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ABSTRACT 

   Lithium-ion batteries have attracted increased attention for energy storage development 

due to the vast demand from portable electronics, (hybrid) electric vehicles and future 

power grids. The  research in this dissertation is focused on the development of oxide 

electrodes for lithium-ion batteries with high power density and improved stability. 

   One of the promising cathodes for lithium-ion batteries is lithium manganospinel 

(LiMn2O4). However, this compound suffers from manganese dissolution and a  Jahn-

Teller distortion due to Mn
3+

,  especially in oxygen deficient LiMn2O4–δ.  Hydrothermal 

based synthesis methods were developed to eliminate  oxygen vacancies to enable high 

power  in cathodes composed of nano-sized spinel particles. The relationship between 

oxygen defects and the capacity fading mechanism was demonstrated, and  collapse of 

the mechanical structure was identified in  defect-rich LiMn2O4-δ. 

   Next, the nickel substituted manganospinel, LiNi0.5Mn1.5O4 shows unexpected high 

voltage side reactions. To overcome this drawback, a thin and chemically inert  titanate 

was used as an artificial SEI (solid electrolyte interface) coating to prohibit transition-

metal dissolution and parasitic side reactions, which led to a 200% improvement of the 

capacity retention at 55°C and negligible polarization losses. 

 

   Finally, the spinel-structured lithium titanate (Li4Ti5O12) is introduced as an anode 

material for lithium-ion batteries due to its higher operating potential and excellent 

structural stability compared to current graphite anodes. However, the poor electronic 

conductivity and low lithium diffusion coefficient hinder its wide application. Given 

these advantages, a facile, low-cost solution method is explored to synthesize nano-sized 

titanates. Rapid charge/ discharge was achieved up to rates of 100 C (36 second charge/ 

discharge) due to a shorter lithium mean-free path and better contact between the active 

material and conductive agents. 
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CHAPTER 1 

Introduction 

 

1.1 Energy storage in batteries 

   More than 85% of the energy consumption of the world is dominated by non-renewable 

energy sources, such as, petroleum, natural gas and coal.
1
 The depletion of those fossil 

fuels is accompanied by the inevitable discharge of environmental pollutants and 

associated climate changes. The current development of advanced technology enhanced 

the application of renewable energy conversion processes, such as wind and solar power.
 

2,3
 However, lack of highly efficient and cost effective energy storage method hinders the 

wide application of such renewable energies.
4
  

   Batteries show the highest potential for efficient electrical storage.
5
 Rechargeable 

battery systems are more practical since they reduce environmental impacts.
6

 A 

rechargeable battery reversibly supplies and restores energy by means of an 

electrochemical redox reaction.
7
 The energy stored is defined as the  potential difference 

between two electrodes (cathode and anode).
8
 Notable is that current efficiency of a 

battery is not limited by the Carnot cycle compared to heat engines, which enables higher 

efficiencies.
9,10

 

   Another important component in battery is the electrolyte, which supports mass transfer 

between the cathode and anode. In addition to electrons flowing through the external 

circuit, ions in the electrolyte balance the charge internally.
11

 The design principle of a 

rechargeable battery is to select electrodes that offer the  highest  voltage (energy) and 



2 

 

charge  (capacity), while maintaining  chemical stability when in contact with the  

electrolyte. The main challenge is to improve this stability to increase the lifetime of the 

battery.
12

  

 

 

Figure 1.1 Schematic open-circuit energy diagram of electrodes in contact with a liquid 

electrolyte (adapted from ref. 12). ΦA and ΦC are the anode and cathode work functions. 

Eg is the window of the electrolyte for thermodynamic stability. A μA > LUMO and/or a 

μC < HOMO requires a kinetic stability by the formation of an SEI layer. 
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1.2 General consideration of a battery 

   A battery performs a chemical reaction to convert chemical energy into electrical 

energy, and vice versa. The battery potential is determined by the Gibbs free energy of 

the battery reaction,
13,14

 which can be expressed as: 

ΔG
O
=-nFE

O 

In this equation, E
O
 is the (standard) electromotive force or open circuit potential of the 

battery, which is the difference between the anode and cathode's electrochemical 

potential μA and μC (when n equals 1). From Figure 1.1, the potential of the battery is 

limited by the electrolyte and solvent stability window Eg, which is defined by the  

HOMO (the highest occupied molecular orbital) and LUMO (the lowest unoccupied 

molecular orbital) of the most reactive species.  It's important to match the chemistry of 

the anode or cathode with the electrolyte. In occasions of mismatch, a solid electrolyte 

interface (SEI) layer can impart slight kinetic stability to the system.
15,16

 The ion mobility 

within electrodes and electrolyte is small compared to the carrier mobility, which leads to 

internal resistance. This also hints that the SEI layers should offer good ionic 

permeability. To improve the stability of the battery, both the bulk and surface properties 

must considered.
17,18
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Scheme 1.1 Scheme of lithium ion battery 

1.3 Lithium ion battery 

   Li/Li
+
 has low standard potential of -3.04 V versus the standard hydrogen electrode, 

which suggests that the battery  with the highest voltage would be configured with a 

metallic lithium anode. At the beginning of the lithium battery history, there have been a 

few systems, such as MoS3//Li,
19

 TiS2//Li,
20

 MnO2//Li,
21

 in which intercalation materials 

were used as cathodes and pure lithium metal was the anode. However, due to uneven 

lithium plating and lithium dendrite growth, potential safety concerns have lead to the 

secondary (Li-ion) concept for lithium battery research.
22,23

  

   Lithium-ion batteries apply a lithium-ion intercalation material for both electrodes.
24

 

Scheme 1 demonstrates the simplified system of a lithium-ion battery. Lithium ions move 

between cathode and anode during cycling. The lithium-ion battery has also been known 

as a "rocking chair" battery based on lithium ion's rocking back and forth.
25

 The cathode 
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material is typically a transition-metal oxide with a layered or tunneled structure.
8
 In the 

1980s, John Goodenough conceived of using  LiCoO2 with a layered structure as the 

cathode material, which is still the dominant cathode material in lithium-ion batteries.
26

 

To replace pure lithium as the anode, graphitic carbon was introduced since it  shows 

lithium-ion intercalation ability (LixC6, 0≤x≤1) within its layered sp
2
 carbon structure.

27,28
 

Carbonate based organic solvents and LiPF6 are mostly used to prepare liquid-phase 

electrolytes for lithium ion batteries.
29,30

 To minimize the mass transfer distance between 

the cathode and anode and maintain electrical isolation, a polymer membrane with 

microporous structures is used as the separator, which offers a perfect carrier for the 

electrolyte and pathways for lithium shuttles.
31

  Two half reactions are involved during 

charge or discharge of the battery. Typical charge/discharge reactions could be described 

by the following equations, in which LiCoO2 and carbon are the cathode and anode, 

respectively: 

 

Cathode: LiCoO2  ↔   Li1-xCoO2 + xLi
+
 + xe

-
 

                                   Anode: 6C + xLi
+
 + xe

-
 ↔ LixC6 

                                   Overall: LiCoO2 + 6C ↔ Li1-xCoO2 + LixC6 

 

In spite of the wide application, the gradual increase in the cost of LiCoO2 as well as 

growing safety concerns require the development of other cheaper and greener candidates 

for its replacement,
32

 such as manganese oxide based cathodes with cubic spinel 

structures.
33 , 34

 Meanwhile, the capacity of LiCoO2 is limited by the instability of 

Li0.5CoO2 after half of the theoretical capacity has been charged.
35,36,37

 In addition, high 

voltage (i.e. the high oxidation state of cobalt) is catalytic for the thermal runaway of the 
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battery.
38,39

 An energy burst in the form of an  explosion results in the case of a battery 

short-circuit. On the anode side, the potential of lithium intercalation into graphite anode 

is only 0.2 V vs. Li
+
/Li. At relatively low temperature (i.e.—room temperature), lithium 

dendrite plating can occur even without a lithium metal substrate, which increases the 

probability of internal short-circuit.
40

  The low operating potential stays out of the 

stability window of the common carbonate electrolyte. Such side reactions cause the SEI 

layer to grow constantly,which consumes electrolyte and Li
+
 ions,  and leads to increases 

in the battery internal resistance.
41

 To overcome these issues, more chemically stable 

intercalation anodes with a higher operation voltage are desired.
12 

 

Figure 1.2 Crystal structure of cubic spinel LiMn2O4, Li4Ti5O12 or LiNi0.5Mn1.5O4-δ with 

space group of Fd-3m 
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1.4 LiMn2O4 and its oxygen defects structure 

   Stoichiometric LiMn2O4 has a cubic spinel structure with the space group of Fd-3m,
42,43

 

illustrated in Figure 1.2. The lattice parameter, a is ~ 8.24 Å. In the structure, lithium ions 

reside at the 8a tetrahedral Wyckoff sites. During charging delithiation, LiMn2O4 will be 

converted to λ-MnO2, maintaining the cubic oxide anion-close packed array, but with 

empty lithium sites. This reaction was first discovered through  chemical delithiation by 

mild acid.
33

 Later on, Goodenough applied the lithium reversible intercalation chemistry 

of LiMn2O4 to a lithium-ion battery.
34,44

 Although the one-electron  redox reaction is 

formally between Mn
3+

 and Mn
4+

, there is only one chemical environment for manganese 

atoms can be identified in LiMn2O4. Manganese stays at 16d octahedral sites. The formal 

oxidation state of manganese is then +3.5. and the close packed oxygen anions are 

located at the 32e octahedral sites with half of the spots filled.  

   Other than being oxidized or delithiated in the form of LiMn2O4, lithium insertion can 

also be accompanied by significant crystal structural rearrangement.
45 , 46

 As  lithium 

insert, all lithium ions will both be located at 16c sites, resulting a chemical formula of 

Li2Mn2O4. All the manganese will be reduced to Mn
3+

 during the lithiation. It is known 

that the ionic radii of Mn
3+

 is slightly larger than Mn
4+

 (0.654 Å vs 0.53 Å), which results 

in an increase of the lattice. More importantly, the MnO6 octahedral unit distorts from 

octahedral to tetragonal symmetry, due to the Jahn-Teller effect. Such an effect leads to a 

16% increase of the lattice along c axis with accompanied structure failure and crystal 

fracture. The desired lithium insertion chemistry is reversible and occurs at ~4.1 V (vs. 

Li
+
/Li). The second lithium's insertion chemistry occurs at ~ 2.8 V (vs. Li

+
/Li), and leads 

to rapid mechanical degradation. In addition to the Jahn-Teller effect,
47,48

 Mn
3+

 has strong 

tendency to disproportionate according to  the following reaction:
49
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2 Mn
3+

 → Mn
2+ 

+ Mn
4+

 

 

This dispropotionation reaction will consume manganese active material and produce the 

electrolyte soluble species, Mn
2+

.
50

 This  corrosion reaction is observable  in the SEM 

image of LiMn2O4 after long cycling. Therefore, it is important to control the oxidation 

state of manganese and minimize the side reactions.  

   Oxygen vacancies can be easily introduced into the cubic spinel structure during 

traditional high temperature solid state synthesis.
50

 The oxygen deficient sample can be 

written as LiMn2O4-δ, in which δ is the vacancy factor. To maintain charge neutrality, the 

oxidation state of manganese is forced to be lower than +3.5, which leads to a higher risk 

of corrosion based on the arguments presented above. Just below room temperature (~10 

°C), oxygen-deficient LiMn2O4-δ suffers a phase change from a cubic structure to a 

tetragonal or orthorhombic one, leading to a structural stability issue at low 

temperatures.
51

 During electrochemical cycling, cation mixing and an unwanted phase 

change from cubic spinel to double-hexagonal also contribute to the stability issue of the 

cathode material, although the detailed failure mechanism of LiMn2O4 related to the 

oxygen defects is still unclear.
52

 The challenge lies in how to control the oxygen content 

and improve the stability of LiMn2O4. This work is discussed in Chapter 2 and 3. 

1.5 High voltage cathode LiNi0.5Mn1.5O4 

   LiMn2O4 has a theoretical capacity Λ of 148 mAh/g based on one lithium ion's 

intercalation chemistry. The average redox potential E of manganese is ~ 4.0 V. The 

theoretical gravimetric (specific) energy density as the product of ΛE is ~ 600 Wh/kg. 

One effective way to improve the gravimetric energy density of lithium manganospinel is 

to raise the reaction potential of the cathode material by introducing new redox active 
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element, such as nickel.
53

 In LiNi0.5Mn1.5O4, Ni possesses an ionic valence of +2. By 

25% substitution to lower valence Ni, all the Mn stays at the uniform oxidation state of 

+4. Ni will be oxidized during charging from +2 to +4, maintaining one lithium 

deintercalation process. The reversible cycling reaction of LiNi0.5Mn1.5O4 occurs with an 

average potential of 4.7 V. Although LiNi0.5Mn1.5O4 and LiMn2O4 show similar 

theoretical capacities based on the lithium cation, the gravimetric energy density of 

LiNi0.5Mn1.5O4 is ~ 15% larger than LiMn2O4 due to higher voltage, which enables it as a 

good cathode material candidate.  

   The stoichiometric LiNi0.5Mn1.5O4 adapts a primitive simple cubic structure with space 

group of P4332.
54,55

 Figure 6 shows the structure of LiNi0.5Mn1.5O4. Ni and Mn cations 

locate at different octahedral sites as 4a and 12d, respectively. In this structure, Li stays at 

tetrahedral 8a sites. Oxygen can be found at either 24e or 8c sites. Similar to LiMn2O4-δ, 

oxygen vacancies can also be introduced into the structure which can be noted as 

LiNi0.5Mn1.5O4-δ. In the oxygen deficient LiNi0.5Mn1.5O4-δ, Ni maintains the oxidation 

state of +2. On the other hand, the average oxidation state of Mn will be dropped to lower 

than +4. During cycling, the Mn
3+/4+ 

redox couple will be activated compared to purely 

functional Ni
2+/4+

 in LiNi0.5Mn1.5O4. Furthermore, LiNi0.5Mn1.5O4-δ is isostructural with 

LiMn2O4 (space group of Fd-3m). Ni and Mn are randomly distributed at 16d sites. Li 

stays at 8a sites with oxygen at 32e sites.  

 



10 

 

 

Figure 1.3 Crystal structure of stoichiometric LiNi0.5Mn1.5O4 with space group of P4332 

 

   An optimized charge-transfer mechanism is important to improve the rate capacity of 

the battery. Materials with small particle sizes have a larger surface-volume ratio, which 

enables better contact between the active electrode material and the electrolyte and 

conductive agent.
56

 The electron transfer is more facile at the surface of the compound. 

Meanwhile, Li cations stay in the 3D tunnels of the spinel structure composed of closed-

packed oxide anions. The charge transfer inside the bulk material occurs through lithium 

diffusion along those channels. Materials with open tunnels facing toward the electrolyte 

enable faster charge transfer at the electrode/electrolyte interface.
57

 Compared to 

LiNi0.5Mn1.5O4, oxygen deficient LiNi0.5Mn1.5O4-δ shows better electrochemical 
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performance and structural stability, due to the higher electrical conductivity.
58

   Other 

than artificially introducing controlled oxygen defects, small sized particles with 

preferred orientation are necessary to assist the charge transfer and lithium diffusion 

during cycling. This research is discussed in Chapter 4.  

1.6 Artificial SEI layer on LiNi0.5Mn1.5O4-δ 

   The electrochemical performance of the electrode material is significantly influenced 

by the interface between the electrode and the electrolyte. Current liquid electrolyte 

systems employ carbonates as solvents as discussed above. However, the stability 

window of these solvents limits the operation potential of the battery to be lower than 4.7 

V in the presence of fluorine contained salt. Reactions such as electrolyte decomposition 

will happen during cycling and cause battery failure. Such side reactions at high voltage 

could lead to accumulation of reaction products and corrosion of the electrode material’s 

surface.  

   There have been reports of studying protection layers on the surface of the electrodes to 

improve the electrochemical stability of the battery.
59,60

 In this case, the protection layers 

need to be thin or porous, which still support lithium permeability. And it should also be 

more chemically inert compared to the electrode material itself. This study has been 

applied to tatina coatings on LiNi0.5Mn1.5O4, and discussed in Chapter 5. 

1.7 Li4Ti5O12 anode 

   Graphitic carbon is used as the dominant anode material for current lithium-ion 

batteries. However, due to the low lithium intercalation potential, SEI growth and lithium 

dendrite formation, the developing of new anode materials is necessary because of the 

safety concerns. Titanium oxide-based anodes have drawn more attention recently due to 

their low cost, low toxicity, and higher intercalation potential. TiO2 with either the 
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anatase or rutile structure shows a high theoretical capacity of 337 mAh/g, and the 

electrochemical reaction toggles the Ti
4+/3+ 

redox couple. However, this material suffers 

from a structural stability issue as a lithium intercalation material.
61,62

 Recently, TiO2-(B) 

with a nano morphology has been studied with high potential to be the next generation 

anode material.
63,64

 This material shows high capacity and excellent structural stability 

during cycling. However, due to the typical low temperature synthesis route, water 

molecules are often found in the structure, which function to stabilize the structure of the 

compound.
65

 This lattice water may prohibit future practical application of this material.  

   Li4Ti5O12 is another cubic spinel material and it shows better potential as anode 

candidate for lithium ion batteries.
66

 The chemical formula of the compound could be 

written as Li4/3Ti5/3O4. In the cubic unit cell, oxygen and titanium take the 32e and 16d 

sites, respectively.
67

 25% of the lithium stays at 16d sites with the rest occupying 8a sites. 

During charging of this material, one lithium can insert into Li4/3Ti5/3O4 at ~ 1.5 V 

corresponding to theoretical capacity of 175 mAh/g. There is a 0.2% volume change 

detected between Li4/3Ti5/3O4 and Li7/3Ti5/3O4, resulting in a "zero strain" material with 

excellent cyclability. Meanwhile, the operating potential of the anode prohibits dendrites 

formation and fast accumulation of the SEI layer during cycling.  

   The redox active species in Li4Ti5O12 is Ti
4+

 with a valence electron configuration of 

3d
0
, which gives an electrical conductivity as low as 10

--13 
S/cm.

 68
 Meanwhile, the 

lithium diffusion rate is limited by the two phase reaction at 1.5 V between Li7Ti5O12 and 

Li4Ti5O12. There has been reports of the lithium diffusion coefficient as 10
--14

 to 10
--17

 

cm
2
/s. Both of these factors significantly influence the rate capability of the compound. 

To improve conductivity, there have been reports of applying dopants to narrow the 
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original wide band gap.
69,70

 In addition, surface coatings, typically by conductive carbon, 

are favored by researchers to increase conductivity.
71,72

 An effective way to facilitate 

lithium diffusion is to shrink the particle size to the nano scale. Nevertheless, this 

material still suffers from serious aggregation due to high surface energy of the nano-

sized materials.
73 , 74

 The big challenge is to synthesize nano-sized materials with 

minimized aggregation; in this case, much better contact between active Li4Ti5O12 and 

conductive agents will help to improve the charge transfer during battery operation. 

1.8 Outline  

   This thesis is focused on synthesis, structural analysis and optimization of 

electrochemical properties of electrode materials for lithium-ion batteries. Chapters 2 to 5 

will present manganese-based cathode materials with cubic spinel structures. Chapter 6 

will  focus on the novel synthesis of Li4Ti5O12 as a lithium-ion battery anode.  

   In Chapter 2, a hydrothermal synthesis method is discussed for preparing nano-sized 

LiMn2O4 with controllable oxygen content. The comparison of stoichiometric and 

oxygen deficient structures will be discussed (both physical and chemical differences), 

defect structure analysis using advance neutron diffraction.  

   Next, the failure mechanism of LiMn2O4 with oxygen vacancies will be discussed in 

Chapter 3. From the view of structural analysis, a commercially available oxygen-

deficient sample has been studied. A structural failure related mechanism based on 

detailed diffraction and microscopy experiments has been carried out. In the end, the 

proposed mechanism of microstructural failure is expanded to lab synthesized materials.  

   Chapter 4 will introduce a two-step synthesis of high voltage LiNi0.5Mn1.5O4-δ with 

controlled particle size and designed crystal growth directions. The final products show 
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optimized rate capability and excellent electrochemical stability within set potential 

limits.  

   To improve the stability of the high voltage cathode LiNi0.5Mn1.5O4-δ, Chapter 5 

presents  the development of novel artificial SEI layer coatings on the cathode material. 

Both the coating layer and cathode after coating has been characterized to achieve 

optimized properties of the products. The electrochemical performance of surface- 

protected materials is compared with the "bare" cathode to highlight the significance of 

the artificial SEI. 

   Chapter 6 will be focused on novel synthesis of nano-sized anode Li4Ti5O12. In this 

chapter, the importance of preparing nano-sized material with minimal particle 

aggregation is emphasized. The synthesis mechanism is presented, which could be 

applied to future studies of analogous materials. The electrochemical performance of this 

anode has been tested in batteries to demonstrate its superior high rate capability.  

   In Chapter 7, I will offer conclusions and perspective on future directions in structural 

analysis of electrode materials, in-situ analysis,and the function mechanism of artificial 

SEI layers. 

   Following the main thesis, there are appendices containing supporting data pertinent to 

certain chapters. The appendix figures are appropriately referenced in each chapter. 
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CHAPTER 2 

 

Identifying and Eliminating Oxygen Vacancies: a Case Study of 

Lithium Manganospinel Oxide Prepared by Hydrothermal Method 

 

Portions of this chapter have been published: 

Hao, X.; Gourdon, O.; Liddle, B. J.; Bartlett, B. M. J. Mater. Chem. 2012, 22, 1578-

1591. 

 

2.1 Introduction 

Lithium-ion batteries have emerged as the preeminent technology for electrical energy 

storage in commercial application such as portable electronics, cellular communication, 

and even vehicle electrification. A battery is graded on three criteria: energy density, 

power density, and lifetime; all three need to be as large as possible. In developing 

chemistry for batteries, new electrode materials or alternative synthesis methods for 

existing electrode materials are only welcome if they result in improvements based upon 

these criteria. Accordingly, for any well-established battery material, the race is on to 

develop synthesis methods that optimize particle size and morphology in such a way that 

high energy density, high rate capability, and negligible capacity fade distinguish the 

electrochemistry of the resulting product from similar compositions prepared by tried and 

true conventional solid-state methods. 
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In this realm, the spinel structure of lithium manganese oxide, LiMn2O4, is one of the 

most well-studied battery materials because, in theory, two lithium ions (and therefore 

two electrons) can reside in the unit cell giving a range of compositions from Li2Mn2O4 

to Mn2O4 (= λ-MnO2).
75,76

 As synthesized, LiMn2O4 is formally mixed-valent Mn
4+

 and 

Mn
3+

. However, all manganese ions in the cubic structure are crystallographically 

equivalent, residing on the 16d Wyckoff site of the Fd3
–
 m space group.

77
 Therefore, it is 

more appropriate to describe manganese as having an oxidation state of +3.5. In the full 

range of compositions, this gives an overall gravimetric energy storage capacity of ~285 

mAh/g. In practice however, only ~½ of this capacity is used; as the oxidation state of 

Mn drops below +3.5, the compound undergoes a symmetry-lowering phase transition 

that corresponds directly with the irreversible Jahn-Teller distortion of Mn
3+

.
78,79

 In fact, 

even if the material is cycled only between the end members Mn2O4 and LiMn2O4 at a 

potential of ~4.1 V vs. Li
+
/Li (where the average oxidation state of manganese remains 

greater than or equal to +3.5), fracture of micron-sized crystallites occurs as the local 

lithium-ion concentration at the surface increases. The accumulation of Li
+
 promotes 

Mn
3+

 disproportionation into Mn
4+

 and electrolyte-soluble Mn
2+

.
80

 Dissolution of 

manganese into the electrolyte results in severe and rapid capacity fade. In order to 

mitigate this surface chemistry and maintain sufficient lithium-ion diffusivity for 

reasonable kinetics, submicron to micron-sized particles are thought to be ideal.
81

 

From a historical perspective, it was almost immediately recognized that the mere 

presence of the Jahn-Teller active Mn
3+

 ion may render the cubic spinel structure too 

unstable with respect to other structures and compositions for practical application.
82

 

However, the many open sites on the spinel lattice (only 1/8 of all tetrahedral sites and 
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only ½ of all octahedral sites are filled) and the possibility of non-stoichiometric 

compositions in the forms of both cation substitution and oxygen vacancies give it a rich 

chemistry that can be exploited to maintain the cubic structure during electrochemical 

cycling.80
–86

 Moreover, if nanoscale particles can be stabilized such that energy density 

is not sacrificed due to the aforementioned surface reactions, high power density in 

lithium manganospinel cells can be realized.
87

 There are many reports on using 

hydrothermal synthesis to prepare nanoscale lithium manganospinel.
88–102

Most of these 

methods yield materials with some substitution of lithium for manganese on the 16d sites 

and also have oxygen vacancies, a well established property of spinels.
103

 Substituting 

lithium on the octahedral sites is beneficial for preventing surface fracture by increasing 

the manganese oxidation state,
104

 but this comes at the expense of some capacity since 

lithium residing on the 16d sites cannot be extracted. However, oxygen vacancies lower 

the manganese oxidation state, and the detrimental effects of oxygen vacancies have been 

well documented in the lithium manganospinel literature.
82,105–109

 Our group recently 

reported a hydrothermal method for preparing Li-rich spinel nanoparticles by the 

permanganate oxidation of acetone in an aqueous solution of lithium hydroxide.
110

 Here, 

we report the structural chemistry and battery performance of our hydrothermally 

synthesized materials.  

2.2 Experimental 

2.2.1 General Considerations 

 Potassium permanganate 99.0% was purchased from J. T. Baker. Lithium 

hydroxide 98%, lithium hexfluorphosphate 99.99%, ethylene carbonate and diethyl 

carbonate solvents were purchased from Aldrich. The solvents were dried over P2O5 prior 

to storing a Vacuum Atmospheres OmniLab glove box under an argon atmosphere. 
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Lithium foil was obtained from Strem Chemicals. Iron (II) chloride (99.5%, argon 

packed) was purchased from Alfa Aesar. N2 and O2 gases (99.99+%) were purchased 

from Metro Cyrogenics. HPLC-grade acetone was purchased from EMD Chemicals and 

distilled prior to use.  

Powder X-ray diffraction patterns were obtained with a Brüker D8 Advance 

diffractometer equipped with a Lynx-Eye detector and parallel beam optics using Cu-Kα 

radiation (λ= 1.54184 Å). XRD patterns were indexed and refined using the TOPAS 

program from Brüker AXS. Scanning electron microscopy images were obtained using a 

FEI Nova Nanolab SEM/FIB with an accelerating voltage of 10 kV. Infrared spectra were 

obtained with a Nicolet 6700 FT-IR spectrometer from Thermo Scientific with a MCT-B 

detector. All the spectra were collected as an average of 5000 scans with 4 cm
–1

 

resolution. The BET surface area measurements were obtained from nitrogen sorption 

isotherms with a NOVA 4200e. All samples were heated in a standard laboratory Fisher 

vacuum oven 120 ºC prior to the measurement. Thermal analysis was obtained with a 

TGA7 Thermogravimetric Analyzer (Perkin Elmer) at a heating rate of 10 ºC under air or 

nitrogen flow, and differential scanning calorimetry was obtained with a DSC Q10 (TA 

instruments) at a heating rate of 10 ºC. DSC data were analyzed by the Universal 

Analysis 2000 software package. 

2.2.2 Hydrothermal Synthesis and Annealing  

All of the spinel-structured compounds in this study were prepared by hydrothermal 

treatment of 0.158 g (1.00 mmol) KMnO4 in 12 mL 0.1 M LiOH(aq) with 1.00 mmol of 

acetone. Reactions were carried out in 23 mL PTFE-lined, stainless-steel Parr autoclaves 

which were sealed in a Plas-Lab wet box. The lithium hydroxide solution was purged 
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with N2 gas or O2 gas prior to sealing in the wet box under the same N2 or O2 atmosphere 

where appropriate. Autoclaves were heated to 200 ºC at a rate of 10 ºC/min. After a dwell 

time of five hours, reactions were cooled to room temperature at a rate of 5 ºC/min. Dark 

green microcrystalline powders were collected by centrifugation, washed several times 

with deionized water, and dried overnight in a vacuum oven at 120 ºC. Subsequent 

annealing was performed in an MTI compact muffle furnace at 500 ºC for 4h under 

ambient room atmosphere. 

2.2.3 Elemental Analysis 

ICP-AES elemental analysis for Li and Mn was obtained using a Perkin-Elmer Optima 

2000DV. Samples were digested in 3-5 mL conc. HNO3 with a few drops of H2O2. 

Samples were references to an yttrium internal standard and concentrations of lithium and 

manganese were determined from the maximum intensity lines (610.632 nm for Li; 

257.610 nm for Mn) compared to those of standard reference solutions. The average 

oxidation states of manganese were determined by a potentiometric titration using 

FeCl2/KMnO4. 20 mg samples were digested in 0.020 M FeCl2 solutions of 10% H2SO4 

that were titrated against 4.68 mM KMnO4 according to the balanced equation:  

5Fe
2+

(aq) + MnO4
–
(aq) + 8H

+
(aq) → 5Fe

3+
(aq) + Mn

2+
(aq) + 4H2O(l) 

2.2.4 Electrochemical Measurements 

Active cathode mixtures were prepared by mixing the synthesized spinel material, 

carbon black and poly(vinylidene) fluoride (PVDF) using a mass ratio of 75:15:10 with a 

Thinky AR-100 rotation/revolution super mixer. N-methyl-2-pyrrolidone (NMP) was 

added to dissolve the PVDF and to maintain appropriate viscosity of the black slurry. 

This material was coated onto a de-oiled aluminum foil using the doctor blade method. 
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Then, the foil was dried in the vacuum oven overnight at 120 ºC prior to assembling the 

cell. The cathode and Celgard
TM

 poly(propylene) film were cut and fit into a ¼″ 

Swagelok
TM

 PTFE union under ambient room atmosphere. The partially assembled cell 

was then pumped into a Vacuum Atmospheres OmniLab glove box under argon, where 

cell assembly was completed. The electrolyte solution was composed of 1 M LiPF6 in 2:1 

(v/v) ethylene carbonate and diethyl carbonate, and lithium foil was used as the anode.  

Cyclic voltammetry measurements were performed on an eight-channel CH 

Instruments 1000 Electrochemical Workstation at a scan rate of 0.1 mV/s. Gavlanostatic 

charge/ discharge measurements at the rate C/10 were recorded with CH Instruments 

660C Electrochemical Workstation. Higher current charge/ discharge curves were 

recorded on a custom-designed Vencon UBA5 battery analyzer. Cycling at 55 ºC was 

accomplished by submerging the Swagelok cell into a heated sand bath maintained at 

constant temperature using a Variac transformer. 

