential loops, Para-

prox applies it to all loops in such patterns. Skipping iterations, however is not suitable

for all data parallel patterns, so Paraprox only applies it to loops with reduction patterns.

For example, by skipping iterations of a map loop, a subset of the output array will be left

unmodified which results in an unacceptable output quality. A variation of approximate

memoization is utilized in a work by Chadhuri [25] for sequential loops. Our approach is

different in that it is designed for data parallel applications and it detects when to apply

memoization to achieve performance improvement. Previous work by Sartori et. al. [98]

targets control divergence on the GPU. Rinard et. al. [84] also proposes an optimization

for parallel benchmarks that do not have balanced workloads. Misailovic et. al. [67] pro-

pose probabilistic guarantees for approximate applications using loop perforation. Relaxed

synchronization is also used as an approximation method to improve performance [83, 85].

Although these approaches perform well for their target applications, their applicability is

far more limited than tools that can identify and finely optimize kernels based on the varied

data parallel patterns they may contain, which is one of Paraprox’s key contributions.
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Programmer-based: Green [10] is a flexible framework that developers can use to take

advantage of approximation opportunities to improve performance or energy efficiency.

This framework requires the programmer to provide approximate kernels or annotate their

code using C/C++ extensions. In contrast to these techniques, Paraprox automatically gen-

erates different approximate kernels for each application. Ansel et. al. [9] also propose

language extensions to allow the programmer to mark parts of code as approximate. They

use a genetic algorithm to select the best approximate version to run. Unlike these ap-

proaches, Paraprox chooses the approximation optimization based on the patterns detected

in the input code and generates approximate versions automatically for each pattern with-

out programmer annotation. Paraprox, however, can be utilized by the runtime systems

introduced in these works to optimize performance.

Hardware-based: EnerJ [96] uses type qualifiers to mark approximate variables. Using

this type system, EnerJ automatically maps approximate variables to low power storage

and uses low power operations to save energy. EnerJ also guarantees that the approxi-

mate part of a program cannot affect the precise portion of the program. Esmaeilzadeh

et al. [32] demonstrated dual-voltage operation, with a high voltage for precise operations

and a low voltage for approximate operations. Another work by Esmaeilzadeh [33] designs

a neural processing unit (NPU) accelerator to accelerate approximate programs. Alvarez

et al. [7, 6] introduced hardware-based fuzzy memoization and tolerant region reuse tech-

niques for multimedia applications. Other works [107, 113] also designed different ap-

proximate accelerators. Sampson et. al. [97] show how to improve memory array lifetime

using approximation. These approximate data-type optimizations and special accelerators
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require hardware support. Our approach, however, can be used by current architectures

without hardware modification.

Unconventional computing techniques can also be used to exploit accuracy vs. area/pow-

er/delay trade-offs. One example is stochastic computing (SC), which performs computa-

tion on (pseudo-) random bit-streams that are interpreted as probabilities [4]. Stochastic

circuits consist of simple logic gates that perform complex arithmetic operations [3], but

they tend to be inaccurate due to their probabilistic nature. SC has a natural accuracy vs.

run-time trade-off, that is referred to as progressive precision [4]. This property allows

the stochastic circuits to stop computation as soon as a valid output generated, and thus

saving time and energy. Alaghi et al. [5] have shown how progressive precision can be

exploited in several image-processing applications, and have shown that stochastic circuits

can outperform conventional binary circuits.

6.7 Conclusion

Approximate computing, where computation accuracy is traded for better performance

or higher data throughput, provides an efficient mechanism for computation to keep up

with the exponential growth of information. However, approximation can often be time

consuming and tedious for programmers to implement, debug, and tune to achieve the de-

sired results. This work proposes a software-only framework called Paraprox that identifies

common computation patterns found in data-parallel programs and uses a custom-designed

approximation template to replace each pattern. Paraprox enables the programmer to write

software once and run it on a variety of commodity processors, without manual tuning for
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different hardware targets, input sets, or desired levels of accuracy.

For 13 data-parallel applications, Paraprox yields an average of 2.7x and 2.5x speedup

with less than 10% quality degradation compared to an accurate execution on a NVIDIA

GTX 560 GPU and Intel Core i7 965 CPU, respectively. We also show that Paraprox is able

to control the accuracy and performance by varying template configuration parameters at

runtime. Our results show that pattern-specific optimizations yield nearly twice the per-

formance improvement compared to naively applying a single, well-known approximation

technique to all benchmarks.
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CHAPTER VII

Summary and Conclusion

Heterogeneous systems, where sequential work is done on traditional processors and

parallelizable work is offloaded to a specialized computing engine, are mainstream these

days. Among the different solutions that can take advantage of this parallelism, GPUs are

the most popular solution and have been shown to provide significant performance for gen-

eral purpose computing. While GPUs provide low-cost and efficient platforms for accel-

erating massively parallel applications, tedious performance tuning, managing the amount

of on-chip memory used per thread, the total number of threads per multiprocessor, and

the pattern of off-chip memory accesses, are required to maximize application execution

efficiency.

In addition to complex programming model, a lack of performance portability across

various systems with different runtime properties is another major challenge. Programmers

usually make assumptions about runtime properties when they write a code and optimize

it based on those assumptions. However, if any of these properties changes during execu-

tion, the optimized code performs poorly. We showed how these runtime properties such

as underlying architecture, input size and dimensions, data dependencies between threads,
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and data values impact the performance of data parallel applications. One way to solve this

problem is to ask the programmer to write different versions of the same code optimized

for various runtime properties. However, it is not easy and in many cases it is not a practical

solution. Therefore, in order to provide portability, a compilation framework is required to

generate multiple versions of the same code. This thesis introduced several solutions such

as dynamic compilation, speculation, and approximation to generate data-parallel applica-

tions which are optimized for different runtime properties.

To target input portability problem, in Chapter III, we proposed Adaptic, an adaptive

input-aware compiler for GPUs. Using this compiler, programmers can implement their

algorithms once using the high-level constructs of a streaming language and compile them

to CUDA code for all possible input sizes and various GPUs targets. Adaptic, with the help

of its input-aware optimizations, can generate highly-optimized GPU kernels to maintain

high performance across different problem sizes. At runtime, Adaptic’s runtime kernel

management chooses the best performing kernel based on the input. Our results show that

Adaptic’s generated code has similar performance to the hand-optimized CUDA code over

the original programs input comfort zone, while achieving upto 6x speedup when the input

falls out of this range.

In Chapter IV, we proposed Paragon: a static/dynamic compiler platform to specu-

latively and cooperatively run possibly-data-parallel pieces of sequential applications on

GPUs and CPUs. Paragon monitors the dependencies for possibly-data-parallel loops run-

ning speculatively on the GPU and non-speculatively on the CPU using a light-weight

distributed conflict detection system designed specifically for GPUs, and transfers the ex-

ecution to the CPU in case a conflict is detected. Paragon resumes the execution on the
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GPU after the CPU resolves the dependency. We looked at two classes of implicitly data-

parallel applications: applications with indirect and pointer memory accesses. My ex-

periment showed that, for applications with indirect memory accesses, Paragon achieves a

speedup of 2.5x on average and up to 4x speedup compared to unsafe CPU execution with 4

threads. Also, for applications with pointer memory accesses, Paragon achieves a speedup

of 6.8x on average and up to 30x compared to unsafe CPU execution with 4 threads.

In Chapters V and VI, we targeted the problem of value portability for data-parallel

execution. Sage enables the programmer to implement a program once in CUDA and, de-

pending on the target output quality (TOQ) specified for the program, automatically trade

accuracy for performance. This work shows that there are GPU-specific characteristics that

can be exploited to gain significant speedups compared to hardware-incognizant approxi-

mation approaches. We also discussed how Sage controls the accuracy and performance at

runtime using optimization calibration in two case studies. Paraprox is also a software-only

framework that identifies common computation patterns found in data-parallel programs

and uses a custom-designed approximation template to replace each pattern. Paraprox

enables the programmer to write software once and run it on a variety of commodity pro-

cessors, without manual tuning for different hardware targets, input sets, or desired levels

of accuracy. We also showed that Paraprox is able to control the accuracy and perfor-

mance by varying template configuration parameters at runtime. My results showed that

pattern-specific optimizations yield nearly twice the performance improvement compared

to naively applying a single, well-known approximation technique to applications.

This dissertation has introduced novel techniques for static compilation and runtime

systems for data-parallel execution. These techniques provide portability for data-parallel
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applications for different devices, input-sets, dependencies, and data values.

188



BIBLIOGRAPHY

189



BIBLIOGRAPHY

[1] The credit card equation, 2013. http://faculty.bennington.edu/ jzimba/CreditCardE-

quationDerivation.pdf. 174

[2] A. Agarwal, M. Rinard, S. Sidiroglou, S. Misailovic, and H. Hoffmann. Using code

perforation to improve performance, reduce energy consumption, and respond to

failures. Technical Report MIT-CSAIL-TR-2009-042, MIT, Mar. 2009. 99, 101,

122, 134, 138, 143, 144, 160, 173, 180, 181

[3] A. Alaghi and J. Hayes. A spectral transform approach to stochastic circuits. In

Computer Design (ICCD), 2012 IEEE 30th International Conference on, pages 315–

321, Sept 2012. 183

[4] A. Alaghi and J. P. Hayes. Survey of stochastic computing. ACM Trans. Embed.

Comput. Syst., 12(2s):92:1–92:19, May 2013. 183

[5] A. Alaghi, C. Li, and J. P. Hayes. Stochastic circuits for real-time image-processing

applications. In Proceedings of the 50th Annual Design Automation Conference,

DAC ’13, pages 136:1–136:6, New York, NY, USA, 2013. ACM. 183

[6] C. Alvarez, J. Corbal, and M. Valero. Fuzzy memoization for floating-point multi-

190



media applications. IEEE Transactions on Computers, 54(7):922–927, 2005. 180,

182

[7] C. Alvarez, J. Corbal, and M. Valero. Dynamic tolerance region computing for

multimedia. IEEE Transactions on Computers, 61(5):650–665, 2012. 180, 182

[8] J. Ansel, C. Chan, Y. L. Wong, M. Olszewski, Q. Zhao, A. Edelman, and S. Ama-

rasinghe. PetaBricks: a language and compiler for algorithmic choice. In Proc. of

the ’09 Conference on Programming Language Design and Implementation, pages

38–49, June 2009. 140

[9] J. Ansel, Y. L. Wong, C. Chan, M. Olszewski, A. Edelman, and S. Amarasinghe.