Electrochemical impedance spectra (EIS) were recorded on an Autolab PGSTAT302N 

with a FRA (frequency response analysis) module. Prior to EIS measurements, the cells 

were cycled 3 times between 3.4 and 4.45 V at current C/3. Then the EIS were recorded 

at various requested potentials from 4.00 to 4.40 V with a 1 hour equilibrium time such 

that the current flow declined to less than 5 nA. The AC perturbation was ±10 mV, and 

the frequency range was from 10
5
 to 10

–2
 Hz. Data were fit using the Zview

TM
 software 

package. 

2.2.5 Powder Neutron Diffraction 

Time-of-flight neutron diffraction experiments for air synthesized and air annealed 

samples were performed on a powder diffractometer (POWGEN) in a vanadium can 
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sample holder by applying a spallation neutron source (SNS) at ORNL (Oak Ridge 

National Lab). Differing from nearly all other time-of-flight (TOF) neutron powder 

diffractometers, the design of POWGEN is based on combining the diffracted neutrons 

collected at all angles into a single profile rather than assigning them to series of different 

profiles that traditionally were based on grouping detectors according to scattering angle. 

Such a unique approach yields to a high count rate while preserving good resolution Δd/d 

= 0.0015 at d = 1 Å. The diffraction data were collected at 293 K using incident neutron 

beam wavelengths centered at 1.066 Å and 3.198 Å for d-spacing ranges of 0.29–3.09 Å 

and 1.47–7.21 Å, respectively. The collected diffraction patterns were calibrated using a 

LaB6 standard before Rietveld refinement using the software Jana2006. 

2.3 Results 

2.3.1 Establishing composition by ICP-AES, and potentiometric titration 
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Figure 2.1 X-ray diffraction pattern of lithium manganospinel synthesized in air under 

hydrothermal conditions. The black, red, and gray traces represent the experimental 

pattern, the Rietveld refinement, and the difference pattern respectively. Miller indices 

for lithium manganospinel are shown in black. 10% silicon was added as an internal 

reference and its Miller indices are shown in gray. 

 

The lithium manganese oxide spinel compounds in this study were prepared by 

hydrothermal synthesis starting from potassium permanganate, lithium hydroxide, and 

acetone according to the balanced equation: 

              4LiOH(aq) + 8KMnO4(aq) + 6(CH3)2CO(l) →  

4LiMn2O4(s) + 6CH3COCHO(l) + 8KOH(aq) + 4H2O(l) + O2(g) (1) 

In order to form spinel as the only solid-state product of the reaction (i.e.—without the 

common Mn3O4 haussmanite impurity present), we have discovered that reactions 

performed in a total volume of 12 mL of  0.1 M LiOH (1.20 mmol) with 1.00 mmol 

KMnO4 and 1.00 mmol (CH3)2CO heated to 200 ºC for 5 h are ideal. We have previously 

shown that pyruvaldehyde can be isolated from reaction mixture once the vessels have 
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cooled. Moreover, when considering the excess base added to the reaction, the ratio of 

LiOH to KMnO4 remains 1:2 in the balanced equation even for the complete 16-electron 

oxidation of acetone to carbon dioxide: 

  16LiOH(aq) + 32KMnO4(aq) + 7(CH3)2CO(l) →  

16LiMn2O4(s) + 21CO2(g) + 32KOH(aq) + 13H2O(l) (2) 

The solid product in the balanced equations above is written as stoichiometric LiMn2O4. 

Figure 2.1 shows the X-ray diffraction pattern of lithium manganospinel synthesized 

using the hydrothermal conditions described above, noting that the vessels are sealed 

under the ambient room atmosphere. The lattice parameter is slightly smaller for this 

compound compared to that of stoichiometric LiMn2O4, (8.242 vs. 8.248 Å). The 

compound LiMn2O4 is formally mixed-valent with an average manganese valence, ZMn, 

of exactly 3.5. However, in the structure, manganese resides on a special position (16d 

octahedral sites) such that all manganese ions are symmetrically equivalent, related by a 

three-fold inversion axis and a mirror plane. A smaller lattice constant implies that the 

average manganese valence is greater than 3.5, and one way to accomplish this is the 

aliovalent substitution of lithium for manganese on the octahedral sites, where the 

average oxidation state of manganese must increase to maintain electroneutrality: 

Li1+xMn2–xO4 ≡ [Li]8a[Lix,Mn2–x]16d[O4]32e              (3) 

where the subscripts outside brackets denote Wyckoff positions on the spinel lattice. 

Mn
4+

 is smaller (6-coordinate, high spin ionic radius = 0.67 Å) than is Mn
3+

 (0.72 Å), and 

the average oxidation state of manganese, ZMn, is related to the degree of ion substitution 

by 
 – 

 – 
. The compound is still considered to be stoichiometric because the total number of 

cations in the formula unit remains 3 and the number of anions is 4.  
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ICP-AES analysis confirms that compounds prepared by our hydrothermal synthesis 

have a Li:Mn ratio greater than 0.5. However, potentiometric titration of manganese 

against ferrous iron gives a surprisingly smaller ZMn of +3.47. This hints that cation 

substitution alone does not tell the full story of spinel synthesized by hydrothermal 

methods. Rather, vacancies in the oxygen sublattice, a nonstoichiometric defect in the 

spinel structure, must also be considered. To demonstrate further the presence of oxygen 

vacancies that result from hydrothermal synthesis, we observe that the lattice parameter 

gets smaller still (8.228 Å) and ZMn increases (+3.57) after annealing the sample in air at 

500 ºC for 4 h. Importantly, ICP-AES shows that the Li:Mn ratio is unchanged after 

annealing. We can understand our diffraction and titration results by considering first the 

formula for spinel with no cation substitution but with oxygen vacancies, LiMn2O4–δ. 

Here, ZMn is given by 
    

 
, where the presence of oxygen vacancies lowers ZMn. By 

annealing in air, atmospheric oxygen is reduced at the surface and fills in these vacancies 

according to the reactions: 

 δ/2 O2(g) → δ(Oads)        (4)  

δ(□O
••
) + δ(Oads) + 2δe′ → δ(OO

×
)      (5)  

in the standard Kröger-Vink notation. Notably, the electrons in the equation 5 are 

transferred from manganese; thus filling in oxygen vacancies increases ZMn. 

Therefore, in compounds prepared by hydrothermal methods, the overall formula is 

best represented as having both cation substitution and oxygen vacancies, Li1+xMn2–xO4–δ. 

Now, ZMn is determined by the formula 
      

   
. The mole fraction of lithium that 

substitutes on the 16d sites, x, can be measured directly from the Li:Mn ratio from ICP-

AES analysis. We cannot analyze directly for oxygen using this technique, but we can 
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couple x with ZMn from our titration data to estimate δ, the oxygen non-stoichiometry. 

Table 2.1 compares elemental analysis data and X-ray data for all synthesized and 

annealed samples. The monikers “air,” “N2” and “O2” in the text, table, and figure 

captions refer only to the atmosphere under which the hydrothermal reaction was carried 

out. Then, the terms “synthesized” and “annealed” refer to those compounds studied 

directly upon filtering the products under ambient conditions and those compounds that 

were subsequently annealed in air at 500 ºC for 4h, respectively.  
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Table 2.1 Characterization and electrochemistry of lithium manganospinels compared in this study. 

 Air synthesized Air annealed N2 synthesized N2 annealed O2 synthesized O2 annealed 

a (Å) 8.242 8.228 8.244 8.230 8.230 8.221 

Li:Mn 0.508 0.508 0.504 0.504 0.506 0.506 

ZMn 3.47 3.57 3.45 3.55 3.47 3.58 

Empirical Formula Li1.01Mn1.99O3.95 Li1.01Mn1.99O4.06 Li1.01Mn1.99O3.94 Li1.01Mn1.99O4.04 Li1.01Mn1.99O3.96 Li1.01Mn1.99O4.07 

SA (m
2
/g) 65.5 54.6 61.7 68.1 56.0 59.5 

Initial capacity at 

C/10 (mAh/g) 

138 137 127 132 144 118 

Initial discharge at 

C/10 (mAh/g) 

117 106 116 124 116 112 

Discharge capacity 

at C/3 (mAh/g) 

114–86 122–101 116–87 116–91 120–108 115–108 

% Capacity fade 

after 100 cycles at 

C/3 

25.0 17.2 25.0 21.6 10.0 6.1 
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2.3.2 Altering the oxygen stoichiometry through synthesis 

   Hydrothermal synthesis is performed under constant volume, and we have prepared 

spinel-structured compounds in vessels sealed under ambient room atmosphere, under a 

pure nitrogen atmosphere, and under a pure oxygen atmosphere (99.99% gas purity) in 

order to compare the degree of cation substitution and oxygen vacancies that result. To 

ensure a pure atmosphere, the aqueous lithium hydroxide solution was thoroughly purged 

(at least 2 h) with the gas of interest prior to starting the reaction. Table 1 shows that as 

we increase the partial pressure of oxygen in the reaction vessel, we observe fewer 

oxygen vacancies in the synthesized spinel product (determined from ICP and titration 

data). Rietveld refinement of XRD data shows that as the oxygen content of the synthesis 

atmosphere increases from 0% (N2) to 100% (O2), the lattice parameter, a, indeed 

decreases from 8.244 Å to 8.223 Å when assigned to the space group Fd3
–
 m. After 

annealing these samples at 500 ºC for 4 h in air, we observe the same trend: a decreases 

and ZMn increases. X-ray diffraction patterns with for all compounds is presented in 

Figure A.1. In a control experiment, we find that heat alone does not result in a smaller 

unit cell or increased ZMn; in fact, annealing lithium mangnospinels in pure N2 at 500 ºC 

results in a slight increase of a to 8.250 Å (Figure A.2), and ZMn is +3.31.  
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Figure 2.2 SEM images of lithium manganospinels synthesized by hydrothermal 

methods: a) airsynthesized; b) air annealed; c) N2 synthesized; d) N2 annealed; e) O2 

synthesized; f) O2 annealed. 

 

All of the spinel compounds prepared in this study crystallize as nanoparticles with a 

mean size of ~30 nm, illustrated in the SEM image of Figure 2.2. Interspersed in these 

nanoparticles are some larger 100–300 nm particles. Important to our work, particle size 

is conserved upon annealing—that is, no interfacial crystal growth occurs at 500 ºC. In 

addition, nitrogen sorption isotherms in Figure A.3 show that hydrothermally synthesized 

lithium manganospinels have surface areas (determined by the BET method) on the order 

of 60 m
2
/g, but show type-II (non-porous) behavior. These areas are similar to those 

observed in materials prepared by calcination of lithium salts and electrolytic grade 

manganese oxide at temperatures below 500 ºC.  

2.3.3 Observing lattice distortion by PND 

The X-ray scattering factor for lithium is small as it scales with atomic number (Z = 3). 

Therefore, we turned to powder neutron diffraction to determine the structure and site 

occupancy factors for lithium manganospinel. LiMn2O4 known from the literature adopts 



29 

 

the cubic Fd3
–
 m structure, therefore, as a first attempt such cubic symmetry was used to 

refined the data collected on the LiMn2O4 synthesized in the air. However, such 

refinement leads to a poor reliability factor and the difference curves on the refinement 

showed poor agreement, particularly with the (004) reflection. As shown in the inset of 

the Figure 3a, this (004)c reflection, could be better described by the three independent 

reflections {(004), (040) and (400)}. Therefore, refinement using a Fddd orthorhombic 

symmetry (a subgroup of Fd3
–
 m) was performed, leading to a noticeable improvement of 

the refinement to a satisfactory R = 7.3%. The pattern is shown in Figure 2.3, and the cell 

parameters refined as a =  8.2808(3) Å, b =  8.2133(3) Å and c = 8.24006(3) Å.  



30 

 

 

Figure 2.3 Neutron powder pattern obtained on POWGEN at 300 K on (a) LiMn2O3.96 

synthesized in air and (b) the annealed LiMn2O4.03 sample. Dots indicate the normalized 

profile, the solid line is the calculated profile, tick marks below profile indicate the 

positions of all allowed reflections, and the difference curve is show below the tick marks 

on the same scale (d-spacing range 0.30 – 3.2 Å). In the case of LiMn2O3.96, black and 

red tick marks indicate main and satellite reflections, respectively (see Text for details). 

The insets present an expanded region around the (004)c reflection. 

 

 

At this stage of refinement, we note an unusually large atomic displacement parameter 

(ADP) on the oxygen site. Since such behavior is characteristic of non-stoichiometry in 

oxides, the oxygen occupancy was refined and converged to 96(1)% with a significant 
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improvement of the refinement (R = 6.7% for a G.o.F. = 2.3). Table 2.2 lists the atomic 

positions, ADP and occupation parameters for LiMn2O3.96 synthesized in the air. PND 

cannot differentiate 1% substitution of Li for Mn on the 16d sites (surmised from our ICP 

results), but we note that the unit cell parameters support this formulation. For the last 

step of the refinement, some weak reflections, still non-indexed, are noticeable. These 

reflections could be indexed as first-order satellites of a commensurate tripling along the 

a direction of the average unit cell. As the number of parameters to refine will drastically 

increase, a superspace approach of the commensurate modulation has been preferred to a 

supercell one. Therefore the superspace group Fddd(00) with 1/3 a* was used to 

refine the structure fully. (For a comprehensive description of (3 + n)-dimensional 

crystallography, see, for instance, works by Janssen et al.
111

 and van Smaalen
112

 and 

references within.) The superspace model of this crystal structure has been obtained by 

subsequent introduction of modulation parameters on atomic positions and site 

occupancies. Such an approach has led to introducing one modulation wave on the Mn 

atomic position and one modulation wave on the oxygen occupancy. These modulations 

are presented in Figure 4 and red tick marks on the Figure 3a illustrate the position of 

these satellite reflections. The modulations parameters are classically written as:  

 

     4 4 4

1 1

sin 2 cos 2
k k

n n

n n

x s nx c nx  

 

    u , 

 

with sn and cn being the refined coefficients of the n
th

 order harmonic. Using this 

formalism, the modulation wave on the oxygen occupancy imply s1=0.16(4) and 

c1=0.13(3). For the Mn atomic displacement only sine terms have been used with s1=-

0.0118(15), 0.002(4) and 0.011(2) to express the deviation along the x, y, and z 
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crystallographic direction, respectively. The modulations show clearly than the oxygen 

vacancies are not randomly distributed, but with a frequency of every three average unit 

cells, the two other ones being fully occupied (Figure 2.4). Simultaneously, the Mn atoms 

present a small displacement along the a and c direction which implies a variation of the 

Mn–O distances. Therefore modulation waves could be associated in that class of 

materials with a variation of the covalence charge on the Mn site. Such types of 

modulation waves have already been observed for LiMn2O4 during delithiation.
113

 

 

Table 2.2 Atomic Parameters, occupancies and Equivalent Displacement Parameters (Å
2
) 

for LiMn2O3.96 synthesized in air. 

 

Atom Wyckoff 

Site 

Occupation x y z Ueq 

Li 8a  1  0.125  0.125  0.125  

0.0061(10) 

Mn 16d  1  0.5  0.5  0.5  0.0042(7) 

O 32e  0.96(1)  0.7387(4)  0.7378(5)  0.7353(6)  0.0082(9) 
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Figure 2.4 Representation of the atomic modulations on (a) the oxygen occupancy and 

(b) the manganese displacement along the a direction. The dashed lines represent the 

commensurate sections. 

 

 

As presented in Figure 2.3b, annealing the LiMn2O4 sample introduces major 

modifications on the crystal structure of the material. First, the inset of the Figure 3b 

shows that splitting of the (004)c reflection is no longer observed, and therefore the final 

refinement was carried out using Fd3
–
 m symmetry. Notice that the asymmetry of the peak 

associated with a strong Lorentzian component in the profile shape indicates some degree 
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of defects in the crystal structure. The final refinement converge smoothly to a 

satisfactory R = 3.40% for a G.o.F. = 2.1. The cell parameters, atomic positions and 

equivalent atomic displacement are listed in Table 2.3. Importantly, the oxygen position 

is fully occupied, and additional residues localized near (0, 0.26, 0.73) could be 

eventually associated with some excess oxygen atoms (0.03 oxygen).  

 

Table 2.3 Atomic Parameters, occupancies and Equivalent Displacement Parameters (Å
2
) 

for air annealed LiMn2O4.03 (cell parameter: a = 8.2304(5) Å). 

 

 

   The hypothesis developed from our structural and elemental analyses is that although 

cation substitution and oxygen non-stoichiometry are prevalent in materials prepared via 

hydrothermal synthesis, annealing the samples eliminates (at least minimizes beyond all 

detection, vide infra) oxygen vacancies. The distinct advantage of this approach 

compared to solid-state preparative methods is that soft chemical routes give rise to 

nanoparticles that will show much greater rate capability. The remainder of the results 

section details the experimental data supporting this hypothesis. We will illustrate the 

impact of synthesis conditions, which dictate structure and composition, on the 

electrochemical performance of these materials as cathodes for lithium-ion batteries. 

Atom Wyckoff 

Site 

Occupation x y z Ueq 

Li 8a  1  0.125  0.125  0.125  

0.0134(11) 

Mn 16d  1  0.5  0.5  0.5  0.0081(3) 

O 32e  1 0.26324(6) 0.26324(6) 0.26324(6)  0.0140(3) 
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Specific attention is given to the initial capacity, the capacity retention, and rate 

capability of the resulting cells. 

2.3.4 Substantiating the presence of oxygen vacancies by TGA, DSC, and CV 

Thermogravimetric analysis, differential scanning calorimetry, and cyclic voltammetry 

verify the qualitative presence of oxygen vacancies, as has been well discussed in the 

lithium manganospinel literature.
 82,108,114,115 

 Figure 2.5 shows that all hydrothermally 

synthesized spinel samples as well as their annealed analogues lose up to 1% mass upon 

heating to 200 ºC by TGA, attributed to the loss of surface water from the nanocrystalline 

material. This assignment is corroborated by FTIR spectroscopy (Figure A.4); materials 

stored in the ambient room atmosphere show prominent ν(O–H) vibration and  δ(H–O–

H) bending modes at 3300 and 1630 cm
–1

 respectively.  

 

 

Figure 2.5 TGA traces of lithium manganospinels synthesized by hydrothermal methods. 

 

First, we focus on the air- and N2-synthesized samples. The TGA in Figure 2.5 a–b 

shows a mass gain between 200–300 ºC: 0.11% for the sample synthesized in air, 0.10% 
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for the sample prepared under N2. However, TGA of the corresponding annealed samples 

in Figure 2.5 c–d shows no such gain in mass. This observation is understood by 

equations 4 and 5 from the first section of the results: oxygen vacancies are already filled 

by annealing, therefore no additional mass increase can occur. Important to this 

interpretation, a control experiment in which the TGA of the compound synthesized in air 

was performed under a nitrogen purge shows no such mass increase (Figure A.5). Above 

~330 ºC, all samples show a mass decrease, as has been described in the chemistry of 

materials prepared at high temperature.
104,106

 In our samples, this indicates that perhaps 

our hydrothermally synthesized compounds absorb excess oxygen at these low annealing 

temperatures. We will return to this point in the next section. 

 

 

 

Figure 2.6 DSC traces for lithium manganospinels synthesized in a) air; b) N2; c) O2. 

Black and redcurves represent the synthesized and annealed samples, respectively. 

 

 

 

Next, DSC measurements further support a change in the oxygen stoichiometry of 

hydrothermally synthesized samples. At ~280 K, lithium manganospinel undergoes a 

phase transition from the cubic structure (Fd 3 
–
  m) to what was originally identified as a 

phase having tetragonal symmetry (I41/amd),
116

 though later shown to be orthorhombic 

(Fddd) by synchrotron X-ray diffraction.
117

 This first-order phase change is attributed to 
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partial columnar charge ordering,
118

 and can be observed in the DSC. Figure 2.6 a–b 

shows that prior to annealing, the material synthesized in either ambient air or under a 

pure N2 atmosphere shows the transition as an exotherm at 8.7 and 7.7 ºC, respectively 

with an enthalpy change of 2.10 and 3.65 J/g, respectively . This phase transition no 

longer appears after annealing the samples since ZMn increases to 3.57 and 3.55 for air 

and N2 samples, sufficient to suppress the symmetry-lowering distortion.
119

  

 

 

Figure 2.7 Cyclic voltammograms of lithium manganospinels. Black traces in the top 

panel are for the synthesized samples. Red traces in the bottom panels are for the 

corresponding annealed samples. The inset blows up the region between 3.5 and 3.0 V 

where an additional wave can be observed for the air and N2 synthesized samples (noted 

by the red arrows). 

 

 

 

Then, cyclic voltammetry points to the presence of oxygen vacancies within 

hydrothermally synthesized materials. Figure 2.7 shows the voltammograms of spinel 

materials prepared by hydrothermal synthesis. Upon charging, all materials show two 
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oxidation waves at 4.13 V and 4.26 V (vs. Li
+
/Li) with corresponding reduction waves at 

3.81 V and 4.02 V upon discharge. These correspond to the one-electron oxidation of 

Mn
3+

 to Mn
4+

 with lattice contraction/ expansion at ½ charge/ discharge. The change in 

lattice parameter and resultant shift in chemical potential was described in the first report 

of lithium manganospinel.79 Interestingly, the as-prepared hydrothermal samples 

synthesized under air and under N2 display an additional wave at E1/2 of ~3.25 V, 

previously shown to be attributed to oxygen vacancies formed in the structure as 

electrons are transferred to the electrolyte.
106,120

 This results in a phase transition to a 

double hexagonal structure, as has been shown in previous HR-TEM studies.
52

 Once 

annealed, the disappearance of this wave suggests that such a mechanism is no longer 

operable in these samples. 

Finally, we consider together the data for lithium manganospinel synthesized under a 

pure O2 atmosphere. TGA shows a small mass gain of 0.05% between 200–300 ºC, and it 

disappears after annealing, just as was the case for the air and N2 samples. In the DSC, no 

exotherm near 280 K is observed in either the synthesized or the annealed sample, despite 

ZMn being slightly less than +3.5 in the synthesized compound (3.47). Finally, the 

compound prepared under an O2 atmosphere shows no discernable wave at E1/2 of ~3.25 

V in its cyclic voltammogram. Together, the DSC and CV results hint that the oxygen 

mole fraction of 3.96 in the synthesized sample is sufficient to prevent charge ordering. 

Furthermore, the lack of oxygen vacancies in the O2 annealed sample indicates that this 

material will result in superior electrochemical performance. 
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2.3.5 Measuring the capacity and reversibility as a function of oxygen vacancies 

 

 

Figure 2.8 First three charge-discharge curves recorded at rate C/10 for lithium 

manganospinels. Black, gray, and red curves represents cycles one, two, and three 

respectively. 

 

 

In order to assess the promise of hydrothermally synthesized materials as practical 

electrodes, we performed galvanostatic cycling under three sets of conditions. First, we 

recorded three charge-discharge cycles at a rate of C/10. Here, the initial capacities were 

determined as well any changes in the voltage profile as the solid-electrolyte interface 

(SEI) layer is forming. As shown in Figure 2.8, all spinel compounds show an initial 

discharge capacity between 115 and 120 mAh/g. For the air synthesized sample, the 

capacity fades to 106 mAh/g with the third cycle. The annealed compound still has a 

capacity of 117 mAh/g on the third cycle. Slow cycling gives the best measure of total 

available capacity as lithium in the core of the material has sufficient time to diffuse to 

the surface and allows us to determine the cycle-to-cycle Coulombic efficiency, qout/qin. 

For the third charge/discharge cycle, the measured Coulombic efficiency of 



40 

 

hydrothermally synthesized materials ranges from 94.83% (air synthesized sample) to 

98.60% (O2 synthesized sample). Of course, three slow cycles do not translate directly 

into the practical utility of an electrode, so we then constructed a second set of cells that 

were charged and discharged at the faster rate C/3, and the first one hundred cycles were 

recorded. The data are shown in Figure 2.9 and summarized in Table 2.1, with the 

individual charge-discharge curves for every 20
th

 cycle available in Figure A.6. Upon 

discharge from 4.4 V, a flat plateau is observed at 4.1 V through ½ discharge, followed 

by a gently sloping voltage profile centered about 3.9 V to complete discharge. This 

suggests a two-phase region upon initial discharge, followed by alloyed region. The fade 

in capacity is least for the samples prepared under O2, 10.0 and 6.1% for the as 

synthesized and annealed compounds respectively.  

 

 

Figure 2.9 Galvanostatic cycling at current C/3 for lithium manganospinel synthesized 

hydrothermally in a) air; b) nitrogen; and c) oxygen. Black and red circles represent the 

synthesized and annealed samples, respectively. The anomalous data point at cycle 63 for 

the air synthesized sample arises because the computer had to be restarted during that 

measurement. 

 

 

Here, we must address why we anneal at 500 Cº given our TGA results where 

maximum oxygen uptake occurs between 310 and 330 ºC. Experimentally, we performed 

two experiments summarized here with data presented in Figure A.7. First, we annealed 



41 

 

the air synthesized compound at 310 ºC and observe that over the first ten cycles, the 

capacity is stable, but significantly lower, only 81 mAh/g. We annealed a second sample 

at the weight-loss threshold, 270 ºC and observe a similar result—the capacity is nearly 

constant over the first ten cycles, but is only 73 mAh/g. X-ray diffraction performed on 

these compounds shows that the lattice parameters of these compounds are 8.219 and 

8.216 Å respectively. In addition, potentiometric titration shows that ZMn significantly 

greater than 3.5 for these compounds (3.68 and 3.66 respectively), which explains the 

low gravimetric capacities. This is supported further by the lack of a constant voltage 

plateau in the galvanostatic cycling, shown for the 10
th

 cycle of these two samples in 

Figure A.7. This indicates that upon discharge from 4.4 V, ZMn is suffiently high such 

that Li insertion occurs in a single phase, not the typical two-phase mixture.
121

 By 

annealing at 500 ºC, both the composition changes (from oxygen deficient to a slight 

excess of oxygen), and the structure changes ( no orthorhombic superspace group is 

observed by PND) to give lithium manganospinel with high capacity. 

Returning to the best sample with respect to capacity retention, the O2 sample annealed 

at 500 ºC, cycling was performed at varying rate to demonstrate its utility in high power 

applications. Figure 2.10 illustrates that at a charge/ discharge rate of 3C, the O2 annealed 

sample demonstrates an initial discharge capacity of 112 mAh/g with 95.6% rentention 

(108 mAh/g) after 100 cycles. This is nearly identical to the observed capacity and 

retention of at the slower rate of C/3. When the material is cycled at the even faster rate 

of 5C, the capacity is slightly lower, 99 mAh/g. Again, however, 95.6% of this capacity 

is retained (95 mAh/g) after 100 cycles.  
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Figure 2.10 a) Rate capability of lithium manganospinel synthesized under O2 followed 

by annealing in air. Black circles, red squares, and blue triangles represent cycling at 

currents corresponding to the rates C/3, 3C, and 5C respectively; b) Temperature-

dependence of galvanostatic cycling at 5C. 

 

 

Moreover, the O2 annealed sample shows excellent cycling behavior at elevated 

temperature. This is important because the detrimental surface disproportionation of 

Mn
3+

 becomes more facile as temperature increases, and the majority of capacity fade is 
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observed within the first 15 cycles.
122

 In the case of our lithium manganospinel 

nanoparticles, cycling the material with constant current of 5C at 55 ºC shows an initial 

capacity of 99 mAh/g that fades to only 88 mAh/g after 100 cycles (88.9% capacity 

retention). 

 

Figure 2.11 Lithium-ion diffusion constant as a function of potential determined by EIS. 

Inset. Nyquist plot for the 4.15 V data. The data (black circles) are fit (red line) to the 

quivalent circuit is illustrated below the main plot. 

 

 

Together, these data suggest that lithium-ion diffusion is rapid in the sample. To verify 

that lithium-ion diffusion is indeed rapid, we performed electrochemical impedance 

spectroscopy. Figure 2.11 shows the voltage-dependence of the lithium-ion diffusion 

constant with Nyquist plot and fit of the data collected at 4.15 V to the equivalent circuit 
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illustrated.
 123

 The Nyquist plot shows three discernable semicircles corresponding 

physically to transport through the SEI layer, electronic reorganization associated with 

localized Mn
3+/4+ 

charge hopping, and charge transfer, as has been recently described.
124

 

Then, the low frequency Warburg impedance (ZW) is related to the lithium-ion diffusion 

constant (DLi) by the equation
125

 

                                                        
   

  

  
 

        
   

     (6) 

where Vm is the molar volume of lithium manganospinel (140 cm
3
/mol), dE/dx, the slope 

of coulometric titration, is determined from cyclic voltammetry at 0.1 mV/s, F is 

Faraday’s constant and A is the electrode surface 500 cm
2
. The Nyquist plots for the 

compound cycled to other potentials are included as Figure A.8. For the O2 annealed 

sample, DLi is on the order of 10
–7

 to 10
–9

 cm
2
/s, rapid indeed, but on par with has been 

determined by EIS for lithium manganospinel prepared by sol-gel methods.
126

 This rapid 

Li-ion diffusion supports the conclusion that our nanoscale material prepared under O2 

followed by annealing shows a rate capability and gravimetric energy density that is at 

least on par with, if not exceeds even the best material prepared by solid-state synthesis. 

2.4 Discussion 

Oxygen vacancies in the Li–Mn–O spinel system have been long recognized in the 

solid-state literature,
127

 predating the concept of energy storage by electrochemical Li
+
 

insertion and extraction. In this original study, it is shown that the lithiated cubic spinel 

phase reacts with hausmannite, Mn3O4 according to the reaction:  

 LiMn2O4 + Mn3O4 → LiMn2O3.5
 
+

 
 ½O2     (7) 

Hausmannite also belongs to the spinel group (Mn
2+

Mn
3+

2O4), and is a common impurity 

phase encountered during lithium manganospinel synthesis. In addition to reaction with 
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hausmannite, oxygen vacancies are introduced into lithium manganospinel synthesized 

under reducing conditions such as ammonia reduction
105

 or rapid quenching of solid-state 

reactions performed in air82
,108

 Beyond the preparation of oxygen non-stoichiometric 

materials, there are several proposed thermodynamic models for vacancy formation on 

the surface.
128 – 130

 Notably, after our annealing treatment, we do not observe any 

secondary phases by PND such as Mn3O4 or Li2MnO3 that frequenly result from high-

temperature processing.
131 

 

 

 

Figure 2.12 Average manganese oxidation state (black) and lattice parameter (red) or 

lithium manganospinel synthesized by hydrothermal methods in air as a function of dwell 

time. 