Language and compiler support for auto-tuning variable-accuracy algorithms. In

Proc. of the 2011 International Symposium on Code Generation and Optimization,

pages 85 –96, 2011. 99, 138, 139, 143, 180, 182

[10] W. Baek and T. M. Chilimbi. Green: a framework for supporting energy-conscious

programming using controlled approximation. In Proc. of the ’10 Conference on

Programming Language Design and Implementation, pages 198–209, 2010. 99,

122, 138, 139, 143, 149, 168, 179, 180, 182

[11] D. H. Bailey. Experimental mathematics in action. A.K. Peters, 2007. 174

[12] M. M. Baskaran, U. Bondhugula, S. Krishnamoorthy, J. Ramanujam, R. Atanas,

and P. Sadayappan. A compiler framework for optimization of affine loop nests for

GPGPUs. In Proc. of the 2008 International Conference on Supercomputing, pages

225–234, 2008. 94

191



[13] M. M. Baskaran, J. Ramanujam, and P. Sadayappan. Automatic C-to-CUDA code

generation for affine programs. In Proc. of the 19th International Conference on

Compiler Construction, pages 244–263, 2010. 15, 50, 51, 56, 94

[14] F. Bass. A new product growth for model consumer durables. Management Science,

50(12):215–227, 1969. 174

[15] C. Bastoul. Code generation in the polyhedral model is easier than you think. In

Proc. of the 13th International Conference on Parallel Architectures and Compila-

tion Techniques, pages 7–16, 2004. 94

[16] B. H. Bloom. Space/time trade-offs in hash coding with allowable errors. Commu-

nications of the ACM, 13(7):422–426, 1970. 69

[17] W. Blume et al. Parallel programming with Polaris. IEEE Computer, 29(12):78–82,

Dec. 1996. 93

[18] R. L. Bocchino, V. S. Adve, and B. L. Chamberlain. Software transactional mem-

ory for large scale clusters. In Proc. of the 13th ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming, pages 247–258, 2008. 93

[19] N. Brunie, S. Collange, and G. Diamos. Simultaneous branch and warp interweav-

ing for sustained gpu performance. In Proc. of the 39th Annual International Sym-

posium on Computer Architecture, pages 49–60, 2012. 54, 95

[20] I. Buck et al. Brook for GPUs: Stream computing on graphics hardware. ACM

Transactions on Graphics, 23(3):777–786, Aug. 2004. 15, 49

192



[21] B. Catanzaro, M. Garland, and K. Keutzer. Copperhead: compiling an embedded

data parallel language. In Proc. of the 16th ACM SIGPLAN Symposium on Princi-

ples and Practice of Parallel Programming, pages 47–56, 2011. 15, 49

[22] B. Catanzaro, N. Sundaram, and K. Keutzer. Fast support vector machine training

and classification on graphics processors. In Proc. of the 25th International Confer-

ence on Machine learning, pages 104–111, 2008. 39, 45, 46, 120, 140

[23] D. Cederman, P. Tsigas, and M. T. Chaudhry. Towards a software transactional

memory for graphics processors. In Proc. of the 12th Eurographics Symposium on

Parallel Graphics and Visualization, pages 121–129, 2010. 95

[24] H. Chafi, A. K. Sujeeth, K. J. Brown, H. Lee, A. R. Atreya, and K. Olukotun. A

domain-specific approach to heterogeneous parallelism. In Proc. of the 16th ACM

SIGPLAN Symposium on Principles and Practice of Parallel Programming, pages

35–46, 2011. 94

[25] S. Chaudhuri, S. Gulwani, R. L. Roberto, and S. Navidpour. Proving programs

robust. In Proc. of the 19th ACM SIGSOFT symposium and the 13th European

conference on Foundations of software engineering, pages 102–112, 2011. 181

[26] S. Che, M. Boyer, J. Meng, D. Tarjan, , J. W. Sheaffer, S.-H. Lee, and K. Skadron.

Rodinia: A benchmark suite for heterogeneous computing. In Proc. of the IEEE

Symposium on Workload Characterization, pages 44–54, 2009. 166

[27] M. Couceiro, P. Romano, N. Carvalho, and L. Rodrigues. D2STM: dependable

193



distributed software transactional memory. In Proc. of the 2009 15th IEEE Pacific

Rim International Symposium on Dependable Computing, pages 307–313, 2009. 93

[28] B. Coutinho, D. Sampaio, F. Pereira, and W. Meira. Divergence analysis and opti-

mizations. In Proc. of the 20th International Conference on Parallel Architectures

and Compilation Techniques, pages 320–329, 2011. 54, 95

[29] M. de Kruijf, S. Nomura, and K. Sankaralingam. Relax: An architectural framework

for software recovery of hardware faults. In Proc. of the 37th Annual International