 

 

 

Crystal distortions that arise from the presence of Mn
3+

 in the spinel structure were also 

recognized long before the electrochemistry was studied.
132

 As mentioned in the 

introduction, oxygen vacancies result in materials with poor electrochemical 

performance, and an empirical set of guidelines for optimizing the performance of 

lithium manganospinel has been published.
133

 Our work is aimed at the first principle: to 
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establish stoichiometry resulting from synthesis and any treatments applied prior to cell 

assembly. The hydrothermal reaction employed in our lab provides the most oxidized 

product when carried out under an oxygen atmosphere. The role of reaction atmosphere is 

not unique to hydrothermal synthesis, however. In preparing stoichiometric spinel from 

lithium hydroxide and either chemically prepared manganese dioxide
84

 or γ-MnOOH
85

 in 

a muffle furnace, the reaction proceeds most cleanly under a reducing nitrogen 

atmosphere to prevent the decomposition reaction to form Li2MnO3. In this reaction, the 

culprit is oxidation of Mn
3+

 in LiMn2O4 by atmospheric O2. In stark contrast, 

hydrothermal conditions do not yield stoichiometric lithium manganospinel, rather 

material with oxygen vacancies. These oxygen vacancies suggest that our hydrothermal 

reaction conditions are reducing from the standpoint of the solid oxide product. Figure 

2.12 shows the lattice parameter and the average manganese valence of the solid products 

obtained ex situ at varying reaction times. We observe an increase in the lattice parameter 

and decrease in the average manganese valence as the reaction proceeds, even in an O2 

atmosphere. This hints at the need to anneal our materials in an oxidizing environment 

after hydrothermal synthesis. Empirically, maximum weight uptake occurs at ~310 ºC, 

but we find that ZMn is large, 3.66, leading to low overall capacity. Notable is that the 

particle size and cation composition are conserved in our annealing procedure, which is 

different from what is observed in reference 95, where annealing at 800 ºC results in 

consumption of nanoparticles to form micron-sized particles.  

The unique aspect of our synthesis work is discovering the structural complexity of 

compounds synthesized by hydrothermal methods. The results from our neutron 

diffraction data show that Mn
3+

 and/or oxygen vacancies lead to symmetry lowering, 
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which has large implications on the electrochemistry of the material, particularly the 

capacity retention. The Fddd orthorhombic structure that we observe has been previously 

reported for both stoichiometric LiMn2O4
134

 as well as for non-stoichiometric LiMn2O4–δ 

prepared by calcination at temperatures above 800 ºC.
135

 We note that this superstructure 

is not discernible using standard laboratory Cu-Kα radiation at room temperature. 

However, after annealing the sample, this superstructure is no longer observable in the 

room-temperature powder neutron diffraction; the only observable reflections are the 

Bragg peaks from the cubic Fd3
–
 m space group, similar to what has been observed for 

other stoichiometric spinels synthesized by ceramic routes.
136

 The cubic structure cycles 

with greater capacity retention. 

Then, from the perspective of power, our synthesis of small particles is advantageous 

because they are less susceptible to fracture. Volume changes in nanoparticles are more 

readily accommodated, giving rise to the excellent rate capability and capacity retention 

in the compound. Although there are several examples of using hydrothermal methods to 

prepare lithium manganospinel nanoparticles, Table 2.4 shows that the capacity retention 

from these preparations is often quite poor. Our work here suggests that preparing 

nanoparticles is not an inherent problem with lithium manganospinel. Rather, it is the 

composition (and perhaps the concomitant structural implications) that results in poor 

performance—namely the presence of oxygen vacancies. Although this fact is recognized 

in several of the references in Table 2.4, we have addressed the matter experimentally. 

The closest comparison in the table is reference 97, however there is no specific mention 

of nonstoichiometric composition therein. There, the increase in lattice parameter as a 

function of time suggests that oxygen vacancies may be present, and we note that only 
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after three days is highly electroactive spinel isolated in the absence of an organic 

reducing agent. Our materials, attainable in less than a day, show exceptional stability 

even at elevated temperatures and relatively rapid rates. 

Table 2.4 Electrochemical Properties of Spinels Synthesized by Hydrothermal 

Conditions. 

Nominal Composition 
Capacity at 4 V Plateau 

(mAh/g) 

Capacity Retention / # 

cycles 
Reference 

Li0.96Mn2.04O4.05 107
a
 75% / 10 89 

Li1.08Mn1.92O3.97 92
a
 91% / 10 89 

Li1.23Mn1.77O3.87 66
a
 95% / 10 89 

Li0.90Mn2O3.95 ~92 unstated data not presented 93 

Li1.25Mn1.75O3.98 110 at C/2 82% / 10 92 

LiMn2O4 130 at C/10 >95% / 60 95 

Li0.92Mn2O4 107 at C/3 84% / 50 96 

LiMn2O4 91 at 8C 96% / 100 97 

LiMn2O4 113 at C/5 93% / 20 98 

LiMn2O4 nanorods 100 at 1 C 85% / 100 99 

LiMn2O4 95 at 1.6 C 79% / 30 100 

LiMn2O4 87 at  C/10 85% / 25 101 

LiMn2O4 98 at C/2 88% / 50 102 

 

Li1.01Mn1.99O4.07 

115 at C/3 

113 at 3C 

99 at 5C 

94% / 100 

96% / 100 

94% / 100 

 

this work 

a 200 μA/cm
2
 current using a 10 mm diameter electrode 

 

From the perspective of the Li–Mn–O phase diagram, we cannot yet say where these 

compositions fall, although current efforts in are group are focused on elucidating the 
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phase relationships. The phase diagram in air at elevated temperature has been well 

established
137 – 139

 and a Pourbaix-like pH-stoichiometry diagram for lithium 

manganospinels in acid has been recently determined,
140

 but relatively little is known 

regarding the phase equilibria present under hydrothermal conditions. Here, we can only 

conclude that our results of having both cation mixing and oxygen vacancies are 

consistent with the phase relationships of lithium manganospinels prepared from 

ceramic/calcination methods above 900 ºC, where Li1+xMn2–xO4–δ is proposed to be 

thermodynamically stable. Electrochemically, we observe superior capacity retention in 

compounds stoichiometric in oxygen, more akin to what is observed in the cation-

deficient, Li-rich spinels.
141

 

Here, we must discuss the potential technological advances initiated by the 

nanomaterials materials we have prepared. It has been suggested in the literature that the 

loss of cyclability in lithium manganospinel at both room temperature and elevated 

temperature does not originate from structural transformations per se, rather with the 

composition: the greater the mole fraction of Mn
3+

 in the compound, the greater the 

degradation.
142

 We find that hydrothermal synthesis gives material that is deficient in 

oxygen and has an orthorhombic superstructure. These two features are not mutually 

exclusive, so it remains undetermined which factor is more important. That is, we cannot 

answer here the question: is electrochemical performance is enhanced simply by filling in 

vacancies or is it due to the loss of orthorhombic superstructure after annealing? At best, 

our results show that the Mn
3+

 concentration in the hydrothermally synthesized 

orthorhombic product is larger and there is oxygen nonstoichiometry. After annealing, 

electrons are transferred from Mn
3+

 to surface oxygen, giving cubic compounds with ZMn 
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larger than 3.5. At this point, the new chemistry stimulated in this well-studied material is 

that annealing nanoparticles synthesized hydrothermally using organic reducing agents 

such as acetone affords high rate capability. The novel aspect here is that it is simply 

structure and composition that results in high performance electrodes, not nano-

architecture. 

Finally, we have largely focused on power, but must also comment on the energy 

density of nanomaterials. In order to achieve a large volumetric energy density, the tap 

density is critical.
143

 We have crudely measured the tap density of our nanoparticles 

(using a balance, a graduated cylinder, and a No. 2 pencil), and find that it is 1.2 g/cm
3
, 

on par with lithium manganospinel prepared by other low temperature routes,
144

 despite a 

significantly larger surface area according to our N2 isotherms. As observed in the SEM 

images, our nanoparticles agglomerate readily and EIS shows that Li
+
 diffusion is rapid. 

Further exploration is needed to optimize the carbon-coating levels to determine the 

packing density required for a practical battery. However, our results here are promising: 

the same gravimetric capacity attainable at the rate C/3 and 3C hints that a battery 

composed of our lithium manganospinel can be charged completely in 20 minutes. As a 

benchmark for the rate capability of our materials, the measured reversible capacity of 99 

mAh/g at 5C (0.67 mol Li extracted) is greater than the literature-reported capacity at 

2.5C for micron-sized particles, ~81 mAh/g (0.55 mol of Li extracted).
145

 At present, we 

are exploring the generality of using organic oxidation reactions under hydrothermal 

conditions followed by annealing to prepare other manganese-containing oxide 

nanomaterials for high power electrical energy storage. 
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2.5 Conclusion 

   Lithium manganospinel nanoparticles prepared by hydrothermal methods has been 

shown to contain oxygen vacancies by the combination of TGA, DSC, CV, and PND 

characterization regardless of the environment under which the reaction is performed. 

However, these vacancies can be eliminated beyond the detection limits of all analytical 

methods by annealing the synthesized compounds at 500 ºC in air for 4 h. In addition, the 

hydrothermally synthesized sample shows an orthorhombic Fddd(α00) supergroup that 

disappears upon annealing. As a result, the material prepared under the most oxidizing 

conditions (synthesized under an autogenous pressure of O2, followed by annealing) 

shows the highest reversibility under various cycling conditions—C/3, 3C, 5C, and 5C at 

55 ºC. This behavior is observed without having to coat our particles (beyond the typical 

use of carbon to enhance electrical conductivity) or insert compositional complexity in 

the form of nickel and/or cobalt on the octahedral lattice sites. Li-ion diffusion, measured 

by EIS, is found to be rapid, which explains the high rate capability. Current efforts are 

aimed at elucidating phase relationships within materials prepared by hydrothermal 

methods in order to examine the influence of cation stoichiometry and composition on 

the rate capability of nanoparticles, building on the larger body of lithium manganospinel 

literature. 
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CHAPTER 3 

 

Oxygen Vacancies Lead to Loss of Domain Order, Particle Fracture, 

and Rapid Capacity Fade in Lithium Manganospinel (LiMn2O4) 

Batteries 

 

 

 

 

Portions of this chapter have been submitted: 

Hao, X.; Lin, X.; Lu, W.; Bartlett, B. M. ACS App. Mater. Inter. Accepted. 

 

3.1 Introduction 

   Lithium ion batteries have drawn much attention as energy storage device for portable 

electronics, (hybrid) electric vehicles and next generation power grids due to their high 

volumetric and gravimetric energy densities.
146

 The current research focus in lithium ion 

batteries system is developing high voltage electrode materials with long term reversible 

electrochemical stability. The rich lithium intercalation chemistry of transition metal 

oxides and polyanion complexes have enabled technological adoption of many candidates 

for cathode materials, such as LiCoO2
147

, LiNiO2
148

, LiFePO4
149

, and the spinel-

structured manganese oxides including LiMn2O4
150

 and LiNi0.5Mn1.5O4.
151

 Carbon in the 

form of graphite
152

 is the anode employed in current lithium-ion batteries. However, the 

wide adoption of high voltage cathodes is limited by the stability, in particular, 

mechanical degradation of the electrode active cathodes.
153,154

 Microfractures in cathodes 
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composed of  LiCoO2
155,156

 and LiFePO4
157

 powders have been observed in electron 

microscopy studies. Moreover, single-particle fracture during electrochemical cycling of 

LiNiO2
158

 is noticeable by optical microscopy. Acoustic techniques have been employed 

to monitor fracture in LiCoO2
159

 and MnO2
160

 during cycling. Finally, atomic probe 

tomography has also been applied to unveil the fracture mechanism of LiCoO2 

cathodes.
161 , 162

 Mechanical fractures arise as stress builds during lithium 

insertion/extraction.
163

 Although volume expansion is more pronounced at the anode 

materials due to larger lattice change,
164–168

 cathodes have received less attention. In 

graphite, there is 12.8% volume expansion during charging. TEM experiments confirm 

the presence of cracks on the meso-scale during graphene layer exfoliation.
169

 As a result, 

the internal resistance increases with a concomitant drastic capacity fade. Based on these 

experimental observations, theoretical calculations have been dedicated to simulate 

mechanical failure, which also provide insights into related capacity fading 

mechanisms.
170– 172

 

   This manuscript is devoted to the cathode, lithium manganese oxide, LiMn2O4 with a 

cubic symmetry spinel structure (Fd-3m) that delivers considerable capacity of 148 

mAh/g at voltage of 4.1 V (vs. Li
+/0

). The electrochemical potential is derived from the 

Mn
3+/4+

 redox couple. Meanwhile, LiMn2O4 has the advantages of using a low-cost metal 

that is non-toxic. However, the cyclability of LiMn2O4 is limited by the oxygen 

vacancies, as we have previously reported.
174

Our work builds a connection between trace 

defects, structural changes and electrochemical performance. In this study, we 

substantiate the capacity fading mechanism by conducting structural analysis to show that 

electrochemical instability results from mechanical failure in LiMn2O4. Furthermore, 
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based on our previous findings, we demonstrate that chemical composition can be 

controlled to minimize the capacity fade. 

3.2 Experimental 

3.2.1 General Consideration 

   Lithium carbonate (99%), lithium metal foil (99.9%, metal basis) were purchased from 

Alfa Aesar. Manganese carbonate (99.9%, trace metal basis), Lithium 

hexafluorophosphate (99.9%, battery grade), lithium hexafluoroarsenate (99%), lithium 

manganese oxide (electrochemical grade) and nitronium tetrafluoroborate (95%) were 

purchased from Sigma Aldrich. N-methyl-2-pyrrolidone (99%) and poly(vinylidene 

difluoride) (battery grade) were purchased from Alfa Aesar. were used as received. 

Ethylene carbonate and diethyl carbonate were purchased from Sigma Aldrich and were 

distilled prior to storing in an argon-filled glove box (Vacuum Atmospheres). HPLC-

grade acetonitrile was purchased from Fisher and dried in a solvent purification system 

(Vacuum Atmospheres) then stored in a nitrogen-filled glove box (Vacuum 

Atmospheres). Extra dry oxygen gas was supplied by Cryogenic Gases.  

   Powder X-ray diffraction patterns were collected on a Bruker D8 Advanced 

diffractometer with a Lynx-Eye detector and parallel beam optics using Cu-Kα radiation 

(λ = 1.542 Å). The patterns were refined using the Bruker TOPAS software. Time-of-

flight neutron diffraction experiments were performed on a powder diffractometer 

(POWGEN) at the Spallation Neutron Source of ORNL (Oak Ridge National Lab). The 

experimental resolution Δd/d = 0.0015 at d = 1 Å. The data were collected at room 

temperature using incident neutron beam wavelengths centered at 1.066 and 3.198 Å. 

Scanning electron microscopy (SEM) images were collected using an FEI Nova Nanolab 

javascript:openSupplierInfo(4060074,'','',1,'SearchResults');
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SEM/FIB. High resolution transmission electron microscopy (HR-TEM) was performed 

using a JEOL 3011 TEM with a LaB6 electron beam source. The samples were dispersed 

in methanol and drop cast onto a copper grid with an ultra-thin holey carbon film (Ted 

Pella). ICP-AES elemental analysis for lithium and manganese was obtained using a 

Perkin-Elmer Optima 2000DV analyzer. Typically, ~10 mg samples were dissolved in 2 

– 5 mL 12 M HCl (Fisher Scientific) with a few drops of H2O2 (Fisher Scientific, 30 

wt%) for quick digestion. The average oxidation states of manganese were determined by 

a potentiometric titration using FeCl2/KMnO4 (Alfa Aesar, 99.9% metal basis/98%). All 

samples were digested using dilute H2SO4 prior to titration. Differential scanning 

calorimetry was obtained with a DSC Q10 (TA instruments) at a ramping rate of 10°C. 

3.2.2 Materials Preparation 

Commercial lithium manganese oxide (C-LMO) from Sigma Aldrich was directly used as 

an active cathode material in this study. Chemical delithiation was performed by reacting 

lithium manganese oxide with nitronium tetrafluoroborate in acetonitrile. Typically, 1 

gram of lithium manganese oxide reacted with 2 equivalents of nitronium 

tetrafluoroborate. The reaction was kept under vigorous stirring for at least 96 h. The 

final products were collected by vacuum filtration and washed with fresh acetonitrile in 

the N2 glove box.  

   Lithium manganese oxide samples with controlled oxygen content were also 

synthesized by a solid-state method. Lithium carbonate and manganese carbonate with 

the molar ratio 1.03 : 2 was ball milled overnight. The extra 3% lithium content was used 

to compensate for potential lithium evaporation during the synthesis. Acetone was used 

for milling assistance. The acetone was then evaporated under reduced pressure with a 
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rotary evaporator (Buchii). The carbonates were then calcined at 600°C under pure 

oxygen flow (100 mL/min) with heating and cooling rates of 5°C /min. The product was 

then ground and annealed at 750°C under oxygen, again with heating and cooling rates of 

5°C /min. This sample was noted as S-LMO for synthesized LMO. The reaction yields on 

a ~25 gram scale. To create oxygen vacancies in S-LMO, 5 grams of S-LMO was heated 

to 800°C with a ramping rate of 10°C /min. After 30 min, the sample was removed from 

the furnace and directly quenched in liquid nitrogen. The sample noted as D-LMO for 

defect-LMO was then collected. 

3.2.3 Electrochemical Measurements 

Long term electrochemical cycling tests were performed using coin cells or two-electrode 

Swagelok
TM

 PTFE cells. For neutron diffraction sample preparation, the material was 

cycled in pouch cells. Pure lithium metal was used as the counter- and pseudoreference 

electrode for the measurements. To prepare the working electrode, Sigma-Aldrich lithium 

manganese oxide, carbon black (TIMCAL Super P) and poly(vinylidene) difluoride 

(PVDF) (mass ratio of 85:10:5) were mixed in a Thinky AR-100 mixer. N-Methyl-2-

pyrrolidone (NMP) was added to dissolve the PVDF binder. The composite was then cast 

onto a de-greased aluminum foil by the doctor blade method. The foil was then dried in a 

vacuum oven (Fisher Scientific) at 120°C overnight prior to assembling the 

electrochemical cells. The active material loading is approximately 11 mg/cm
2
. The 

electrode masses were measured using a Sartorius ME36S microbalance. Celgard
TM

 

separator (model 3401) was used in the electrochemical tests. Lab-prepared electrolytes 

(1 M) were prepared using LiPF6 and LiAsF6 with ethylene carbonate and diethyl 

carbonate with volume ratio of 2:1. Commercial electrolyte of 1 M LiPF6 in ethylene 
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carbonate, dimethyl carbonate and diethyl carbonate (v/v/v, 1:1:1) was also used as 

control from MTI. All cells were assembled in the argon glove box. 

   Galvonostatic charge/ discharge experiments were performed on a NEWARE BTS-

5V1MA or a Maccor 64 channel cycler in the voltage window 3.40 to 4.45 V (vs. Li
+/0

). 

The constant current applied in the charge/ discharge test is 0.2 C (where C is the current 

required to discharge the theoretical capacity of the cell in one hour). Cyclic voltammetry 

(CV) was recorded on a CH Instruments 660 C electrochemical workstation. 

Electrochemical impedance spectra (EIS) were collected on an Autolab PGSTAT302N 

with a FRA module. Prior to EIS measurements, the cells were equilibrated at 3.40 V 

until the current dropped below 10 nA. The AC perturbation was ±10 mV, and the 

frequency range was from 10
5
 to 10

–2
 Hz.  

   Electrochemical delithitation was applied for neutron sample preparation. The 

electrochemical cells were charged to the desired potential at 0.2 C current; then the cell 

potential was held until the current dropped below 1 μA. Then the cell was disassembled, 

the cathode was washed with diethyl carbonate solvent and kept under vacuum at room 

temperature. The active material was then carefully removed from the aluminum current 

collector by a razor blade. A similar treatment was used to collect the cathode material 

after 100 galvanostatic cycles at 0.2 C current for the neutron diffraction study. 
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3.3 Results 

 

 

Figure 3.1 a. SEM image of fresh C-LMO; b. Powder X-ray diffraction pattern (black), 

Rietveld refinement (red), and difference pattern (blue) for C-LMO. 

 

   Lithium manganese oxide (LiMn2O4) has a cubic spinel structure with a space group of 

Fd–3m and a unique lattice parameter, a; in this structure, lithium, manganese and 

oxygen reside on the 8a (tetrahedral), 16d (octahedral) and 32e Wyckoff sites, 

respectively. Conventional solid-state synthesis requires high-temperature annealing to 

form products with suitable crystallinity. However, oxygen vacancies can be easily 

introduced during the calcination reaction. In a previous study,错误！未定义书签。 we 
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used neutron diffraction to quantify the oxygen defects in hydrothermally synthesized 

Li1+xMn2–xO4–δ, in which δ is the vacancy factor. In the present study, commercial 

LiMn2O4 (C-LMO) from Sigma-Aldrich was used due to its wide availability. The 

scanning electron microscopy (SEM) image in Figure 3.1a shows that particles range 

from 2 – 10 μm in size. Figure 3.1b shows the X-ray diffraction pattern of C-LMO with 

the corresponding Rietveld refinement (Tables B.1 and B.2). Based on the XRD result, 

C-LMO shows very high crystallinity without any detectable impurities. The structural 

refinement result gives a lattice parameter a = 8.254 Å. The lattice parameter of 

stoichiometric LiMn2O4 is 8.248 Å.
175

 We note that although the observed value is close 

to the literature value, the compound may be oxygen deficient.  

   Cyclic voltammetry (CV) and differential scanning calorimetry (DSC) indirectly 

provide evidence for oxygen vacancies in LiMn2O4. Figure B.1a shows the CV trace 

collected at 0.1 mV/s of C-LMO. The redox waves centered about 4.0 V are indicative of 

lithium insertion and extraction chemistry. However, we also observe electrochemical 

reactions at ~3.2 V and 4.5 V, which are attributed to a phase change from a cubic cell to 

a double hexagonal cell that arises due to oxygen deficiency.
176

 In addition, Figure S1b 

shows the DSC profile recorded during the cooling process. The exotherm at ~10 °C 

suggests a phase change, which has also been shown to occur due to oxygen 

vacancies.
177 , 178

 Finally, elemental analysis (Table B.3) by ICP-AES analysis and 

potentiometric titration shows that C-LMO is best represented as the formula LiMn2O3.88, 

which confirms the oxygen non-stoichiometry in the material. 
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Figure 3.2 Neutron diffraction pattern obtained on POWGEN at 300 K of C-LMO: black 

dots represent the observed intensities, the red line is the fit, the blue line is the difference 

pattern, and the tick marks below the profiles indicate positions of all allowed Bragg 

reflections. 

 

   Figure 3.2 shows the neutron diffraction pattern of the fresh, uncycled C-LMO. As we 

expected, the site occupancies determined in the Rietveld refinement (Table B.4) show 

evidence of oxygen deficiencies, and the formula unit is best represented as LiMn2O3.88. 

This formula is in excellent agreement with the elemental analysis. The oxygen atoms 

located on the 32e Wyckoff sites are calculated to be 97.1% filled, which confirms the 

oxygen deficient structures of C-LMO. Meanwhile, the lattice parameter is 8.2530 Å, 

which corroborates the powder X-ray study.  
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Figure 3.3 a. First electrochemical charge/discharge cycle of C-LMO collected at 0.2 C 

current within the potential window of 3.40 – 4.45 V; b. First electrochemical charge/ 

discharge cycle of C-LMO collected at 0.2 C current within potential window of 3.40 – 

4.45 V in different solvents: black, 1 M LiPF6 in EC:DEC mixture with v/v of 2:1 at 

room temperature; red, 1 M LiPF6 in EC:DEC mixture with v/v of 2:1 at 55°C; blue, 1 M 

LiAsF6 in EC:DEC mixture with v/v of 2:1 at room temperature. 

 

   We next carried out charge/discharge tests of a C-LMO battery between 3.40 to 4.45 V 

vs. Li
+/0

 lithium foil in a lab-prepared electrolyte containing 1 M LiPF6 in the typical 

carbonate solvents. To achieve detailed electrochemical behavior and to minimize energy 

losses due to polarization, a slow cycling rate of 0.2 C was used for all of the 
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galvanostatic charge/ discharge experiments in this work. The first charge/ discharge 

cycling profile of C-LMO is plotted in Figure 3.3a. A sloping region and a pseudo-

plateau are observed in both charging and discharging curves, corresponding to the single 

phase and two phase insertion/extraction, respectively. During the charging process of C-

LMO, ~120 mAh/g is stored, which corresponds to 81% of the theoretical capacity of 

LiMn2O4. However, only 84.5 mAh/g can be extracted during the first discharge process. 

That is, there is an ~30% irreversible capacity loss during the first electrochemical cycle. 

   There are at least two reasons that explain this observation: active material loss due to 

acid corrosion and side reactions between C-LMO and the electrolyte that blocks lithium 

channels. For the first possibility, it is well documented that trace moisture in the cell 

leads to HF formation from LiPF6.
11

 To test this possible degradation mechanism, we 

repeated the cycling experiment using the more hydrolytically stable LiAsF6 electrolyte. 

Meanwhile, we also cycled the C-LMO cathode in a half-cell configuration at elevated 

temperature (55 °C) to study electrolyte degradation and capacity loss during the first 

cycle, noting that detrimental HF formation should be faster at higher temperature. Figure 

3b shows the first charge/ discharge profiles of C-LMO cycled under these different 

conditions. From this data, we conclude that the capacity fade is the same regardless of 

temperature and electrolyte formulation, and is an inherent property of C-LMO cathode 

material. 
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Figure 3.4 a. SEM image of C-LMO after first charge at SOC of 4.45 V; b. TEM image 

of C-LMO after first charge with SOC of 4.45 V; c. SEM image of C-LMO after 96 h 

chemical delithiation; d. TEM image of C-LMO after 96 h chemical delithiation in 

NO2BF4. 

 

   The 3.40 – 4.45 V electrochemical window does not include the irreversible phase 

transitions that occur at potentials < 3.2 and > 4.5 V. To determine whether detrimental 

changes occur at higher potential or if they occur throughout the entire electrochemical 

window, we collected the cathode material at a state-of-charge of 4.45 V to investigate 

possible microstructural variation after the first delithiation. The SEM image in Figure 

3.4a shows unequivocal particle microfracture after the first charge. Meanwhile, 

transmission electron microscopy (TEM) in Figure 3.4b corroborates particle fracture 

through electrochemical shock during the first Li
+
 extraction. In order to reproduce the 

electrochemical delithiation, we carried out chemical delithiation using the strong oxidant 

NO2
+
 to mimic the first charging process. Figure 3.4c and d shows the SEM and TEM 
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images of the delithiated C-LMO after its reaction with NO2BF4 for 96 h. A large 

frequency of cracks occurs over the samples, similar to what is observed in the 

electrochemically charged C-LMO.  

 

 

 

Figure 3.5 Powder X-ray diffraction pattern of C-LMO after first charge with SOC of 

4.45 V. Newly evolved peaks are highlighted by the black diamonds. 

 

   We have shown that particle fracture occurs during the first delithiation process, similar 

to what has been observed in LiCoO2 cathode material during the first charge by an 

acoustic study.
14

 Meanwhile, in the study of charge and discharge behaviors of Li/MnO2 

cells, Ohzuku also noticed microfractures by monitoring acoustic counts during the first 

electrochemical cycle.
15

 Sastry and coworkers have also shown possible LiMn2O4 

fractures in a combined AFM and simulation study.
179

 We next studied X-ray diffraction 

to look for the structural changes associated with cracking. Figure 3.5 shows the XRD 

pattern of C-LMO cathode at SOC of 4.45 V. The original (111) Bragg reflection at 18.8° 

splits into three new peaks: one major peak at 19.2°and two small peaks at 18.6° and 

19.8°, which are highlighted in the inset. Those peaks can still be indexed to represent the 

(1 1 1) Miller plane. It is known that the cubic unit cell contracts during delithiation, 

which leads to the higher angle (right) shifts in the peaks that emerge at 19.2 and 19.8°. 
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However, the peak at 18.6° hints a small lattice parameter expansion instead. This 

expansion has been observed by Aurbach's in previous work.
180

 We surmise that 

expansion occurs because of possible manganese migration into adjacent lithium 

tetrahedral sites during the electrochemical oxidation. Nevertheless, multiple phases were 

identified after the first charge, which could lead to the accumulation of strain in the 

active material that ultimately results in particle fracture.
181

 Figure 3.6 shows the powder 

neutron diffraction (PND) pattern before and after the first charge. There is a drastic 

decrease in the diffraction intensity after lithium extraction, demonstrating the loss of 

long-range crystalline order. The diffraction pattern of the C-LMO with a SOC of 4.45 V 

is blown up in the inset for a detailed comparison. Peak splitting and broadening are 

observed after the first charge. The SOC potential of 4.45 V is above the delithiation two 

phase region as shown in the charging profiles. A single phase was expected at cell 

potential of ~4.45 V. However, the lack of crystallinity after delithiation hinders precise 

indexing of solid phases. 
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Figure 3.6 a. PND pattern of fresh C-LMO (black) and the sample after first charge with 

SOC of 4.45 V (red); b. Close-up of the region near the baseline to show that new Bragg 

reflections emerge. 

 

 

 

Figure 3.7 Comparison of the first 100 cycles of C-LMO in different solvents at room 

temperature: black circles, 1 M LiPF6 in EC:DEC mixture with v/v of 2:1; red squares, 1 

M LiPF6 in EC:DEC mixture with v/v of 2:1; blue triangles, 1 M LiPF6 in DMC:EC:DEC 

with v/v/v of 1:1:1. 
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Figure 3.8 a. PND pattern of fresh C-LMO (black) and the sample after 100 

electrochemical cycles in 1 M LiPF6 within EC:DEC mixture with v/v of 2:1 with SOC 

of 3.40 V (red); b. Close-up of the region near the baseline. 