Symposium on Computer Architecture, pages 497–508, June 2010. 140

[30] G. Diamos and S. Yalamanchili. Speculative execution on Multi-GPU systems. In

2010 IEEE International Symposium on Parallel and Distributed Processing, pages

1–12, 2010. 94

[31] EMC Corporation. Extracting value from chaos, 2011. www.emc.com

/collateral/analyst-reports/idc-extracting-value-from-chaos-ar.pdf. 97, 142

[32] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger. Architecture support for dis-

ciplined approximate programming. In 17th International Conference on Architec-

tural Support for Programming Languages and Operating Systems, pages 301–312,

2012. 99, 138, 140, 143, 144, 180, 182

[33] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger. Neural acceleration for

general-purpose approximate programs. In Proc. of the 45th Annual International

Symposium on Microarchitecture, pages 449–460, 2012. 122, 140, 143, 144, 168,

180, 182

194



[34] A. Frank and A. Asuncion. UCI machine learning repository, 2010. 119

[35] W. W. L. Fung, I. Singh, A. Brownsword, and T. M. Aamodt. Hardware transac-

tional memory for GPU architectures. In Proc. of the 44th Annual International

Symposium on Microarchitecture, 2011. 60, 95

[36] M. I. Gordon, W. Thies, and S. Amarasinghe. Exploiting coarse-grained task, data,

and pipeline parallelism in stream programs. In 12th International Conference on

Architectural Support for Programming Languages and Operating Systems, pages

151–162, 2006. 50

[37] M. I. Gordon, W. Thies, M. Karczmarek, J. Lin, A. S. Meli, A. A. Lamb, C. Leger,

J. Wong, H. Hoffmann, D. Maze, and S. Amarasinghe. A stream compiler for

communication-exposed architectures. In Tenth International Conference on Archi-

tectural Support for Programming Languages and Operating Systems, pages 291–

303, Oct. 2002. 50

[38] M. Grossman, A. Simion, Z. Budimli, and V. Sarkar. CnC-CUDA: Declarative Pro-

gramming for GPUs. In Proc. of the 23rd Workshop on Languages and Compilers

for Parallel Computing, pages 230–245, 2010. 49

[39] T. Han and T. Abdelrahman. hiCUDA: High-level GPGPU programming. IEEE

Transactions on Parallel and Distributed Systems, 22(1):52–61, 2010. 15, 50, 56,

94

[40] T. Harris, M. Plesko, A. Shinnar, and D. Tarditi. Optimizing memory transactions.

195



Proc. of the ’06 Conference on Programming Language Design and Implementation,

41(6):14–25, 2006. 55, 93

[41] H. Hoffmann, S. Sidiroglou, M. Carbin, S. Misailovic, A. Agarwal, and M. Ri-

nard. Dynamic knobs for responsive power-aware computing. In 16th International

Conference on Architectural Support for Programming Languages and Operating

Systems, pages 199–212, 2011. 138

[42] S. Hong and H. Kim. An analytical model for a GPU architecture with memory-level

and thread-level parallelism awareness. In Proc. of the 36th Annual International

Symposium on Computer Architecture, pages 152–163, 2009. 19, 23, 49, 50

[43] A. Hormati, Y. Choi, M. Woh, M. Kudlur, R. Rabbah, T. Mudge, and S. Mahlke.

Macross: Macro-simdization of streaming applications. In 15th International Con-

ference on Architectural Support for Programming Languages and Operating Sys-

tems, pages 285–296, 2010. 50

[44] A. H. Hormati, M. Samadi, M. Woh, T. Mudge, and S. Mahlke. Sponge: portable

stream programming on graphics engines. In 16th International Conference on

Architectural Support for Programming Languages and Operating Systems, pages

381–392, 2011. 6, 15, 22, 33, 49

[45] Q. Hou, K. Zhou, and B. Guo. BSGP: bulksynchronous GPU programming. ACM

Transactions on Graphics, 27(3):1–12, 2008. 15, 49

[46] KHRONOS Group. OpenCL - the open standard for parallel programming of het-

erogeneous systems, 2013. 1, 15, 161

196



[47] H. Kim, N. P. Johnson, J. W. Lee, S. A. Mahlke, and D. I. August. Automatic

speculative doall for clusters. In Proc. of the 2012 International Symposium on

Code Generation and Optimization, pages 94–103, 2012. 55, 93

[48] C. Kotselidis, M. Ansari, K. Jarvis, M. Luján, C. Kirkham, and I. Watson. DiSTM:

A software transactional memory framework for clusters. In Proc. of the 2008 In-

ternational Conference on Parallel Processing, pages 51–58, 2008. 93

[49] M. Kudlur and S. Mahlke. Orchestrating the execution of stream programs on mul-

ticore platforms. In Proc. of the ’08 Conference on Programming Language Design

and Implementation, pages 114–124, June 2008. 50

[50] A. Kulesza and F. Pereira. Structured learning with approximate inference. In Ad-

vances in Neural Information Processing Systems20, pages 785–792, 2008. 98

[51] M. Kulkarni, M. Burtscher, R. Inkulu, K. Pingali, and C. Cascaval. How much

parallelism is there in irregular applications? In Proc. of the 14th ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming, pages 3–14, 2009.