 

   We have shown in Figure 3.3 that the electrolyte and temperature-induced surface side 

reactions do not play significant role in influencing the irreversible capacity loss during 

the first cycle. Figure 3.7 shows that the first 100 cycles of the C-LMO in a different 

solvent system are unchanged; they too fade at a similar rate. In Figure 8, the neutron 

diffraction pattern is plotted for C-LMO at SOC of 3.40 V after 100 cycles in a lab-

prepared LiPF6 electrolyte. This pattern also shows multiple phases. Furthermore, the 

similarity between the neutron diffraction patterns of the firstly charged C-LMO with 

SOC of 4.45 V and the pattern collected after 100 cycles with SOC of 3.40 V 

demonstrates that the loss of crystallinity upon the first charge is irreversible. This results 

matches that observed in Woodford's study on LiCoO2 cathodes.
45
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Figure 3.9 Cyclability of C-LMO over 850 cycles at 0.2 C current in 1 M LiPF6 in 2:1 

v/v EC:DEC at room temperature. 

 

   Longer term cycling of C-LMO is presented in Figure 3.9, showing ~43% capacity fade 

of lithium manganese oxide cathode over 850 cycles at 0.2 C current. The largest drop in 

capacity occurs over the roughly first 200 cycles, followed by more gradual capacity fade 

over the next ~ 650 cycles. The charge/ discharge profiles of the 1
st
, 200

th
 and 800

th
 cycle 

are plotted in Figure 3.10a. As we observed in the first cycle, there exist two distinct 

features corresponding to a single phase- and two phase regions,
182

 which can also be 

observed in dQ/dV profile of Figure 3.10b from 3.9 to 4.2 V. The sharp features observed 

for the first cycle are smoothed in the 200
th

 and 800
th

 cycling data. In addition, there is a 

significant drop in peak intensity. Although there is still capacity fade observed from 

200
th

 cycle to 800
th

 cycle in Figure 3.10a, their dQ/dV curves nearly overlap, and the 

electrochemical features do not change significantly over the remaining 600 cycles. The 

phenomenon described above corroborates the crystallinity loss observed in the 

diffraction study. The reduced crystalline domain size suggests indistinguishable phase 

change boundaries, which is supported by diminished dQ/dV peak intensities.
183

 There 
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have been similar discussions regarding the electrochemical behaviors TiO2, LiCoO2 and 

LiNi0.5Mn1.5O4, with different crystalline sizes.
184–186

 

 

Figure 3.10 a. Charge/ discharge profiles of C-LMO at 1
st
, 200

th 
and 800

th
 cycles 

obtained at 0.2 C current; b. corresponding dQ/dV curves of 1
st
, 200

th
 and 800

th
 cycles. 
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Figure 3.11 a. SEM image of C-LMO after 850 electrochemical cycles; b. enlarged SEM 

image showing cracks; c. TEM image of C-LMO after 850 electrochemicals; d. enlarged 

area showing the (111) family of planes. 

 

 

   Microstructural analysis after long-term cycling is presented in Figure 3.11. SEM 

imaging reveals that micron-sized active material with clearly defined crystal facets are 

maintained after 850 cycles. Several particles aggregate during cycling, and  we initially 

suspected that fracture would occur at those interfaces between aggregated particles due 

to the higher surface energy at boundaries. However, we observe that cracks are well 

distributed all over surfaces as shown in Figures 3.11a and b, which was not observed 

after the first cycle. This behavior hints that structural failure is more pronounced after 

prolonged electrochemical cycling; more microfractures are generated by repeated 

delithiation and lithiation. Figure 3.11c shows the typical TEM image of the cathode after 

long term cycling with micro-scaled fracture identified. With higher magnification in 
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Figure 3.11d, we see that  fracture occurs along the (1 1 1) planes. In addtion, the twisted 

fringes suggest significant internal stress that results in structural collapse on the 

microscale. 

3.4 Discussion 

 

 

Scheme 3.1 Structural changes and interparticle shearing of C-LMO cathode material 

during electrochemical cycling: freshly prepared electrode (left); electrode after micro-

fracturing occurs (right). 

 

   Capacity fade in LiMn2O4 is closely related to mechanical grinding, illustrated in 

Scheme 3.1. In a freshly prepared LiMn2O4 electrode, the bulk particles of active material 

are surrounded by the conductive carbon black network to enhance the electronic 

conductivity. Charge transfer occurs by lithium diffusion within an LMO particle, 

electron transfer at the LMO/carbon black interface, and also at LMO grain boundaries. 

However, after numerous charge/discharge cycles, fractures within active material 

propagate to increase the number of LMO/electrolyte interfaces. The smaller domains of 

the ruptured particles are electronically isolated due to the lack of contact with 

conductive additives or other LMO grains. Then, less access to the active cathode 
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material leads to capacity loss as we observed. Meanwhile, it is noteworthy that this 

fracture does not result from one electrochemical cycle. Rather, structural collapse occurs 

with continuous lithium insertion/extraction. Interestingly, from the long term cyclability 

study, the majority of the capacity fade occurs during the first 200 cycles, and the true 

active cathode is a best described as a multi-phase mixture of nano-scale domains.  

 

 

Figure 3.12 Electrochemical impedance spectra of a freshly prepared C-LMO half cell 

(black) and the cell after 850 electrochemical cycles with SOC of 3.40 V (red). The 

equivalent circuit is included in the plot. 

 

   The isolated domains should lead to an increase in the battery's internal resistance. 

Figure 3.12 shows the electrochemical impedance spectrum of C-LMO half cells both 

before and after long-term cycling (850 cycles). A modified Randle’s circuit was applied 

to describe the profiles. Rs represents the solution resistance which matches the 

intersection at Z' axis. The diameter of the semi-circle gives the charge transfer resistance 

as Rct. In comparison with the freshly prepared cell, there is a large increase in both Rs 

and Rct values which is consistent with Scheme 3.1.  

   The composition of C-LMO in this study shows an oxygen deficient structure that has 

been confirmed by elemental analysis and the neutron structural refinements. In our 
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previous work, we have shown the electrochemical instability of oxygen-deficient 

LiMn2O4 compared to the stoichiometric spinel. Therefore, to bridge the cathode’s 

composition and structural properties with the failure mechanism we found, we 

introduced two lab synthesized LiMn2O4 compounds with a controlled structure and 

oxygen level. Based on elemental analysis, the two compounds are represented by the 

formulas LiMn2O4.03 and LiMn2O3.87, with manganese oxidation states of +3.53 and 

+3.37, respectively. We use these samples as representative examples of oxygen-

stoichiometric (S-LMO) and oxygen-deficient (D-LMO) materials, respectively. The 

number of oxygen vacancies was selected to match that found in C-LMO.; details of the 

characterization are presented in the appendix. We recognize that crystal plane/surface 

morphology of the cathode materials could also contribute to the electrochemical 

performance of the battery,
187 – 189

 but note that we control for these effects by 

synthesizing these compounds using the same solid-state method. Consequently, similar 

morphologies are expected, as illustrated in the SEM images as Figure B.2. Due to the 

oxygen vacancies in D-LMO, the lattice parameter of 8.253 Å is larger compared to 

8.233 Å in S-LMO.  
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Figure 3.13 First 200 electrochemical cycles of S-LMO (black) and D-LMO (red) at 0.2 

C current within potential window of 3.40-4.45 V. 

 

   In order to validate the comparison, both of the materials were cycled under the same 

electrochemical conditions in lab-prepared LiPF6 electrolyte as the C-LMO. The 

cyclability is plotted in Figure 3.13. Half cells prepared from both synthesized 

compounds show a similar initial discharge capacity of ~120 mAh/g. However, there is a 

faster rate of capacity fade observed for the D-LMO. Over the first 200 cycles, the 

capacity of the S-LMO sample decreases to 98 mAh/g (81.6 % capacity retention), 

whereas, D-LMO decreases to only 64.2% of its initial capacity. We cycled the D-LMO 

for a longer period to achieve a better comparison with C-LMO, as shown in Figure B.3. 

Although the D-LMO sample is able to deliver higher capacity during the initial 

discharge, it shows a similar trend in capacity fade as that of C-LMO. Again, capacity 

fade occurs most markedly over the first 200 cycles, followed by relatively stable 

capacity retention over hundreds of cycles. Such a phenomenon indicates that the 

oxygen-deficient D-LMO sample might suffer a similar capacity fading mechanism as 
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discussed earlier. An EIS study was performed on S-LMO and D-LMO cells after 100 

cycles at 1C current. The data presented in Figure B.8 show a significantly larger charge-

transfer resistance for D-LMO after cycling, compared to S-LMO, which supports the 

deleterious effect of oxygen vacancies.  

 

 

Figure 3.14 TEM images of lab prepared LMO after 200 cycles: a, b. S-LMO; c,d. D-

LMO. 

 

 

   To confirm the capacity retention trend related to the oxygen content in LMO, we 

studied the microstructural properties of the lab prepared LiMn2O4 after 200 cycles as 

shown in Figure 3.14. Figure 3.14a shows that particles are largely intact, without 

noticeable microfractures, which leads to better cyclability and structural stability. The 

enlarged image in Figure 3.14b conveys the same information. On the other hand, Figure 
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3.14c shows fractures and grain dislocations in cycled D-LMO. Microfractures can be 

identified at higher resolution Figure 3.14d. The results link the microstructure, capacity 

fade, and oxygen nonstoichiometry in LiMn2O4. These defects are detrimental to long-

term capacity retention and structural integrity of spinel electrodes.  

 

  

 

Figure 3.15 PXRD patterns of a. as prepared S-LMO (black) and its first charge 

delithiated sample (red) at SOC of 4.45 V; b. as prepared D-LMO (black) and its first 

charge delithiated sample (red) at SOC of 4.45 V. 

 

    In Figure 3.15, we plot the XRD patterns of both lab-prepared LMO samples and their 

structural profiles after charging to 4.45 V SOC. Neither material shows the appearance 
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of new phases although the peaks shift based on predicted lattice parameter changes. 

Moreover, slight peak broadening was observed for the both samples after the first 

charge. Based on the Rietveld refinement results, the crystalline domain size shrinks from 

102.4 to 51.9 nm for S-LMO and 85.5 to 36 nm for D-LMO after the first 

electrochemical delithiation. All the structural patterns and refinement results are 

collected in Figures B.4-7 and Tables B.5-12, from which we can calculate the lattice 

displacement based on isotropic volume change assumption. The lithium extraction from 

S-LMO results in a 0.161 Å lattice shrinkage; in the contrast, a 0.203 Å decrease in 

lattice parameter results from the oxygen-deficient sample. The 25% larger lattice 

expansion could result in more strain, which accounts for the difference in capacity 

retention.  

3.5 Conclusion 

   We have observed long term capacity fade in commercially available LiMn2O4, which 

is shown to be oxygen deficient. Powder diffraction and microstructural analysis have 

been carefully employed to observe account for structural failure. Surface side reactions 

and temperature do not play a significant role toward influencing the capacity retention. 

In contrast, we have shown that capacity fade arises due to structural collapse along the 

(1 1 1) planes. These microcracks lead to mechanical pulverization during 

electrochemical cycling of the cathodes, and leads to increased charge-transfer resistance 

within the cell.    

   This capacity fading mechanism is dependent on chemical composition. Similar 

fracture phenomena were illustrated in lab-prepared oxygen-deficient LMO. However, 

near stoichiometric oxygen content gives rise to prolonged structural integrity and stable 

electrochemical cycling. Lattice strain is suggested to be one of the main reasons causing 
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structural failures due to large volume changes. Current efforts focus on possible cation 

mixing during electrochemical cycling. 
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CHAPTER 4 

Two Step Hydrothermal Synthesis of Submicron Li1+xNi0.5Mn1.5O4–δ for 

Lithium-Ion Battery Cathodes (x = 0.02, δ = 0.12) 

 

Portions of this chapter have been published: 

Hao, X.; Austin, M. H.; Bartlett, B. M. Dalton Trans. 2012, 41, 8067-8076. (New Talent: 

Americas themed issue) 

 

4.1 Introduction 

   Lithium manganese oxide (LiMn2O4, LMO) with a cubic spinel structure (space group 

Fd3
–
 m) has gained much interest because of its huge potential application as an 

environmental friendly and low-cost lithium-ion battery cathode.
190 , 191

 LiMn2O4 is 

formally mixed-valent Mn
4+

 and Mn
3+ 

with a average oxidation state of manganese of 

3.5. The compound experiences a symmetry-lowering phase transition that corresponds 

directly with the irreversible Jahn-Teller distortion of Mn
3+

,
192

 which causes capacity 

fade during battery operation. To alleviate these structural distortions, a new group of 5 V 

(vs Li
+/0

) spinel cathodes have been introduced in which the redox couple of low valent 

late transition metals such as Co, Ni, Cu, etc.
193–195

 can be accessed at higher potential. 

The candidate LiNi0.5Mn1.5O4 (LNMO), first prepared in 1996, offers a theoretical 

gravimetric capacity of 147 mAh/g.
196

 In this compound, all manganese is present in its 

+4 formal oxidation state, and capacity is stored in the Ni
4+/2+

 redox couple; Ni 

substitution of Mn greatly improves the structural stability of spinel.
197,198

 A full cell 

using this high voltage cathode with a titanate anode is thought to be an excellent 
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candidate for future applications.
199–204

  

   The interplay between the structural chemistry of LNMO and its electrode behavior is 

rich. Original work in the area began with the discovery that Ni can substitute for Mn in 

LiMn2O4.
205 

However, with less than 25% substitution, the electrochemistry is similar to 

that observed in LiMn2O4. LiNi0.5Mn1.5O4 spinel crystallizes in two structures: one in 

which Ni and Mn reside on 4a and 12d Wyckoff sites respectively, giving an ordered 

P4332 structure,
206–210

 or one in which both ions reside on the 16d site, the disordered Fd3
–
 

m structure.
211–214

 Electrochemically, the distorted structure shows better performance, 

presumably due to superior electronic conductivity afforded by charge transfer between 

Ni and Mn that share the same lattice site.
12,215

 Most of the reported syntheses rely on 

high-temperature methods to prepare the disordered phase selectively. However, this 

frequently results in forming LixNi1–xO as an impurity phase.
216–218

  

 To circumvent the formation of impurities, we have developed a facile two-step 

hydrothermal synthesis route for the large-scale preparation of LNMO. From previous 

work in our group, we know that low temperature synthesis routes force us to consider 

oxygen vacancies in the spinel lattice. The ordered and disordered structures for this 

compound adopt the approximate compositions LiNi0.5Mn1.5O4 and LiNi0.5Mn1.5O4-δ, 

respectively. Our methods select for the latter at temperatures of 240 ºC and a 10 hour 

total reaction without the need for annealing. 

4.2 Experimental 

4.2.1 General consideration 

   Potassium permanganate 99% was purchased from J. T. Baker. Nickel (II) chloride 

hexahydrate 98% was purchased from Acros. Lithium hydroxide 98%, lithium 

hexfluorphosphate 99.99%, ethylene carbonate and diethyl carbonate solvents were 
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purchased from Aldrich. The solvents were dried over P2O5 prior to storing a Vacuum 

Atmoshperes OmniLab glove box under an argon atmosphere. Lithium foil was obtained 

from Strem Chemicals. HPLC-grade acetone was purchased from EMD Chemicals and 

distilled prior to use. 

 Powder X-ray diffraction patterns were obtained with a Bruker D8 Advance 

diffractometer equipped with Lynx-Eye detector and parallel beam optics using Cu-Kα 

radiation (λ = 1.54184 Å). XRD patterns were indexed and refined using the TOPAS 

program from Bruker AXS. Scanning electron microscopy images were obtained using a 

FEI Nova Nanolab SEM/FIB with an accelerating voltage of 10kV. High resolution 

transmission electron microscopy was performed with a JEOL 3011 TEM operated at 300 

kV equipped with a LaB6 electron source. TEM samples were prepared by sonicating a 

dispersion of LNMO powder in acetone and drop casting the suspension onto a Cu grid 

with an ultra-thin holy carbon film (Ted Pella
TM

). All samples were heated in a standard 

laboratory Fisher vacuum oven 120 °C prior to the measurement. Raman spectra were 

obtained using a Renishaw Ramascope Raman spectrometer equipped with a Leica 

microscope, a Nikon LU Plan 20× objective (numerical aperture = 0.40), and a 1200 

lines/mm grating.  All spectra were taken under 785 nm laser excitation with 1.1 mW 

incident power. Spectral analysis was performed using the fitting routines included in the 

WiRE 3.2 software package. XP spectra were collected with a Krato Axis Ultra 

spectrometer using a monochromatic Al Kα source. The Kratos charge neutralizer system 

was used for all the analyses. The data collected were fitted by Casa
TM

 XPS software 

package 2.3.15. 
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4.2.2 Hydrothermal synthesis and annealing 

   The birnessite-structured precursor, K0.39MnO2.04•1.25H2O was initially precipitated 

from reacting 0.158 g KMnO4 with 1.00 mmol of acetone in 12 mL 0.1 M KOH(aq) at 

room temperature. The resulting dark brown slurry was collected by centrifugation and 

washed several times with deionized water. The two-step hydrothermal reactions were 

performed in 23 mL PTFE-lined, stainless-steel Parr autoclaves. Autoclaves were heated 

to 240 °C and cooled to room temperature at a rate of 10 °C/min. First, the initial 

precursor was reacted with 12 mL 0.027 M NiCl2 (aq) for 5 h to produce the 

intermediate; then the intermediate was collected and washed before reacting with 12 mL 

0.1 M LiOH (aq) in a second hydrothermal step. After a dwell time of five hours, dark 

red microcrystalline powders were collected and dried overnight in a vacuum oven at 120 

°C. For the one-pot reaction, 1.00 mmol K0.39MnO2.04•1.25H2O and 0.33 mmol NiCl2 

were added to 12 mL 0.1 M LiOH (aq). The product was collected after a dwell time of 

10 hours at 240 °C. 

4.2.3 Elemental analysis 

   ICP-AES elemental analysis for Li, Ni and Mn was obtained using a Perkin-Elmer 

Optima 2000DV. Samples were digested in 3-5 mL conc. HNO3 with a few drops of 

H2O2. Samples were references to an yttrium internal standard and concentrations of 

lithium and manganese were determined from the maximum intensity lines (610.632 nm 

for Li; 257.610 nm for Mn; 341.476 nm for Ni) compared to those of standard reference 

solutions. The average oxidation state of manganese (ZMn) was determined by a 

potentiometric titration using FeCl2/KMnO4. 20 mg samples were digested in 0.020 M 

FeCl2 solutions of 10% H2SO4 that were titrated against 4.68 mM KMnO4 according to 
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the balanced equation:  

5Fe
2+

(aq) + MnO4
–
(aq) + 8H

+
(aq) → 5Fe

3+
(aq) + Mn

2+
(aq) + 4H2O(l) 

4.2.4 Electrochemical measurements 

   Active cathode mixtures were prepared by mixing the synthesized material, carbon 

black and poly(vinylidene) difluoride (PVDF) using a mass ratio of 75:15:10 with a 

Thinky AR-100 rotation/ revolution super mixer. N-methyl-2-pyrrolidone (NMP) was 

added to dissolve the PVDF and to maintain the appropriate viscosity of the black slurry. 

This material was coated onto a deoiled aluminum foil using the doctor blade method. 

The foil was then dried in the vacuum oven overnight at 120 °C prior to assembling the 

cell in order to minimize surface-bound water as best as possible. The cathode and 

Celgard
TM

 poly(propylene) film were cut and fit into a 1/4'' Swagelok
TM

 PTFE union 

under ambient room atmosphere. Final cell assembly was performed in a Vacuum 

Atmospheres OmniLab glove box under an argon atmosphere. The active material mass 

is approximately 1 mg, with an electrode area of 0.32 cm
2
. The electrolyte solution was 

composed of 1 M LiPF6 in 2:1 (v/v) ethylene carbonate and diethyl carbonate, and 

lithium foil was used as the anode.  

 Cyclic voltammetry measurements were performed on an eight-channel CH 

Instruments 1000 Electrochemical Workstation at a scan rate of 0.1 mV/s. Gavlanostatic 

charge/ discharge measurements at the rate 0.1 C was recorded on a CH Instruments 

660C Electrochemical Workstation. Those for rates 1–10 C were recorded on a custom-

designed Vencon UBA5 battery analyzer.  

 Electrochemical impedance spectra were recorded on an Autolab PGSTAT302N with a 

FRA (frequency response analysis) module. Prior to EIS measurements, the cells were 
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cycled 3 times between 4.0 and 5 V at 1 C current. Then the EIS were recorded at various 

requested potentials from 4.0  to 5.0 V with a 1 hour equilibrium time such that the 

current flow declined to less than 5 nA. The AC perturbation was ±10 mV, and the 

frequency range was from 10
5
 to 10

–2
 Hz. Data were fit using the Zview

TM 
software 

package.  

4.3 Results and discussion 

4.3.1 Synthetic chemistry 

   Our two-step hydrothermal synthesis proceeds according to the reactions outlined in 

Scheme 4.1. Note that the initial reaction in gray is nearly instantaneous, and begins 

immediately under ambient conditions prior to employing any hydrothermal conditions. 

In this reaction, KMnO4 is used as the manganese source to produce a K0.39MnO2.04•1.25 

H2O precursor by a rapid redox reaction in which acetone is oxidized in a 0.1 M KOH 

aqueous solution. We know from previous work in our group that this material has the 

layered birnessite structure, similar to that of the phase δ-MnO2, and that the manganese 

valence in this precursor is less than 4 due to the combination of oxygen 

nonstoichiometry and K
+
 intercalation.

175
 In the present LNMO study, potentiometric 

titration combined with ICP-AES analysis show that the decreased manganese valence 

persists in the final product (ZMn = 3.82), corresponding to an ultimate composition 

Li1.02Ni0.5Mn1.5O3.875. Full data are presented vide infra and in the ESI. 
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Scheme 4.1 Reaction scheme 

 

   In the first hydrothermal step, nickel reacts with this layered birnessite-type 

intermediate, K0.39MnO2.04•1.25 H2O, in the absence of lithium at neutral pH. After a 5 h 

dwell time at 240 ºC, we isolate a dark brown crystalline product composed of a two-

phase mixture having the α-MnO2 and MnOOH structures, illustrated in Figure C.1. It is 

undetermined from X-ray diffraction experiments whether nickel intercalates directly into 

one or either of these structures or if it remains amorphous after this reaction. Although 

only sensitive to the surface, X-ray photoelectron spectroscopy indicates that nickel 

remains divalent and that manganese is mixed valent Mn
4+

 and Mn
3+

; details follow in 

the next section. In addition, the EDX map in Figure C.2 indicates that nickel is evenly 

dispersed throughout the material. Previous work has shown that Cl
–
(aq) can be used as 

an effective reductant toward KMnO4/MnO2, and gives access to low-dimensional 

morphologies.
219,220

 α-MnO2 adopts a tunnelled structure, into which alkali cations can 

insert hydrothermally
221

 and under high temperature annealing.
222

 Similarly, it has been 

shown that the oxyhydroxide MnOOH structure converts to spinel under hydro-thermal 

treatments.
223,224
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Figure 4.1 Powder X-ray diffraction pattern of Li1.02Ni0.5Mn1.5O3.88 spinel prepared by 

the two-step hydrothermal method of Scheme 1. Si was added as an internal reference. 

 

   Then, in a second reaction, the isolated initial product mixture above was transferred 

into a clean hydrothermal reaction vessel, and 12 mL of 0.1 M LiOH was added. After an 

additional 5 hour dwell time at 240 °C, a dark red microcrystalline product is isolated. In 

this second step, lithium inserts by an ion-exchange reaction under basic conditions. Ion 

exchange between monovalent Li
+ 

and divalent Ni
2+

 does not occur to any appreciable 

extent during the phase transition to spinel structure; the EDX map in Figure C.3 shows 

that nickel remains evenly disbursed in the final LNMO product. Then, the powder X-ray 

diffraction pattern of the target compound is presented in Figure 4.1. The final product 

shows a diffraction pattern of Fd3
–
 m symmetry, in excellent agreement with previously 

reported LNMO material.
12,19,27

 The lattice parameter of hydrothermally synthesized 

product is 8.183 Ǻ, in good agreement with oxygen-deficient disordered structures 

observed by other groups.
4,8,226

 Additional refinement parameters and atomic coordinates 

are presented in Tables C.1-2. An advantage of our wet chemical technique is that no 
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NiO or LiNiO2 impurities are observed in the XRD pattern in our final compounds. 

   In previous work, lithium manganospinel (Li1+xMn2–xO4–δ) has been successfully 

prepared in our group by introducing Li
+ 

directly through ion-exchange from the 

birnessite structure using a one-step hydrothermal synthesis.
227

 Repeating this reaction 

with the simple modification of introducing NiCl2 was explored, and Figure C.4 shows 

the X-ray diffraction pattern of the product and its resulting refinement. Although this 

material can be indexed as spinel, it shows very poor crystallinity after the same synthesis 

dwell period compared to the two-step synthesis procedure detailed above. The apparent 

crystalline domain size (determined by the Scherrer equation, τ = kλ/β cosθ) is 

significantly smaller, only 9.4 nm, which matches the SEM images shown in Figure C.5. 

Simple solubility rules readily explain the small particle size resulting from the one-step 

reaction. Directly mixing the synthons LiOH, NiCl2 and K0.39MnO2.04•1.25 leads to 

instant precipitation of the insoluble salt Ni(OH)2 (Ksp  ~ 10
–15

). In this case, crystal 

growth of the product is limited by the reaction kinetics at the solid-solid interface or by 

dissolution at the surface. Nevertheless, the reaction does demonstrate that under basic 

conditions, Ni
2+

 can intercalate into the birnessite structure, and agrees with previous 

literature in which the spinel structure results after a 3- day hydrothermal treatment.
228

 

This results agrees with the conclusion that the dissolution-precipitation equilibrium of 

Ni(OH)2 under hydrothermal conditions slows down Ni
2+

 intercalation. 

   Potentiometric titration of Mn against Fe
2+

 gives ZMn in NMO and LNMO of 3.42 and 

3.82 respectively. We surmise that manganese oxidation in this second reaction step is 

accompanied by the reduction of oxygen vacancies according to the reaction: 

 

2Mn
3+ 

+ □O
••
 + ½ O2(g) → 2Mn

4+
 + OO

×
   (1) 
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as described in our previous LMO work. Meanwhile, the reaction sequence proposed in 

Scheme 4.1 presents a reducing environment for the second step. Therefore, these two 

reactions are in direct competition. To understand better the influence of oxygen partial 

pressure on product formation, we performed the second hydrothermal step under a pure 

oxygen atmosphere, but find that α-MnO2 is formed as an impurity phase (Figure C.6). 

Notably, however, when the second hydrothermal reaction peformed in the strict absence 

of oxygen (under an N2 atmosphere), we observe a larger lattice parameter (8.196 Å, 

XRD pattern in Figure C.7), which suggests a higher concentration of Mn
3+

 in the 

structure. Therefore, we conclude in our synthesis that oxygen partial pressure is critical 

in preparing phase-pure, high performing material, and that hydrothermal synthesis is 

therefore advantageous for generating high-performing electrodes.  

   The elemental composition of Li, K, Mn and Ni are determined from ICP data. Then, 

the manganese valence is determined from titration against Fe
2+

. Nickel is assumed to be 

in its +2 formal oxidation state, consistent with the observed XP spectra. To derive an 

overall formula then, the negative charge is balanced by oxygen only, and the mass 

difference between the calculated formula and true mass of the compound is compensated 

by adding neutral H2O. All data are presented in Table 4.1. The presence of lattice water 

in the NMO intermediate is corroborated by an IR stretch at 3300 cm
–1

, illustrated in 

Figure C.8.  
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Table 4.1 Elemental analysis for compounds presented in this study. 

compound ppm Li ppm K ppm Mn ppm Ni ZMn 

calculated formula 

mass/ mg 

sample 

mass/ mg 
H2O composition 

δ-MnO2 0 
1.281 

(12.16%) 

4.620 

(43.83%) 
0 3.69 8.647 10.5 ~17.9% K0.39 MnO2.04•1.25H2O 

NMO
 a 

0 
0.224 

(1.86%) 

5.918 

(49.01%) 

2.107 

(17.45)% 
3.42 11.82 12.1 ~2% H0.4K0.08Ni0.5Mn1.5 O3.305 

LNMO 
0.466 

(3.91%) 
0 

5.432 

(45.57%) 

1.933 

(16.22%) 
3.82 11.92 11.9 0 Li1.02 Ni0.5 Mn1.5 O3.875 
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4.3.2 Morphology, Photoelectron Spectroscopy, and Raman Spectroscopy 

 

 

Figure 4.2 SEM images of a) the NMO two-phase intermediate; b) the LNMO spinel-

phase product resulting from the two-step hydrothermal synthesis. 

 

 

   The morphology of the reaction intermediates and product is presented in the SEM 

images of Figure 4.2. Figure 4.2a shows that the isolated intermediates appear as a blend 

of nanowires and plates, consistent with the presence of two distinct phases in the X-ray 

diffraction pattern. Then, Figure 4.2b shows the morphology of the final LNMO product, 

which appears as regular octahedra with an edge length of ~200 nm, consistent with the 

cubic spinel structure. Then, using the BET method, the surface area of the product was 

determined to be 45.6 m
2
/g; the N2 sorption isotherm is plotted in Figure C.9. Recently, 

LiNi0.5Mn1.5O4 was synthesized under hydrothermal conditions in LiOH with Ni
2+

 as 

initial nickel source.
229

 However, the reaction was performed at 250 °C for 48 h and the 

final product showed very low crystallinity, In contrast, our material is highly crystalline, 

showing sharp diffraction features. High resolution TEM imaging shows that the 

octahedral crystal facets in our LNMO expose the (1 1 1) set of planes to the electrolyte 
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surface, illustrated in Figure 4.3. From this result, we hypothesize that lithium-ion 

diffusion will be rapid since lithium insertion occurs along the orthogonal [1 1 0] 

direction. A view of the spinel crystal structure along [1 1 0] is presented as Figure C.10.   

 

 

Figure 4.3 HRTEM image of an LNMO crystal. The d-spacing matches that of the (111) 

planes. Inset. SAED pattern along [110]. 

 

 To characterize the surface composition of both the inter-mediate product mixture and 

the final product, we analyzed the compounds by XP spectroscopy, shown in Figure 4.4. 

The Ni(2p) spectra are shown in Figure 4.4a,b. Both of these spectra contain a pair of 

satellite peaks as marked on the higher binding energy of the 2p lines. The spectra of the 

intermediate mixture is shown in Figure 4.4a, where Ni(2p1/2) and Ni(2p3/2) occur at 

binding energies of 872.7 eV and 855.0 eV, respectively. This is consistent with the  Ni
2+

 

formal oxidation state. On the other hand, although the 2p regions for the LNMO product 

are fit to two coupled peaks in Figure 4.4b, the binding energies are lower than those 
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expected for Ni
3+

 (857 eV)
 230

. This hints that all nickel exists as Ni
2+

. The two peaks 

could indicated two different chemical environments–perhaps tetrahedral and octahedral 

sites—or surface nickel that is bound to lattice oxide versus surface hydroxide. 