93

[52] M. Kulkarni, K. Pingali, B. Walter, G. Ramanarayanan, K. Bala, and L. P. Chew.

Optimistic parallelism requires abstractions. In Proc. of the ’07 Conference on Pro-

gramming Language Design and Implementation, pages 211–222, 2007. 93

[53] E. Lee and D. Messerschmitt. Synchronous data flow. Proceedings of the IEEE,

75(9):1235–1245, 1987. 20

197



[54] S. Lee, V. Grover, M. M. T. Chakravarty, and G. Keller. GPU kernels as data parallel

array computations in Haskell. In Workshop on Exploiting Parallelism using GPUs

and other Hardware-Assisted Methods, pages 1–9, 2009. 15, 49

[55] S. Lee, S.-J. Min, and R. Eigenmann. OpenMP to GPGPU: a compiler framework

for automatic translation and optimization. In Proc. of the 14th ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming, pages 101–110,

2009. 15, 49

[56] S. I. Lee, T. Johnson, and R. Eigenmann. Cetus - an extensible compiler infras-

tructure for source-to-source transformation. In Proc. of the 16th Workshop on Lan-

guages and Compilers for Parallel Computing, 2003. 83, 121

[57] V. W. Lee, C. Kim, J. Chhugani, M. Deisher, D. Kim, A. D. Nguyen, N. Satish,

M. Smelyanskiy, S. Chennupaty, P. Hammarlund, R. Singhal, and P. Dubey. De-

bunking the 100x GPU vs. CPU myth: an evaluation of throughput computing on

CPU and GPU. In Proc. of the 37th Annual International Symposium on Computer

Architecture, pages 451–460, 2010. 1, 14, 53

[58] A. Leung, O. Lhoták, and G. Lashari. Automatic parallelization for graphics pro-

cessing units. In Proc. of the 7th International Conference on Principles and Prac-

tice of Programming in Java, pages 91–100, 2009. 56, 94

[59] X. Li and D. Yeung. Application-level correctness and its impact on fault tolerance.

In Proc. of the 13th International Symposium on High-Performance Computer Ar-

chitecture, pages 181–192, Feb. 2007. 140

198



[60] Y. Li, K. Zhao, X. Chu, and J. Liu. Speeding up K-Means algorithm by GPUs.

In Proc. of the 2010 10th International Conference on Computers and Information

Technology, pages 115 –122, 2010. 140

[61] S. Liu, C. Eisenbeis, and J.-L. Gaudiot. Value prediction and speculative execution

on GPU. In International Journal of Parallel Programming, volume 39, pages 533–

552, 2011. 94, 95

[62] M. McCool, J. Reinders, and A. Robison. Structured Parallel Programming: Pat-

terns for Efficient Computation. Morgan Kaufmann, 2012. 147, 148, 180

[63] M. Mehrara, J. Hao, P. chun Hsu, and S. Mahlke. Parallelizing sequential applica-

tions on commodity hardware using a low-cost software transactional memory. In

Proc. of the ’09 Conference on Programming Language Design and Implementation,

pages 166–176, June 2009. 55, 93

[64] J. Meng and K. Skadron. Performance modeling and automatic ghost zone opti-

mization for iterative stencil loops on GPUs. In Proc. of the 2009 International

Conference on Supercomputing, pages 256–265, 2009. 51

[65] J. Menon, M. de Kruijf, and K. Sankaralingam. iGPU: Exception support and spec-

ulative execution on GPUs. In Proc. of the 39th Annual International Symposium on

Computer Architecture, pages 72–83, June 2012. 94

[66] P. D. Michailidis and K. G. Margaritis. Accelerating kerne stimation on the GPU

using the CUDA framework. Journal of Applied Mathematical Science, 7(30):1447–

1476, 2013. 166

199



[67] S. Misailovic, D. M. Roy, and M. C. Rinard. Probabilistically accurate program

transformations. In Proc. of the 18th Static Analysis Symposium, pages 316–333,

2011. 180, 181

[68] S. Misailovic, S. Sidiroglou, H. Hoffmann, and M. Rinard. Quality of service pro-

filing. In Proc. of the 32nd ACM/IEEE conference on Software Engineering, pages

25 –34, 2010. 122, 168

[69] NVidia. Ptx: Parallel thread execution isa. http://docs.nvidia.com/cuda/parallel-

thread-execution/. 39

[70] NVIDIA. CUBLAS Library, 2010.

http://developer.download.nvidia.com/compute/cuda/3 2/toolkit/docs

/CUBLAS Library.pdf. 16, 39

[71] NVIDIA. GPUs Are Only Up To 14 Times Faster than CPUs says In-

tel, 2010. http://blogs.nvidia.com/ntersect/2010/06/gpus-are-only-up-to-14-times-

faster-than-cpus-says-intel.html. 1, 14, 53

[72] NVIDIA. NVIDIA CUDA C Programming Guide, version 4.0, 2011. 1, 11, 15, 29,

111, 161, 174, 175

[73] NVIDIA. NVIDIA’s next generation CUDA compute architecture: Kepler

GK110, 2012. www.nvidia.com/content/PDF/NVIDIA Kepler GK110 Architec-

ture Whitepaper.pdf. 3, 102, 164, 166

[74] E. Nystrom, H.-S. Kim, and W. Hwu. Bottom-up and top-down context-sensitive

200



summary-based pointer analysis. In Proc. of the 11th Static Analysis Symposium,

pages 165–180, Aug. 2004. 93

[75] C. E. Oancea and A. Mycroft. Software thread-level speculation: an optimistic

library implementation. In Proc. of the 1st International Workshop on Multicore

Software Engineering, pages 23–32, 2008. 55, 93

[76] K. Ohishi, H. Okamura, and T. Dohi. Gompertz software reliability model: Estima-

tion algorithm and empirical validation. Journal of Systems and Software, 82(3):535

– 543, 2009. 174

[77] Polybench. the polyhedral benchmark suite, 2011. http://www.cse.ohio-

state.edu/ pouchet/software/polybench. 83

[78] L.-N. Pouchet, C. Bastoul, A. Cohen, and J. Cavazos. Iterative optimization in the

polyhedral model: part ii, multidimensional time. In Proc. of the ’08 Conference on

Programming Language Design and Implementation, pages 90–100, 2008. 94

[79] A. Prasad, J. Anantpur, and R. Govindarajan. Automatic compilation of MATLAB

programs for synergistic execution on heterogeneous processors. In Proc. of the

’11 Conference on Programming Language Design and Implementation, pages 152–

163, 2011. 49

[80] K. Psarris, X. Kong, and D. Klappholz. The direction vector I test. IEEE Journal of

Parallel Distributed Systems, 4(11):1280–1290, 1993. 93

[81] L. Rauchwerger and D. A. Padua. The LRPD test: Speculative run-time paralleliza-

201



tion of loops with privatization and reduction parallelization. IEEE Transactions on

Parallel and Distributed Systems, 10(2):160, 1999. 71

[82] V. T. Ravi, W. Ma, D. Chiu, and G. Agrawal. Compiler and runtime support for en-

abling generalized reduction computations on heterogeneous parallel configurations.

In Proc. of the 2010 International Conference on Supercomputing, pages 137–146,

2010. 51

[83] L. Renganarayana, V. Srinivasan, R. Nair, and D. Prener. Programming with relaxed

synchronization. In Proc. of the 2012 ACM Workshop on Relaxing Synchronization

for Multicore and Manycore Scalability, pages 41–50, 2012. 181

[84] M. Rinard. Probabilistic accuracy bounds for fault-tolerant computations that dis-

card tasks. In Proc. of the 2006 International Conference on Supercomputing, pages

324–334, 2006. 99, 143, 144, 180, 181

[85] M. Rinard. Parallel synchronization-free approximate data structure construction.

In Proc. of the 5th USENIX Workshop on Hot Topics in Parallelism, pages 1–8,

2012. 181

[86] M. C. Rinard. Using early phase termination to eliminate load imbalances at barrier

synchronization points. In Proc. of the 22nd annual ACM SIGPLAN conference on

Object-Oriented Systems and applications, pages 369–386, 2007. 99, 138, 139, 143,

144, 180, 181

[87] D. Roger, U. Assarsson, and N. Holzschuch. Efficient stream reduction on the GPU.

202



In Proc. of the 1st Workshop on General Purpose Processing on Graphics Process-

ing Units, pages 1–4, 2007. 51, 67, 160

[88] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall,

2009. 106

[89] S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S. Stone, D. B. Kirk, and W. mei

W. Hwu. Optimization principles and application performance evaluation of a mul-

tithreaded GPU using CUDA. In Proc. of the 13th ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming, pages 73–82, 2008. 1, 15

[90] S. Ryoo, C. I. Rodrigues, S. S. Stone, S. S. Baghsorkhi, S.-Z. Ueng, J. A. Stratton,

and W. mei W. Hwu. Program optimization space pruning for a multithreaded GPU.

In Proc. of the 2008 International Symposium on Code Generation and Optimiza-

tion, pages 195–204, 2008. 53

[91] M. Samadi, A. Hormati, J. Lee, and S. Mahlke. Paragon: collaborative speculative

loop execution on gpu and cpu. In Proc. of the 5th Workshop on General Purpose

Processing on Graphics Processing Units, pages 64–73, 2012. 7

[92] M. Samadi, A. Hormati, J. Lee, and S. Mahlke. Leveraging GPUs using cooperative

loop speculation. ACM Transactions on Architecture and Code Optimization, page

To Appear, 2014. 7, 133, 134, 138, 139

[93] M. Samadi, A. Hormati, M. Mehrara, J. Lee, and S. Mahlke. Adaptive input-aware

compilation for graphics engines. In Proc. of the ’12 Conference on Programming

Language Design and Implementation, pages 13–22, 2012. 6, 95, 140, 141

203



[94] M. Samadi, D. A. Jamshidi, J. Lee, and S. Mahlke. Paraprox: Pattern-based approx-

imation for data parallel applications. In 19th International Conference on Archi-

tectural Support for Programming Languages and Operating Systems, pages 35–50,

2014. 9, 131, 138, 140

[95] M. Samadi, J. Lee, D. A. Jamshidi, A. Hormati, and S. Mahlke. SAGE: Self-tuning

approximation for graphics engines. In Proc. of the 46th Annual International Sym-

posium on Microarchitecture, pages 13–24, 2013. 8, 144, 149, 168, 169, 179, 180

[96] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and D. Gross-

man. EnerJ: approximate data types for safe and general low-power computation.