 

 

Figure 4.4 XP spectra of NMO and LNMO synthesized by hydrothermal methods. 

 

 The set of Mn(2p3/2) peaks in Figure 4.4c,d show binding energies of 643.0 eV, 

corresponding to Mn
4+

, and 641.8 eV, corresponding to Mn
3+

. By analyzing the XP 

spectra, it is evident that the initial NMO product contains a larger content of Mn
3+

; on 

the contrary, LNMO formed in the subsequent reaction shows Mn
4+

 predominantly.  

 Finally, the O(1s) region in both of the two compounds, shown in Figure 4.4e,f can be 

deconvoluted into three Gaussian peaks, all showing the same binding energies: the 

highest intensity peaks at 529.3 eV represents lattice oxide, the shoulders at 530.9 eV are 

attributed to surface hydroxide, and adventitious surface water absorbed by the 

compounds gives rise to the tails observed at 533.1 eV.
231

 We note that all XP spectra are 
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referenced to the adventitious surface C(1s) peak at 284.5 eV. In addition, both NMO and 

LNMO show surface carbonates, evidenced by peaks at 285.5 eV and 288.4 eV in Fig. 

S11.† This region is also noteworthy in our study because the K(2p) lines also appear in 

region. Important is that the K(2p) lines disappear in the final product, and is in accord 

with our ICP-AES result that no potassium is present in the final LNMO product. That is, 

ion exchange between K
+
 and Li

+
 in this second step is complete. 

 

 

Figure 4.5 Raman spectrum of Li1.02Ni0.5Mn1.5O3.88
 
spinel 

 

 With LNMO materials in hand from the reaction sequence provided in Scheme 4.1, we 

employed Raman scattering as an effective technique to differentiate between the ordered 

and disordered the structures for LiNi0.5Mn1.5O4.
232–234

 A recent study has shown that the 

symmetries of the normal modes for the cubic disordered (Fd3
–
 m) spinel LiNi0.5Mn1.5O4 

transform as: 
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Γ(Fd3
–
 m) = Ag(Raman) + Eg(Raman) + 3 F2g(Raman) + 4 F1u(IR)  (2) 

For these normal modes in cubic symmetry, those symmetric with respect to inversion are 

Raman active; the four antisymmetric bending modes(F1u) are IR active. The Raman 

spectrum in Figure 4.5 was obtained for the LNMO final product, and matches the known 

reported spectrum for the disordered cubic structure. The highest energy A1g band and the 

F2g
(1)

 shoulder at 632 cm
–1

 and 603 cm
–1

 correspond to Mn–O stretching, and the Eg and 

F2g
(2)

 modes at 397 cm
–1

 and 500 cm
–1

 respectively correspond to Ni–O stretching.
235–238 

4.3.3 Routine electrochemistry 

 

 

Figure 4.6 Cyclic voltammogram of Li1.02Ni0.5Mn1.5O3.88
 
spinel 

 

   The theoretical energy density of LiNi0.5Mn1.5O4 is 691 mWh/g, significantly higher 

than that of LiMn2O4 (592 mWh/g). Moreover, the disordered composition is capable of 

generating additional potential from the Mn
4+/3+

 couple. Figure 4.6 presents the cyclic 

voltammogram in a voltage window 3.0–5.0 V (vs. Li
+/0

) with a 0.1 mV/s scan rate. The 

lower energy couple at 4.0 V matches that of the Mn
4+/3+

 couple in LMO. Then, the 

formal Ni
4+/2+

 couple appears as a split wave centered about 4.7 V. This splitting infers 
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that the oxidation proceeds through discrete one-electron steps with a Ni
3+

 

intermediate.
239 , 240

 The higher current and larger area of the higher voltage feature 

indicate that the majority of the stored energy is in the Ni
4+/2+

 couple. Then, the 

unresolved peak above 4.8 V can be ascribed to either solvent oxidation or the release of 

oxygen from the lattice.
241–244

  

 

 

Figure 4.7 a) First charge & discharge cycle of Li1.02Ni0.5Mn1.5O3.88
 
spinel at 0.1 C rate;. 

b) Discharge capacity of Li1.02Ni0.5Mn1.5O3.88
 
spinel at 1 C rate. 

 

   Next, the first charge/discharge cycle at 0.1 C current (the requisite current to 

charge/discharge the theoretical capacity of the battery in 10 hours) is presented in Figure 
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4.7a. We note that during the first cycle, there is a large irreversible loss in gravimetric 

capacity (172 mAh/g charge vs. 121 mAh/g dis-charge), which likely stems from the 

irreversible oxidation of the electrolyte and the cathode material above 4.75 V, as has 

been described in the literature for LNMO even with higher-voltage titanate anodes
245

 

Continued cycling at faster current, 1 C in Figure 4.7b shows that this capacity is 

reversible, although it continues to fade at a fairly rapid rate. After 100 cycles, the 

discharge capacity is ~106 mAh/g, representing a 17.3% fade. To put this into proper 

perspective, once the capacity fade reaches 20%, a cell is at the end of its usable life. 
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Figure 4.8  a) Rate capability of Li1.02Ni0.5Mn1.5O3.88
 
spinel. Black, red, blue, green, and 

purple represent 1 C, 3 C, 5 C, 10 C, and 1 C current respectively; b) voltage profiles of 

the 5
th

 cycles at each rate. 

 

 The high surface area of our material suggests possible high rate capability. Therefore, 

to examine the rate capability, we varied the current from 1 C to 10 C, and Figure 4.8 

records the discharge capacity retention over first 5 cycles at each current. The cathode 

shows excellent rate capability, with discharge capacities of 120, 108, 102, and 84 mAh/g 

at rates 1 C, 3 C, 5 C, and 10 C respectively (The corresponding current densities are 

0.444, 1.33, 2.22 and 4.44 mA/cm
2
). Furthermore, the battery returns to 94% of the initial 

capacity returned to 1 C current after cycling through increasingly faster rate. Figure 4.8b 
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shows the charge-discharge curves for the fifth cycle at each current. All show two 

potential plateaus corresponding to Ni
4+

 reduction and Mn
4+

 reduction, corroborated by 

the voltammetry data. The voltage-capacity curve at 1 C shows an inflection point at ca. 

4.65 V (pointed out by the arrow in Figure 4.8b), inferring a distinct Ni
4+

/Ni
3+

 and 

Ni
3+

/Ni
2+

 couples.
246,247

 

 High rate capability implies rapid Li
+ 

diffusion. Therefore, electrochemical impedance 

spectra were collected. Figure C.12 shows the voltage-dependence of the lithium 

diffusion constant (DLi) efficient measured from 4–5 V, with the equivalent circuit 

illustrated in the inset. The data in the Nyquist plots of Figure C.13 were fit to two RC 

circuits in parallel (representing Li-ion migration and charge transfer at high and low 

frequencies, respectively) and a Warburg impedance, representing solid-state Li-ion 

diffusion.
248

 We estimate that DLi in our two-step hydro-thermally synthesized compound 

to be 10
–10

 to 10
–11

 cm
2
/s, comparable to recently reported carbon-coated samples.

210
 The 

rapid diffusion coefficient here is supported by our microscopy data, in which crystal 

facets point along the [1 1 0] direction. 

4.3.4 Cut-off Voltage and Ex Situ Diffraction Studies 

   In order to understand the capacity fade in this material, we performed our 

chronopotentiometry cycling experiments using different cut-off voltages. Interestingly, 

cells cycled from 5.0 to 4.4 V, where the Mn
4+/3+

 couple is not accessed, show excellent 

chemical stability. Figure 4.9a shows a representative cell in which the first ten cycles are 

performed in the full voltage window (5.0-3.4 V). However, after cycle 10, the next 50 

cycles are performed with a low-voltage cut-off of 4.4 V. Although the capacity is less 

because we are no longer storing charge in the Mn
4+/3+ 

couple, it cycles reversibly with a 
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capacity of 71 mAh/g. Even more interesting is that a similar experiment in which only 

the Mn
4+/3+

 couple is accessed (now cycling between 4.4-3.3 V) also results in very stable 

cycling, albeit with an extremely low capacity of 29 mAh/g, shown in Figure 4.9b.  

 

 

Figure 4.9 Galvanostatic cycling Li1.02Ni0.5Mn1.5O3.88
 
spinel switched between varying 

cutoff voltages at 1 C current. Cycles 1-10 (black squares) are charged and discharged 

between 3.4 and 5.0 V; cycles 11-121 (red squares) between 4.4 and 5.0 V; cycles 122-

622 (blue triangles) between 3.4 and 4.4 V; cycles 623-1123 (green circles)  between 4.4 

and 5.0 V. 

 

 Lastly, we assembled one cell in which the first ten cycles were performed in the full 
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voltage window (3.4 to 5.0 V), followed by 100 cycles in which 4.4 V is the lower-limit 

cut-off voltage, then 500 cycles in which 4.4 V is the upper-limit cut-off , and finally 500 

cycles in which 4.4 V is the lower-limit cut-off voltage again. This data is presented in 

Fig. 10, with select voltage profiles presented in Figure C.14. The key observations from 

this study are: 

1. after cycling exclusively through the Ni
4+/2+

 couple, the charge stored in the 

Mn
4+/3+ 

couple is unchanged. 

2. after cycling through the Mn
4+/3+

 couple, the charge stored in the Ni
4+/2+

 couple is 

recovered completely and shows little fade over 500 cycles. 

3. The observed energy density of LNMO in the voltage limit 4.4 to 5.0 V is ~320 

Wh/kg, comparable to the energy densities observed in other synthesis methods. 

4. Although the surface area is large, our nanomaterials demonstrate excellent 

cyclability during the cut-off voltage studies. Therefore, deleterious side reactions 

(e.g.—electrolyte oxidation, Mn
2+

 dissolution) are not failure mechanisms for our 

materials.  

 Interestingly, from Figure 4.9, the sum of the two capacities at cycles 11 performed 

with 4.4 V low- (9a) and high (9b) cut-off voltages is 100 mAh/g, which is less than the 

124 mAh/g observed for cycle 11 of the full voltage range (Figure 4.7). Furthermore, 

cells cycled between the full voltage range of 3.4 and 5.0 V maintain a capacity of greater 

than 100 mAh/g through the first 100 cycles. Therefore, we conclude that the chemistry 

leading to diminished cell performance in the full range is coupled in the two redox 

events. In constructing a formal oxidation state picture, manganese is fully oxidized to 

Mn
4+

 at potentials more positive than 4.4 V during the charging process, then continued 
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extraction of lithium ions requires oxidation of nickel. However, we propose that lithium 

extraction at potentials greater than 4.4 V requires electronic coupling between nickel and 

manganese and that the couples are not as simple as Ni
4+/2+

 and Mn
4+/3+

. This assertion is 

backed up confirmed by a control study in which Ti-substituted LNMO shows a 

significant decrease in capacity. Ti
4+

 is being d
0
, and therefore incapable of strong 

electronic coupling.
62

  

 

 

Figure 4.10 Galvanostatic cycling Li1.02Ni0.5Mn1.5O3.88
 
spinel switched between varying 

cutoff voltages at 1 C  current. Cycles 1-10 (black squares) are charged and discharged 

between 3.4 and 5.0 V; cycles 11-121 (red squares) between 4.4 and 5.0 V; cycles 122-

622 (blue triangles) between 3.4 and 4.4 V; cycles 623-1123 (green circles)  between 4.4 

and 5.0 V. 

 

 In order to address the capacity behavior uncovered in our cut-off voltage 

experiments, we performed ex situ X-ray diffraction on cells disassembled after cycling. 

These diffraction samples therefore contain the active spinel-structured material along 

with carbon black, and poly(vinylidne difluoride) binder, which give a large amorphous 

background,
249

 as well as a strong crystalline signal from the aluminum foil. Therefore, 

we are limited to a partial refinement that includes the first three Bragg reflections: (111), 
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(113), and (222). In order to validate our methods, we first collected and refined data for 

a freshly prepared LNMO electrode, and note that its lattice parameter is 8.185 Å, which 

is in excellent agreement with the 8.183 Å lattice parameter recorded using the 11 

reflections on a pure powder between 15 and 75º 2θ. (The patterns and refinement 

parameters for the data in this section are presented as Figure C.15 – 19) A summary of 

these results is presented in Table 4.2. 

   After 60 cycles at 1 C current between 3.4 and 5.0 V (full range), the lattice parameter 

after returning the material to 3.4 V is significantly smaller, 8.157 Å. This implies a 

degradation mechanism for spinel-type cathodes that has been well documented: 2Mn
3+

 

ions at the surface disproportionate into electrolyte soluble Mn
2+

 and electrochemically 

inactive Mn
4+ 

(in the discharged state), which results in a smaller lattice parameter.  

 In order to differentiate whether or not the redox events couple to decrease the lattice 

parameter, we assembled two separate cells. In the first one, the voltage limits were 

switched to 3.4 – 4.4 V after cycle 10, and we observe that the lattice parameter grows to 

8.194 Å after the 60
th

 cycle. This hints that cycling through this redox couple results in an 

increase in Mn
3+ 

concentration. Then, in the second cell, the voltage limits are restricted 

to 4.4 – 5.0 V after cycle 10, and we observe a lattice parameter of 8.189 Å after cycling. 

This is perhaps slightly larger, but similar to that of the uncycled starting material. This 

hints that no structural distortions occur during cycling in this higher voltage range. 

Important is that in neither experiment do we observe a decrease in lattice parameter, and 

we deduce that the chemistry resulting in the lattice shrinking requires both redox events. 

 The smaller lattice parameter after full-range cycling suggests a larger Mn
4+

 content 

and/or fewer oxygen vacancies result. However, we cannot yet say through which couple 
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this additional capacity is lost, but return to the observation that charge transfer is 

required for decent cycling. Because of the decrease in lattice parameter after cycling 

through the full potential window, we hypothesize that electrical energy could be 

converted to heat in the form of lattice modes through the Ni–O–Mn bridge.
250 – 252

 

Current efforts in our lab are focused on further correlating the electrical properties and 

structure to generate compositions that cycle with greater stability throughout the full 

voltage window. It is also possible that cation rearrangement on the 16d Wyckoff sites 

occurs during the charging process, which converts electrical energy to lattice energy and 

gives rapid capacity fade. Transitions between ordered and disordered spinel structures or 

among varying disordered structures are imperceptible by standard laboratory X-ray 

diffraction techniques and we have planned neutron diffraction experiments to address 

these hypotheses. 

4.4 Conclusion 

   In the present study, a low temperature two-step hydrothermal synthesis was used to 

prepare lithium nickel manganese oxide spinel with a formula Li1.02Ni0.5Mn1.5O3.875 

without any NiO or LiNiO2 impurities identified. A reaction intermediate was isolated 

with a mixed α-MnO2 and MnOOH phase. A reaction mechanism is proposed to interpret 

the two step synthesis: redox chemistry only occurs on manganese, with nickel remaining 

in the +2 oxidation state throughout the reaction. The XRD pattern and Raman spectrum 

corroborates this formulation; the final product processes cubic symmetry, implying a 

disordered arrangement of manganese and nickel, along with a smaller lattice parameter, 

which is indicative of oxygen vacancies. LNMO synthesized in this manner crystallize as 

well-defined octahedral with an edge length of ~200 nm and a surface area of 45.6 m
2
/g. 

Electron diffraction shows that the (111) set of planes is exposed to the surface. Cyclic 
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voltammetry shows two redox processes related to Mn
4+/3+ 

and Ni
4+/2+ 

formal couples at 

4.0 and 4.7 V, respectively. The Jahn-Teller active Mn
3+

 ion supports the disordered 

structure and possible oxygen vacancies as previously reported. The final product 

exhibits good rate capability: the material can be cycled at 10 C with a reversible capacity 

of 84 mAh/g, attributed to rapid lithium diffusion, on the order of 10
–10

 to 10
–11

 cm
2
/s. 

Capacity retention is excellent when the compound is cycled either between 3.4 and 4.4 

V or between 4.4 and 5.0 V where nominally only the Mn
4+/3+

 or Ni
4+/2+

 couples are 

operative and ex situ diffraction shows lattice parameters that are the same or are slightly 

larger than that of the initial material. This is in stark contrast to the decrease in lattice 

parameter when cycled through the full 3.4 – 5.0 V window, suggesting that the two 

couples work in tandem to diminish the capacity. A possible charge transfer between Ni 

and Mn is proposed to explain the capacity maintaining during the voltage cut-off 

experiments; meanwhile, the capacity loss and fade could be due to either the change of 

lattice modes of Ni-O-Mn or a structural rearrangement. 
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CHAPTER 5 

Improving the Electrochemical Stability of the High-Voltage Li-Ion 

Battery Cathode LiNi0.5Mn1.5O4 by Titanate-based Surafe Modification 

 

Portions of this chapter have been published: 

Hao, X.; Bartlett, B. M. J. Electrochem. Soc. 2013, 160, A3162-A3170. 

 

5.1 Introduction 

For the past three decades, lithium-ion battery applications have expanded from 

energy storage for portable electronics to electric vehicles (EV) due to their high volume- 

and gravimetric energy densities.
253,254

 However, larger energy density materials are still 

much desired for future generations’ energy-storage needs.
12,255

 The manganese-based 

spinel-type cathode material LiMn2O4 is one of the current workhorse materials because 

of its relatively low cost and toxicity compared to the archetype cathode material 

LiCoO2.
184

 Previous studies have shown that other transition metals can substitute for 

manganese in lithium manganospinel to yield potentially higher energy-density 

materials.
256 , 257

 For example, the nickel-substituted LiNi0.5Mn1.5O4 has a theoretical 

energy of 690 Wh/kg compared to 440 Wh/kg of the pristine LiMn2O4 due to its higher 

operating voltage.
258

 

LiMn2O4 possesses a cubic spinel structure with space group Fd-3m, in which 

manganese, lithium, and oxygen atoms are located at 16d, 8a and 32e Wyckoff sites 

respectively.
259

Oxygen vacancies are easily formed during the conventional synthesis of 
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this compound (LiMn2O4-δ), which leads to a higher fraction of Mn
3+

 in the 

structure.
260,175

 The chemical energy stored in the manganese redox couple Mn
4+/3+

 can be 

cycled by electrochemical insertion/extraction of the lithium ions at 8a sites. However, 

the Jahn-Teller distortion of Mn
3+

 causes serious mechanical stress and its 

disproportionation results in Mn
2+

 dissolution from the surface. On the other hand, 

stoichiometric LiNi0.5Mn1.5O4 possesses a primitive cubic structure with space group 

P4332 due to ordering of the two transition metals. Manganese, nickel, and lithium are 

located at 12d, 4a, and 8c Wyckoff sites respectively. Oxygen atoms are located at both 

24e and 8c sites. However, oxygen vacancies are also common defects in LiNi0.5Mn1.5O4-

δ, in which manganese and nickel are disordered giving rise to the face-centered cubic 

Fd-3m lattice. In this structure, manganese and nickel are dispersed randomly on the 16d 

sites. Lithium and oxygen are located at 8a and 32e sites respectively.
261 , 262

 In the 

oxygen-deficient structure, energy is not only stored in the Ni
4+/3+ 

and Ni
3+/2+ 

redox 

couples which offer a potential ~ 4.7 V vs. Li
+/0

, but also in the Mn
4+/3+ 

couple at ~ 4.0 V. 

It is known that the disordered, oxygen-deficient structure (LiNi0.5Mn1.5O4-δ) shows more 

favorable electrochemical characteristics including improved cyclability and rate 

capability due to the existence of the Mn
3+

 in the structure.
263,264

 However, the high-

voltage operation (> 4.7 V) is out of the electrochemical stability window of the presently 

used lithium hexaflourophosphate electrolyte and alkyl carbonate solvent system. 

Deleterious side reactions between the oxide surface and the electrolyte occur readily, 

resulting in a non-conductive inorganic and organic SEI layer forming.
265

 This 

undesirable process is accelerated at elevated temperatures. Meanwhile, due to the 

commercial electrolyte LiPF6, hydrofluoric acid is produced due to autocatalytic 
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decomposition in the presence of trace moisture, which is extremely corrosive toward 

metal oxides.
266

 Manganese- and nickel dissolution are therefore possible during cycling 

and storing the battery, which results in potential energy losses.
267 , 268

 In addition, 

structural degradation due to these side reactions and aging of the materials are 

inevitable. For example, monoclinic layered phases such as Li2MnO3 have been 

identified after cycling.
269

  

   From the perspective of synthesis, different particle sizes can be achieved for 

LiNi0.5Mn1.5O4-δ. Methods that produce nanoparticles such as hydrothermal
270

 and sol-gel 

combustion
271

 give rise to improved lithium-ion transport since the lithium-ion path 

length is shorter. However, side reactions are more pronounced due to the larger surface-

to-volume ratio.Previous studies have focused on doping non-distortive transition metals 

such as Cr, Co or Ru into the face-centered cubic structure to stabilize LNMO.
272–274

 

These metals also serve to dilute the surface contact between nickel and electrolyte. 

Meanwhile, effective surface isolation using inert layers such as AlF3, ZnO and ZrO2 

seems to be most effective for protecting LNMO from deterioration. Certain examples 

also include surface protection for LiNi0.5Mn1.5O4-, LiCoO2 and some other high voltage 

cathode with high operation voltage.
275–279

 In our group, we have successfully applied a 

sol-gel method for preparing spinel-phase lithium titanium oxide (Li4Ti5O12) and anatase 

(TiO2) synthesis.
280,281

 In the present study, we use conventional solid-state methods to 

preapre micron-sized LiNi0.5Mn1.5O4-δ. The titanate based surface coating was applied to 

build a protection layer using sol-gel method to achieve better electrochemical stability of 

the compound under high voltage operation. 
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5.2 Experimental 

5.2.1 General Consideration 

Lithium carbonate (99%), nickel (II) oxide (99%, ~325 mesh) and manganese 

carbonate (99.9%, trace metal basis) were purchased from Sigma Aldrich. Lithium metal 

99.9% (metal basis) was purchased from Alfa Aesar. These reagents were used as 

received. Titanium isopropoxide (97%) was purchased from Sigma Aldrich, and it was 

distilled prior to storing in a Vacuum Atomospheres OmniLab glove box under an argon 

atmosphere. Ethanol (200 proof) was purchased from Decon Labs. HPLC-grade toulene 

was purchased from EMD Millipore and purified through a VAC solvent purifier unit.  

Powder X-ray diffraction patterns were collected on a Bruker D8 Advance 

diffractometer with a Lynx-Eye detector and parallel beam optics using Cu-Kα radition 

(λ=1.54184 Å). The patterns were refined using the Bruker TOPAS software. N2-sorption 

isotherms for surface area measurements (BET) were completed using a Quantachrome 

Instruments NOVA 4200e. Scanning electron microscopy (SEM) images and energy 

dispersive X-ray (EDX) spectra were collected on an FEI Nova Nanolab SEM/FIB at an 

accelerating voltage of 10 kV. High resolution transmission electron (HR-TEM) 

microscopy was performed on a JEOL 3011 TEM with a LaB6 electron source operated 

at 300 kV. The samples were dispersed in tetrahydrofuran and drop cast onto a copper 

grid with an ultra-thin holy carbon film (Ted Pella
TM

). Thermal analyses were obtained 

with a Q50 TGA Thermogravimetric Analyzer (TA Instrument). Raman spectra were 

obtained using a Renishaw Ramascope Raman spectrometer equipped with a Leica 

microscope, a Nikon LU plan 20× objective (numerical aperture = 0.40), and a 1200 

lines/mm grating. All spectra were taken under 785 nm Laser excitation with 1.1 mW 
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incident power. Spectral analysis was performed using the fitting routines included in the 

WiRE 3.2 software package. 

5.2.2 Synthesis 

Lithium nickel manganese oxide (LiNi0.5Mn1.5O4–δ) was synthesized by a solid-state 

method. Li2CO3, NiO and MnCO3 were ground for 40 min with molar ratio 1:1:3 using a 

Thinky
TM

 AR-100 mixer. Acetone and Zirconia balls (2 mm and 5 mm with counts ratio 

2:10) were added to assist the mixing process. The mixture was first heated to 600 °C for 

4 hours, followed by calcination at 950 °C for 12 hours. The heating and cooling rates 

were 10 °C/min. An intermediate grinding was performed, followed by a second 12-hour 

annealing treatment at 950 °C. The final LNMO product (~ 3.98 g, 21.8 mmol) was 

collected, and phase purity was confirmed by X-ray diffraction.  

To prepare the lithium titanium oxide (Li4Ti5O12) coating agent, lithium metal 

(typically 27 mmol) was dissolved in 40 mL of ethanol in a Schlenk flask purged with 

nitrogen gas. Titanium isopropoxide was dissolved in 60 mL of toluene in an argon 

atmosphere. These two reagents were mixed together with additional solvent such that 

the final volume of the solution is 200 mL. The lithium to titanium mole ratio of solution 

was 4:5, and the volumetric ratio of ethanol to toluene was 2:3. In a separate experiment, 

no lithium reagent was added to a similar mixture, resulting in titanium oxide (TiO2) as 

the coating agent. 

To perform the coating onto solid state prepared LNMO, typically, 200 mg LNMO 

was added to a round-bottom flask with 25 mL of an ethanol and toluene mixture 

(volume ratio 2:3). Two different volumes of Li4Ti5O12 (LTO) or TiO2 solution (0.2 mL 

and 0.5 mL) were added to the mixture for the assembling of coating layers. To minimize 
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particle aggregation caused by the coating layer, grinding balls were also added, and the 

flask affixed to a rotary evaporator (Buchii). After two hours at reduced pressure, the 

initial coating layer was formed. The round-bottom flask was then put into a pre-set 60 

°C vacuum oven (Fisher Scientific) for 2 hours to eliminate any residual solvent. Finally, 

the coated LNMO powder was collected and heated in two steps in a muffle furnace 

(MTI): the powder was heated to 200 °C for 4 h, followed by annealing at 500 °C for 1 h. 

As a control experiment, the annealing treatment was also performed on the non-coated 

LNMO; this sample is denoted as bare LNMO.  

5.2.3 Electrochemical measurements 

All of the electrochemical tests were performed using two-electrode Swagelok
TM

 

PTFE cells. Pure lithium metal was used as the counter- and pseudoreference electrode 

for the measurements. To prepare the working electrode slurry, the synthesized material, 

carbon black and poly(vinylidene) difluoride (PVDF) (mass ratio of 75:15:10) were 

mixed in a Thinky
TM

 AR-100 rotation-revolution mixer. N-methyl-2-pyrrolidone (NMP) 

was added to dissolve the PVDF completely and to maintain an appropriate viscosity of 

the black slurry. This material was then spread onto a de-greased aluminum foil by the 

doctor blade method, and the foil was dried in the vacuum oven at 120 °C overnight prior 

to assembling the cell in order to minimize the surface-bound water. The active material 

loading is approximately 5 mg/cm
2
. The electrode masses were measured using a 

Sartorius
TM

 ME36S microbalance. Glass fiber filter paper (GF/D) was used as separator 

in the cell. The electrolyte solution was composed of 1 M lithium hexafluorophosphate 

dissolved in 2:1 (v/v) ethylene carbonate and diethyl carbonate. All the cells were 

assembled in the argon glove box.  
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Galvonostatic charge/ discharge experiments were performed on a NEWARE BTS-

5V1MA cycler in the voltage window 3.4 to 5.0 V (vs. Li
+/0

). Cyclic voltammetry was 

recorded on a CH Instruments 660C electrochemical workstation. Galvanometric 

intermittent titration technique (GITT) measurements were carried out using a 

customized Vencon UBA5 battery analyzer. In GITT, a galvanostatic pulse of 0.2 C 

(where C is the current required to discharge the theoretical capacity of the cell in one 

hour) was applied for 600 s followed by relaxation at open circuit for 2 h. The cut-off 

voltage is set to 3.4 V. Prior to the GITT test, all cells were galvanostatically charged to 3 

V with a cut-off current limit of 10 nA followed by a 2-h rest period at open circuit. 

Electrical resistivity study was performed by four-point probe measurements with a 

LUCAS LABS
TM

 resistivity test stand S-302-4 assisted with an Autolab PGSTAT302N. 

A constant potential of 1 V was applied during the test, and the corresponding i-t curve 

was recorded. Pellets were pressed using a Specac
TM

 press with a 10000 kg load and a ¼″ 

die from MTI with a final thickness of ~0.06 cm. All pellets were annealed at 500°C for 4 

hours before the conductivity tests. Pellets densities were measured as ~4.1 g/cm
3

, which 

is close to theoretical density of LNMO, 4.4 g/cm
3
.  

5.3 Results and discussion 

5.3.1 Composition, structure and morphology 

In the present study, LiNi0.5Mn1.5O4–δ was synthesized by a high-temperature solid-

state method at 950 °C. It is known that two different structures can be formed during the 

synthesis of this compound due to the oxygen content.
13

 At high temperature, an oxygen-

deficient cubic structure is formed (space group Fd–3m); in this structure, the transition 

metals are disordered on the 16d Wyckoff sites. Figure D.1 shows the XRD pattern and 

Rietveld refinement of the high- temperature synthesized LNMO. The reflections marked 
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with arrows index as the rock-salt impurity phase ((LixMn0.66Ni0.34)yO), which easily 

forms during the high-temperature synthesis of LNMO.
282,283

 The Rietveld refinement 

confirms the structure and results in a lattice parameter a = 8.191 Å which matches the 

former results of oxygen deficient LNMO.
284

 

 

 

Figure 5.1 TGA trace of solid state synthesized LiNi0.5Mn1.5O4-δ (a); the TiO2 precursor 

solution (b); and the LTO precursor solution (c). 

 

As mentioned in the introduction, at large positive potentials, the electrolyte 

decomposes and reacts with transition-metal oxides. Those side reactions can cause 

destructive effects to the electrochemical stability of the high voltage cathodes. 

Meanwhile, HF arising from trace moisture in the LiPF6 electrolyte leads to the corrosion 

of the electrode. To maintain the structure integrity of LNMO, we hypothesize that a 

protective coating can be added at relatively low temperature to maintain stable cycling 

of the electrode. Based on previous work in our laboratory, LTO can be prepared by a 

sol-gel process to yield such a coating.
285

 Figure 5.1 shows the TGA results for LNMO 
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and control experiments of LTO/TiO2 solution. From these results, we select 500°C to 

perform the heat treatment for the coating process since there is no further mass loss of 

either the LTO and TiO2 precursor above this temperature. Meanwhile, there is no 

obvious mass change of the LNMO sample. Raman spectroscopy (Figure D.2) shows that 

there is no carbon residue left on the surface of the samples with the performed annealing 

treatment at 500 °C. Figure D.3 shows the XRD patterns of the LTO and TiO2 sol-gel 

precursor solutions after annealing at 500 °C. The TiO2 coating is pure anatase with good 

crystallinity. However, heating the precursor mixture that we used to prepare LTO to 

only 500 °C results in a mixture of anatase and spinel phases. At 700°C, the pure cubic 

spinel phase can be achieved by annealing the LTO solution. But, heating LNMO to 

higher temperatures results in further oxygen loss, observed in the TGA.  
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Figure 5.2 Powder X-ray diffraction patterns of solid-state synthesized LiNi0.5Mn1.5O4-δ 

(a); 5 – 10 nm LTO-coated LNMO (b); 5 – 10 nm TiO2-coated LNMO (c); 20 – 30 nm 

LTO-coated LNMO (d); 20 – 30 nm TiO2-coated LNMO (e). 

 

Figure 5.2 shows the XRD patterns of the bare LNMO annealed at 500 °C and the 

coated LNMO with their Rietveld refinement results. Notably, the LNMO structure is 

unaltered after the coating and also after the 500 °C annealing treatment. Regardless of 

the presence of lithium in the precursor solution, the titanate-coated samples show small 

anatase indexed peaks around 25° 2θ. Meanwhile, the rock-salt minor impurity can still 

be identified from the difference pattern in all five samples. The refinement results are 
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summarized in Table 5.1. No obvious change occurs during the TGA study for LNMO, 

after annealing and the lattice parameters are nearly identical after annealing (8.191 to 

8.189 Å). The slight decrease after annealing is perhaps indicative of a decrease in the 

density of oxygen vacancies in the structure,
286

 but we note that Rietveld refinement of 

X-ray data is not sensitive enough to draw a stronger conclusion. Notable is that this 

phenomenon is not unique; all the coated samples show a slight lattice shrinkage 

compared to the LNMO sample. The comparison of the materials properties was 

performed among these five samples to elucidate the composition of the coating layers. 

 

Table 5.1 Rietveld Refinement Results of Electrode Materials used in this Study. 

Sample Code a / Å V / Å3 % Rwp % RBragg 

Bare LNMO 8.191(4) 549.6(5) 1.49 0.184 

Bare LNMO annealed 8.189(6) 549.2(7) 1.49 8.841 

Bare LNMO annealed RT 8.191(9) 549.7(3) 1.25 3.078 

Bare LNMO annealed 55°C 8.194(1) 550.1(9) 1.02 0.131 

5 – 10 nm LTO coating 8.186(2) 548.5(8) 2.15 9.768 

5 – 10 LTO coating RT 8.188(8) 549.1(2) 1.67 3.833 

5 – 10 LTO coating 55°C 8.191(3) 549.6(2) 1.25 0.201 

20 – 30 nm LTO coating 8.189(1) 549.1(8) 1.81 5.337 

20 – 30 nm LTO coating RT 8.189(2) 549.2(0) 1.66 4.264 

20 – 30 nm LTO coating 55°C 8.192(8) 549.9(2) 2.04 0.865 

5 – 10 TiO2 coating 8.188(9) 549.1(3) 1.95 6.843 

5 – 10 TiO2 coating RT 8.188(7) 549.1(1) 1.68 0.274 

5 – 10 TiO2 coating 55°C 8.189(5) 549.2(5) 1.39 0.519 

20 – 30 nm TiO2coating 8.186(8) 548.7(2) 1.81 5.17 

20 – 30 nm TiO2 coating RT 8.187(8) 548.9(1) 1.27 0.266 

20 – 30 nm TiO2 coating 55°C 8.189(4) 549.2(4) 1.34 5.057 
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Figure 5.3 SEM images of LiNi0.5Mn1.5O4-δ (a); 5 – 10 nm LTO-coated LNMO (b); 5 – 

10 nm TiO2-coated LNMO (c); 20 – 30 nm LTO-coated LNMO (d); 20 – 30 nm TiO2-

coated LNMO (e). Note that all images are captured at the same magnification such that 

the 2 μm scale bar shown in a) is common to all. 
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Figure 5.4 EDX spectrum and map of 5 – 10 nm TiO2-coated LNMO. 

 

Figure 5.3 shows SEM images of the bare LNMO and titania-coated sample. All 

samples show a particle size of ~5 μm, typical for solid-state synthesized materials. 

Compared to bare LNMO, the surfaces of the other samples are rougher, indicative of the 

coating. Small aggregating islands are observable in the coated samples, suggests 

variation in the thickness of the coating layer. Therefore, to confirm that titania coats the 
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entire LNMO surface, an energy-dispersive X-ray (EDX) map was constructed; Figure 

5.4 shows that titanium and oxygen are evenly dispersed throughout the scale window for 

one of the anatase-coated LNMO samples, which reveals the effectiveness of the coating 

method. In addition, a clear titanium signal is observed in the EDX spectrum. 

 

 

Figure 5.5 HR-TEM images of LNMO (a); 5 – 10 nm LTO-coated LNMO (b); 5 – 10 nm 

TiO2-coated LNMO (c); 20 – 30 nm LTO-coated LNMO (d); 20 – 30 nm TiO2-coated 

LNMO (e). 

 

To estimate the thickness of the coating layer, high resolution transmission electron 

microscopy was performed. In the HR-TEM image of Figure 5.5, bare LNMO shows a 
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flat and clean surface. On the materials that have been coated, there is an additional 

observable coating that varies in thickness from 5 – 10 nm for 0.2 mL of precursor 

solution added, and from 20 – 30 nm for 0.5 mL of precursor solution added. That is, the 

volume of the precursor solution employed is reflected in the thickness of the coating. 

 

  

Figure 5.6 Cyclic voltammogram of LNMO (a); 5 – 10 nm LTO-coated LNMO (b); 5 – 

10 nm TiO2-coated LNMO (c); 20 – 30 nm LTO-coated LNMO (d); 20 – 30 nm TiO2-

coated LNMO (e). 
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Figure 5.6 shows the cyclic voltammetry of all the cathodes discussed in this 

manuscript. All show the same electrochemical redox reactions at two voltage regions 

versus lithium metal: Two waves centered about 4.7 V correspond to the Ni
4+/3+

 and 

Ni
3+/2+

 couples, and a wave centered about 4.0 V corresponds to Mn
4+/3+

. The observation 

of redox chemistry occurring at 4.0 V confirms the existence of oxygen vacancies in 

cubic LNMO materials.
287,288

 Notable is that the titanium oxide coatings do not add extra 

features to the voltammogram. In this study, we find that titanate-based coatings are 

effective for improving the electrochemical stability by separating the direct contact 

between the LNMO cathode and the electrolyte. One of the main causes of capacity fade 

is electrolyte decomposition upon charging to high potential (5.0 V).
11

 Figure D.4 shows 

the control voltammograms of the electrolyte on anatase TiO2 and LTO. Although the 

current scale is small, undesired oxidation reactions are still identified at potentials more 

positive than 4.7 – 4.8 V, the typical upper voltage limit for the lithium-ion battery 

electrolyte. This intrinsic chemistry problem cannot be solved by simply adding a 

protective layer for the high-voltage cathode, and may be the primary reason for capacity 

fade for the first few cycles observed in all cathodes. Rather, this points to the need to 

design electrolytes that are chemically inert at these higher voltages. 

5.3.2 Room-temperature Galvanostatic Cycling 
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Figure 5.7 Room temperature gravimetric capacity of LNMO (a); 5 – 10 nm LTO-coated 

LNMO (b); 5 – 10 nm TiO2-coated LNMO (c); 20 – 30 nm LTO-coated LNMO (d); 20 – 

30 nm TiO2-coated LNMO (e). All cells are cycled galvanostatically at 1 C, the filled 

circles represent discharge capacity, and open circles represent charge capacity. 

 

Electrochemical tests were performed to measure the stability of the coated cathodes. 

As a control, batteries were also assembled using bare (uncoated) LNMO. Figure 5.7 

shows the cyclability of the cathodes versus lithium metal at room temperature for the 

first 110 cycles at 1 C rate (147 mA/g) within the voltage window 3.4 – 5.0 V vs. Li
+/0

. 

Both the charge and discharge capacities were recorded to measure any capacity losses. 

For bare LNMO, the initial charge capacity is 134 mAh/g, but discharge capacity is 106 
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mAh/g, meaning that the Columbic efficiency (qout / qin) is only 79%. On the contrary, all 

the coated samples show Coulombic efficiencies higher than 85% on the first cycle. The 

irreversible capacity loss at the first few cycles is attributed to SEI layer formation.
289

 

Then, significant irreversible loss continues through the next five cycles for bare LNMO 

(85%, 91.0%, 93.4%, 93.9%, 95.5% for cycles 2 – 6). In contrast, the coated samples 

show efficiencies greater than 97% for the second cycle, suggesting that the coating layer 

reduces side reactions contributing to SEI layer formation. The titanate layer prohibits 

direct contact between LNMO and the electrolyte, while allowing Li-ions to diffuse 

through, and therefore serves as the SEI in the electrochemical system. After 100 cycles, 

the columbic efficiencies of all materials are greater than 99.0%. Of course, parasitic 

reactions are still possible at the 5.0 V potential, but we note that after our coating 

treatment, no obvious changes of discharge capacity were observed compared to bare 

LNMO material (with a highest discharge capacity as ~107 mAh/g). 

 

 

Figure 5.8 5
th

 (thick black), 55
th

 (gray) and 110
th

 (thin black) cycle voltage curves of 

LNMO (a); 5 – 10 nm TiO2-coated LNMO (b). 
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In terms of electrochemical stability, there is a 6.5% discharge capacity fade over the 

first 110 cycles for the bare LNMO sample. However, no discernible capacity fade is 

observed for the LTO- and/or TiO2-coated samples, and the electrochemistry is similar 

regardless of the coating composition. This verifies that the titanate coating layers are 

effective to improve the stability of the LNMO cathode. To streamline the discussion, the 

remainder of the results presented in this manuscript will compare the electrochemistry of 

bare LNMO to LNMO coated with 5 – 10 nm of anatase TiO2. First, we note that our 

results are repeatable from cell to cell. Two additional cells cycled under the same 

conditions (1 C charge and discharge at room temperature) show the exact same 

galvanostatic profile (data presented in Figure D.5). Our initial hypothesis was the 

similarity in the crystal structures of LTO and LNMO would result in superior 

electrochemical performance. However, our results indicate that both coatings are able to 

stabilize LNMO chemically and that lithium diffusivity is unchanged for either coating at 

either thickness is added (shown below). Figure 5.8 compares the voltage curves for the 

5
th

, 55
th

 and 110
th

 cycles of bare LNMO and LNMO coated with 5 – 10 nm TiO2. In these 

profiles, the high-voltage plateaus near 4.7 V correspond to the Ni
4+/3+

 and Ni
3+/2+

 formal 

couples in LNMO. As previously mentioned, the cubic structure is commensurate with 

having oxygen vacancies, which leads to Mn
3+ 

in the structure as noted in the cyclic 

voltammogram; in Figure 5.8, this composition is manifested as a low-voltage plateau 

observed at ~4.0 V, indicative of the Mn
4+/3+

 couple.  
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Figure 5.9 Rate capability of LNMO (a); 5 – 10 nm TiO2-coated LNMO (b). 

 

Next, the rate capability was studied by cycling the cathode materials at different C 

rates; the data are presented in Figure 5.9. LNMO and TiO2-coated LNMO cells were 

cycled at 1, 2, 3, 5, and 10 C for 5 cycles each at room temperature. The very last cycle 

returns to 1 C current. Bare LNMO shows excellent rate capability with capacity 

retention with discharge capacities of 106, 104, 102, 99, 87 mAh/g at rates 1, 2, 3, 5 and 

10 C respectively, which suggests that LNMO is a promising cathode for high power 

applications. Upon coating with anatase, the battery retains good capacity and rate 

capability > 80 mAh/g at 10 C rate for the coated material. The charge and discharge 

profiles of the last cycle at each rate (5
th

, 10
th

, 15
th

, 20
th

, and 25
th

) are provided in Figure 

D.6. All the profiles show three voltage plateaus corresponding to the Ni
4+/3+

, Ni
3+/2+

, and 

Mn
4+/3+

 couples. As the current increases, the polarization gap increases, as is typically 

observed in batteries.
290

 Both cells return to their initial 1 C discharge capacity after the 

rate capability study: 106 mAh/g (bare LNMO) and 114 mAh/g (anatase-coated LNMO). 

5.3.3 Elevated-temperature Galvanostatic Cycling 
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Figure 5.10 55°C gravimetric capacity of LNMO (a), 5 – 10 nm TiO2-coated LNMO (b). 

Cells were cycled at 1 C. 

  

Galvanostatic cycling at 1 C current was also performed at 55 °C to determine the 

electrochemical stability of these compositions at elevated temperature. The cyclablity of 

bare LNMO and anatase-coated LNMO are recorded in Figure 5.10. At elevated 

temperatures, the rates of interfacial parasitic reactions between the electrode and the 

electrolyte increase.
18

 Over the first 110 cycles, there is now over 17% discharge capacity 

loss for the bare LNMO sample. The initial discharge capacity for bare LNMO is still 

~107 mAh/g, similar to the capacity at room temperature. On the other hand, the 

discharge capacity fades to 89 mAh/g at the last recorded (110
th

) cycle, due to structure 

collapse and possible metal dissolution at high temperature. The anatase-coated sample 

shows marked improvement at elevated temperatures. First, even at high temperatures, 

the irreversible capacity losses are negligible for the second cycle (3 mAh/g) compared to 

14 mAh/g for bare LNMO cathode. Then, the capacity is larger: 118 mAh/g initially, 

dropping to only 111 mAh/g at cycle 110. Notably, all coated samples show improved 

capacity retention. The discharge capacity retention for the anatase-coated LNMO sample 
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is 93.2%. Figure S7 shows the voltage profiles at 5
th

, 55
th

 and 110
th

 cycles at 55 °C. Clear 

distinction between formal Ni
4+/3+/2+

 and Mn
3+/4+

 redox processes are maintained. 

 

 

Figure 5.11 Differential capacity-voltage (dQ/dE) curves for the 5
th

 and 55
th

 cycles of 

LNMO (a); 5 – 10 nm TiO2-coated LNMO (b) at 55°C. 

 

In addition to the capacity, the voltage profile yields polarization resistance by 

examining the potential difference between the charge and discharge plateaus. Previous 

work has shown that a thicker SEI layer on the surface of LNMO increases the 

polarization resistance, resulting in a decrease in useable energy density.
291,292

 As shown 

in Figure D.7, not only does the capacity decrease as LNMO is cycled at elevated 

temperature, but also the polarization gap between the charge and discharge profiles 

increases from 5
th

 to 110
th

 cycles. To corroborate this observation, differential capacity-

voltage (dQ/dE) curves for 5
th

 and 55
th

 cycles were plotted in Figure 5.11. In the bare 

LNMO sample, the charge and discharge branches shift apart by ~100 mV after 50 

cycles, indicative of increased polarization resistance. On the contrary, in the dQ/dE 

curves of the anatase-coated sample, the 55th cycle overlaps the 5th cycle, which implies 

a constant interfacial resistance over time. The polarization gap of the coated samples is 



127 

 

also smaller, only 50 mV. We also note that, at the 5th cycle, the bare LNMO sample’s 

discharge peak is actually shifted ~ 20 mV to more negative potential compared to the 

peaks observed for the anatase-coated sample. This hints that the surface of the LNMO is 

more resistive than that of the titanate-coated samples at elevated temperature. This could 

explain the smaller discharge capacity of the bare LNMO sample. 

5.3.4 Ex situ Structural Analysis 

 

 

Figure 5.12 XRD patterns of electrodes after 110 cycles at room temperature (LNMO (a) 

and TiO2-coated LNMO (b)) and at 55°C (LNMO (c) and TiO2-coated LNMO (d)). The 

arrows mark aluminum current collector and the * marks the impurity phase Li2–xNiO2. 
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Figure 5.12 presents the XRD patterns of the material on the electrodes after 110 

cycles at 1 C rate at both room temperature and at 55°C. To carry out this experiment, the 

batteries were disassembled after discharging to 3.4 V vs. Li
+/0

, then the electrodes were 

washed with diethylene carbonate, and finally dried in the glove box prior to the 

structural study. The refinement results are summarized in Table 5.1. Since the XRD 

patterns were collected with the electrode disks, there are additional reflections due to 

crystalline aluminum (used as an internal reference, and marked in Figure 5.12a), as well 

as an increased background due to the amorphous carbon black and binder. All of the 

XRD patterns can be indexed to cubic spinel after cycling. Rietveld refinement was 

carried out using the (111) and (113) Bragg reflections, which we showed to be 

reasonable in our prior work.
21

 In comparing the refinement data on the coated 

electrodes, a common trend shows that after cycling, the lattice parameter increases 

slightly. And, the lattice parameter after cycling at 55°C is the larger than that obtained 

after cycling at room temperature. These results are different from the study we reported 

last year on hydrothermally synthesized LNMO, which shows a decrease in the lattice 

parameter after cycling cells between 3.4 and 5.0 V. A decrease in the lattice parameter 

points to manganese disproportionation, which results in an increase in the average 

manganese valence within the solid. In contrast, previous studies show that high-voltage 

charging of LNMO can lead to the release of oxygen, which gives rise to an increase in 

the unit cell volume.
293

 This latter observation matches what we observe in this study.  

We also note that after 110 cycles at 55 °C, the (111) peak in the XRD pattern of 

bare LNMO shows a significant drop in intensity, which suggests dissolution of transition 

metal layers. Dissolution is supported by the capacity fade observed in Figure 5.10a. 
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Meanwhile, we notice that a new reflection grows in at 2θ of 17°, which matches the 

nickel-rich orthorhombic phase Li2–xNiO2.
294 , 295

 This phase can be denoted as a 

compositional component of the LiNi0.5Mn1.5O4-MnO2 phase diagram. In both Li2–xNiO2 

and LNMO, the formal oxidation state of nickel is 2+. Isolation of a nickel-rich phase 

will result in a decrease of the manganese valence. Both of the reasons explain the 

observed increase in the lattice parameter. More importantly, no Li2–xNiO2 phase can be 

identified for the surface coated samples, and the X-ray intensity is maintained, indicating 

that the titanate coating enhances the structural stability of LNMO.  
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Figure 5.13 SEM images of LNMO (a) and TiO2-coated LNMO (b) after cycling at 

55ºC. Both images are recorded at the same magnification such that the 5 μm scale bar is 

common. 

 

In Figure 5.13, SEM images of bare-LNMO and 5 – 10 nm TiO2 coated samples 

after 55 °C long cycling are shown. Particle fracture of the bare-LNMO particles is 

observed. The cracked particles cause a large resistance and partial electrical isolation of 

the electrode which leads to capacity fade after many cycles. On the other hand, there is 

no obvious mechanical degradation of the coated powders, which explains better 
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cyclability of the coated materials. The mechanism of particle fracture is unclear in this 

study; it could be ascribed to cycling through the Mn
4+/3+

 couple to give rise to capacity 

fade or due to changes in oxygen stoichiometry. This is an active area of ongoing 

research. However, to check the integrity of the titantia coating after cycling, TEM is 

applied (Figure D.8), which shows that the coating remains intact after cycling.  

5.3.5 Li-ion diffusivity and electrode resistivity 

 

 

Figure 5.14 GITT curves for LNMO (a); 5 – 10 nm TiO2-coated LNMO (b). 

 

In the present study, we have successfully coated a titanate and/or titania layer on the 

surface of LNMO to improve its long-term electrochemical stability at the practical rate 

of 1 C. However, with increasing current, the surface-coated materials show a greater 

drop in capacity than is observed in the bare LNMO sample. A larger polarization gap 

results in greater energy density loss. One possibility for higher polarization resistance is 

that the titanate layer may retard lithium-ion diffusivity. In order to measure the lithium-

ion diffusion coefficient, the galvanostatic intermittent titration technique (GITT) was 

applied for all the cathodes.
296,297

 In this experiment, a small current pulse (0.2 C ≈ 147 
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μA/cm
2
) is applied for 10 min and the cell is then allowed to rest at open circuit for 2 h. 

Both the initial non-equilibrium voltage and the final equilibrium open circuit voltages 

are recorded. Then, we calculate the lithium diffusion coefficient according to the 

equation: 

    
 

  
 
    
   

 
 

 
   

   
 
 

                

 

where DLi is the lithium-ion diffusion coefficient; τ is the constant current pulse time; mB 

is the active material mass on the electrode (5 mg); VM is the molar volume of the 

compound (330.7 cm
3
/mol); MB is the molar mass of the compound (182.69 g/mol); S is 

the electrode contact area with the electrolyte (150 cm
2
, determined by BET analysis of 

the N2-sorption isotherms); ΔEs is the difference between the steady potentials; and ΔEt is 

the total transient voltage change of the cell for an applied galvanostatic current for the 

time τ. The GITT results are presented for bare LNMO and for thin anatase-coated 

LNMO in Figure 5.14. In this model, lithium insertion was calibrated using the capacity 

of manganese redox couple, and complete lithium insertion is assumed at the open circuit 

potential, 3.4 V. As we observe from the GITT plot, all materials show slower lithium-

ion diffusivity at the GITT plateau positions, which corresponds to the two-phase mixture 

during lithium insertion. Surprisingly, we do not observe a significant difference between 

the DLi values of bare LNMO and the coated samples. All cathode materials show DLi 

values of 10
–11

 to 10
–12

 cm
2
•s

–1
 throughout the entire range of lithium insertion.

 

Meanwhile, the coating thickness from 5 – 30 nm does not strongly influence the rates of 

lithium-ion diffusion. 
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Table 5.2 Electrical Conductivity of LNMO Electrodes used in this Study. 

Sample Code σ / S • cm–1 

Bare LNMO 1.12 × 10–5 

5 – 10 nm LTO coating 4.93 × 10–6 

20 – 30 nm LTO 

coating 
2.47 × 10–6 

5 – 10 TiO2 coating 8.21 × 10–6 

20 – 30 nm TiO2 coating 7.15 × 10–6 

 

An alternative hypothesis for the difference in rate capability for bare- and coated 

LNMO samples is that the electronic conductivity of the cathode materials is lowered 

upon coating. To test this hypothesis, we carried out four-point probe measurements to 

determine the electrical resistivity (ρ / Ω • cm). All compounds were pressed into pellets 

that are ~ 0.06 cm thick. The resistivity can be calculated by:
298

 

  
 

 
                

where V is the applied voltage (1 V); I is the measured current; CF is a geometric 

correction factor; W is the thickness of the pellet. The conductivity (σ / S • cm
–1

) is 

quoted for each of the electrodes used in this study in Table 5.2 with the i-t curves plotted 

in Figure D.9. Notable is that bare LNMO shows the highest electrical conductivity 

among all the materials, and corresponds to larger capacity at higher current. In support 

of this hypothesis, the thicker the coating, the lower the conductivity, and the smaller the 

capacity at fast rates. Future work will focus on elucidating the cause of greater capacity 

at high temperatures and exploiting this phenomenon by coupling these coated cathodes 

with oxide-based anodes to generate a full cell. 
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5.4 Conclusion 

Solid-state synthesized LiNi0.5Mn1.5O4-δ was successfully coated with titania-based 

oxide layers by a sol-gel coating method. The electrochemical characteristics of all the 

coated materials cathodes were carefully studied and compared to bare LNMO. Both of 

the coatings employed, LTO, and/or anatase-TiO2 effectively stabilize LNMO during 

electrochemical cycling. At the elevated temperature 55 °C, bare LNMO shows 

significant capacity fade, and the polarization resistance increases. On the contrary, the 

coated samples show better capacity retention and a smaller polarization gap, ascribed to 

the suppression of SEI formation. Elevated temperature cycling of bare LNMO yields the 

formation of an undesirable Li2–xNiO2 phase, and a loss in crystallinity is evident by a 

decrease in XRD peak intensity. However, coating the sample with LTO or TiO2 

maintains the structural integrity. A greater fraction of oxygen vacancies is found in all 

samples after electrochemical cycling due to the oxygen loss at high voltages regardless 

of the presence of a coating. There is no dramatic change in the lithium-ion diffusivity 

upon coating, and the decrease in capacity retention at faster rates is likely attributed to 

an increase in surface resistance due to the titania coating; the thicker the coating, the 

lower the conductivity.  
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CHAPTER 6 

Li4Ti5O12 Nanocrystals Synthesized by Carbon Templating from 

Solution Precursors Yield High Performance Thin Film Li-Ion Battery 

Electrodes 

 

Portions of this chapter have been published: 

Hao, X.; Bartlett, B. M. Adv. Energy Mater. 2013, 3, 753-761. 

 

6.1 Introduction 

There is growing interest in alternatives to graphite as the anode material for lithium-

ion batteries that improve safety without sacrificing performance. Specifically, the 

challenge is to find a thermodynamically stable material in which no solid-electrolyte 

interface (SEI) layer grows.
299,300

 The formation and growth of the SEI layer in graphite-

containing batteries are well-documented, but remain poorly understood. Meanwhile, 

recent work has focused on nanomaterials composed of other group 14 elements such as 

silicon
301

 and germanium
302  

which show significant higher energy density than 

carbonaceous anode. However, these materials have the drawback of large volume 

changes upon lithium insertion, which leads to electrode pulverization on repeated 

cycling with fast capacity dropping. Pure intercalation oxide-based intercalation materials 

such as Li4Ti5O12 (LTO) have the advantage that volume changes in the host lattice is 

negligible upon lithium insertion.
[ 303 – 305 ]

 On the other hand, the low-voltage limit 

(commonly set at 1.0 V vs. Li
+/0

) of oxides is higher, results in a decrease in energy 
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density. Despite this drawback, LTO remains a promising anode material for Li-ion 

batteries because of its stability.  

To date, no anode material is flawless, and the fundamental limitations to using LTO 

prepared by existing methods are that the rate of lithium-ion diffusion is too slow (10
–14

 

to 10
–17

 cm
2
/s)

306
 and the compound suffers from poor electrical conductivity < 10

–13
 

S/cm.
68 

The former problem requires the use of nanoparticles to shorten the path of 

lithium diffusion in the solid state.
307–309

 The latter problem is typically addressed by 

adding electrically conductive carbon when preparing an electrode slurry,
310 – 314

 but 

requires low resistance to charge transfer between the LTO nanoparticles and added 

carbon.
 

  The need to solve both problems simultaneously generates a scientific dilemma. There 

are many synthesis routes described that result in nanoparticles, including hydrothermal 

synthesis
315–318

 or using a soft template in sol-gel processing methods.
[319–321] 

However, 

the growing nanoparticles tend to aggregate due to their high surface energies, and as a 

result, the electrode is composed of micron-sized aggregates. The problem with 

aggregates is that too many LTO surfaces are in contact with other LTO crystallites, and 

therefore not available to contact the conducting carbon. Electrodes fabricated from these 

agglomerates are subject to large polarization losses. Three dimensionally ordered 

microporous (3DOM) Li4Ti5O12 and nanoscale porous framework electrode have also 

been introduced.
322,323 

However, high rate capability is not achievable due to the lack of 

electrical contact with conductive carbon in those electrodes. 

To resolve this predicament, we describe in this manuscript for the first time the 

synthesis of LTO nanocrystals from solution-phase precursors using a carbon-templated 
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growth process. In this process, crystal growth is complete (all of the nutrients are 

consumed) and the surfaces are annealed at high temperature at nearly the same rate at 

which the template burns off. Therefore, the LTO product is composed of regularly 

shaped octahedra whose crystal facets point along the [011] direction. Advantageously, 

this direction is the one from which lithium ions insert from the electrolyte, and the 

electrochemical characteristics far exceed those of typical nanoparticles grown without 

such a template. When 30 μm thin-film electrodes composed of LTO nanocrystals are 

cycled against Li-foil, the cells show highly reversible electrical energy storage of over 

250 Wh/kg at the slow rate of 1 C (the current required to charge/ discharge the battery in 

one hour, 175 mA/g). Remarkably, the energy density remains large as the power 

increases: 190 kW/kg, at 100 C (charge/ discharge in 36 s). 

6.2 Experimental 

6.2.1 General consideration 

Lithium metal 99.9% (metal basis) was purchased from Alfa Aesar. Titanium 

isopropoxide 97% was purchased from Sigma Aldrich, and it was distilled prior to storing 

in a Vacuum Atmospheres OmniLab glove box under an argon atmosphere. Ethanol (200 

proof) was purchased from Decon Labs. Toluene was purchased from EMD milipore and 

purified through a VAC solvent purifier unit. Acetylene black (carbon black, /CB) was 

purchased from Strem Chemicals. CB was kept in a Fisher Scientific
TM

 oven at 150°C 

prior to use. Deuterated toulene (99.5%) and ethanol (99.5%) were purchased from 

Cambridge Isotope Laboratories. 

Powder X-ray diffraction patterns were collected on a Bruker D8 Advance 

diffractometer with a Lynx-Eye detector and parallel beam optics using Cu-Kα radiation 

(λ= 1.54184 Ǻ). The patterns were indexed and refined using the Bruker TOPAS 
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software. Scanning electron microscopy images were obtained on an FEI Nova Nanolab 

SEM/FIB at an accelerating voltage of 10 kV. High resolution transmission electron 

microscopy was performed on a JEOL 3011 TEM with a LaB6 electron source operated 

at 300 kV. The samples were prepared by sonicating a dispersion of powdered sample in 

tetrahydrofuran and drop casting the resulting suspension onto a Cu grid with an ultra-

thin holy carbon film (Ted Pella
TM

). The samples were heated to 60 °C in a Fisherbrand 

vacuum oven prior to the measurement. X-ray photoelectron spectra were collected with 

a Krato Axis Ultra spectrometer with a monochromatic Al Kα source and a charge 

neutralizer system was used for all the analyses. The data collected were fit using Casa
TM

 

XPS software package 2.3.15. Electron paramagnetic resonance spectra were recorded on 

a Bruker X-band (9.3 GHz) EMX spectrometer at 6 K. The microwave power and 

frequency were 20.51 mW and 9.28 GHz respectively, with a modulation amplitude of 

1.00 G at 100 kHz. Thermal analyses were obtained with a TGA7 Thermogravimetric 

Analyzer (Perkin Elmer
TM

) at a heating rate of 10 °C / min. under a flow of air. Raman 

spectra were obtained using a Renishaw Ramascope Raman Spectrometer. All spectra 

were taken under 785 nm laster excitation with 1.1 mW incident power. NMR spectra 

were recorded on a Varian MR400 400 MHz spectrometer using toluene-d8 and ethanol-

d6 solvents. 