Proc. of the ’11 Conference on Programming Language Design and Implementation,

46(6):164–174, June 2011. 99, 115, 122, 138, 140, 143, 144, 168, 180, 182

[97] A. Sampson, J. Nelson, K. Strauss, and L. Ceze. Approximate storage in solid-state

memories. pages 25–36, 2013. 140, 182

[98] J. Sartori and R. Kumar. Branch and data herding: Reducing control and memory

divergence for error-tolerant GPU applications. In IEEE Transactions on on Multi-

media, pages 427–428, 2012. 138, 139, 181

[99] H. Sheikh, M. Sabir, and A. Bovik. A statistical evaluation of recent full refer-

ence image quality assessment algorithms. IEEE Transactions on Image Processing,

15(11):3440–3451, 2006. 122, 168

[100] M. Shindler, A. Wong, and A. W. Meyerson. Fast and accurate k-means for large

204



datasets. In Advances in Neural Information Processing Systems24, pages 2375–

2383, 2011. 98

[101] S. Sidiroglou-Douskos, S. Misailovic, H. Hoffmann, and M. Rinard. Managing

performance vs. accuracy trade-offs with loop perforation. In Proc. of the 19th ACM

SIGSOFT symposium and the 13th European conference on Foundations of software

engineering, pages 124–134, 2011. 138

[102] J. G. Steffan, C. Colohan, A. Zhai, and T. C. Mowry. The STAMPede approach to

thread-level speculation. ACM Transactions on Computer Systems, 23(3):253–300,

2005. 55, 93

[103] J. A. Stratton, S. S. Stone, and W.-M. W. Hwu. MCUDA: An efficient imple-

mentation of CUDA kernels for multi-core CPUs. In Proc. of the 13th ACM SIG-

PLAN Symposium on Principles and Practice of Parallel Programming, pages 16–

30, 2008. 111

[104] A. K. Sujeeth, H. Lee, K. J. Brown, H. Chafi, M. Wu, A. R. Atreya, K. Olukotun,

T. Rompf, and M. Odersky. OptiML: an implicitly parallel domain specific language

for machine learning. In Proc. of the 28th International Conference on Machine

learning, pages 609–616, 2011. 120, 140, 166

[105] A. C. Tamhane and D. D. Dunlop. Statistics and Data Analysis. Prentice-Hall, 2000.

109

[106] D. Tarditi, S. Puri, and J. Oglesby. Accelerator: using data parallelism to program

GPUs for general-purpose uses. In 12th International Conference on Architectural

205



Support for Programming Languages and Operating Systems, pages 325–335, 2006.

15, 50, 56, 94

[107] O. Temam. A defect-tolerant accelerator for emerging high-performance applica-

tions. In Proc. of the 39th Annual International Symposium on Computer Architec-

ture, pages 356–367, 2012. 182

[108] W. Thies and S. Amarasinghe. An empirical characterization of stream programs

and its implications for language and compiler design. In Proc. of the 19th Inter-

national Conference on Parallel Architectures and Compilation Techniques, pages

365–376, 2010. 28, 50

[109] W. Thies, M. Karczmarek, and S. P. Amarasinghe. StreamIt: A language for stream-

ing applications. In Proc. of the 2002 International Conference on Compiler Con-

struction, pages 179–196, 2002. 20, 40

[110] C. Tian, M. Feng, V. Nagarajan, and R. Gupta. Copy or discard execution model for

speculative parallelization on multicores. In Proc. of the 41st Annual International

Symposium on Microarchitecture, pages 330–341, 2008. 55, 83, 93

[111] A. Udupa, R. Govindarajan, and M. J. Thazhuthaveetil. Software pipelined execu-

tion of stream programs on GPUs. In Proc. of the 2009 International Symposium on

Code Generation and Optimization, pages 200–209, 2009. 49

[112] H. A. van der Vorst. BI-CGSTAB: a fast and smoothly converging variant of BI-CG

for the solution of nonsymmetric linear systems. SIAM Journal of Scientific and

Statistical Computing, 13:631–644, Mar. 1992. 39

206



[113] S. Venkataramani, V. K. Chippa, S. T. Chakradhar, K. Roy, and A. Raghunathan.

Quality programmable vector processors for approximate computing. In Proc. of

the 46th Annual International Symposium on Microarchitecture, pages 1–12, 2013.