6.2.2 Synthesis 

Lithium metal (typically 27 mmol) was dissolved in 40 mL of ethanol in a Schlenk 

flask charged with nitrogen. Titanium isopropoxide was dissolved in 60 mL of dry 

toluene in an argon atmosphere glove box. These two reagents were mixed together by 

cannula transfer to give a transparent solution containing both lithium and titanium 
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synthons (200 mL total, lithium to titanium molar ratio is 4:5 and the  volumetric ratio of 

ethanol to toluene was adjusted to 2:3). This precursor solution is stable under ambient 

room atmosphere, as evidenced by an unchanged NMR spectrum.  

To prepare the lithium titanate directly from this precursor solution (S-LTO), a 15 mL 

aliquot of the precursor stock solution was poured into a 23 mL scintillation vial and 

placed in the vacuum oven at 60 °C for 2 h in order to remove excess solvent. The 

resulting white residue was transferred to an alumina boat and annealed in an MTI muffle 

furnace at 700 °C for 1 h with both heating and cooling rates of 10 °C /min. From this 

reaction, ~ 100 mg of product is isolated. 

To prepare lithium titanate using a carbon black templating method (C-LTO), typically, 

1 g of carbon black was added to 50 mL of the precursor solution. This mixture was 

stirred overnight and then sonocated for 2 h to form a well dispersed suspension. Then, 

the resulting thick slurry was centrifuged to give a residue coated with carbon black. This 

residue was dried in the vacuum oven at 60 °C for 2 h, then annealed at 700 °C for 1 h as 

described above. To study the growth mechanism of C-LTO nanocrystals, other 

annealing temperatures (400 °C and 450 °C) were employed, where carbon is not 

completely oxidized.  

6.2.3 Electrochemical measurements 

Thin-film electrodes were prepared by mixing the synthesized material, carbon black 

and poly(vinylidene) difluoride (PVDF, purchased from Alfa Aesar) (mass ratio of 

75:15:10) with a Thinky AR-100 rotation/revolution super mixer. N-methyl-2-

pyrrolidone (NMP, 99+%, purchased from Alfa Aesar) was added to dissolve the PVDF 

completely and to maintain an appropriate viscosity of the resulting black slurry. This 
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material was then coated onto a de-greased copper foil using the doctor blade method, 

and the foil was dried in the vacuum oven at 120 °C overnight prior to assembling the 

cell in order to minimize surface-bound water. The working electrode and glass fiber 

separator (GF/D) were cut and fit into a Swagelok
TM

 PTFE union in the argon glove box. 

The active material loading is approximately 1 mg/cm
2
 or 4 mg/cm

2
. The electrode 

masses were measured using a Sartorius
TM

 ME36S microbalance. In all cells, the 

electrolyte solution was composed of 1 M lithium hexafluorophosphate (99.99+%, Sigma 

Aldrich) dissolved in 2:1 (v/v) ethylene carbonate (99%, anhydrous, Sigma Aldrich) and 

diethyl carbonate (99+%, anhydrous, Sigma Aldrich), and lithium foil was used as both 

the auxiliary and reference electrode in a 2-electrode configuration. 

Galvanostatic charge/ discharge curves were recorded on a CH Instruments 660C 

electrochemical workstation with a voltage window of 1 to 3 V (vs. Li
+/0

). The 

polarization gaps due to hysteresis in the charge and discharge profiles are reported at one 

half the gravimetric capacity values. Galvanometric intermittent titration technique 

(GITT) measurements were collected using a customized Vencon UBA5 battery 

analyzer. In GITT measurements, a galvanostatic pulse of 0.2 C was applied for 600 s 

followed by relaxation at open circuit 2 h. The cut-off voltage is set to 1 V. Prior to the 

GITT test, all cells were galvanostatically charged to 3 V with a cut-off current limit of 

10 nA followed by a 2 h rest period at open circuit. Electrochemical impedance spectra 

(EIS) were collected using an Autolab PGSTAT302N with a FRA (frequency reponse 

analysis) module. Batteries were cycled ten times between 1.0 and 3.0 V at 1 C current 

before the measurements. The cycling behavior was stopped at half the charging capacity 

on the last cycle, at which point all of the cells were stored in an argon glovebox 
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overnight such that the spectra start at the open circuit potential, 1.55 V. The EIS were 

recorded in a frequency range from 10
5
 to 10

–2
 Hz with AC perturbation was ± 10 mV. 

Zview
TM

 software package was used for the data fitting.  

6.3 Results 

6.3.1 Synthesis and characterization of LTO nanocrystals 

In the present study, a solution-based method starting from alkoxide precursors of 

lithium and titanium was applied in order to obtain atomic-level mixing from which to 

synthesize Li4Ti5O12 (LTO). The synthon lithium ethoxide is the first prepared on a 

Schlenk line by reacting metallic lithium with absolute ethanol, liberating hydrogen in the 

process. The other synthon, titanium isopropoxide is prepared as a 0.48 M solution in 

toluene, and the two reactants are mixed—4 parts LiOEt to 5 parts Ti(O
i
Pr)4. We then 

add additional toluene such that the precursor mixture is 2:3 EtOH:PhMe; this 

combination slows solvolysis. 
1
H-NMR spectroscopy (Figure E.1) shows that the as-

synthesized precursor is composed of isopropoxide and ethoxide, and the solution is 

stable for several days under ambient room conditions, noted by the unchanged spectrum 

after storage. 

Isolated LTO nanocrystals form from a templated synthesis using this precursor 

solution and carbon (acetylene) black. In a typical synthesis, we add 1 g of carbon black 

per 50 mL of precursor solution prior to removing the solvents. Carbon black is a form of 

amorphous carbon whose role is to prevent aggregation of the growing nanocrystals 

during annealing. In order to achieve the minimum carbon loading and to maximize 

interparticle contact, we centrifuged the samples to eliminate as much excess solvent as 

possible prior to annealing. The annealing scheme was determined from the results of 

thermogravimetric analysis (Figure E.2). Solvent evaporation continues as the 
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temperature is ramped to ~ 200 °C, irrespective of the presence of carbon black. The two 

syntheses are distinguished above 500 °C, where an abrupt change in mass occurs for the 

material containing carbon black. This mass change corresponds to the ignition of carbon 

black; the sample glows bright red, commensurate with burning carbon. No further mass 

loss is observed above 600 °C. Above this temperature, there is no carbon remaining, 

further supported by Raman spectroscopy (Figure E.3)
.
 

 

Figure 6.1 (a) SEM and HR-TEM images of C-LTO nanocrystals; (b) the carbon 

template; (c) and the S-LTO aggregates. 

 

Figure 6.1a shows SEM and HR-TEM images of the resulting nanocrystals from the 

carbon-templated synthesis (C-LTO). The material is composed of 67 ± 17 nm 

crystallites with distinct octahedral facets, with a histogram of the particle size 

distribution shown in Figure E.4. Images of the carbon template in Figure 6.1b show that 

it too is composed of ~70 nm particles, thus dictating the particle size of the product. 

Most important, the particles resulting from annealing the precursor solution (S-LTO) 

without adding the carbon template are illustrated in Figure 6.1c. Here, we observe 

micron-sized aggregates. 
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Figure 6.2 (a) XRD patterns for C-LTO (top) and S-LTO (bottom). The indexed pattern 

for LTO is presented in gray underneath. 

 

   The powder X-ray diffraction pattern in Figure 6.2 confirms that the crystalline 

products obtained are spinel regardless of the presence or absence of the template. 

Rietveld analysis of the diffraction patterns (Figures E.5 and E.6 with associated Tables 

E.1–4) give nearly identical lattice parameters, 8.362 and 8.363 Å for C-LTO and S-LTO 

respectively in agreement to what has been reported.
324 

The only notable difference is in 

the intensities of the reflections of the two samples, which is due to the smaller particles 

resulting from the C-LTO preparation; defining the crystalline domain size by the 

Scherrer equation
184

 in our Rietveld refinement corroborates our SEM findings: 58 nm 

suggests nearly single crystals of C-LTO; the domain size of S-LTO is much larger, 201 

nm. The selected area electron diffraction pattern (Figure E.7) of the individual C-LTO 

nanocrystal in the inset of Figure 1a shows exposed facets that point along [0 1 1], the 

direction along which Li-ion channels are organized, also illustrated in Figure E.7. This 
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result is similar to what we recently report for LiNi0.5Mn1.5O4 spinel materials 

synthesized by low temperature hydrothermal methods.
325

 

Finally, the surface area of C-LTO is slightly larger, 27 m
2
/g, compared to 20 m

2
/g for 

S-LTO as determined by BET analysis of N2 sorption isotherms (Figure E.8). The high 

surface area of these LTO samples will result in high rate capability (i.e.—high power) 

electrodes. However, the negligible aggregation in C-LTO nanocrystals helps to retain a 

large energy density as well. The lack of aggregation is demonstrated in the section 2.3 of 

the results. 

6.3.2 Details of the crystal growth mechanism 

 

 

Figure 6.3 TEM images highlighting the growth mechanism of C-LTO nanocrystals from 

a carbon black template. 

 

In order to elucidate the crystal growth mechanism, we performed temperature-

dependent studies of the C-LTO synthesis, returning to our TGA trace (Figure E.2). 

There are two plateaus of stability—one between 200 and 500 °C, and the second above 

600 °C. TEM images shown in Figure 6.3 give the account of nanocrystal growth. First, 

in Figure 6.3a, we observe only the carbon template at room temperature; it is composed 

of 50 nm spheres, as was highlighted above. Figure 6.3b shows the image of the 

precursor solution loaded with the carbon template. Not surprisingly, there is no order 
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since this material has not yet been annealed. During the synthesis, carbon is completely 

soaked with the precursor solution, and lithium and titanium are evenly dispersed on the 

surface as evidenced by the energy dispersive X-ray spectra and map in Figure E.9. 

After annealing the sample to 450 °C (within the first plateau of stability) for 1 h, order 

emerges. Figure 6.3c shows crystalline domains that are ~10 nm in diameter growing off 

of the carbon black template. Curiously, the image in Figure 6.3d is also captured after 

annealing at 450 °C for 1 h. Here, much larger crystalline domains are observed with 

residual carbon attached, which suggests that particle growth is concomitant with 

template removal (carbon is oxidized to carbon dioxide). Figure 6.3e shows the final 

product to be regular octahedra after annealing to 700 °C. By controlling the annealing 

temperature and time, we conclude that crystal size is ultimately limited by the size of the 

template. And, since crystal growth consumes nutrients localized on the carbon black 

template surface, minimal aggregation results. 
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6.3.3 Electrochemistry 

 

 

Figure 6.4 (a) Gravimetric charge capacity of C-LTO (black) and S-LTO (gray) cycled 

galvanostatically at 1 C; (b) individual charge and discharge curves for cycle 50 at 1 C; 

(c) galvanostatic cycling at 10 C; (d) charge discharge curves for cycle 50 at 10 C. 

 

Li4Ti5O12 can uptake three lithium ions during the charging process, corresponding to a 

theoretical energy storage capacity of 175 mAh/g.
264,326 

Figure 6.4a shows the gravimetric 

capacity of thin-film electrodes composed of either C-LTO or S-LTO materials cycled at 

1 C current. In the C-rate convention, n C current represents the load required to charge/ 

discharge the theoretcial capacity in 1/n hours. For an electrode composed of 1 mg LTO, 

1 C corresponds to a current density of 175 μA/cm
2
. Lithium insertion and extraction 
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occur as a two-phase mixture of Li4Ti5O12 and Li7Ti5O12, leading to a flat, constant 

voltage plateau (a consequence of the Gibbs’s phase rule) at 1.55 V vs. Li
+/0

.
327  

However, 

slow Li
+
 diffusion and charge transfer tend to lower the capacity and also cause hysteresis 

between the charge and discharge profiles. Both materials show similarly excellent 

capacity retention for the first 100 cycles, with an intial capacity of 167 mAh/g (at cycle 

4) and 160 mAh/g (97.6% retention) at the end of the test. The initial charge capacity of 

the material nearly reaches the theoretical capacity value. Voltage curves for the 50
th

 

charge and discharge cycles are higlighted in Figure 6.4b. Regardless of the preparation 

method, LTO shows a polarization voltage gap (hysteresis) of 65 mV; the charging 

plateau potentials were 1.53 V in both cases. This observation suggests that neither 

charge transfer nor Li
+
 diffusion within LTO are limited by the difference in particle size 

or by aggregation at low current. 

Next, C-LTO and S-LTO materials were cycled at a rate of 10 C (1.75 mA/cm
2
), 

shown in Figure 6.4c. Both electrodes still show excellent capacity retention after 100 

cycles at 10 C: 97.6% for C-LTO and 94.1% for S-LTO. However, two key differences 

arise as we plot the voltage curve for the 50
th

 cycle in Figure 6.4d. First, C-LTO shows a 

much larger capacity (161 mAh/g compared to 113 mAh/g for S-LTO). Second, C-LTO 

shows a smaller polarization–170 mV, which is less than half that observed for S-LTO, 

360 mV. To demonstrate the repeatability of our cell fabrication, we assembled two 

additional cells; Figure E.10 plots the charge capacity for three of each cell C-LTO and 

S-LTO cycled at both 1 C and 10 C current. All cells show virtually the same 

performance, and we conclude that isolated nanocrystals prepared by templated crystal 
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growth not only retard the rate of deliterious side reactions that lead to capacity fade, but 

also result in a decrase in the charge-transfer resistance in the material.  

 

 

Figure 6.5 Nyquist plots for EIS data recorded for C-LTO (black) and S-LTO (gray). The 

inset shows the equivalent circuit used to obtain the fits (solid lines). 

 

Table 6.1 EIS fit parameters for C-LTO and S-LTO 

Compound 
Rs 

[Ω] 

Rct 

[Ω] 

ZW-R 

[Ω] 

ZW-T 

[s] 
ZW-P 

Cdl    

[10
–6

 

F] 

CPE-T 

[10
–4

 s] 
CPE-P 

C-LTO 19.9 62.72 53.45 0.3375 0.4152 1.67 5.06 0.303 

S-LTO 23.2 197.8 224.5 0.3194 0.401 2.31 3.62 0.364 

R-resistance, T-time constant or capacitance, P-an exponent
 

                 

                             

 

  To corroborate this result, we have measured the electrochemical impedance of the thin-

film electrode and fit the data to include solution resistance, an RC circuit representing 
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charge transfer, and a Warburg impedance representing ion diffusion. The resulting 

Nyqust plot and the equivalent circuit are shown together in Figure 6.5. Rct, the charge-

transfer resistance, is the diameter of the semicircle. Table 6.1 shows the best fit 

parameters for the EIS spectra. The chief result is that the cell composed of C-LTO has a 

signficantly smaller Rct, 62.7 Ω vs. 197.8 Ω for S-LTO. 

 

 

Figure 6.6 GITT curves for C-LTO, (a) and S-LTO (b). The gray circles in each plot 

represent the diffusion constant calculated from equation 1, as described in the text. 
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Although the fit to EIS data can give an estimate of the lithium-ion diffusion constant 

(DLi), this method has the servere limation that it assumes the a perfectly homogeneous, 

planar electrode. Therefore, we turn to galvanostatic intermittent titration technique
328,329

 

(GITT) measurements to provide estimates of the lithium-ion diffusion coefficient for 

both LTO samples. In this experiment, a small current pulse (0.2 C = 35 μA/cm
2
) is 

applied for 10 min and the cell is then allowed to rest at open circuit for 2 h. Both the 

initial non-equilibrium voltage and the final equilibrium open circuit voltages are recored. 

Then, we calculate the lithium diffusion coefficient according to:  

    
 

  
 
    

   
 
 

 
   

   
 
 

                 (1) 

 

where DLi is the lithium-ion diffusion coefficient; τ is the constant current pulse time; mB 

is the active material mass on the electrode (1 mg); VM is the molar volume of the 

compound (987 cm
3
/mol); MB is the molar mass of the compound (459.09 g/mol); S is the 

electrode contact area with the electrolyte (85.4 cm
2
 for C-LTO and 63.3 cm

2
 for S-LTO, 

determined by BET surface-area measurements); ΔEs is the difference between the steady 

potentials; and ΔEt is the total transient voltage change of the cell for an applied 

galvanostatic current for the time τ. ΔEs and the ΔEt are determined in the experiment, 

and are marked in the Figure 6b as an example. 

The GITT results and the calcuated diffusion constants for both C-LTO and S-LTO are 

ploted in Figure 6. The chemical formula of Li4Ti5O12 can been re-written to represent the 

atomic positions in the standard spinel AB2O4 notation, (Li)8a[Li1/3,Ti5/3]16d(O4)32e, where 

the subscripts outside of the parentheses represent the Wyckoff positions in the unit cell. 

This shorthand is simply ⅓ the stoichiometric formula, so in this notation, one mole of 

lithium inserts. Upon insertion, Li
+
 residing on the 8a tetrahedral sites migrate to the 
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previously vacant 16c octahedral sites (see Figure E.7), and the product can be expressed 

as [Li2]16c[Li1/3,Ti5/3]16d(O4)32e.
330 

In Figure 6.6, the curves are plotted showing one mole 

of lithium being added per mole of spinel on the x axis. The charging plateaus as 

determined by the open circuit potentials are greater than 1.55 V, showing that a 2 h rest 

period at open circuit is sufficient for the cell to reach equilibrium. The magnitude of DLi 

ranges from 10
–13

 to 10
–16

 cm
2
·s

–1
 throughout the insertion process, regardless of the 

synthesis method employed. This behavior shows that lithium-diffusion is not limited by 

particle aggregation in the S-LTO material. Also notable is that for both materials, the 

beginning and ending steps show diffusion that is ~ 10
3
 faster than what is observed in 

the two-phase region.
331,332
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Figure 6.7 (a) Rate capability of C-LTO cycled at varying current; (b) individual charge 

and discharge curves for the 50
th

 cycle at each current. Note that polarization increases as 

C rate increases. 

 

Despite the similarity in lithium-ion diffusion rates, the smaller charge-transfer 

resistance between nanocrystals and carbon black in C-LTO electrodes allows for better 

rate capability. To determine the rate capability of the C-LTO material, we cycled cells at 
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10 C, 20 C, 40 C, 80 C and 100 C current. The observed capacities and retention over the 

first 100 cycles are provided in Figure 6.7a. Capacity retention is excellent for all rates; 

even at 100 C current, 100 % of the capacity at cycle 3 is retained after cycle 100. At this 

rate, the battery is capable of storing and releasing all of its charge in 36 s. In Figure 6.7b, 

the voltage profiles for the 50
th

 cycle at each rate are plotted together. 

 

 

Figure 6.8 Ragone plot for C-LTO (red) and S-LTO (black). 

 

Although the total energy stored in C-LTO and S-LTO is the same, 250 Wh/kg, for 

thin-film cells operated at low current (1 C), the energy density drops dramatically for S-

LTO as the load increases. C-LTO stores 238 Wh/kg of energy even when cycled at 10 C, 

whereas the energy density of S-LTO decreases to 157 Wh/kg. Notably, C-LTO stores 

more energy (190 Wh/kg) at ten times the load (100 C current) compared to S-LTO at 10 

C, shown in the Ragone plot of Figure 6.8. This result best highlights the electrochemical 

advantage of our carbon-templated nanocrystal growth. 
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We note that practical battery use in electric vehicles requires greater density of the 

active material on the working electrode. Therefore, we assembled three additional cells 

using C-LTO with an active material mass loading of 4 mg/cm
2
, and cycled the cells at 1 

C current. As observed in Figure E.11, all three cells show similar capacity retention for 

the first 100 cycles compared to those cells with only 1 mg/cm
2 

C-LTO cells. We note 

that the polarization gap is ever so slightly larger (72 mV vs. 65 mV). As a result, our 

work provides material that shows real promise in the search for safe, high power, high 

energy density lithium-ion battery anodes—ones competent enough to replace graphite. 

6.4 Discussion 

 

 

 

Scheme 6.1 Comparison between soft-templating methods (top) and carbon templating 

(bottom) for LTO crystal growth. 
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Although there are other examples of employing a template during the synthesis of 

LTO to reduce particle size, our work improves upon the use of a template to reduce 

particle size without subsequent aggregation of nanoparticles. The typical approach is to 

use a soft template and surfactant such as cetyltrimethylammonium bromide (CTAB)
333 

or copoly-mers.
334,335 

However, this strategy results in all of the nutrients residing in a 

hydrophilic core. Then, nucleation and growth also occur within this small core and the 

particles aggregate as crystallite surfaces come into contact. Alternatively, the carbon 

template that we use keeps all of the nutrients contained without allowing as many of the 

growing nanocrystals on the surface to come into close contact. Burning off the template 

seeds nucleation, and growth is limited as the solvent is removed. This growth method 

gives well isolated C-LTO nanocrystals. The chemistry differences between these two 

approaches toward growing nanomaterials using a template are illustrated in Scheme 6.1. 

In our method, minimizing particle aggregation within nanoscale materials has important 

consequences in the energy density and power of the resulting thin-film electrodes, as we 

now explain. 

First, we consider the three elementary steps in the charge and discharge of a titanium-

based lithium-ion battery: 1) lithium-ion diffusion in bulk; 2) charge-transfer from the 

ion-conducting oxide to the electron-conducting carbon; and 3) ion diffusion in the 

electrolyte.
336

 Not surprisingly, the lithium-ion diffusion constants of C-LTO 

nanocrystals and S-LTO aggregates are the same, and match those reported for bulk 

samples. The key conclusion is that rate of lithium-ion diffusion in LTO is extremely 

slow regardless of morphology or use of a template to prepare nanoparticles. Therefore, 

in a Li-ion battery, LTO nanomaterials are vital because they shorten the lithium path. 
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Next, we note that since lithium-ion diffusion is slow, the observation of high rate 

capability requires that charge transfer between the oxide nanocrystals and the conductive 

carbon be extremely rapid. Indeed, C-LTO electrodes demonstrate Rct that is 3 times 

smaller than that observed in  S-LTO electrodes, and represents the hallmark of our work. 

We propose that the superior rate capability arises because there is less aggregation 

within nanocrystals grown using a carbon template. Therefore, there is greater surface 

contact between the nanocrystals and the conductive carbon added to the thin-film 

electrode slurry. In nanoparticle aggregates, charge transfer is limited because too many 

LTO crystallites adhere only to other non-conductive LTO crystallites in a percolated 

network rather than contacting the conducting carbon black in the slurry. Scheme 6.2 

illustrates this proposition. 

 

 

Scheme 6.2 Greater conducting carbon-LTO nanocrystal contact in C-LTO (a), compared 

to S-LTO aggregates (b). 

 

Then, it has been proposed in the literature that the presence of Ti
3+

 in the prepared 

compound enhances the surface conductivity, and therefore accelerates the rate of charge 
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transfer.
337,338 

We performed low-temperature EPR spectroscopy and XPS measurments 

on our C-LTO and S-LTO materials. The data are presented in Figure E.12; no evidence 

of Ti
3+

 either in bulk or on the surface of our synthesized material is detected by these 

methods. In the XP spectrum, two different chemical environments are identified (
2
P3/2 

peaks at 458.0 eV and 459.2 eV), both of which correspond to Ti
4+

.
339,340 

The observation 

of two environments is likely ascribed to surface-bound carbonate or hydroxide;
341 

surface Ti
3+

 would show its 
2
P3/2 peak at lower binding energy. Of course, Ti

3+
 is 

formally present as lithium inserts, with the average oxidation state of titanium in 

Li7Ti5O12 being +3.4. 

Finally, we bolster this hypothesis by examining the electrochemistry of other LTO 

samples in Table 6.2. We compare our LTO nanocrystals against bulk LTO, nanoparticle 

agglomerates of LTO prepared without templating, and aggregates prepared with CTAB 

templating. We note that the charge storage capacity of LTO is similar to what other 

researchers report. It should be; it is an inherent property of the material. At the reversible 

limit (i.e.—cycled sufficiently slowly), all LTO materials would show a gravimetric 

capacity of 175 mAh/g. In functional materials, however, two new factors come into 

play. We have highlighted the first factor in the preceding paragraphs. The capacity is 

smaller because the end user has no time to wait for Li
+
 to insert throughout the entire  

material to store charge. The second is that the sheer amount of charge stored in a 

material is irrelevant if that charge has little stored energy. The hysteresis losses in 

nanomaterials prepared by classic methods render high rate cycling impractical; with a 

voltage difference between charge and discharge of > 250 mV, over 30% of the energy is 

lost as heat (determined by integrating the difference in areas under the charge and 
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discharge curves). Thin-film electrodes composed of our nanocrystals show marked 

improvement, with an energy density retention of 90 % at 1 C current, and 100 % at 100 

C.  

 

Table 6.2 Electrochemical Comparison of LTO Synthesized by Varying Methods 

Compound Capacity [mAh•g
–1

] 
Polarization  

[mV] 

Referenc

e 

CTAB-LTO
(a) 

~135 at 1000 mA/g >250 321 

3DOM-LTO
(b) ~145 at 0.625 mA/g (~10 

C) 
N/A 317 

Hollow sphere-LTO
(c)

 ~100 at 10 C >250 335 

carbon coated LTO 

sphere
(d)

 
~110 at 10 C >250 336,337 

S-LTO
(e)

 113 at 10 C 360 this work 

C-LTO
(f)

 161 at 10 C 170 this work 

(a) porous structrue with surface area 219.2 m
2
/g 

(b) macroporous structure; No conductive agent in electrode 

(c) using micron sized carbon sphere as a hard template 

(d) using pitch as a carbon coating agent (5.2 wt%); 70 μm 

(e) 1 mg/cm
2
 loading(30 μm); carbon black template employed 

(f) 1 mg/cm
2
 loading(30 μm); direct solution method 

 

6.5 Conclusion 

   We have pioneered a crystal growth process for oxide nanocrystals that relies on 

templating with amorphous carbon. The template serves two purposes—decreasing the 

particle size and preventing aggregative growth. As a result, thin-film electrodes 

comprising Li4Ti5O12, a sought after material for lithium-ion battery anodes, show 
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dramatically improved energy density retention when cycled at high C rates. We 

demonstrate that this improvement arises because charge transfer between isolated 

nanocrystals and the conducting carbon in the electrode is rapid, unlike to the larger 

charge transfer resistance observed in a percolated network of nanoparticle aggregates. 
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CHAPTER 7 

Conclusion and Future Work 

 

7.1 Introduction 

  This thesis focused on development of complex transition metal oxide electrodes for 

lithium ion batteries. Detailed synthesis, characterization and analysis are described in 

Chapters 2 to 5. Experiments on both cathodes and anodes studies are included in this 

work. To achieve a stable battery system, the two electrochemical terminals need to meet 

the stability window the electrolyte; this includes careful selections of the electrode 

materials based on the potential of the redox active couple, and also further reinforcement 

of the electrode surface. In addition, long term electrochemical cycling life requires 

improved structural stability of the electrode hosts for lithium-ion intercalation chemistry. 

Current and future efforts emphasize the fundamental understanding of the electrode 

material properties, in order to develop next generation batteries. 

7.2 Microstructural analysis of oxygen defects in LiMn2O4 

   Based on the cathode material studies in this work, oxygen defects play a significant 

role influencing the electrochemical characteristics of the material. The cathode research 

starts from LiMn2O4 incorporated with possible oxygen vacancies incorporated into the 

structure. We have learned from Chapters 2 and 3 that increasing oxygen content level 

improves the long term cycling stability of the cathode. The issue of oxygen defects 

translate to manganese oxidation state control. The existing correlation between structural 

stability and manganese valence was revealed by careful elemental analysis and neutron 
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diffraction. One of the major challenges is to uncover the detailed structure 

transformation mechanism of oxygen deficient LiMn2O4. A spinel to double hexagonal 

transition model originally was proposed by Tarascon was substantiated by electron 

microscopy work in this. In Chapter 3, structural failure is shown to corrolate directly to 

capacity fade and an increase in the internal resistance of the battery. Future efforts 

should focus on careful structure analysis by (in-situ) microscopy and advanced 

diffraction techniques with electrodes at various SOCs. In addition, the distribution of 

oxygen defects, particularly at the surface, requires additional study. 

7.3 Charge transfer consideration in LiNi0.5Mn1.5O4 

   Similar to LiMn2O4, oxygen defects also occur in LiNi0.5Mn1.5O4 as discussed in 

Chapters 4 and 5. It has been proved the capacity and cylability a better electrochemical 

property of LiNi0.5Mn1.5O4-δ improve with oxygen vacancies at 32e sites. However, this 

material's gravimetric energy density is decreased due to higher Mn
3+

 content and its low 

redox potential in oxygen deficient LiNi0.5Mn1.5O4-δ. It's important to understand the 

structural properties of LiNi0.5Mn1.5O4 with various levels of oxygen defects for stability 

optimization. In Chapter 4, for the first time, cut-off potentials, 3.4 - 4.4 and 4.4 -5.0 V 

regions, related cyclibility is observed with long term-electrochemical stability of the 

material. It has been noticed that the compounds with oxygen defects show much better 

capacity retention upon hundreds of cycles with purely high voltage "Ni region" (4.4 - 5.0 

V) or "Mn region" (3.4 - 4.4 V). On the contrary, constant capacity decay occurs when 

the electrochemical potential window covers both regimes (3.4 - 5.0 V). This 

phenomenon suggests a possible charge transfer mechanism between formal Ni
2+/4+

 and 

Mn
3+/4+

 redox couples through the Ni-O-Mn bridge. Since the electronic structure of the 
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bridge is directly related to the oxygen level in the compound, optical and magnetic 

measurements can elucidate the mechanism of charge transfer in this material.  

 

7.4 Electrode surface structure and improvement of the SEI layer 

   Other than the bulk materials' properties, the surface plays a significant role influencing 

the material stability. There have been many reports on the surface vacancies in catalysis, 

which could provide fruitful suggestions on additional characterization routes.  

   In Chapter 5, it was demonstrated that adding an artificial titanate SEI layer on the 

surface of the Ni based high voltage spinel cathode increases the electrochemical 

stability. For future work, post-cycling analysis of the electrode surfaces by high 

resolution electron microscopy will provide better understanding of the failure 

mechanism and inform artificial SEI designs. As shown in Chapter 5, although the 

titanate layer offered valid protection to the cathode material, the low conductivity , a 

serious drawback, was obvious as well. It is necessary to explore new coating layers with 

higher electrical conductivity with respect to the rate capability. Meanwhile, the lithium-

ion pathway through the layer is also unclear. Future efforts should also take the ionic 

diffusion mechanism into considerations. How does the intrinsically formed SEI layer 

change based on different surface structures? Building correlations between the SEI layer 

stability and the defects chemistry will assist future spinel cathodes developments.  

7.5 Full cell development and future work about the anode 

   Li4Ti5O12 has been developed with a super high rate capability as described in Chapter 

6. Although the material's morphology has been engineered successfully to support fast 

rates, the lithium diffusion coefficient and surface electrical conductivity are still poor. 
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Future modification of the composition is required to improve these characteristics. There 

have been reports of cation or anion doping intending to improve the conductivity and 

charge transfer resistance in the battery. However, little research has focused on 

incorporating both cation and anion dopants to the system in order to improve the charge 

transfer, which has been well practiced in our lab for photocatalytic dye degradation.  

   All the electrochemical studies for this thesis were performed in half-cells format for 

the purpose of better monitoring of the electrochemical characteristics of one material at 

a time.  However, the ultimate goal is to couple novel cathodes and anodes in a full cell 

system. For this purpose, it's necessary to further study the coupled material chemistry 

and possible capacity fading mechanism in a full cell format with the developed 

materials.  

7.6 Conclusion 

   High energy, high power, and long-term stability electrode materials and batteries are 

in great demand for modern society developments. As a practical research topic, safety 

and cost are both considered during the most current efforts. Lithium-ion batteries have 

taken the dominant market share of energy storage devices, which have been around for 

more than two decades. One of the major challenges remains maintaining structural 

stability within the active electrodes during the long term operation of the batteries. Our 

work on spinel-structured cathodes and anodes provides a better understanding the 

correlations between the structural defects, surface and electrochemical properties. 

Further fundamental researches on the defects control, charge transfer mechanism, and 

modifying composition of the electrode materials will continuously provide 

experimentally demonstrated suggestions for future battery optimization. 
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APPENDIX A 

SUPPORTING DATA FOR CHAPTER 2 

 

 

 

Figure A.1 XRD patterns of hydrothermally synthesized lithium manganospinels.  
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Figure A.2 XRD pattern of lithium manganospinel synthesized hydrothermal in air 

followed by annealing under N2.  
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Figure A.3 N2 sorption isotherms for lithium manganospinels prepared hydrothermally. 

The top panels represent the synthesized samples and the bottom panels represent the 

annealed samples. All compounds type II isotherms with surface areas of ~60 m
2
/g as 

determined from the Brunauer-Emmett-Teller (BET) method.  
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Figure A.4 FTIR spectra of hydrothermally synthesized lithium manganospinels. Black 

and red traces represent the synthesized and annealed spectra for compounds prepared in 

a) air; b) N2; c) O2, respectively. ν(O–H) and δ(H–O–H) modes at 3300 and 1630 cm
–1

 

respectively indicate surface-bound water.  
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Figure A.5 TGA of the air synthesized sample performed under N2 purge. No mass gain 

associated with oxygen uptake between 250–350 ºC is observed. 
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Figure A.6 Individual chronopotentiometry profiles for C/3cycling experiments. The first 

charge-discharge cycle is in gold and the 100
th

 cycle is in red.  
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Figure A.7 Cycling behavior of lithium manganospinel synthesized in air and annealed at 

(a) 270ºC and (b) 310 ºC respectively. Panels (c) and (d) show the charge and discharge 

curves for the 10
th

 cycles of each.  
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Figure A.8 Nyquist plots for O2 annealed sample at varying potential. 
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APPENDIX B 

SUPPORTING DATA FOR CHAPTER 3 

 

 

Table B.1 Refinement parameters for C-LMO. (The experimental XRD pattern is shown 

as Fig. 1 in the text). 

Space Group Fd 
–
3  m 

Scale 4.240 × 10
–3

 

Lattice parameter, a (Å) 8.254 

Unit Cell Mass (g•mol
–1

) 1435.250 

Unit Cell Volume (Å
3
) 560.630 

Crystallite Size, Lorentzian (nm) 128.1 

Crystal Density (g•cm
3
), calculated 4.251 

Crystal Linear Absorption Coefficient (cm
–1

) 721.343 

Wt%-Rietveld 100.000 

Rexp/ Rexp′ 
(a) 

0.27/0.55 

Rwp/ Rwp′ 1.92/3.85 

Rp/ Rp′ 0.92/1.94 

RBragg 1.044 

GoF 6.97 

DWd 0.19 

(a)-Primed parameters are background corrected. 
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Table B.2 Atomic coordinates and isotropic thermal parameters for C-LMO 

Atom 
Wyckoff 

Site 
x y z SOF Beq 

Li 8a 0 0 0      1 -0.6825 

Mn 16d 0.6250 0.6250 0.6250 1 2.023 

O 32e 0.38928 0.38924 0.38928       1 2.138 
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Figure B.1 Cyclic voltammetry (CV) and differential scanning calorimetry (DSC) of C-

LMO 
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Table B.3 Elemental analysis of compounds presented in this study 

Compound ppm Li ppm Mn ZMn 
Sample mass 

per mg 
Composition 

C-LMO 0.409(3.87%) 6.451(61.42%) 3.38 10.5 LiMn2O3.88 

S-LMO 0.514(3.82%) 8.12(60.60%) 3.53 13.4 LiMn2O4.03 

D-LMO 0.485(3.88%) 7.686(61.47%) 3.37 12.5 LiMn2O3.87 
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Table B.4 Atomic parameters, occupancies and equivalent displacement parameters (Å
2
) 

of C-LMO 

  

Atom Wyckoff site x y z Occ. Uiso 

Li 8a 0.125 0.125 0.125 1 0.0117 

Mn 16d 0.5 0.5 0.5 1 0.01144 

O 32e 0.2634(7) 0.2634(7) 0.2634(7) 0.97(1) 0.01647 
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Figure B.2 SEM image of S-LMO (a) and D-LMO (b)  
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Figure B.3 Capacity retention comparison of C-LMO and D-LMO at 0.2 C between 3.40 

~ 4.45 V  
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Figure B.4 XRD and refinement results of S-LMO  
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Table B.5 Refinement parameters for S-LMO 

Space Group Fd 
–
3  m 

Scale 3.786 × 10
–3

 

Lattice parameter, a (Å) 8.233 

Unit Cell Mass (g•mol
–1

) 1435.250 

Unit Cell Volume (Å
3
) 558.108 

Crystallite Size, Lorentzian (nm) 102.4 

Crystal Density (g•cm
3
), calculated 4.270 

Crystal Linear Absorption Coefficient (cm
–1

) 724.603 

Wt%-Rietveld 100 

Rexp/ Rexp′ 
(a) 

1.13/1.04 

Rwp/ Rwp′ 1.05/6.34 

Rp/ Rp′ 1.67/2.40 

RBragg 0.874 

GoF 1.92 

DWd 0.73 

(a)-Primed parameters are background corrected.  
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Table B.6 Atomic coordinates and isotropic thermal parameters for S-LMO 

Atom 
Wyckoff 

Site 
x y z SOF Beq 

Li 8a 0 0 0  1 0.7086 

Mn 16d 0.6250 0.6250 0.6250         1 1.667 

O 32e 0.38876 0.38876 0.38876  1 1.098 
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Figure B.5 XRD and refinement results of S-LMO at SOC of 4.45 V 
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Table B.7 Refinement parameters for S-LMO at SOC of 4.45 V 

Space Group Fd 
–
3  m 

Scale 3.973 × 10
–3

 

Lattice parameter, a (Å) 8.072 

Unit Cell Mass (g•mol
–1

) 1435.250 

Unit Cell Volume (Å
3
) 526.013 

Crystallite Size, Lorentzian (nm) 51.9 

Crystal Density (g•cm
3
), calculated 4.531 

Crystal Linear Absorption Coefficient (cm
–1

) 768.816 

Wt%-Rietveld 100 

Rexp/ Rexp′ 
(a) 

0.36/0.85 

Rwp/ Rwp′ 0.78/1.82 

Rp/ Rp′ 0.55/1.34 

RBragg 6.698 

GoF 2.14 

DWd 0.49 

(a)-Primed parameters are background corrected.  
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Table B.8 Atomic coordinates and isotropic thermal parameters for S-LMO at SOC of 

4.45 V 

Atom 
Wyckoff 

Site 
x y z SOF Beq 

Li 8a 0 0 0 1 1.976 

Mn 16d 0.6250 0.6250 0.6250         1 1.712 

O 32e 0.38760 0.38760 0.38760 1 0.1722 
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Figure B.6 XRD and refinement results of D-LMO 
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Table B.9 Refinement parameters for D-LMO 

Space Group Fd 
–
3  m 

Scale 7.119 × 10
–3

 

Lattice parameter, a (Å) 8.253 

Unit Cell Mass (g•mol
–1

) 1435.250 

Unit Cell Volume (Å
3
) 562.300 

Crystallite Size, Lorentzian (nm) 85.5 

Crystal Density (g•cm
3
), calculated 4.238 

Crystal Linear Absorption Coefficient (cm
–1

) 719.201 

Wt%-Rietveld 100.000 

Rexp/ Rexp′ 
(a) 

0.28/0.60 

Rwp/ Rwp′ 1.62/3.44 

Rp/ Rp′ 0.84/1.92 

RBragg 0.814 

GoF 5.74 

DWd 0.14 

(a)-Primed parameters are background corrected. 

 

  

 

  



187 

 

Table B.10 Atomic coordinates and isotropic thermal parameters for D-LMO 

Atom 
Wyckoff 

Site 
x y z SOF Beq 

Li 8a 0 0 0 1 -0.1554 

Mn 16d 0.6250 0.6250 0.6250         1 3.432 

O 32e 0.39103 0.37998 0.39103 1 3.498 
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Figure B.7 XRD and refinement results of D-LMO at SOC of 4.45 V  
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Table B.11 Refinement parameters for D-LMO at SOC of 4.45 V 

Space Group Fd 
–
3  m 

Scale 2.491 × 10
–3

 

Lattice parameter, a (Å) 8.050 

Unit Cell Mass (g•mol
–1

) 1435.250 

Unit Cell Volume (Å
3
) 521.660 

Crystallite Size, Lorentzian (nm) 36.0 

Crystal Density (g•cm
3
), calculated 4.569 

Crystal Linear Absorption Coefficient (cm
–1

) 775.231 

Wt%-Rietveld 100.000 

Rexp/ Rexp′ 
(a) 

0.36/0.83 

Rwp/ Rwp′ 0.92/2.12 

Rp/ Rp′ 0.65/1.54 

RBragg 2.452 

GoF 2.55 

DWd 0.33 

(a)-Primed parameters are background corrected.  
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Table B.12 Atomic coordinates and isotropic thermal parameters for D-LMO at SOC of 

4.45 V 

Atom 
Wyckoff 

Site 
x y z SOF Beq 

Li 8a 0 0 0 1 2.020 

Mn 16d 0.6250 0.6250 0.6250         1 0.6991 

O 32e 0.38695 0.38695 0.38695 1 -0.9988 
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Figure B.8 EIS result of S-LMO (black) and D-LMO (red) at open circuit potential after 

100 cycles at 1C. 
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APPENDIX C 

SUPPORTING DATA FOR CHAPTER 4 

 

 

Table C.1 Refinement parameters for LNMO synthesized in air 

Space Group Fd 
–
3  m 

Scale 5.460 × 10
–4 

Lattice parameter, a (Å) 8.183 

Unit Cell Mass (g•mol
–1

) 1450.260 

Unit Cell Volume (Å
3
) 548.141 

Crystallite Size, Lorentzian (nm) 120.8 

Crystal Density (g•cm
3
), calculated 4.393 

Crystal Linear Absorption Coefficient (cm
–1

) 592.397 

Wt%-Rietveld 86.398 

Rexp/ Rexp′ 
(a) 

0.93/1.69 

Rwp/ Rwp′ 1.85/3.34 

Rp/ Rp′ 1.23/2.40 

RBragg 3.607 

GoF 1.98 

DWd 0.76 

(a)-Primed parameters are background corrected.  
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Table C.2 Atomic coordinates and isotropic thermal parameters for LNMO synthesized 

in air. 

Atom 
Wyckoff 

Site 
x y z SOF Beq 

Li 8a 0 0 0 1 2.924 

Mn 16d 0.6250 0.6250 0.6250 0.75 1.758 

Ni 16d 0.6250 0.6250 0.6250 0.25 0.9867 

O 32e 0.38723 0.38723 0.38723 1 -0.06318 
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Figure C.1Indexed XRD pattern of the NMO intermediate (H0.4K0.08Ni0.5Mn1.5O3.305) 
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Figure C.2 EDX elemental map of the NMO intermediate 

  



196 

 

 

Figure C.3 EDX elemental map of the LNMO product 
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Figure C.4 XRD pattern of the one-pot synthesis LNMO product. 
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Figure C.5 SEM image of the one-pot synthesis LNMO product. 
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Figure C.6 XRD pattern of the products of the LNMO reaction performed under O2. The 

arrows point out reflections for the α-MnO2 impurity phase. Since the reaction product is 

not phase-pure, no Rietveld refinement was carried out. 
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Figure C.7 XRD data (black), calculated Rietveld refinement (red), and difference 

pattern (blue) for LNMO with second step prepared in N2. 
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Table S3. Refinement parameters for LNMO synthesized under N2 

Space Group Fd 
–
3  m 

Scale 5.328× 10
–4

 

Lattice parameter, a (Å) 8.196 

Unit Cell Mass (g•mol
–1

) 1450.260 

Unit Cell Volume (Å
3
) 549.649 

Crystallite Size, Lorentzian (nm) 111.9 

Crystal Density (g•cm
3
), calculated 4.381 

Crystal Linear Absorption Coefficient (cm
–1

) 590.771 

Wt%-Rietveld 86.675 

Rexp/ Rexp′ 
(a) 

0.91/3.04 

Rwp/ Rwp′ 1.94/6.49 

Rp/ Rp′ 1.26/4.70 

RBragg 0.413 

GoF 2.14 

DWd 0.69 

(a)-Primed parameters are background corrected.  
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Table C.3 Refinement parameters for LNMO synthesized under N2 

Space Group Fd 
–
3  m 

Scale 5.328× 10
–4

 

Lattice parameter, a (Å) 8.196 

Unit Cell Mass (g•mol
–1

) 1450.260 

Unit Cell Volume (Å
3
) 549.649 

Crystallite Size, Lorentzian (nm) 111.9 

Crystal Density (g•cm
3
), calculated 4.381 

Crystal Linear Absorption Coefficient (cm
–1

) 590.771 

Wt%-Rietveld 86.675 

Rexp/ Rexp′ 
(a) 

0.91/3.04 

Rwp/ Rwp′ 1.94/6.49 

Rp/ Rp′ 1.26/4.70 

RBragg 0.413 

GoF 2.14 

DWd 0.69 

(a)-Primed parameters are background corrected.  
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Table C.4 Atomic coordinates and isotropic thermal parameters for LNMO synthesized 

under N2 

Atom 
Wyckoff 

Site 
x y z SOF Beq 

Li 8a 0 0 0 1 2.916 

Mn 16d 0.6250 0.6250 0.6250 0.75 1.962 

Ni 16d 0.6250 0.6250 0.6250 0.25 0.9938 

O 32e 0. 38749 0. 38749 0. 38749 1 
–5.697× 

10
–5
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Figure C.8 FTIR spectra of the NMO intermediate and LNMO product. 
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Figure C.9 N2 sorption isotherm for the final LNMO product synthesized in the two-step 

hydrothermal method in air. 
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Figure C.10 View of the spinel crystal structure along the [1 1 0] direction. Blue, orange, 

and red spheres represent lithium, manganese/nickel, and oxygen atoms respectively. 
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Figure C.11 C(1s) XP spectra for NMO (a) and LNMO (b). NMO also shows K(2p) 

features. 
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Figure C.12 Voltage-dependence of the Li
+
 diffusion constant (DLi) determined from 

electrochemical impedance spectroscopy. The data are fit to the equivalent circuit 

illustrated in the inset.  
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Figure C.13 Nyquist plots for determining DLi of LNMO as a function of potential. 
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Figure C.14 Voltage profiles for the 1000 cycle LNMO cell. a) Cycles 1 – 10 performed 

between the voltage limits 3.4 – 5.0 V. Black, red, and blue represent cycles one, two, 

and ten respectively. Others are shown in gray. b) Cycles 11 – 121 performed between 

the voltage limits 4.4 – 5.0 V. Black and red represent cycles 11 and 121 respectively. 

Every 10
th

 cycle in between is shown in gray. c) Cycles 122 – 622 performed between the 

voltage limits 3.4 – 4.4 V. Black and red present cycles 122 and 622 respectively with 

every 100
th

 cycle in between shown in gray. d) Cycles 623 – 1123 performed between the 

voltage limits 4.4 – 5.0 V. Black and red represent cycles 623 and 1123 respectively with 

every 100
th

 cycle in between shown in gray. 
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Figure C.15 XRD data (black), calculated Rietveld refinement (red), and difference 

pattern (blue) for a freshly prepared LNMO electrode. 
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Table C.5 Refinement parameters for a freshly prepared LNMO electrode. 

Space Group Fd 
–
3  m 

Scale 4.603× 10
–5

 

Lattice parameter, a (Å) 8.185 

Unit Cell Mass (g•mol
–1

) 1450.260 

Unit Cell Volume (Å
3
) 548.485 

Crystallite Size, Lorentzian (nm) 68.8 

Crystal Density (g•cm
3
), calculated 4.391 

Crystal Linear Absorption Coefficient (cm
–1

) 592.025 

Wt%-Rietveld 100 

Rexp/ Rexp′ 
(a) 

1.28/2.50 

Rwp/ Rwp′ 1.93/3.78 

Rp/ Rp′ 1.39/2.79 

RBragg 0.166 

GoF 1.51 

DWd 1.01 

(a)-Primed parameters are background corrected.  
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Table C.6 Atomic coordinates and isotropic thermal parameters for a freshly prepared 

LNMO electrode. 

Atom 
Wyckoff 

Site 
x y z SOF Beq 

Li 8a 0 0 0 1 -3.857 

Mn 16d 0.6250 0.6250 0.6250 0.75 16.04 

Ni 16d 0.6250 0.6250 0.6250 0.25 6.058 

O 32e 0. 37415 0. 37415 0. 37415 1 13.79 
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Figure C.16 XRD data (black), calculated Rietveld refinement (red), and difference 

pattern (blue) for an LNMO electrode after 60 cycles between 3.4 – 5.0 V. 
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Table C.7 Refinement parameters an LNMO electrode after 60 cycles between 3.4 – 5.0 

V. 

Space Group Fd 
–
3  m 

Scale 1.187× 10
–4

 

Lattice parameter, a (Å) 8.157 

Unit Cell Mass (g•mol
–1

) 1450.260 

Unit Cell Volume (Å
3
) 542.886 

Crystallite Size, Lorentzian (nm) 102.6 

Crystal Density (g•cm
3
), calculated 4.436 

Crystal Linear Absorption Coefficient (cm
–1

) 598.131 

Wt%-Rietveld 100 

Rexp/ Rexp′ 
(a) 

1.60/3.15 

Rwp/ Rwp′ 2.02/3.97 

Rp/ Rp′ 1.62/3.22 

RBragg 0.058 

GoF 1.26 

DWd 1.31 

(a)-Primed parameters are background corrected.  
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Table C.8 Atomic coordinates and isotropic thermal parameters for an LNMO electrode 

after 60 cycles between 3.4 – 5.0 V. 

Atom 
Wyckoff 

Site 
x y z SOF Beq 

Li 8a 0 0 0 1 7.31 

Mn 16d 0.6250 0.6250 0.6250 0.75 18.71 

Ni 16d 0.6250 0.6250 0.6250 0.25 17.79 

O 32e 0.36358 0. 36358 0. 36358 1 20 
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Figure C.17 XRD data (black), calculated Rietveld refinement (red), and difference 

pattern (blue) for an LNMO electrode after 10 cycles 3.4 – 5.0 V and 50 cycles 3.4 - 4.4 

V charge/discharge. 
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Table C.9 Refinement parameters for LNMO after 10 cycles 3.4 – 5.0 V and 50 cycles 

3.4 - 4.4 V charge/discharge. 

Space Group Fd 
–
3  m 

Scale 2.687× 10
–4

 

Lattice parameter, a (Å) 8.194 

Unit Cell Mass (g•mol
–1

) 1450.260 

Unit Cell Volume (Å
3
) 550.261 

Crystallite Size, Lorentzian (nm) 110.0 

Crystal Density (g•cm
3
), calculated 4.376 

Crystal Linear Absorption Coefficient (cm
–1

) 590.114 

Wt%-Rietveld 100 

Rexp/ Rexp′ 
(a) 

1.45/2.85 

Rwp/ Rwp′ 2.01/3.95 

Rp/ Rp′ 1.55/3.10 

RBragg 1.459 

GoF 1.38 

DWd 1.21 

(a)-Primed parameters are background corrected.  
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Table C.10 Atomic coordinates and isotropic thermal parameters for LNMO after 10 cycles 3.4 – 

5.0 V and 50 cycles 3.4 - 4.4 V charge/discharge. 

Atom 
Wyckoff 

Site 
x y z SOF Beq 

Li 8a 0 0 0 1 13.38 

Mn 16d 0.6250 0.6250 0.6250 0.75 19.53 

Ni 16d 0.6250 0.6250 0.6250 0.25 1 

O 32e 0. 36880 0. 36880 0. 36880 1 -7.117 
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Figure C.18 XRD data (black), calculated Rietveld refinement (red), and difference 

pattern (blue) for an LNMO electrode after 10 cycles 3.4 - 5 V and 50 cycles 4.4 - 5 V 

charge/discharge. 
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Table C.11 Refinement parameters for an LNMO electrode after 10 cycles 3.4 - 5 V and 

50 cycles 4.4 - 5 V charge/discharge. 

Space Group Fd 
–
3  m 

Scale 3.976× 10
–4

 

Lattice parameter, a (Å) 8.189 

Unit Cell Mass (g•mol
–1

) 1450.260 

Unit Cell Volume (Å
3
) 549.322 

Crystallite Size, Lorentzian (nm) 83.3 

Crystal Density (g•cm
3
), calculated 4.384 

Crystal Linear Absorption Coefficient (cm
–1

) 591.123 

Wt%-Rietveld 100 

Rexp/ Rexp′ 
(a) 

1.39/2.70 

Rwp/ Rwp′ 2.25/4.36 

Rp/ Rp′ 1.64/3.21 

RBragg 0.529 

GoF 1.62 

DWd 1.06 

(a)-Primed parameters are background corrected.  
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Table C.12 Atomic coordinates and isotropic thermal parameters for an LNMO electrode 

after 10 cycles 3.4 - 5 V and 50 cycles 4.4 - 5 V charge/discharge. 

Atom 
Wyckoff 

Site 
x y z SOF Beq 

Li 8a 0 0 0 1 -9.146 

Mn 16d 0.6250 0.6250 0.6250 0.75 16.04 

Ni 16d 0.6250 0.6250 0.6250 0.25 19.59 

O 32e 0. 37019 0. 37019 0. 37019 1 19.93 
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Figure C.19 XRD data (black), calculated Rietveld refinement (red), and difference 

pattern (blue) for an LNMO electrode after 1000 cycles with different electrochemical 

windows. 
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Table C.13 Refinement parameters for an LNMO electrode after 1000 cycles with 

different electrochemical windows. 

Space Group Fd 
–
3  m 

Scale 1.281× 10
–4

 

Lattice parameter, a (Å) 8.209 

Unit Cell Mass (g•mol
–1

) 2347.295 

Unit Cell Volume (Å
3
) 553.229 

Crystallite Size, Lorentzian (nm) 92.5 

Crystal Density (g•cm
3
), calculated 4.396 

Crystal Linear Absorption Coefficient (cm
–1

) 680.508 

Wt%-Rietveld 100 

Rexp/ Rexp′ 
(a) 

1.41/2.71 

Rwp/ Rwp′ 1.98/3.80 

Rp/ Rp′ 1.51/2.95 

RBragg 1.158 

GoF 1.40 

DWd 1.06 

(a)-Primed parameters are background corrected.  
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Table C.14 Atomic coordinates and isotropic thermal parameters for an LNMO electrode 

after 1000 cycles with different electrochemical windows. 

Atom 
Wyckoff 

Site 
x y z SOF Beq 

Li 8a 0 0 0 1 19.92 

Mn 16d 0.6250 0.6250 0.6250 0.75 19.68 

Ni 16d 0.6250 0.6250 0.6250 0.25 12.18 

O 32e 0.34704 0.34704 0.34704 1 -0.8975 
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APPENDIX D 

SUPPORTING DATA FOR CHAPTER 5 

 

 

 

Figure D.1 XRD Pattern of LiNi0.5Mn1.5O4–δ. 
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Figure D.2 Raman spectra of LNMO samples. 
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Figure D.3 XRD Patterns of anatase-TiO2 and spinel LTO coatings.  
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Figure D.4 CVs of anatase-TiO2 and LTO. Scan rate is 0.1 mV/s. 
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Figure D.5 Room-temperature 1 C cycling data for two additional 5 – 10 nm TiO2-coated 

LNMO cells.  
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Figure D.6 Profiles of last cycle at each rate of the rate capability study for (a) a bare 

LNMO electrode; (b) TiO2-coated LNMO. From right to left, rates are 1, 2, 3, 5, and 10 

C. 
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Figure D.7 Profiles of the 5
th

, 55
th

, and 110
th

 cycles at 55 °C for (a) a bare LNMO 

electrode; (b) TiO2-coated LNMO. Cells are charged and discharged at 1 C rate. 
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Figure D.8 HR-TEM image of TiO2-coated LTO after 110 cycles at 55 ºC (1 C charge 

and discharge). 
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Figure D.9 Conductivity of LNMO pellets. 
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APPENDIX E 

SUPPORTING DATA FOR CHAPTER 6 

 

 

 

Figure E.1 
1
H-NMR spectra of fresh precursor solution of LiOEt and Ti(O

i
Pr)4 in 

toluene-d8 (blue) and after storing for 72 h under ambient conditions (red).  
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Figure E.2 TGA traces of C-LTO nanocrystals and S-LTO aggregates.  
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Figure E.3 Raman spectrum of C-LTO showing that no carbon black remains on the 

surface after annealing. Raman features at ca. 1250 and 1520 cm
–1

 arise from the 

background.  
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Figure E.4 Particle size distribution histogram of C-LTO.  
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Figure E.5 X-ray diffraction pattern and Rietveld refinement of C-LTO nanocrystals.  
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Table E.1 Refinement parameters for C-LTO nanocrystals 

Space Group Fd 
–
3 m 

Scale 4.896× 10
–4

 

Lattice parameter, a (Å) 8.362 

Unit Cell Mass (g•mol
–1

) 1439.529 

Unit Cell Volume (Å
3
) 584.654 

Crystallite Size, Lorentzian (nm) 58.01 

Crystal Density (g•cm
3
), calculated 4.089 

Crystal Linear Absorption Coefficient (cm
–1

) 452.192 

Wt%-Rietveld 100.00 

Rexp/ Rexp′ 
(a) 

2.81/3.69 

Rwp/ Rwp′ 2.94/1.49 

Rp/ Rp′ 2.26/1.70 

RBragg 0.521 

GoF 2.48 

DWd 0.78 

(a)-Primed parameters are background corrected.  
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Table E.2 Atomic coordinates and isotropic thermal parameters for C-LTO nanocrystals 

Atom 
Wyckoff 

Site 
x y z SOF Beq 

Li 8a 0 0 0 1 6.131 

Li 16d 0.6250 0.6250 0.6250 0.167 3.319 × 10
-4

 

Ti 16d 0.6250 0.6250 0.6250 0.833 7.082 

O 32e 0. 38867 0. 38867 0. 38867 1 –0.9752 
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Figure E.6 X-ray diffraction pattern and Rietveld refinement of S-LTO aggregates.  
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Table E.3 Refinement parameters for C-LTO nanocrystals 

Space Group Fd 
–
3 m 

Scale 4.315× 10
–4

 

Lattice parameter, a (Å) 8.363 

Unit Cell Mass (g•mol
–1

) 1439.529 

Unit Cell Volume (Å
3
) 585.458 

Crystallite Size, Lorentzian (nm) 201.3 

Crystal Density (g•cm
3
), calculated 4.083 

Crystal Linear Absorption Coefficient (cm
–1

) 451.571 

Wt%-Rietveld 100.00 

Rexp/ Rexp′ 
(a) 

1.34/2.07 

Rwp/ Rwp′ 1.54/2.49 

Rp/ Rp′ 3.16/2.67 

RBragg 0.775 

GoF 2.15 

DWd 0.83 

(a)-Primed parameters are background corrected.  
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Table E.4 Atomic coordinates and isotropic thermal parameters for C-LTO nanocrystals 

Atom 
Wyckoff 

Site 
x y z SOF Beq 

Li 8a 0 0 0 1 4.016 

Li/Ti 16d 0.6250 0.6250 0.6250 0.167 -8.246 

Ti 16d 0.6250 0.6250 0.6250 0.833 7.082 

O 32e 0. 38587 0. 38587 0. 38587 1 –3.645 

 

   



245 

 

 

 

Figure E.7 SAED pattern of C-LTO nanocrystals (top). The view is along [011], and 

diffraction spots correspond to the {111} family of planes. Unit cell of Li4Ti5O12 viewed 

along [011] (bottom). Yellow spheres represent Li on 8a tetrahedral Wyckoff sites, light 

blue polyhedra represent (Li/Ti)O6 octahedra on 16d sites, and black spheres represent 

the 16c octahedral sites. These sites are empty in Li4Ti5O12, but occupied in the fully 

lithiated material Li7Ti5O12. 
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Figure E.8 N2 sorption isotherms for C-LTO (a) and S-LTO (b).  
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Figure E.9  EDX spectrum (a) and map (b) of C-LTO nanocrystals.  
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Figure E.10 (a) Gravimetric charge capacity of C-LTO cells cycled galvanostatically at 1 

C; (b) Gravimetric charge capacity of C-LTO cells cycled galvanostatically at 10 C; (c) 

Gravimetric charge capacity of S-LTO cells cycled galvanostatically at 1 C; (d) 

Gravimetric charge capacity of C-LTO cells cycled galvanostatically at 10 C. 

  



249 

 

 

Figure E.11 Gravimetric charge capacity of C-LTO cells (4mg/cm
2
 active material 

loading) cycled galvanostatically at 1 C. 
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Figure E.12 EPR spectrum (a) , Ti 2p XP spectrum of C-LTO nanocrystals (b) Ti 2p XP 

xpectrum of S-LTO nanocrystals (c). 
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