182

[114] H. Volos, A. Welc, A.-R. Adl-Tabatabai, T. Shpeisman, X. Tian, and

R. Narayanaswamy. Nepaltm: design and implementation of nested parallelism

for transactional memory systems. In Proc. of the 23nd European conference on

Object-Oriented Programming, pages 123–147, 2009. 55, 93

[115] R. P. Wilson et al. SUIF: An infrastructure for research on parallelizing and opti-

mizing compilers. ACM SIGPLAN Notices, 29(12):31–37, 1994. 93

[116] M. Wolfe. High Performance Compilers for Parallel Computing. Addison-Wesley

Longman Publishing Co., Inc., 1995. 36, 65, 67

[117] M. Wolfe. Implementing the PGI accelerator model. In Proc. of the 3rd Workshop

on General Purpose Processing on Graphics Processing Units, pages 43–50, 2010.

15, 50, 56, 94

[118] H. Wong, M. M. Papadopoulou, M. Sadooghi-Alvandi, and A. Moshovos. Demys-

tifying GPU microarchitecture through microbenchmarking. In Proc. of the 2010

IEEE Symposium on Performance Analysis of Systems and Software, pages 235–

246, 2010. 152, 175, 176

[119] X.-L. Wu, N. Obeid, and W.-M. Hwu. Exploiting more parallelism from applica-

tions having generalized reductions on GPU architectures. In Proc. of the 2010 10th

207



International Conference on Computers and Information Technology, pages 1175–

1180, 2010. 51, 160

[120] S. Xiao and W. chun Feng. Inter-block gpu communication via fast barrier syn-

chronization. In 2010 IEEE International Symposium on Parallel and Distributed

Processing, pages 1–12, 2010. 54, 95

[121] Y. Yang, P. Xiang, J. Kong, and H. Zhou. A GPGPU compiler for memory optimiza-

tion and parallelism management. In Proc. of the ’10 Conference on Programming

Language Design and Implementation, pages 86–97, 2010. 15, 49

[122] S. zee Ueng, M. Lathara, S. S. Baghsorkhi, and W. mei W. Hwu. CUDA-Lite: Re-

ducing GPU programming complexity. In Proc. of the 21st Workshop on Languages

and Compilers for Parallel Computing, pages 1–15, 2008. 15, 49, 50

[123] E. Z. Zhang, Y. Jiang, Z. Guo, K. Tian, and X. Shen. On-the-fly elimination of

dynamic irregularities for GPU computing. In 16th International Conference on

Architectural Support for Programming Languages and Operating Systems, pages

369–380, 2011. 54, 95

[124] H. S. Z.Wang, L. Cormack, and A. Bovik. Live image quality assessment database

release 2, 2006. http://live.ece.utexas.edu/research/quality. 122

208


	DEDICATION
	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF TABLES
	ABSTRACT
	Introduction
	Sponge
	Adaptic
	Paragon
	Sage
	Paraprox

	Data Parallel Programming Model
	Adaptive Input-aware Compilation
	Introduction
	Background
	Adaptic Overview
	Input-aware Optimizations
	Memory Optimizations
	Memory Restructuring
	Incremental Memory Access

	Actor Segmentation
	Stream Reduction
	Intra-actor Parallelization

	Actor Integration
	Vertical Integration
	Horizontal Integration


	Experiments
	Input Portability
	Case studies
	Transposed Matrix Vector multiplication
	Biconjugate gradient stabilized method
	Nonlinear Support Vector Machine Training

	Performance of Input Insensitive Applications

	Related Work
	Conclusion

	Cooperative Loop Speculation
	Introduction
	Motivation
	Paragon Overview
	Compiling for Data-Parallel Speculation
	Loop Classification
	Kernel Generation
	 Instrumenting for Conflict Detection
	Execution Kernel Instrumentation
	Checking kernel implementation:


	Cooperative Execution Management
	Loop Monitoring
	Conflict Management Thread (CMT)
	Execution Scenarios

	Experiments
	Performance
	Overhead breakdown
	Execution Scenarios Performance
	Case study

	Related Work
	Conclusion

	Self-Tuning Approximation
	Introduction
	Approximation Opportunities
	SAGE Overview
	Tuning
	Preprocessing
	Optimization Calibration

	Approximation Optimizations
	Atomic Operation Optimization
	Data Packing Optimization
	Thread Fusion Optimization

	Experimental Evaluation
	Applications
	Methodology
	Performance Improvement
	Case Studies
	Runtime Overhead

	CPU-GPU Collaborative Quality Monitoring
	Related Work
	Conclusion

	Pattern-Based Approximation
	Introduction
	Paraprox Overview
	Approximation Optimizations
	Map & Scatter/Gather
	Idea:
	Detection:
	Implementation:
	Tuning Parameter:

	Stencil & Partition
	Idea:
	Detection:
	Implementation:
	Tuning Parameter:

	Reduction
	Idea:
	Detection:
	Implementation:
	Tuning Parameter:

	Scan
	Idea:
	Detection:
	Implementation:
	Tuning Parameter:


	Experimental Evaluation
	Methodology
	Results
	Performance Improvement
	Case Studies
	Specialized Optimizations Achieve Better Results:
	Design Considerations for the Map Optimization:
	Cascading Error in Scan Patterns:


	Limitations
	Related Work
	Conclusion

	Summary and Conclusion
	BIBLIOGRAPHY

